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Abstract. We recall the notion of a tower of Rankin-Selberg integrals, and
two known towers, making observations of how the integrals within a tower may
be related to one another via formal manipulations, and offering a heuristic
for how the L-functions should be related to one another when the integrals
are related in this way. We then describe three new integrals in a tower on the
group E6, and find out which L-functions they represent. The heuristics also
predict the existence of a fourth integral.

1. Introduction

The notion of a tower of Rankin-Selberg integrals was introduced in [G-R]. To
recall this notion, let G be a reductive group defined over a global field F . Let
LG denote the L-group of G. Let ρ denote a finite-dimensional irreducible rep-
resentation of LG. Given an irreducible generic cuspidal representation of G(A),
we let LS(π, ρ, s) denote the partial L-function associated with π and ρ. Here s
is a complex variable, and A denotes the adèle ring associated with F . If ρ acts
on the vector space V , we denote by C[V ] the symmetric algebra attached to the
vector space V . Let C[V ]

LG denote the LG-invariant polynomials inside the sym-
metric algebra. As far as we know, all the examples of L-functions represented by
a Rankin-Selberg integral are associated with representations ρ such that C[V ]

LG

is a free algebra. A list of all such groups, representations, and the degrees of the
generators of the invariant polynomials are given in [K].

The basic observation in [G-R] is that there is some relation between the Eisen-
stein series one uses to construct the Rankin-Selberg integral and the number of
generators of the invariant polynomials and their degrees. This relation is far from
being clear, and it is mainly based on observation of all known constructions of
such integrals. To summarize in an unprecise manner, the relations are:

1) If ρ1 and ρ2 have the same number of generators with the same degrees, then
in some cases the Rankin-Selberg integrals that represent the corresponding two
L-functions use the same Eisenstein series.

2) Suppose that the Eisenstein series one uses for a certain construction is defined
on H(A), where H is a reductive group. Suppose that this Eisenstein series corre-
sponds to an induced representation induced from a parabolic subgroup P = MU
of H. Here M is the Levi part of P , and U its unipotent radical. As in the work
of Shahidi, the group LM acts on LU by conjugation, and this way one obtains r
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irreducible finite-dimensional representations of LM . Suppose that the correspond-
ing Rankin-Selberg integral represents the L-function LS(π, ρ, s). Let k denote the
number of generators of C[V ]

LG, where we recall that that C[V ]
LG is assumed to

be free. Then the second observation (cf. [G-R, p. 202]) is that r ≥ k.
It should be stressed that these two observations are based mainly on experience

and we are not aware of precise theoretical reasons. We also want to mention that
information on L-functions LS(π, ρ, s) where ρ does not satisfy the above properties
can be obtained using other methods, such as lifting theory.

In this paper we wish to point out two more observations that may shed some
more light on the above relations. It will be convenient to first illustrate these
observations by two examples.

Consider the following example of a tower given in [G-R]:

G LG ρ
(a1) GLn GLn(C) 2�1

(a2) GLn × GLn GLn(C) × GLn(C) �1 × �1

(a3) GL2n GL2n(C) �2

We recall the construction of the Rankin-Selberg integral which represents the
L-function in case (a3). This integral was introduced in [J-S] and is given by

(1)
∫

S1

∫
S2

ϕπ

((
I X

I

) (
g

g

))
E(g, s)ψ(trX)dXdg.

Here ϕπ is a vector in the space of π which is an irreducible cuspidal representation
defined on GL2n(A), E(g, s) is an Eisenstein series defined on the group GLn(A),
and S1 = Z(A)GLn(F )\GLn(A), S2 = Matn×n(F )\Matn×n(A). For more details
see [J-S]. Let us show how the integral that represents the L-function given in (a2)
can be derived from integral (1). First notice that GLn × GLn is a Levi part
of a maximal parabolic subgroup P of GL2n. Now suppose we formally replace
in (1) the cuspidal representation π by the Eisenstein series Eτ,σ(g, ν) associated
with the induced representation Ind

GL2n(A)
P (A) (τ ⊗ σ)δν

P . Here τ and σ are cuspidal
representations defined on GLn(A), and ν is a complex variable. Of course the
integral will not converge. However, if we ignore this issue, and formally unfold the
Eisenstein series Eτ,σ(g, ν), we are led to consider the space of double cosets

P\GL2n/
{(

g X
g

)∣∣ G ∈ GLn, X ∈ Matn×n

}
.

If we consider the open orbit contribution to the integral, it is not hard to check
that we obtain the integral

(2)
∫

Z(A)GLn(F )\GLn(A)

ϕτ (g)ϕσ(g)E(g, s)dg

as inner integration. As is well known, integral (2) represents the tensor-product
L-function of τ × σ. In other words, this integral is the one which represents
the L-function described in case (a2). Furthermore, if one restricts the exterior
square representation �′

2 of GL2n(C) to GLn(C) × GLn(C), then one obtains
�′

2|GLn×GLn
= (�1×�1)⊕(�2×1)⊕(1×�2). From this we deduce the following.

If we start with the representation ρ as defined in case (a3) and restrict it to the L-
group of the Levi part, then the representation ρ corresponding to case (a2) occurs
in the restriction. Moreover, it is the representation with the largest dimension
which occurs in the restriction.
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The formal replacement of a cuspidal representation by an Eisenstein series and
then an analysis of the contribution from the open orbit is one of the observations
we wish to make. It should be mentioned that this observation does not explain
how to derive a global construction that will represent the L-function described in
case (a1).

We now consider the second example of a tower as described in [G-R]. This
tower consists of four members as follows:

G LG ρ
(b1) GL2 GL2(C) 4�1

(b2) GL3 GL3(C) �1 + �2

(b3) GSpin7 GSp6(C) �2

(b4) F4 F4(C) �4

The construction of Rankin-Selberg integrals for cases (b1), (b3), and (b4) was
given in [G-R]. Case (b2) was studied in [G1]. The integral which represents the L-
function given in (b4) can be described as follows. Let π denote a generic cuspidal
representation defined on the group F4(A). Let E(g, s) denote the degenerate
Eisenstein series defined on the exceptional group G2(A) as described in [G-R,
Section 1]. The global integral is

(3)
∫

G2(F )\G2(A)

∫
U(F )\U(A)

ϕπ(ug)E(g, s)ψU(u)dudg.

Here U is a certain unipotent subgroup of F4, and ψU is an additive character
defined on the group U . Observe that GSpin7 is a Levi part of a maximal parabolic
subgroup P of F4. Let τ denote a generic cuspidal representation defined on the
group GSpin7. Let Eτ (g, ν) denote the Eisenstein series defined on the group F4(A)
and associated to the induced representation Ind

F4(A)
P (A) τδν

P . If we formally replace
in (3) the cuspidal representation π by Eτ (g, ν), and then unfold this Eisenstein
series, then we obtain from the open orbit

(4)
∫

G2(F )\G2(A)

ϕτ (g)E(g, s)dg

as inner integration. As described in [G-R, Section 4], this is precisely the global
integral which represents the L-function described in (b3). Furthermore, let Q
denote the maximal parabolic subgroup of Spin7 whose Levi part is GL3. Let σ
denote a cuspidal representation defined on the group GL3(A). Replace in (4)
the cuspidal representation τ by the Eisenstein series Eσ(g, ν) associated with the
induced representation Ind

Spin7(A)
Q(A) σδν

Q. Unfolding the integral, we obtain from the
open orbit

(5)
∫

SL3(F )\SL3(A)

ϕσ(g)E(g, s)dg

as inner integration. As described in [G1], this is precisely the global integral that
represents the L-function described in (b2).

As in the previous case we can restrict in each case the representations ρ to
the L-group of the Levi part. All representations are labeled by n-tuples of inte-
gers corresponding to the coefficients of the fundamental weights, in the highest
weight of that representation. This does not specify the action of the central torus,
but is sufficient for our present purposes. The fundamental weights are numbered



A NEW TOWER OF RANKIN-SELBERG INTEGRALS 59

in the manner that is customary in the literature. Thus (0, 0, 0, 1) is the rep-
resentation of F4(C) of dimension 26. This is the representation ρ obtained in
case (b4). Restrict it to GSp6(C), which is the L-group of GSpin7. We obtain
(0, 0, 0, 1)|GSp6 = (0, 1, 0) + 2(1, 0, 0). Here (0, 1, 0) is the second fundamental rep-
resentation of GSp6(C), which has degree 14, and (1, 0, 0) is the six-dimensional
standard representation. If we further restrict GSp6(C) to GL3(C), we obtain
(0, 1, 0)|GL3 = (1, 1) + (1, 0) + (0, 1). Again, as in the first tower, we can see that
if we restrict ρ as defined in case (b4), we obtain the representation ρ as defined
in case (b3) as the largest piece in the restriction. A similar relationship exists
between cases (b3) and (b2).

We mention again that this observation does not allow one to obtain the integrals
for cases (a1) and (b1). The construction in these cases is more complicated and
involves covering groups.

To summarize, the above examples suggest the following two points.
3) Suppose that we are given a Rankin-Selberg integral which we know how to

unfold to an Eulerian integral with the Whittaker function defined on the cuspidal
representations. Then replacing a cuspidal representation by an Eisenstein series
and considering the contribution from the open orbit sometimes yield a new Euler-
ian Rankin-Selberg integral. In fact, one can replace the cuspidal representation
by various Eisenstein series. Experience indicates that most of the time one gets
either zero, or an integral which does not unfold to a Whittaker integral.

4) Suppose that the Eulerian integral with which we start represents an L-
function associated to the finite-dimensional irreducible representation ρ of the
complex group LG. Suppose that we replace a cuspidal representation, defined
over the group G(A), by an Eisenstein series induced from a cuspidal representation
defined on the Levi part M(A). Suppose that when we formally unfold the new
integral, the contribution from the open orbit produces a new integral which is
Eulerian with Whittaker functions. Then the new integral will represent the L-
function associated with the largest irreducible representation that occurs in the
restriction ρ|LM .

In these notes we announce a construction of a new tower of Rankin-Selberg
integrals. The tower we consider is the following:

G LG ρ
(c1) GL3 × GL2 GL3(C) × GL2(C) 2�1 × �1

(c2) GL3 × GL3 × GL2 GL3(C) × GL3(C) × GL2(C) �1 × �1 × �1

(c3) GL6 × GL2 GL6(C) × GL2(C) �2 × �1

(c4) E6 × GL2 E6(C) × GL2(C) �1 × �1

It follows from [K] that in all these representations the LG-invariant algebra has
one generator of degree 12. At this point we know a Rankin-Selberg construction for
all three cases (c2)–(c4). In the next section we shall explain these constructions
and show on an example how to derive one integral from the other. One can also
check that restricting from one case to the other does indeed produce the right
representation ρ in each case.

It should be mentioned that all of these L-functions can be studied using the
Langlands-Shahidi method as explained in [S].
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2. The global integrals

We start with the global construction which will correspond to case (c4), as
explained in the Introduction. Let G denote the exceptional similitude group of
type E6, constructed exactly as in [G2]. To introduce the global integral we need
to consider two small representations which we now define. First, let θ denote the
minimal representation defined on G(A). This representation was constructed and
studied in [G-R-S]. The construction there is defined on the group E6; however,
this definition can be extended to similitude groups without any problem. See
[G-J] for a similar definition of the exceptional similitude group GE7. In this
paper we denote a function in the space of this representation by θ(g). Another
representation we need for our construction was defined and studied in [G-H, Section
3]. The representation constructed there was defined on the group GSO10(A). A
similar definition holds for the group GSpin10(A). This representation depends on
a cuspidal representation τ defined on GL2(A), with trivial central character. We
shall denote a vector in this space by θτ (h), where h ∈ GSpin10(A). We briefly
recall the definition. Let R denote the parabolic subgroup of GSpin10 whose Levi
part is GL3 × GSpin4. Let µ(τ ) denote the symmetric square lift of τ to GL3

as constructed in [Ge-J], and let ε(τ ) denote the outer tensor product τ ⊗ τ. A
priori, this is a representation of PGL2×PGL2, but GSpin4 covers this group. Let
E(τ, h, s) denote the Eisenstein series defined on GSpin10(A) and associated with
the induced representation Ind

GSpin10(A)
R(A) (µ(τ ) ⊗ ε(τ ))δs

R. It is not hard to check
that this Eisenstein series has a unique pole in the domain Re(s) > 1

2 , which is
simple and located at s = 2/3. We denote the residue representation by θτ .

Using this last representation, we now construct the Eisenstein series we use in
our global construction. Let P denote the maximal standard parabolic subgroup
of G whose Levi part contains all the simple roots except α1. This Levi part is
essentially GSpin10. Let Eτ (g, s) denote the Eisenstein series defined on G(A) and
associated to the induced representation Ind

G(A)
P (A)θτδs

P .
Let π denote a generic cuspidal representation defined on G(A). We assume

that π has a trivial central character. Consider the global integral

(6)
∫

Z(A)G(F )\G(A)

ϕπ(g)θ(g)Eτ (g, s)dg.

Here Z denotes the center of G, and ϕπ is a cusp form in the space of π. This
integral represents the L-function corresponding to case (c4).

Let us show how to obtain the Rankin-Selberg integral which will represent case
(c3) as denoted in the Introduction. Let Q denote the maximal parabolic subgroup
of G whose Levi part is M = GL1 × GL6. Let σ denote a cuspidal representation
of GL6(A) with trivial central character. Let Eσ(g, ν) denote the Eisenstein series
defined on G(A) and associated with the induced representation Ind

G(A)
Q(A)σδν

Q. In
(6) we replace the function ϕπ(g) by Eσ(g, ν). Even though the integral does not
converge, we formally unfold the Eisenstein series Eσ(g, ν) to obtain

(7)
∫

Z(A)M(F )U(F )\G(A)

fσ(g, ν)θ(g)Eτ(g, s)dg.

Here U is the unipotent radical of Q, and fσ(g, ν) defines a section in the corre-
sponding induced representation. Recall that U has a structure of a Heisenberg
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group with 21 variables. Let x122321(r) denote the one-dimensional unipotent sub-
group that is the center of U . Here, and henceforth we shall use the notation for
various roots of the group G as defined in [G2]. We expand θ(g) along the center of
U . That is, we expand it along the unipotent group generated by x122321(r) with
points in F\A. The group M(F ) acts on this expansion with two orbits. Ignoring
the trivial orbit, we obtain the contribution

(8)
∫

Z(A)H(F )U(F )\G(A)

∫
F\A

θ(x122321(r1)g)ψ(r1)dr1fσ(g, ν)Eτ (g, s)dg.

Here H is the stabilizer inside M of the character ψ. One can check that H = {g ∈
GL6 : det g is a square}. Factoring the integration over H and over the center of
U , we obtain, after a change of variables, the integral

(9)
∫

S1

∫
S2

∫
S3

ϕσ(h)θ(ux122321(r1)h)Eτ (ux122321(r2)h, s)ψ(r1 − r2)dr1dr2dh

as inner integration. Here ϕσ is a cusp form in the space of the cuspidal representa-
tion σ, S1 = Z(A)H(F )\H(A), S2 = U(F )\U(A), S3 = (F\A)2. Notice that this
integral converges absolutely. This is the Rankin-Selberg integral that represents
case (c3).

We can continue further and replace σ by an Eisenstein series. Indeed, let π1

and π2 denote two cuspidal representations of GL3(A). Let L denote the parabolic
subgroup of GL6 whose Levi part is GL3 × GL3. Let Eπ1,π2(x, ν) denote the
Eisenstein series associated with the induced representation Ind

GL6(A)
L(A) (π1 ⊗π2)δν

L.
Replacing in (9) the cuspidal representation σ by this Eisenstein series (again, this
is a formal process, since the integral does not converge) and performing certain
Fourier expansions, one obtains the integral

(10)∫
Z(A)H(F )\H(A)

∫
V (F )\V (A)

∫
(F\A)3

ϕπ1,π2(h)θ(x010000(r1)vx112321(r2)x122321(r3)h)

× Eτ (x010000(r1)vh, s)ψ(r1 + r2)dridvdh

as inner integration. Here ϕπ1,π2 is a vector in the space of π1 ⊗ π2. We also
have H = {(g1, g2) ∈ GL3 × GL3 : det g1 = det g2}, and the group V is the
standard unipotent radical of the maximal parabolic subgroup of G whose Levi
part is GL3 × GL3 × GL2. This is the integral that represents case (c2).

At this point we unfolded all these three integrals and established that they are
indeed Eulerian. This we achieved by showing that once the integrals are unfolded,
the resulting integrals involve functions in the Whittaker models of the cuspidal
representations, and hence are Eulerian by the usual uniqueness of the model. As
always, with these type of integrals, the unfolding process is long and tedious but
quite straightforward. The next step is to compute the unramified local integrals.
We describe this process briefly. First, the unramified local integral is expressed
as a power series in q−s, with coefficients being the characters of finite-dimensional
representations of the L-group, evaluated at the Satake parameter of the cuspidal
representation that appeared in the original integral. A local L-function is a similar
object: if tπ is our Satake parameter and ρ is our representation of the L-group,
then the coefficient of q−ns is Tr(Symnρ(tπ)). We are thus reduced to proving
an identity in the ring R[LG][[X]] of formal power series over the representation
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ring of the L-group, which amounts to a description of the decomposition of the
symmetric algebra of the original representation. It is not yet clear to us how
complicated the decomposition of the symmetric algebras will be in various cases.
It will also be interesting to study the possible poles of these L-functions. This will
be accomplished by understanding the poles of the Eisenstein series we use in all
these cases.

We are also interested in finding the Rankin-Selberg integral which represents
case (c1). Past experience indicates that some of the representations involved
should be defined on a covering group. So far we do not know how to do it.

We summarize.

Theorem. Integrals (6), (9), and (10) are Eulerian. Each of these integrals un-
folds to an Eulerian integral involving the Whittaker model of each cuspidal rep-
resentation appearing in the original integral. Integral (6) represents the partial
L-function LS(π × τ, St × St, s), where St × St corresponds to the standard repre-
sentation of E6(C)× GL2(C). Integral (9) represents LS(σ × τ,∧2 × St, s), where
∧2 is the exterior square representation of GL6(C), and integral (10) represents
LS(π1 × π2 × τ, St × St × St, s).
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