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SYMMETRIC POLYNOMIALS AND Uq(ŝl2)

NAIHUAN JING

Abstract. We study the explicit formula of Lusztig’s integral forms of the

level one quantum affine algebra Uq(ŝl2) in the endomorphism ring of sym-
metric functions in infinitely many variables tensored with the group algebra
of Z. Schur functions are realized as certain orthonormal basis vectors in the
vertex representation associated to the standard Heisenberg algebra. In this
picture the Littlewood-Richardson rule is expressed by integral formulas, and

is used to define the action of Lusztig’s Z[q, q−1]-form of Uq(ŝl2) on Schur
polynomials. As a result the Z[q, q−1]-lattice of Schur functions tensored with
the group algebra contains Lusztig’s integral lattice.

1. Introduction

The relation between vertex representations and symmetric functions is one of
the interesting aspects of affine Kac-Moody algebras and the quantum affine alge-
bras. In the late 1970’s to the early 1980’s the Kyoto school [DJKM] found that the
polynomial solutions of KP hierarchies are obtained by Schur polynomials. This
breakthrough was achieved in formulating the KP and KdV hierarchies in terms of
affine Lie algebras. On the other hand, I. Frenkel [F1] identified the two construc-
tions of the affine Lie algebras via vertex operators, which put the boson-fermion
correspondence in a rigorous formulation. I. Frenkel [F2] further showed that the
boson-fermion correspondence can give the Frobenius formula of the irreducible
characters for the symmetric group Sn (see also [J1]). Schur functions also played
a key role in Lepowsky and Primc construction [LP] of certain bases for higher level
representations of the affine Lie algebra ŝl(2).

In [J1, J2] the vertex operator approach to classical symmetric functions was de-
veloped to study Schur’s Q-functions and more generally Hall-Littlewood symmetric
functions. These families of symmetric polynomials appear naturally as orthogonal
bases in the vertex representation. The formulation of Hall-Littlewood polynomials
in terms of the boson-fermion correspondence was found in [J4] afterwards. Since
then the vertex operator approach to symmetric functions is used to study both
old and new problems in symmetric functions (see [CT] and [Ga]).

In 1988 Macdonald introduced more general (orthogonal) symmetric polynomi-
als, which are a two-parameter deformation of the Schur polynomials (cf. [M]).
At the same time the vertex representation of the quantum affine algebra was
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constructed in [FJ]. The success of the vertex operator interpretation of Hall-
Littlewood polynomials suggests a possible formulation for the Macdonald polyno-
mial in the quantum vertex representation.

Recently J. Beck, I. Frenkel and the author [BFJ] have used the q-vertex op-
erators to study the canonical bases for the level one irreducible modules for the
quantum affine algebra Uq(ŝl2). The zonal Macdonald polynomials are shown as
some “canonical” bases of the basic representation sitting between Kashiwara and
Lusztig’s canonical and dual canonical bases [L, K]. This essentially answered the
question about the vertex realization of (zonal) Macdonald polynomials. The Mac-
donald basis constructed in [BFJ] also satisfy the characteristic properties of bar
invariance and orthogonality under the Kashiwara form. The transition matrix from
the canonical basis to the Macdonald basis is triangular, integral and bar-invariant
and was conjectured to be positive. Since the transition matrix from Macdonald
polynomials to (modified) Schur polynomials is also triangular, a natural problem
is to determine the action of the quantum affine algebra on the Schur polynomials.

The main goal of this paper is to explicitly realize the quantum affine algebra
Uq(ŝl2) by Schur functions with the help of the Littlewood-Richardson rule. We first
modify the vertex operator realization of Schur functions and express all products
of Schur and dual Schur vertex operators in terms of the Schur basis using the
symmetry of Clifford algebras, which is an analog of the linkage symmetry for the
weights of the Lie algebra sl(n). We then use the idea [J3] of expressing Schur
functions inside the basic representation of Uq(ŝl2) to realize the action of divided
powers of Drinfeld generators of Uq(ŝl2).

Moreover, this enables us to extend the action to Lusztig’s integral form UA(ŝl2),
where A = Z[q, q−1]. Let ΛF (x1, x2, · · · ) be the ring of symmetric functions in the
xn (n ∈ N) over the ring F . We show that the lattice

VA(Λi) =
⊕
m∈Z

ΛA(x1, x2, · · · )⊗ emαeiα/2, i = 0, 1

is invariant under Lusztig’s A-form UA(ŝl2) of divided powers, thus it contains the
lattice UA(ŝl2)vΛi . From another direction in [CP, BCP] Beck, Chari and Pressley
construct a PBW basis for the algebra UA, which partly generalizes Garland’s work
[G]. In the forthcoming paper with Chari [CJ], we will combine the two directions
to study, among other things, the level one representations of Lusztig’s integral
form inside the basic representation.

We also find a vertex operator approach to the Littlewood-Richardson rule. In
particular, an integral formula for the Littlewood-Richardson rule is found, and
we use this to give a combinatorial description of divided powers of the Cheval-
ley generators. The special case of only Chevalley generators corresponds to the
deletion and insertion procedure on Young tableaux in the fermionic construction
of Uq(ŝl2) used by Misra and Miwa in [MM] (see also [H]). Our explicit formulas
of the divided powers of Chevalley generators suggest that there are corresponding
formulas in the fermionic case. The fermionic picture together with our formulas
will explain the meaning of the Littlewood-Richardson rule in the boson-fermion
correspondence.

The method in this paper can be generalized to quantum affine algebras of ADE
types, and this will provide more information about Schur functions as crystal bases
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[BCP]. Our formulas will also be helpful in understanding the positivity conjecture
of [BFJ].

The paper is organized as follows. In Section 2 we redevelop the vertex oper-
ator approach to Schur polynomials and express all mixed products of Schur and
dual Schur vertex operators in terms of Schur functions, and we derive an integral
formula for multiplication of Schur polynomials (Littlewood-Richardson rule). In
Section 3 we first construct a Schur basis for the Frenkel-Jing vertex representation
of Uq(ŝl2). We then use the Littlewood-Richardson rule to give explicit formulas
for the action of the divided powers of the Drinfeld generators in terms of the Schur
basis. In the last section (Sec. 4) we show that the A-lattice of Schur functions
tensored with the group algebra A[Zα] is a sublattice of a Lusztig’s A-lattice in-
side the vertex representation, which provides a simple combinatorial model for the
homogeneous picture of the basic module for UA(ŝl2).

2. Schur functions and vertex operators

Let ΛF be the ring of symmetric functions in infinitely many variables x1, x2, · · ·
over the ring F . In this section we take F = Q, and later we will take F = Q(q)
and Z[q, q−1].

A partition λ = (λ1, λ2, · · · , λl) of n, denoted λ ` n, is a special decomposition
of n: n = λ1 + · · ·+λl with λ1 ≥ · · · ≥ λl ≥ 1. The number l is called the length of
λ. We will identify (λ1, · · · , λl) with (λ1, · · · , λl, 0, · · · , 0) if we want to view λ in
Zn when n ≥ l(λ). Sometime we prefer to use another notation for λ: (1m12m2 · · · )
where mi is the number of times that i appears among the parts of λ. The set of
partitions will be denoted by P .

There are several well-known bases in ΛF parameterized by partitions: the power
sum symmetric functions

pλ = pλ1 · · · pλl
with pn =

∑
xni (Q-basis); the monomial symmetric functions

mλ(x1, · · · , xn) =
∑
σ

xσ(λ) =
∑
σ

x
σ(λ1)
1 · · ·xσ(λn)

n ,

where σ runs through distinct permutations of λ as tuples; and the Schur functions
sλ form a basis over Z. In terms of finitely many variables the Schur function is
given by the Weyl character formula

sλ(x1, · · · , xn) =

∑
σ∈Sn

sgn(σ)xσ(λ+δ)

Πi<j(xi − xj)
,(2.1)

where δ = (n− 1, n− 2, · · · , 1, 0), λ = (λ1, · · · , λn), and some λi may be zero.
Note that Eq. 2.1 gives a polynomial as long as λ + δ ∈ Zn+. In general for any

n-tuple µ such that µ + δ ∈ Zn+, sµ = 0 or (−1)l(σ)sλ, where λ = σ(µ + δ) − δ for
some permutation σ and l(σ) is the length of the permutation σ. This important
property is still true for the Schur function in infinitely many variables, though
there is a less satisfactory formula in algebraic combinatorics in that case. We will
see that this symmetry property is manifested in our vertex operator approach.

We introduce an inner product on ΛZ by setting

(sλ, sµ) = δλ,µ.(2.2)
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It can be shown [M] that under this inner product

(pλ, pµ) = zλδλ,µ,(2.3)

where zλ =
∏
i≥1 i

mimi! for λ = (1m12m2 · · · ).
We recall the vertex operator approach to Schur functions [J1]. Let {bn|n 6= 0}

∪ {c} be the set of generators of the Heisenberg algebra with defining relations

[bm, bn] = mδm,−nc, [c, bm] = 0.(2.4)

The Heisenberg algebra has a canonical natural representation in the Q-space
V = Sym(b−n′s), the symmetric algebra generated by the b−n, n ∈ N. The action
is given by

b−n.v = b−nv, bn.v = n
∂v

∂b−n
,(2.5)

c.v = v .(2.6)

It is clear that 1 is the highest weight vector in V .
Let us introduce two vertex operators (cf. t = 0 in [J2]):

S(z) = exp(
∞∑
n=1

b−n
n
zn)exp(−

∞∑
n=1

bn
n
z−n)(2.7)

=
∑
n∈Z

Snz
−n,

S∗(z) = exp(−
∞∑
n=1

b−n
n
zn)exp(

∞∑
n=1

bn
n
zn)(2.8)

=
∑
n∈Z

S∗nz
n.

If we view z as a complex variable, then

Sn =
∮
S(z)zn

dz

z
, S∗n =

∮
S∗(z)z−n

dz

z
,

where the contour integral is normalized so that
∮
dz
z = 1.

It follows that for n ≥ 0

Sn.1 = δn,0, S∗−n.1 = δn,0.(2.9)

Lemma 2.1 ([J2]). The components of S(z) and S∗(z) satisfy the following com-
mutation relations.

SmSn + Sn+1Sm−1 = 0, S∗mS
∗
n + S∗n−1S

∗
m+1 = 0,

SmS
∗
n + S∗n+1Sm+1 = δm,n.

The following result will be useful in our discussion.

Proposition 2.1. Let δ = (n − 1, n − 2, · · · , 1, 0). The operator products
S(z1)S(z2) · · ·S(zn)zδ and S∗(z1)S∗(z2) · · ·S∗(zn)zδ are skew-symmetric under the
action of Sn. For any w ∈ Sn we have

S(zw(1))S(zw(2)) · · ·S(zw(n))zw(δ) = (−1)l(w)S(z1)S(z2) · · ·S(zn)zδ,

S∗(zw(1))S∗(zw(2)) · · ·S∗(zw(n))zw(δ) = (−1)l(w)S∗(z1)S∗(z2) · · ·S∗(zn)zδ.
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Proof. The equations follow by repeatedly using the commutation relations satisfied
by the Schur vertex and the dual vertex operators (see Lemma 2.1).

The space V has a natural Hermitian product given by

b∗n = b−n.(2.10)

Under the inner product, the elements b−λ = b−λ1 · · · b−λl(λ ` n) span an orthog-
onal basis in V and

(b−λ, b−µ) = δλ,µzλ.(2.11)

Definition 2.2. The characteristic map ch from the vertex space V to the ring ΛQ
of symmetric functions is the Q-linear map given by

b−λ = b−λ1 · · · b−λl −→ pλ = pλ1 · · · pλl .

It is clear that ch is an isomorphism of vector spaces. In particular, the vector
S−n.1 corresponds to the homogeneous symmetric polynomial sn. For this reason
we will simply write

sn = S−n.1, n ∈ Z+.

The generating function of sn is given by

∞∑
n=0

snz
n = exp(

∞∑
n=1

b−n
n
zn).(2.12)

The following result appeared in [J1, J4]. For completeness we include a modified
proof.

Theorem 2.3. The space V is isometrically isomorphic to ΛQ under the map ch.
The sets {h−λ = sλ1sλ2 · · · sλl : λ ` n, n ∈ Z+} and {S−λ1S−λ2 · · ·S−λl .1 : λ `
n, n ∈ Z+} are both Q-basis. Moreover the basis {S−λ1S−λ2 · · ·S−λl .1} is orthonor-
mal and expressed explicitly by

S−λ.1 := S−λ1S−λ2 · · ·S−λl .1 = det(sλi−i+j),(2.13)

which corresponds to the Schur function sλ in ΛQ.

Proof. To show the Sn-symmetry we consider the modified vertex operators asso-
ciated with the root lattice Zα with (α|α) = 1. Let Ṽ = V ⊗ Q[Zα], where Q[Zα]
is the group algebra generated by emα,m ∈ Z over Q. Define

S(z) = S(z)eαz∂ =
∑

n∈Z+1/2

Snz
−n−1/2,(2.14)

S
∗
(z) = S∗(z)e−αz−∂ =

∑
n∈Z+1/2

S
∗
nz

n−1/2,(2.15)

where the operators eα and z∂ act on Q(q)[Zα] as follows:

eαemα = e(m+1)α, z∂emα = zmemα,

The components satisfy the Clifford algebra relations

{Sm, Sn} = {S∗m, S
∗
n} = 0,(2.16)

{Sm, S
∗
n} = δm,n,(2.17)

where m,n ∈ Z+ 1/2.
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For an l-tuple λ = (λ1, λ2, · · · , λl) satisfying λi = λj − j + i for some i and j we
have

S−λ1 · · ·S−λl .1 = S−λ1+1/2S−λ2−1/2 · · ·S−λl−l+1/2e
−lα

= S−λ+δ−(m−1/2)1

= 0

due to λ + δ = (i, j)(λ + δ) and (2.16–2.17). Here 1 denotes the integer vector
(1, 1, · · · , 1), and similarly m1 = (m,m, · · · ,m). In general for any other l-tuple µ
we have

S−µ1 · · ·S−µl .1 = sgn(µ)S−λ1 · · ·S−λl .1,(2.18)

where λ is the partition related to µ: λ = σ(µ + δ) − δ, and the sign sgn(µ) =
(−1)l(σ). See [J1] for details.

We shall use vertex operators to give another proof that the Schur functions
form a Z-linear basis.

Definition 2.4. For an l-tuple µ we define the Schur function sµ to be the sym-
metric function corresponding to S−µ1 · · ·S−µl .1 under the characteristic map. We
will simply write

sµ = S−µ.1 = S−µ1 · · ·S−µl .1 .
We say that two integral l-tuples µ and λ are related if there is a permutation

σ such that µ + δ = σ(λ + δ). If there exists an odd permutation σ such that
µ+ δ = σ(µ + δ), then we say that µ is degenerate. An integral tuple µ is said to
be non-increasing if µ1 ≥ µ2 ≥ · · · ≥ µl. In particular, a non-increasing positive
integral tuple is a partition.

If there are no two parts µi, µj (i < j) of a tuple µ such that µi = µj − (j − i),
then µ is non-degenerate and there exists a unique non-increasing tuple λ such that
µ+ δ = σ(λ + δ). We denote by π(µ) the associated non-increasing integral tuple
λ of µ. For simplicity we let sgn(µ) = 0 if the l-tuple µ is degenerate.

Remark 2.5. The above relation among integral tuples corresponds to the linkage
symmetry in the weight theory of the Lie algebra sl(n+ 1). The symmetric group
Sn is then viewed as the Weyl group.

Remark 2.6. In view of Definition 2.4 all symmetric functions in this paper are
polynomials, though a Schur function of an arbitrary tuple can be a rational func-
tion as defined by (2.1). We do not attempt to distinguish the term “symmetric
function” from that of “symmetric polynomial”. It is apparent that the symmetry
is only with respect to the variables x1, x2, · · · and not with respect to the power
sum variable.

The following fact follows from Theorem 2.3 and Lemma 2.1.

sµ =
{
sgn(σ)sπ(µ), if π(µ) ∈ P,
0, if µ is degenerate or π(µ) /∈ P .(2.19)

We also have similar results for the dual vertex operators S∗(z), where the vector
S∗n.1 corresponds to the elementary symmetric function (−1)nen = (−1)ns(1n).

For a partition λ = (λ1, · · · , λl) we denote by λ′ = (λ′1, · · · , λ′k) the dual parti-
tion, where λ′i = Card{j : λj ≥ i}. We also denote by (λ, µ) the juxtaposition of
two partitions or tuples. Note that (λ, µ) is generally not a partition.
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Theorem 2.7. The vectors {S∗λ1
· · ·S∗λl .1 | λ ` n, n ∈ Z+} are also orthonormal,

and we have

S∗λ1
S∗λ2
· · ·S∗λl .1 = (−1)|λ|sλ′ = (−1)|λ|det(sλ′i−i+j),(2.20)

where |λ| = λ1 + λ2 + · · ·+ λl. Moreover, we have

S−µ1 · · ·S−µlS∗ν1
· · ·S∗νk .1 = (−1)|ν|sgn(λ, µ)sπ(µ,π(ν)′),

S∗µ1
· · ·S∗µkS−ν1 · · ·S−νl .1 = (−1)|µ|sgn(µ, ν)sπ(µ,π(ν)′)′ ,

where (µ, ν) is the juxtaposition of µ and ν, the associated partition π(µ, ν) is
obtained by π(µ, ν) = σ((µ, ν) + δ)− δ for some σ ∈ Sl+k, and π(µ, π(ν)′)′ denotes
the dual partition of π(µ, π(ν)′).

As a consequence of Theorem 2.7 it follows that

S−λ.1 = (−1)|λ|S∗λ.1.

Example 2.8.

S−1S
∗
2S
∗
2 .1 = S−1S−2S−2.1 = 0,

S−1S
∗
2S
∗
1S
∗
1S
∗
1 .1 = −S−1S−4S−1.1 = S−3S−2S−1.1 = s(3,2,1),

where (1, 4, 1) + δ = (3, 5, 1) −∼ (5, 3, 1) = (3, 2, 1) + δ.

To close this section we derive the Littlewood-Richardson rule in our picture,
which will be used later to realize the action of the quantum affine algebra Uq(ŝl2)
on ΛQ[q,q−1]. In particular, we give a new proof of the integrality of Schur functions
using vertex operators.

Proposition 2.2. Let λ and µ be two partitions of lengths m and n respectively.
Then sλsµ =

∑
CMNs(λ+M,µ−N), where CMN is the number of integral matrices

(kij) such that

(k11 + k12 + · · ·+ k1n, · · · , km1 + . . .+ kmn) = M,

(k11 + k21 + . . .+ km1, · · · , k1n + k2n + · · ·+ kmn) = N,

where kij ≥ 0. In particular, the Schur functions form a Z-lattice in ΛQ.

Proof. It follows from the definition that

sλsµ =
∫
S(z1) · · ·S(zm).1S(w1) · · ·S(wn).1z−λw−µ

dz

z

dw

w
.

Observe that

S(z1) · · ·S(zm).1S(w1) · · ·S(wn).1

=
∏
i,j

(1− wj
zi

)−1S(z1) · · ·S(zm)S(w1) · · ·S(wn).1 .

As an infinite series in |wj | < |zi| we have∏
i,j

(1− wj
zi

)−1 =
∏
i,j

(1 +
wj
zi

+ (
wj
zi

)2 + · · · )

=
∏
i,j

(
∑
kij

w
kij
j z

−kij
i )

=
∏

k=(kij)

wk·11 · · ·wk·nn z−k1·
1 · · · z−km·m ,

with k·j = k1j + · · ·+ kmj , ki· = ki1 + · · ·+ kin, kij ≥ 0.
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Plugging the expansion into the integral and invoking Theorem (2.3), we prove
the proposition.

Remark 2.9. The number CMN is equal to the index of SλπSµ in Sn [JK]. We
can also write

sλsµ =
∏
i,j

(1−Rij)−1s(λ,µ),

where Rij is the raising operator defined on the parts of the Schur functions
Rijs(··· ,λi,··· ,λj ,··· ) = s(··· ,λi+1,··· ,λj−1,··· ).

We remark that the characteristic map ch is actually defined over Z if we let
ch(S−λ.1) = sλ. Then the space VZ is isometrically isomorphic to ΛZ.

3. Vertex representations of UA(ŝl2)

Let A be the ring Z[q, q−1] of Laurent polynomials in q over Z.
For n ∈ Z+ we define [n] = qn−q−n

q−q−1 . The q-factorial [n]! is equal to [n][n − 1]

· · · [2][1] and then the q-Gaussian numbers are defined naturally by [ nm ] = [n]!
[m]![n−m]!

for n ≥ m ≥ 0. By convention [0] = [1] = 1. For an element a in an algebra over
Q(q) we use a(n) to denote the divided power an

[n]! .

The quantum affine algebra Uq(ŝl2) is the associative algebra overQ(q) generated
by the Chevalley generators ei, fi,K±1

i (i = 0, 1) and q±d subject to the following
defining relations:

KiK
−1
i = K−1

i Ki = 1, qdq−d = q−dqd = 1,

KiKj = KjKi, qdK±1
i = K±1

i qd,

KiejK
−1
i = qaijej, KifjK

−1
i = q−aijfj ,

qdeiq
−d = qδi,0ei, qdfiq

−d = q−δi,0fi,

[ei, fj] = δij
Ki −K−1

i

q − q−1
,

1−aij∑
r=0

(−1)re(r)
i eje

(1−aij−r)
i = 0 if i 6= j,

1−aij∑
r=0

(−1)rf (r)
i fjf

(1−aij−r)
i = 0 if i 6= j,

where (aij) =
(

2 −2
−2 2

)
is the extended Cartan matrix [Ka]. The elementK0K1 = qc

is a central element of Uq(ŝl2).
Let UA(ŝl2) be the A-subalgebra [L] of Uq(ŝl2) generated by e(n)

i , f (n)
i , K±i , q±d

for i = 0, 1 and n ∈ N. Then UA(ŝl2)⊗A Q(q) ' Uq(ŝl2).
For m ∈ Z, r ∈ N we define[

Ki;m
r

]
=

r∏
s=1

Kiq
m+1−s −K−1

i qs−1−m

q − q−1
,

which belong to the Cartan subalgebra of UA(ŝl2).
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The module V (Λi) (i = 0, 1) is the simple highest weight module of Uq(ŝl2)
generated by the highest weight vector vΛi such that

eivΛi = 0, KjvΛi = qδijvΛi , qdvΛi = vΛi , i = 0, 1.

An A-subspace W of an Uq(ŝl2)-module V is called an A-lattice for UA(ŝl2) if W
is invariant under UA(ŝl2) and W ⊗A Q(q) ' V .

The (level one) modules V (Λi) had been realized by vertex operators in [FJ] for
Uq(ŝl2). Since we will construct the vertex representation of UA(ŝl2) we need to
modify the original construction.

Let Uq(ĥ) be the Heisenberg algebra with the generators {an|n 6= 0} ∪ {C} and
the defining relations

[am, an] = δm,−n
m

1 + q2|m|C, [C, am] = 0.(3.1)

The level one irreducible representation V (Λi) is realized on the vertex repre-
sentation space

V (Λi) = SymQ(q)(a−n′s)⊗ Q(q)[Zα]eiα/2, i = 0, 1,

where SymQ(q)(a−n′s) denotes theQ(q)-symmetric algebra generated by the Heisen-
berg generators a−n, n ∈ N. The element eiα/2 (the highest weight vector) is for-
mally adjoined to Q(q)[Zα] = Q(q)〈emα|m ∈ Z〉.

We define two kinds of operators on the vector space Q(q)[Zα]eiα/2:

enα.emαeiα/2 = e(m+n)αeiα/2, n ∈ Z,(3.2)

∂.emαeiα/2 = (2m+ i)emαeiα/2.(3.3)

In particular, Q(q)[Zα]eiα/2 is a Q(q)[Zα]-module.
The Heisenberg algebra Uq(ĥ) acts on the Q(q)-space SymQ(q)(a−n′s) via

a−n.v = a−nv, an.v =
n

1 + q2n

∂v

∂a−n
,(3.4)

C.v = v ,(3.5)

where v ∈ Uq(ĥ).
We define the vertex operators associated to Uq(ŝl2) by

X+(z) = exp(
∞∑
n=1

(1 + q2n)q−n

n
a−nz

n)exp(−
∞∑
n=1

(1 + q2n)q−n

n
anz
−n)eαz∂(3.6)

=
∑
n∈Z

X+
n z
−n−1,

X−(z) = exp(−
∞∑
n=1

1 + q2n

n
a−nz

n)exp(
∞∑
n=1

1 + q2n

n
anz
−n)e−αz−∂(3.7)

=
∑
n∈Z

X−n z
−n−1.
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The normal order of vertex operator products is defined by rearranging the
exponential factors. For example,

: X+(z)X+(w) :

= exp(
∞∑
n=1

(1 + q2n)q−n

n
a−n(zn + wn))exp(−

∞∑
n=1

(1 + q2n)q−n

n
an(z−n + w−n))

× e2αz∂w∂ .

The components of the Drinfeld generators satisfy some quadratic relations.

Lemma 3.1 ([FJ]). The components of X±(z) satisfy the following commutation
relations

X±mX
±
n − q±2X±n X

±
m = q±2X±m−1X

±
n+1 −X±n+1X

±
m−1,

X+
mX

−
n −X−n X+

m =
1

q − q−1
(ψm+n − φm+n) ,

where the polynomials ψn and φ−n in the an are defined by

Ψ(z) =
∑
n≥0

ψnz
−n = exp(

∑
n∈N

(q3n − q−n)an
n

z−n)q∂ ,(3.8)

Φ(z) =
∑
n≥0

φ−nz
n = exp(

∑
n∈N

(q−n − q3n)a−n
n

zn)q−∂ .(3.9)

The following map defines the irreducible Uq(ŝl2)-module structure for V (Λi).

e1 → X+
0 , f1 → X−0 , K1 → q∂ ,

e0 → X−1 q
−∂ ,f0 → q∂X+

−1,K0 → q1−∂ .

The vertex space V (Λi) is endowed with the standard inner product via

a∗n = a−n, (eα)∗ = e−α,

(z∂)∗ = z−∂.

It follows from the commutation relations (3.1) that

(a−λemαeiα/2, a−µenαeiα/2) = δmnδλµzλ
∏
j≥1

1
1 + q2λj

,(3.10)

where zλ is as in Section 2.
By Section 2 there are two special bases in V (Λi): the power sum basis

{a−λemαeiα/2} and the Schur basis {sλemαeiα/2}. However, the Schur basis is
no longer orthogonal with respect to the inner product (3.10).

Let b−n = a−n, bn = (1 + q2n)an, n ∈ N, then {b−n} generate a standard
Heisenberg algebra as in Section 2. In terms of the new Heisenberg generators we
have

S(z) = exp(
∞∑
n=1

1
n
a−nz

n)exp(−
∞∑
n=1

1 + q2n

n
anz
−n) =

∑
n∈Z

Snz
−n,

S∗(z) = exp(−
∞∑
n=1

1
n
a−nz

n)exp(
∞∑
n=1

1 + q2n

n
anz
−n) =

∑
n∈Z

S∗nz
n,
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which generate the Schur function basis. We call S(z) (or S∗(z)) the Schur (or dual
Schur) vertex operator. For a partition λ and m ∈ Z we define the Schur symmetric
polynomial in V (Λi) (cf. Theorem 2.3):

sλe
mαeiα/2 := S−λe

mαeiα/2 = S−λ1 · · ·S−λlemαeiα/2.(3.11)

The element sλ is a polynomial overQ in terms of the power sum aµ, where |µ| = |λ|.
Note that S(z) acts trivially on the lattice vector emαeiα/2.

We need to recall some further terminology about partitions. Let λ and µ be
two partitions; we write λ ⊃ µ if the Young diagram of λ contains that of µ. The
set difference λ \ µ is called a skew diagram. The conjugate of a skew diagram
θ = λ \ µ is θ′ = λ′ \ µ′ and we define

|θ| =
∑

θj = |λ| − |µ|.(3.12)

A skew diagram θ is a horizontal n-strip (resp. a vertical n-strip) if |θ| = n and
θ′j ≤ 1 (resp. θj ≤ 1) for each j. Thus a horizontal (resp. vertical) strip has at
most one column (resp. rows) in its diagram.

For a partition µ and an integer m we let Vn = Vn(m,µ) be the set of the
partitions of λ such that the skew diagram λ \ π(m,π(µ)′)′ is a vertical n-strip.
We also let Hn = Hn(m,µ) be the set of partitions λ such that the skew diagram
λ \ π(m,µ) is a horizontal n-strip. Note that Vn may be described as the set of
partitions λ such that the skew diagram λ \ π(1m, µ) is a vertical n-strip. The
following is called the Pieri rule [M]:

snS−mS−µ.1 =
∑

λ∈Hi(m,µ)

sgn(m,µ)sλ,(3.13)

s1nS−mS−µ.1 =
∑

λ∈Vn(m,µ)

(−1)nsgn(m,π(µ)′)′sλ.(3.14)

We will use λ− µ to denote the difference of two integral tuples in Zn.

Theorem 3.2. The quantum affine algebra Uq(ŝl2) is realized on the Fock space
Λ⊗Q(q)[Zα]eiα/2 of symmetric functions by the following action:

X+
n sµe

mαeiα/2 = e(m+1)αeiα/2

×

l(µ)−2m−n−1−i∑
j=0

q−2m−n−1−i−2jsgn(−2m− n− 1− i− j, µ)
∑
λ∈Hj

sλ

 ,

where Hj = Hj(−2m−n−1−i−j, µ), the sign refers to sgn(−2m−n−1−i−j, µ) =
(−1)l(σ) such that (−2m− n− 1− i− j, µ) + δ = σ(λ+ δ) and λ is the partition of
length at most l(µ) + 1. Also we have

X−n sµe
mαeiα/2 = (−1)n+1+ie(m−1)αeiα/2

×

µ1+2m−n−1+i∑
j=0

q2jsgn(2m− n− 1− j + i, µ′)
∑
λ∈Vj

sλ

 ,

where Vj = Vj(2m−n−1− j+ i, µ′), the sign refers to sgn(2m−n−1− i− j, µ) =
(−1)l(σ) such that (2m− n− 1 − j + i, µ) + δ = σ(λ + δ) and λ is the partition of
length at most l(µ) + 2m− n− 1− j + i.
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This result will be proved in more generality later in Theorem 3.5.
We can reformulate the result in terms of the standard inner product in Section

2. Let uj = (0, · · · , 0, 1, 0, · · · , 0) be the jth unit vector in Zn. Let 1(l1,··· ,lj) be the
sum of the unit vectors ul1 , · · · , ulj .
Proposition 3.1. For n ∈ Z and a partition µ we have

X−n sµe
mαeiα/2

=
∑
λ

sλe
(m−1)αeiα/2

l(λ)∑
j=0

(−q2)j
∑

l1<···<lj

(S∗2m+i−n−1−jS−µ, S−(λ−1(l1,··· ,lj))),

where λ runs through partitions of weight |µ|+2m−n−1+ i such that λ−1(l1,··· ,lj)
is the juxtaposition of (12m−n−j−1+i) and µ.

Later in Theorem 3.5 we will give another proof in terms of the dual vertex
operator S∗(z).

Example 3.3. Using Theorem 3.2 it is easy to compute the following:

X±n e
rαeiα/2 = 0, if n > ∓2r − 1∓ i,

X+
−2r+1−i · · ·X+

−3−iX
+
−1−ie

iα/2 = erαeiα/2, r ≥ 1,

X−2r−3+i · · ·X+
1+iX

+
−1+ie

iα/2 = e−rαeiα/2, r ≥ 1.

X+
−1s(2,1)e

−α = q2s(2,2,1) − q−2(s5 + s(4,1) + s(3,2)) + q−6(s5 + s(4,1)),

X−0 s1e
α = −s(2) + q4s(12).

We can generalize the action to the divided powers of X±(r)
n .

Lemma 3.4 ([BFJ]). For r ∈ N we have∏
1≤i<j≤k

(zi − qzj) =
∑
w∈Sk

(−q)`(w)zw(δ) +
∑

aγ1,...,γkz
γ1
1 zγ2

2 . . . zγkk ,

where δ = (k − 1, k − 2, . . . , 0) and the second sum consists of certain monomials
such that some γi = γj, i 6= j and aγ ∈ Z[q], aγ(1) = 0.

For i = 0, 1, we introduce the A-linear subspace of V (Λi)

VA(Λi) =
⊕

λ∈P,m∈Z
Z[q, q−1]sλemαeiα/2.(3.15)

It is clear that

VA(Λi)⊗A Q(q) ' V (Λi).

Theorem 3.5. The A-linear spaces VA(Λi) are invariant under the action of the
divided powers X±n

(r). More precisely, we have

X+(r)
n sµe

mαeiα/2

= q−3(r2)−r(n+1+2m+i)
∑
l(λ)≤r

q−2|λ|sλ · s(−λ−2δ−(n+1+2m+i)1,µ)e
(m+r)αeiα/2,

X−(r)
n sµ′e

mαeiα/2

= (−1)r(n+1+i)q(
r
2)
∑
l(λ)≤r

q2|λ|sλ′ · sπ(−λ−2δ−(n+1−2m−i)1,µ)′e
(m−r)αeiα/2,
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where the summations run through all partitions λ of length ≤ r, δ = (r − 1, r −
2, · · · , 0), and 1 = (1, · · · , 1) ∈ Zr.

Proof. Let z = (z1, · · · , zr), w = (w1, · · · , wl), and 1 = (1, · · · , 1) ∈ Zr in the
following computation:

x+
n
r
sµe

mαeiα/2

=
∮
X+(z1) · · ·X+(zr)S(w1) · · ·S(wl)z(n+1)1w−µ

dzdw

zw
emαeiα/2

=
∮

exp
( ∞∑
n=1

(qn + q−n)
n

a−n(zn1 + · · ·+ znr )
)

: S(w1) · · ·S(wl) :

×
∏
i<j

(zi − zj)(zi − q−2zj)(1 −
wj
wi

)
∏
i,j

(1 − q−1wj
zi

)

× z(2m+n+1+i)1e(m+r)αeiα/2
dz

z

dw

w
.

Note that the integrand divided by
∏
j<k(zj−q−2zk) is an anti-symmetric function

in z1, . . . , zr. It follows from Lemma 3.4 that the terms zγ1
1 zγ2

2 . . . zγrr (for which
some γk = γj) make no contribution to the integral. Therefore

x+(r)
n sµe

mαeiα/2 =
1

[r]!

∑
w∈Sr

∮
exp
( ∞∑
n=1

(qn + q−n)
n

a−n(zn1 + · · ·+ znr )
)

× : S(w1) · · ·S(wl) :
∏
i<j

(zi − zj)
∏
i<j

(1− wj
wi

)
∏
i,j

(1− q−1wj
zi

)

(−q)−`(w)zw(δ)+(2m+n+1+i)1w−µe(m+r)αeiα/2
dzdw

zw

= q−(r2)
∮

exp
( ∞∑
n=1

q−2n

n
a−n(zn1 + · · ·+ znr )

)
S(qz1) · · ·S(qzr)

S(w1) · · ·S(wl)z2δ+(2m+n+1+i)1w−µe(m+r)αeiα/2
dzdw

zw
,

where δ = (r − 1, r − 2, . . . , 0) and we have used

∑
w∈Sr

q−2`(w) = q−(r2)[r]!.

From the orthogonality of Schur functions [M] it follows that

exp
( ∞∑
n=1

a−n
n

(zn1 + · · ·+ znr )
)

=
∑
l(λ)≤r

sλ(a−k)sλ(zi),



SYMMETRIC POLYNOMIALS AND Uq(ŝl2) 59

where sλ(a−k) is the Schur function in terms of the power sum a−µ and sλ(zi) is
the Schur polynomial in the variables z1, · · · , zr. Replacing zj by q−1zj we get

x+
n

(r)
sµe

mαeiα/2

= q−3(r2)−r(n+1+2m+i)
∑
l(λ)≤r

q−2|λ|sλ

∮
sλ(z)z2δ+(n+1+2m+i)1

× S(z1) · · ·S(zr)S(w1) · · ·S(wl)e(m+r)αeiα/2w−µ
dz

z

dw

w

= q−3(r2)−r(n+1+2m+i)
∑
l(λ)≤r

sλ

∮ ∑
w∈Sr

(−1)l(w)zw(λ+δ)∏
j<k(zj − zk)

zδ+(n+1+2m+i)1

× zδS(z1) · · ·S(zr)S(w1) · · ·S(wl)e(m+r)αeiα/2w−µ
dz

z

dw

w
.

Applying the symmetry of the Schur vertex operators in Proposition 2.1 we see that
the above expression becomes

q−3(r2)−r(n+1+2m+i)
∑
l(λ)≤r

q−2|λ|sλ
∑
w∈Sr

∮
(−1)l(w)zλ+δ∏
j<k(zj − zk)

zw(δ)+(n+1+2m+i)1

× zδS(z1) · · ·S(zr)S(w1) · · ·S(wl)e(m+r)αeiα/2w−µ
dz

z

dw

w

= q−3(r2)−r(n+1+2m+i)
∑
l(λ)≤r

q−2|λ|sλ

∮
zλ+2δ+(n+1+2m+i)1

× S(z1) · · ·S(zr)S(w1) · · ·S(wl)e(m+r)αeiα/2w−µ
dz

z

dw

w
,

where we have used the Weyl denominator formula (see λ = 0 in (2.1)) and the
integral is taken along contours in zi, wi around the origin. The formula for X+(r)

n

is then obtained by using Theorem 2.3.
The case of X−(r)

n is proved similarly with the help of the dual vertex operator
S∗(z).

X−n
(r)
sµ′e

mαeiα/2

=
(−1)|µ|

[r]!

∮
X−(z1) · · ·X−(zr)S∗(w1) · · ·S∗(wl)zn+1w−µe(m−r)αeiα/2

dzdw

zw

=
(−1)|µ|

[r]!

∮
: S∗(q2z1) · · ·S∗(q2zr) : S∗(z1) · · ·S∗(zr)S∗(w1) · · ·S∗(wl)

×
∏
i<j

(zi − q2zj)zδ+(n+1−2m−i)1w−µ e(m−r)αeiα/2
dzdw

zw

= q(
r
2)
∮

: S∗(q2z1) · · ·S∗(q2zr) : S∗(z1) · · ·S∗(zr)S∗(w1) · · ·S∗(wl)

× z2δ+(n+1−2m−i)1w−µ e(m−r)αeiα/2
dzdw

zw
(−1)|ν|,

where we have used the skew-symmetry of the integrand and Lemma 3.4. Then the
formula for X−(r)

n is obtained from the following identity and the Weyl denominator
formula

exp
(
−
∞∑
n=1

a−n
n

(zn1 + · · ·+ znr )
)

=
∑
l(λ)≤r

sλ′(a−k)sλ(zi).



60 NAIHUAN JING

4. Combinatorial realization of Uq(ŝl2)

We now describe the action of the generators of UA(ŝl2) on V (Λi).
Recall that we have defined a special A-linear subspace VA(Λi) inside V (Λi) in

Eq. (3.15).
From Section 3 it follows that on VA(Λi) we have

e
(r)
1 sµe

mαeiα/2 = q−3(r2)−r(2m+i+1)

×

 ∑
l(λ)≤r

q−2|λ|sλs(−λ−2δ−(2m+1+i)1,µ)

 e(m+r)αeiα/2,(4.1)

f
(r)
1 sµ′e

mαeiα/2 = (−1)r(1+i)q(
r
2)

×

 ∑
l(λ)≤r

q2|λ|sλ′sπ(−λ−2δ+(2m+i−1)1,µ)′

 e(m−r)αeiα/2,(4.2)

f
(r)
0 sµe

mαeiα/2 = qr(5−r)/2

×

 ∑
l(λ)≤r

q−2|λ|sλs(−λ−2δ−(2m+i)1,µ)

 e(m+r)αeiα/2,(4.3)

e
(r)
0 sµ′e

mαeiα/2 = (−1)riq−(r2)−r(2m+i)

×

 ∑
l(λ)≤r

q2|λ|sλ′sπ(−λ−2δ+(2m+i−2)1,µ)′

 e(m−r)αeiα/2,(4.4)

K0sµe
mαeiα/2 = q1−2m−isµe

mαeiα/2,(4.5)

K1sµe
mαeiα/2 = q2m+isµe

mαeiα/2,(4.6) [
K0; l
r

]
sµe

mαeiα/2 =
[
1− 2m− i+ l

r

]
sµe

mαeiα/2,(4.7) [
K1; l
r

]
sµe

mαeiα/2 =
[
2m+ i+ l

r

]
sµe

mαeiα/2.(4.8)

As a consequence of these formulas and the Littlewood-Richardson rule (2.2) we
get the following theorem.

Theorem 4.1. The A-linear space VA(Λi) is an UA(ŝl2)-lattice in V (Λi). In par-
ticular, UA(ŝl2)eiα/2 is a sublattice of VA(Λi).
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Proposition 4.1. For m ≥ 0 we have

f
(2m)
1 emα = (−1)mqm(2m−1)e−mα,

f
(2m+1)
0 e−mα = (−1)mq−(2m+1)(m−2)e−(m+1)α,

f
(2m)
0 e−mαeα/2 = (−1)mq−m(2m−5)emα,

f
(2m+1)
1 emαeα/2 = (−1)mqm(2m+1)e−(m+1)α.

Proof. The four formulas are proved similarly. Take f (2m)
1 emα. Observe that −2δ+

(2m−1)1 = (−2m+1,−2m+3, · · · , 2m−3, 2m−1) is of weight zero, thus only λ = 0
contributes to the summation in f (2m)

1 emα (see (4.2)). Since the longest element in
S2m has inversion number m(2m− 1), the sign of s−2δ+(2m−1)1 is (−1)m(2m−1) =
(−1)m.

Corollary 4.1. For m ≥ 0 we have

f
(2m)
1 f

(2m−1)
0 · · · f (2)

1 f0.1 = (−1)mq3m2
e−mα,

f
(2m+1)
0 f

(2m)
1 · · · f (2)

1 f0.1 = q(m+1)(m+2)e(m+1)α,

f
(2m)
0 f

(2m−1)
1 · · · f (2)

0 f1e
α/2 = (−1)mqm(m+2)emαeα/2,

f
(2m+1)
1 f

(2m)
0 · · · f (2)

0 f1e
α/2 = q3m(m+1)e−(m+1)αeα/2.

Example 4.2. In the following we abbreviate f (n1)
i1
· · · f (nr)

ir
.1 = f

(n1)
i1
· · · f (nr)

ir
in

the basic representation V (Λ0).

f0 = q2eα,

f1f0 = −q2(1 + q2)s1,

f
(2)
1 f0 = −q3e−α,

f0f1f0 = q2(q2 + 1)s1e
α,

f1f0f1f0 = −(q4 + q2)(s2 − q4s12),

f0f
(2)
1 f0 = −q3(s12 + [3]s2),

f0f1f0f1f0 = q2(1 + q2)2(s2 + s12)eα,

f
(2)
0 f

(2)
1 f0 = q4(s2 + [3]s12)eα,

f
(3)
0 f

(2)
1 f0 = q6e2α,

f
(2)
1 f0f1f0 = q5(1 + q2)s1e

−α.
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Example 4.3. As in the last example we use f
(n1)
i1
· · · f (nr)

ir
to denote

f
(n1)
i1
· · · f (nr)

ir
eα/2 in the basic representation V (Λ1).

f1 = e−α,

f0f1 = q−2(1 + q−2)s1,

f
(2)
0 f1 = −q3eα,

f1f0f1 = −(q−2 + 1)s1e
−α,

f0f1f0f1 = (1 + q2)(s2 − s12),

f1f
(2)
0 f1 = −q5([3]s12 + s2),

f1f0f1f0f1 = (1 + q2)2(s2 + q2s12)e−α,

f
(2)
1 f

(2)
0 f1 = q5([3]s2 + s12)e−α,

f
(3)
1 f

(2)
0 f1 = q6e−2α,

f
(2)
0 f1f0f1 = −[2]s1e

α.

It would be interesting to see the relation between our formulas and the fermionic
picture [LLT].

Finally we would like to remark on generalizing the result of this paper to quan-
tum affine algebras of ADE type. Using the realization [FJ] it is clear that the
action of divided powers of Drinfeld generators on the Schur symmetric functions
in multi-sets of variables are definable, but not as explicit as in the sl2-case due
to the complexity of the interaction between adjacent simple roots. We do not
know how to deal with the hypergeometric functions appearing in the interaction.
Another reason for this difficulty is as follows. In [BFJ] we studied two lattices as-
sociated with the canonical and dual canonical basis of Uq(ŝl2). Both are equivalent
under the Macdonald inner product but are not equivalent under the Schur inner
product. The lattice associated with the canonical basis is easier to be formulated
to the ADE cases as shown in [CJ], but the relation to the Littlewood-Richardson
rule is sacrificed. We choose to study the lattice of dual canonical basis in order to
use Littlewood-Richardson rule, and are also motivated by the transition relation
with the Macdonald polynomial.
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