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LIFTING INVOLUTIONS IN A WEYL GROUP

TO THE TORUS NORMALIZER

G. LUSZTIG

Abstract. Let N be the normalizer of a maximal torus T in a split reductive
group over Fq , and let w be an involution in the Weyl groupN/T . We explicitly
construct a lifting n of w in N such that the image of n under the Frobenius
map is equal to the inverse of n.

Introduction

0.1. Let k be an algebraically closed field. Let G be a connected reductive algebraic
group over k. Let T be a maximal torus of G, and let U be the unipotent radical
of a Borel subgroup of G containing T . Let N be the normalizer of T in G, let
W = N/T be the Weyl group, and let κ : W → N be the obvious map. Let w �→ |w|
be the length function on W and let S = {w ∈ W ; |w| = 1}. Let Y = Hom(k∗, T ).
We write the group operation on Y as addition. For each s ∈ S we denote by
α̌s ∈ Y the corresponding simple coroot; let L be the subgroup of Y generated by
{α̌s; s ∈ S}. Now W acts on T by w : t �→ w(t) = nwn−1, where n ∈ κ−1(w);
this induces an action of W on Y and L by w : y �→ y′, where y′(z) = w(y(z)) for
z ∈ k∗. We fix a pinning {xs : k → G, ys : k → G; s ∈ S} associated to T, U and
we denote by w �→ ẇ be the corresponding Tits cross-section [T] of κ : N → W . A
halving of S is a subset S′ of S such that s1s2 = s2s1 whenever s1, s2 in S are both
in S′ or both in S − S′. Clearly a halving of S exists. Let W2 = {w ∈ W ;w2 = 1}.
Let ε = −1 ∈ k∗. It turns out that, when w ∈ W2, one can define representatives
for w in κ−1(w) other than ẇ, which in a certain sense are better behaved than ẇ
(see 0.5). Namely, for w ∈ W2, c ∈ k∗ and for a halving S′ of S we will consider
the element

nw,c,S′ = ẇrw(c)b
S′

w (ε) ∈ κ−1(w),

where rw ∈ L, bw ∈ L/2L are given by Theorems 0.2 and 0.3 below. (We then have

rw(c) ∈ T and bS
′

w (ε) ∈ T : if y ∈ L, then y(ε) ∈ T depends only on the image of y
in L/2L; hence y(ε) ∈ T is defined for any y ∈ L/2L).)

Theorem 0.2. There is a unique map W2 → L, w �→ rw such that (i)–(iii) below
hold:

(i) r1 = 0, rs = α̌s for any s ∈ S;
(ii) for any w ∈ W2, s ∈ S such that sw �= ws, we have s(rw) = rsws;
(iii) for any w ∈ W2, s ∈ S such that sw = ws, we have rsw = rw +N α̌s where

N ∈ Z.

Received by the editors December 11, 2017.
2010 Mathematics Subject Classification. Primary 20G99.
Supported by NSF grant DMS-1566618.

c©2018 American Mathematical Society

27

http://www.ams.org/ert/
http://www.ams.org/ert/
http://dx.doi.org/10.1090/ert/513


28 G. LUSZTIG

Moreover, in (iii) we necessarily have N ∈ {−1, 0, 1}; if in addition G is simply
laced we have N ∈ {−1, 1}. We have:

(iv) if w, s are as in (iii) and |sw| > |w|, then s(rw) = rw;
(v) if w ∈ W2, then w(rw) = −rw.

A part of the proof of the existence part of the theorem is based on constructing
a basis consisting of certain positive roots (including the highest root) for the re-
flection representation of W assuming that the longest element is central. After I
found this basis, I realized that this basis is the “cascade of roots” that B. Kostant
has talked about on several occasions. In 2012 he wrote a paper [Kos12] about the
cascade. (I thank D. Vogan for supplying this reference.) The proof of property
(iii) is based on a case-by-case verification.

Theorem 0.3. Let S′ be a halving of S. There is a unique map b = bS
′
: W2 →

L/2L,w �→ bw = bS
′

w such that (i)–(iii) below hold:
(i) b1 = 0, bs = α̌s for any s ∈ S′, and bs = 0 for any s ∈ S − S′;
(ii) for any w ∈ W2, s ∈ S such that sw �= ws, we have s(bw) = bsws + α̌s;
(iii) for any w ∈ W2, s ∈ S such that sw = ws, we have bsw = bw + lα̌s, where

l ∈ {0, 1};
Moreover,
(iv) for any w ∈ W2, s ∈ S such that sw = ws, we have s(bw) = bw +(N +1)α̌s,

where rsw = rw +N α̌s, N ∈ Z;
(v) bw(ε)w(bw(ε)) = rw(ε)ẇ

2, or equivalently (ẇbw(ε))
2 = rw(ε).

A part of the proof of this theorem is based on computer calculation.

0.4. In this subsection we assume that (i) or (ii) below holds:
(i) k is an algebraic closure of a finite field Fq with q elements;
(ii) k = C.
We define φ : k → k by φ(c) = cq in case (i) and φ(c) = c̄ (complex conjugation)

in case (ii). In case (i) we assume that G has a fixed Fq-rational structure with
Frobenius map φ : H → H such that φ(t) = tq for all t ∈ T .

In case (ii) we assume that G has a fixed R-rational structure so that G(R) is
the fixed point set of an antiholomorphic involution φ : G → G such that φ(y(c)) =
y(φ(c)) for any y ∈ Y, c ∈ k∗.

In both cases we assume that φ is compatible with the fixed pinning ofG attached
to T, U so that φ(ẇ) = ẇ for any w ∈ W . In both cases we define φ′ : G → G
by φ′(g) = φ(g)−1. In case (i), φ′ is a Frobenius map for an Fq-rational structure
on G which is not in general compatible with the group structure. In case (ii),
φ′ is an antiholomorphic involution of G not in general compatible with the group
structure. Hence Gφ′

= {g ∈ G;φ(g)g = 1} is not in general a subgroup of G.
In both cases we set

Nφ′
= {g ∈ N ;φ(g)g = 1} = N ∩Gφ′

.

Since φ(ẇ) = ẇ, we see that for w ∈ W , κ−1(w) ∩Nφ′
= ∅ if w ∈ W −W2.

We define φ′ : k → k by φ′(c) = −φ(c). In case (i) we have kφ′
= {x ∈ k;xq =

−x}, and in case (ii) we have kφ′
= {x ∈ C; x̄+x = 0}, the set of purely imaginary

complex numbers.
Note that for w ∈ W2, ẇ is not necessarily in Nφ′

. The following result provides
some explicit elements in κ−1(w) which do belong to Nφ′

.
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Theorem 0.5. We assume that we are in the setup of subsection 0.4. Let w ∈ W2,
let c ∈ k∗, and let S′ be a halving of S. We have φ′(nw,c,S′) = nw,φ′(c),S′ . Hence if

c ∈ κφ′
we have nw,c,S′ ∈ Nφ′

.

0.6. If X ⊂ X ′ are sets and ι : X ′ → X ′ satisfies ι(X) ⊂ X, we write Xι = {x ∈
X; ι(x) = x}.

1. The one parameter group rw attached to an involution w in W

1.1. Let R′ be a root system in an R-vector space X′ of finite dimension; we
assume that R′ generates X and that multiplication by −1 (viewed as a linear map
X′ → X′) is contained in the Weyl group W ′ of R′. We assume that we are given
a set of positive roots R′+ for R′. Let Y′ = Hom(X′,R). Let 〈, 〉 : Y′ ×X′ → R
be the obvious pairing. Let Ř′ ⊂ Y′ be the set of coroots; let α ↔ α̌ be the usual
bijection R′ ↔ Ř′. Let Ř′+ = {α̌;α ∈ R′+}. For α ∈ R′ let sα : X′ → X′ and
sα : Y′ → Y′ be the reflections defined by α.

For α, α′ in R′+ we write α ≤ α′ if α′ − α ∈
∑

β∈R′+ R≥0β. This is a partial

order on R′+.
Let E1 be the set of maximal elements of R′+. For i ≥ 2, let Ei be the set of

maximal elements of

{α ∈ R′+; 〈α̌′, α〉 = 0 for any α′ ∈ E1 ∪ E2 ∪ · · · ∪ Ei−1}.
Note that E1, E2, . . . are mutually disjoint. Let

Ěi = {α̌;α ∈ Ei}, E =
⋃

i≥1

Ei, Ě =
⋃

i≥1

Ěi.

The definition of E , Ě given above is due to B. Kostant [Kos12] who called them
cascades.

From the definition we see that:
(a) if α ∈ E , α′ ∈ E , α �= α′, then 〈α̌′, α〉 = 0.
We note the following property:
(b) Ě is basis of Y′.
For a proof see [Kos12]. Alternatively, we can assume that our root system is

irreducible and we can verify (b) by listing the elements of Ě in each case. (We
denote the simple roots by {αi; i ∈ [1, l]} as in [Bou68].)

Type A1: α̌1.
Type Bl, l = 2n+1 ≥ 3: α̌1 +2α̌2 + · · ·+2α̌2n + α̌2n+1, α̌3 +2α̌4 + · · ·+2α̌2n +

α̌2n+1, . . . , α̌2n−1 + 2α̌2n + α̌2n+1, α̌1, α̌3, . . . , α̌2n+1.
Type Bl, l = 2n ≥ 3: α̌1 + 2α̌2 + · · ·+ 2α̌2n−1 + α̌2n, α̌3 + 2α̌4 + · · ·+ 2α̌2n−1 +

α̌2n, . . . , α̌2n−1 + α̌2n, α̌1, α̌3, . . . , α̌2n−1.
Type Cl, l ≥ 2: α̌1 + α̌2 + · · ·+ α̌l−1 + α̌l, α̌2 + · · ·+ α̌l−1 + α̌l, . . . , α̌l.
Type Dl, l = 2n ≥ 4: α̌1 + 2α̌2 + 2α̌3 + · · · + 2α̌2n−2 + α̌2n−1 + α̌2n, α̌3 +

2α̌4 + 2α̌5 + · · · + 2α̌2n−2 + α̌2n−1 + α̌2n, . . . , α̌2n−3 + 2α̌2n−2 + α̌2n−1 + α̌2n,
α̌1, α̌3, . . . , α̌2n−3, α̌2n−1, α̌2n.

Type E7: 2α̌1+2α̌2+3α̌3+4α̌4+3α̌5+2α̌6+ α̌7, α̌2+ α̌3+2α̌4+2α̌5+2α̌6+ α̌7,
α̌2 + α̌3 + 2α̌4 + α̌5, α̌7, α̌2, α̌3, α̌5.

Type E8: 2α̌1+3α̌2+4α̌3+6α̌4+5α̌5+4α̌6+3α̌7+2α̌8, 2α̌1+2α̌2+3α̌3+4α̌4+
3α̌5 +2α̌6 + α̌7, α̌2 + α̌3 +2α̌4 +2α̌5 +2α̌6 + α̌7, α̌2 + α̌3 +2α̌4 + α̌5, α̌7, α̌2, α̌3, α̌5.

Type F4: 2α̌1 + 3α̌2 + 2α̌3 + α̌4, α̌2 + α̌3 + α̌4, α̌2 + α̌3, α̌2.
Type G2: α̌1 + 2α̌2, α̌1.
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We note the following result (see [Kos12]):
(c) The reflections {sβ : Y′ → Y′;β ∈ E} commute with each other and their

product (in any order) is equal to −1.
Let α, α′ in E be such that α �= α′. Using (a) we see that sα(α

′) = α′. We also
have sα(α) = −α. Now the result follows from (b).

1.2. Let R′, Ř′,W ′ be as in subsection 1.1. Let L′ be the subgroup of Y′ generated
by Ř′. We set

r =
∑

β∈Ě

β ∈ L′.

We list the values of r for various types (assumimg that R′ is irreducible):
Type A1: r = α̌1.
Type Bl, l = 2n+ 1 ≥ 3: r = 2α̌1 + 2α̌2 + 4α̌3 + 4α̌4 + · · ·+ 2nα̌2n−1 + 2nα̌2n +

(n+ 1)α̌2n+1.
Type Bl, l = 2n ≥ 4: r = 2α̌1 + 2α̌2 + 4α̌3 + 4α̌4 + · · · + 2(n − 1)α̌2n−3

+ 2(n− 1)α̌2n−2 + 2nα̌2n−1 + nα̌2n.
Type Cl, l ≥ 2: r = α̌1 + 2α̌2 + · · ·+ lα̌l.
Type Dl, l = 2n ≥ 4: r = 2α̌1 + 2α̌2 + 4α̌3 + 4α̌4 + · · ·+ (2n− 2)α̌2n−3 + (2n−

2)α̌2n−2 + nα̌2n−1 + nα̌2n.
Type E7: r = 2α̌1 + 5α̌2 + 6α̌3 + 8α̌4 + 7α̌5 + 4α̌6 + 3α̌7.
Type E8: r = 4α̌1 + 8α̌2 + 10α̌3 + 14α̌4 + 12α̌5 + 8α̌6 + 6α̌7 + 2α̌8.
Type F4: r = 2α̌1 + 6α̌2 + 4α̌3 + 2α̌4.
Type G2: r = 2α̌1 + 2α̌2.
Note that in each case the sum of coefficients of r is equal to (�(R′+)+rank(R′))/2.
If R′ is irreducible and simply laced, we have r/2 =

∑
i∈[1,l] δiωi, where ωi ∈ Y′

are the fundamental coweights (that is 〈ωi, αj〉 = δij) and δi = ±1 are such that
δi + δj = 0 when i, j are joined in the Coxeter graph; moreover, we have δi = −1
if in the extended (affine) Coxeter graph i is joined with the vertex outside the
unextended Coxeter graph. Another way to state this is that the coefficient of α̌i

in r is equal to half the sum of the coefficients of the neighbouring α̌j (that is, with
j joined with i in the Coxeter graph) plus or minus 1. For example in type E8 we
have:

4 =
10

2
− 1, 10 =

4 + 14

2
+ 1, 8 =

14

2
+ 1, 14 =

8 + 10 + 12

2
− 1, 12 =

8 + 14

2
+ 1,

8 =
6 + 12

2
− 1, 6 =

2 + 8

2
+ 1, 2 =

6

2
− 1.

Note that the sign of ±1 in this formula changes when one moves from one α̌i to a
neighbouring one.

1.3. In the remainder of this section we place ourselves in the setup of subsection
0.1. Let X = Hom(T,k∗). We write the group operation in X as addition. Let
X = R ⊗ X,Y = R ⊗ Y . Let 〈, 〉 : Y × X → R be the obvious nondegenerate
bilinear pairing. The W -action on Y in subsection 0.1 induces a linear W -action
on Y. We define an action of W on X by w : x �→ x′, where x′(t) = x(w−1(t))
for t ∈ T . This induces a linear W -action on X. Let R ⊂ X be the set of roots;
let Ř ⊂ Y be the set of coroots. The canonical bijection R ↔ Ř is denoted by
α ↔ α̌. For any α ∈ R we define sα = sα̌ : X → X by x �→ x − 〈α̌, x〉α and
sα = sα̌ : Y → Y by χ �→ χ − 〈χ, α〉α̌. Then sα = sα̌ represents the action of an
element of W on X and Y denoted again by sα or sα̌. Let R

+ ⊂ R (resp., Ř+ ⊂ Ř)
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be the set of positive roots (resp., corroots) determined by U . Let R− = R − R+,
Ř− = Ř − Ř+. For s ∈ S let αs ∈ R+ be the corresponding simple root; for any
t ∈ T we have s(t) = tα̌s(αs(t

−1)); α̌s has also been considered in subsection 0.1.
Recall that L is the subgroup of Y generated by {α̌s; s ∈ S}. For any c ∈ k∗ we set
cs = α̌s(c) ∈ T . We have ṡ2 = εs for s ∈ S. Recall that W2 = {w ∈ W ;w2 = 1}.
Note that ẇ2 ∈ T for any w ∈ W2.

Lemma 1.4. Let w ∈ W2. Then either (i) or (ii) below holds:
(i) There exists s ∈ S such that |sw| < |w| and sw �= ws.
(ii) There exists a (necessarily unique) subset J ⊂ S such that w is the longest

element in the subgroup WJ of W generated by J ; moreover, w is in the centre of
WJ . For s ∈ J we have w(αs) = −αs.

We can assume that w �= 1 and that (i) does not hold for w. Let s1, s2, · · · , sk
in S be such that w = s1s2 . . . sk, |w| = k. We have k ≥ 1 and |s1w| < |w|. Since
(i) does not hold we have s1w = ws1; hence w = s2s3 · · · sks1. Thus |s2w| < |w|.
Since (i) does not hold we have s2w = ws2; hence w = s3 · · · sk−1sks1. Continuing
in this way we see that |siw| < |w| and siw = wsi for i = 1, . . . , k . We see that
the first sentence in (ii) holds with J = {s ∈ S; s = si for some i ∈ [1, k]}.

Now let s ∈ J . We have s = sα, where α = αs and wsw = sw(α). Since wsw = s

we have sw(α) = sα; hence w(α) = ±α. Since |sw| < |w| we must have w(α) ∈ R−;
hence w(α) = −α. We see that the second sentence in (ii) holds. The lemma is
proved.

1.5. For w ∈ W2 we set Yw = {y ∈ Y;w(y) = −y}, Xw = {x ∈ X;w(x) = −x},
Rw = R ∩Xw, Řw = Ř ∩Yw, R

+
w = R+ ∩Rw, and Ř+

w = Ř+ ∩ Řw. Note that 〈, 〉
restricts to a nondegenerate bilinear pairing Yw ×Xw → R, denoted again by 〈, 〉,
and α ↔ α̌ restricts to a bijection Rw ↔ Řw.

Lemma 1.6. Let w ∈ W2, s ∈ S. Then:
(i) s(Yw) = Ysws, s(Xw) = Xsws, s(Rw) = Rsws, and s(Řw) = Řsws;
(ii) if sw �= ws, then s(R+

w) = R+
sws and s(Ř+

w) = Ř+
sws;

(iii) if sw = ws and |sw| > |w|, then s(R+
w) = R+

w and s(Ř+
w) = Ř+

w ;
(iv) if sw = ws and |sw| < |w|, then Rsw = {α ∈ Rw; 〈α̌s, α〉 = 0}, Řsw = {α̌ ∈

Řw; 〈α̌, αs〉 = 0}, R+
sw = Rsw ∩R+

w , and Ř+
sw = Řsw ∩ Ř+

w.

(i) is immediate. We prove (ii). Let α ∈ R+
w ; assume that s(α) ∈ R−. This

implies that α = αs so that αs ∈ Rw; that is, w(αs) = −αs and w(α̌s) = −α̌s. For
x ∈ X we have

ws(x)− sw(x) = w(x− 〈α̌s, x〉αs)− (w(x)− 〈α̌s, w(x)〉αs)

= 〈α̌s, x〉αs + 〈w−1α̌s, x〉αs

= 〈α̌s, x〉αs − 〈α̌s, x〉αs = 0.

Thus ws(x) = sw(x) for any x ∈ X so that sw = ws, which contradicts our
assumption. We see that α ∈ R+

w implies s(α) ∈ R+; hence s(α) ∈ R+
sws. Thus

s(R+
w) ⊂ R+

sws. The same argument shows with w, sws interchanged that s(R+
sws) ⊂

R+
w . It follows that s(R

+
w) = R+

sws. Now (ii) follows.
We prove (iii). Let α ∈ R+

w ; assume that s(α) ∈ R−. This implies that α = αs

so that αs ∈ Rw; that is, w(αs) = −αs. Since w(αs) ∈ R− we have |sw| < |w|,
which contradicts our assumption. We see that α ∈ R+

w implies s(α) ∈ R+; hence
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s(α) ∈ R+
sws = R+

w . Thus s(R+
w) ⊂ R+

w . Since R+
w is finite it follows that s(R+

w) =
R+

w . Now (iii) follows.
We prove (iv). We choose a W -invariant positive definite form (, ) : X×X → R.

Our assumption implies w(αs) = −αs; that is, αs ∈ Xw. Then Xw = Rαs ⊕X′
w,

where X′
w = {x ∈ X; (x, αs) = 0} = {x ∈ X; 〈α̌s, x〉 = 0} and s acts as identity

on X′
w. Since w acts as −1 on Xw, sw must act as −1 on X′

w; hence Xsw ⊂ X′
w.

Since dim(Xsw) = dim(Xw) − 1 = dimX′
w, it follows that Xsw = X′

w. We have
Rsw = R ∩Xsw = R ∩X′

w, R
+
sw = R+ ∩ Rsw = R+ ∩ (R ∩X′

w) = R+ ∩X′
w, and

Rsw ∩R+
w = (R∩Xsw)∩ (R+∩Xw) = R+∩X′

w; hence R
+
sw = Rsw ∩R+

w . Similarly
we have Řsw = {α̌ ∈ Řw; 〈α̌, αs〉 = 0}, Ř+

sw = Řsw ∩ Ř+
w . This proves (iv).

Lemma 1.7. Let w ∈ W2.
(a) Rw generates the vector space Xw and Řw generates the vector space Yw.
(b) The system (Yw,Xw, 〈, 〉, Řw, Rw) is a root system and R+

w (resp., Ř+
w) is a

set of positive roots (resp., positive coroots) for it.
(c) The longest element of the Weyl group of the root system in (b) acts on Yw

and on Xw as multiplication by −1.

We argue by induction on |w|. If |w| = 0 we have w = 1 and the lemma is
obvious. Assume now that |w| > 0. If we can find s ∈ S such that |sw| < |w|,
sw �= ws, then by the induction hypothesis, the lemma is true when w is replaced
by sws, since |sws| = |w| − 2. Using Lemma 1.6 we deduce that the lemma is true
for w. Now using Lemma 1.4 we see that we can assume that w is as in Lemma
1.4(ii). Let J ⊂ S be as in Lemma 1.4(ii). Let X′

w be the subspace of Xw generated
by {as; s ∈ J}. By Lemma 1.4(ii) we have X′

w ⊂ Xw. As in the proof of Lemma
1.4 we can write w = s1s2 · · · sk with s1, s2, . . . , sk in J . Then for any x ∈ X we
have

wx = s1s2 · · · skx = s2s3 · · · skx+ c1αs1 = s3 · · · skx+ c2αs2 + c1αs1

= · · · = x+ ckαsk + · · ·+ c2αs2 + c1αs1

with c1, c2, . . . , ck in R. Thus we have (w − 1)X ⊂ X′
w. Since w2 = 1 we have

(w − 1)X = Xw. Thus Xw ⊂ X′
w. This proves the first part of (a); the second

part of (a) is proved in an entirely similar way. If α ∈ Rw (so that α̌ ∈ Řw) and
if α′ ∈ R, then sα(α

′) is a linear combination of α and hence α′ is in Xw. Since
sα(α

′) ∈ R we have sα(α
′) ∈ R ∩Xw; that is, sα(α

′) ∈ Rw. We see that (b) holds.
We prove (c). We write again w = s1s2 · · · sk with s1, s2, . . . , sk in J . We can
wiew this as an equality of endomorphisms of X and we restrict it to an equality
of endomorphisms of Xw. Each si restricts to an endomorphism of Xw which is
in the Weyl group of the root system in (b). It follows that w acts on Xw as an
element of the Weyl group of the root system in (b) with simple roots {αs; s ∈ J}.
By Lemma 1.4(ii), we have w(αs) = −αs for any s ∈ J . Thus some element in the
Weyl group of the root system in (b) maps each simple root to its negative. This
proves (c). The lemma is proved.

Let Πw be the set of simple roots of Rw such that Πw ⊂ R+
w . Let Π̌w be the set

of simple coroots of Řw such that Π̌w ⊂ Ř+
w .

1.8. Let w ∈ W2. Let Ěw be the subset of Ř+
w defined as Ě in subsection 1.1 in terms

of the root system Rw in Xw (instead of R′ in X′). The definition is applicable in
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view of Lemma 1.7(c). Recall that Ěw is a basis of Yw. We define rw ∈ L by

rw =
∑

β∈Ěw

β.

Note that rw is a special case of the elements r defined as in subsection 1.2 in terms
of Rw instead of R′. We show:

(a) The reflections {sβ : Y → Y;β ∈ Ěw} commute with each other, and their
product (in any order) is equal to w.

From subsection 1.1(c) we see that this holds after restriction to Yw. Since
each sβ and w induces identity on Y/Yw, they must act as 1 on the orthogonal
complement to Yw for a W -invariant positive definite inner product on Y. Hence
the statements of (a) must hold on Y.

We now describe the set Ěw and the elements rw in the case where G is almost
simple and w is the longest element in W in the case where w is not central in W .
(The cases where w is central in W were already described in subsections1.1 and
1.2.) We again denote the simple roots by {αi; i ∈ [1, l]} as in [Bou68].

Type Al, l = 2n ≥ 2: α̌1 + α̌2 + · · · + α̌2n−1 + α̌2n, α̌2 + α̌3 + · · · + α̌2n−1,
α̌3 + · · ·+ α̌2n−2, . . . , α̌n + α̌n+1;

rw = α̌1 + 2α̌2 + · · ·+ nα̌n + nα̌n+1 + · · ·+ 2α̌2n−1 + α̌2n.
Type Al, l = 2n + 1 ≥ 3: α̌1 + α̌2 + · · · + α̌2n + α̌2n+1, α̌2 + α̌3 + · · · + α̌2n,

α̌3 + · · ·+ α̌2n−1, . . . , α̌n+1;
rw = α̌1 + 2α̌2 + · · ·+ (n+ 1)α̌n+1 + · · ·+ 2α̌2n + α̌2n+1.
Type Dl, l = 2n+1 ≥ 5: α̌1+2α̌2+2α̌3+ · · ·+2α̌2n−1+ α̌2n+ α̌2n+1, α̌3+2α̌4+

2α̌5 + · · · + 2α̌2n−1 + α̌2n + α̌2n+1, . . . , α̌2n−3 + 2α̌2n−2 + 2α̌2n−1 + α̌2n + α̌2n+1,
α̌2n−1 + α̌2n + α̌2n+1, α̌1, α̌3, . . . , α̌2n−3, α̌2n−1;

rw = 2α̌1 +2α̌2 +4α̌3 +4α̌4 + · · ·+ (2n− 2)α̌2n−3 + (2n− 2)α̌2n−2 +2nα̌2n−1 +
nα̌2n + nα̌2n+1.

Type E6: α̌1+2α̌2+2α̌3+3α̌4+2α̌5+ α̌6, α̌1+ α̌3+ α̌4+ α̌5+ α̌6, α̌3+ α̌4+ α̌5,
α̌4;

rw = 2α̌1 + 2α̌2 + 4α̌3 + 6α̌4 + 4α̌5 + 2α̌6.
From Lemma 1.6 and the definitions we deduce the following result.

Lemma 1.9. Let w ∈ W2, s ∈ S.
(a) If sw �= ws, then s(Ew) = Esws and s(rw) = rsws.
(b) If sw = ws and |sw| > |w|, then s(Ew) = Ew and s(rw) = rw.

1.10. In this subsection we assume that G is almost simple of type Dl, l ≥ 4. Let
Z = [1, l]. We can find a basis {ei; i ∈ Z} of Y with the following properties:

W consists of all automorphisms w : Y → Y such that for any i ∈ Z we have
w(ei) = δiej for some j ∈ Z and some δi ∈ {1,−1} and such that

∏
i δi = 1:

Ř+ = {ei − ej ; (i, j) ∈ Z × Z, i < j} � {ei + ej ; (i, j) ∈ Z × Z, i < j}.

Let w ∈ W2. Let P ′
w be the set of two element subsets {i, j} of Z such that

w(i) = jandw(j) = i. Let P ′′
w be the set of two element subsets {i, j} of Z such

that w(i) = −jandw(j) = −i. Let Z+
w = {i ∈ Z;w(i) = i} and Z−

w = {i ∈
Z;w(i) = −i}. We have

Z =
⊔

{i,j}∈P ′
w

{i, j} �
⊔

{i,j}∈P ′′
w

{i, j} � Z+
w � Z−

w .
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Note that �(Z−
w ) is even. For w ∈ W2 we have

Ěw = {ei − ej ; {i, j} ∈ P ′
w, i < j} � {ei + ej ; {i, j} ∈ P ′′

w, i < j}
�{ei1 − ei2 , ei1 + ei2 , ei3 − ei4 , ei3 + ei4 , . . . , ei2u−1

− ei2u , ei2u−1
+ ei2u},

where Z−
w consists of i1 < i2 < i3 < · · · < i2u. Now let s ∈ S. There are two

possibilities:
(i) There exist a, b in Z such that b = a+1, s(ea) = eb, s(eb) = ea, and s(ez) = ez

for z ∈ Z − {a, b}; moreover, α̌s = ea − eb.
(ii) Taking a = l−1 and b = l we have s(ea) = −eb, s(eb) = −ea, and s(ez) = ez

for z ∈ Z − {a, b}; moreover, α̌s = ea + eb.
We show:
(a) Assume that w ∈ W2 and s ∈ S are such that sw = ws, and |sw| > |w|. We

have rsw = rw ± α̌s.
Assume first that s is as in (i). Let i1 < i2 < i3 < · · · < i2u be the numbers in

Z−
w . We have either {a, b} ∈ P ′′

w or {a, b} ⊂ Z+
w . (If {a, b} ∈ P ′

w or {a, b} ⊂ Z−
w ,

then |sw| < |w|.) If {a, b} ∈ Z+
w , then Ěsw = Ěw � {ea − eb}. Hence rsw − rw = α̌s.

If {a, b} ∈ P ′′
w and ih < a < b < ih+1 for some odd h ∈ [1, k − 1], then Ěsw is

obtained from Ěw by removing eik − eik+1
, eik + eik+1

, ea + eb and by including
instead eik − ea, eik + ea, eb − eik+1

, eb + eik+1
. Hence

rsw − rw = (eik − ea) + (eik + ea) + (eb − eik+1
) + (eb + eik+1

)

− (eik − eik+1
)− (eik + eik+1

)− (ea + eb) = eb − ea = −α̌s.

If {a, b} ∈ P ′′
w and there is no odd h ∈ [1, k − 1] such that ih < a < b < ih+1, then

Ěsw = Ěw � {ea − eb}. Hence rsw − rw = α̌s. Next we assume that s is as in (ii).
We have Ěsw = Ěw � {ea + eb}. Hence rsw − rw = α̌s. This completes the proof of
(a).

1.11. In this subsection we assume that G is simple of type E8. Let w be the longest
element of W . We denote the simple roots by {αi; i ∈ [1, 8]} as in [Bou68] and write
si instead of sαi

. For i ∈ [1, 8] we have siw ∈ W2 and Rsiw = {α ∈ R; 〈α̌i, α〉 = 0}.
From this Π̌siw is easily determined in each case:

Π̌s1w = {α̌1 + 2α̌2 + 2α̌4 + α̌3 + α̌5, α̌2, α̌4, α̌5, α̌6, α̌7, α̌8}.
Π̌s2w = {α̌1, α̌2 + 2α̌4 + α̌3 + α̌5, α̌3, α̌5, α̌6, α̌7, α̌8}.

Π̌s3w = {α̌1 + α̌3 + α̌4, α̌2, α̌3 + 2α̌4 + α̌2 + α̌5, α̌5, α̌6, α̌7, α̌8}.
Π̌s4w = {α̌1, α̌2 + α̌4 + α̌3, α̌3 + α̌4 + α̌5, α̌6, α̌2 + α̌4 + α̌5, α̌7, α̌8}.
Π̌s6w = {α̌1, α̌2, α̌3, α̌4, α̌5 + α̌6 + α̌7, α̌2 + α̌3 + 2α̌4 + 2α̌5 + α̌6, α̌8}.

Π̌s7w = {α̌1, α̌2, α̌3, α̌4, α̌5, α̌6 + α̌7 + α̌8, α̌2 + α̌3 + 2α̌4 + 2α̌5 + 2α̌6 + α̌7}.
Π̌s8w = {α̌1, α̌2, α̌3, α̌4, α̌5, α̌6, α̌2 + α̌3 + 2α̌4 + 2α̌5 + 2α̌6 + 2α̌7 + α̌8}.

This is the set of simple roots of a root system of type E7. Hence rsiw is given by
substituting the simple roots in the formula for r in type E7 given in subsection
1.2 by the roots in Π̌s1w. We find the same result as for rw (given by r in type E8

in subsection 1.2) plus a multiple of α̌i. More precisely:

rs1w = rw − α̌1, rs2w = rw + α̌2, rs3w = rw + α̌3,

rs4w = rw − α̌4, rs5w = rw + α̌5, rs6w = rw − α̌6,

rs7w = rw + α̌7, rs8w = rw − α̌8.
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1.12. In this subsection we preserve the setup and notation of subsection 1.11. Let
w′ be the longest element in the standard parabolic subgroup of type E7 of W . For
i ∈ [1, 7] we have siw

′ ∈ W2 and Rsiw′ = {α ∈ Rw′ ; 〈α̌i, α〉 = 0}. From this Π̌siw′

is easily determined in each case:

Π̌s1w′ = {α̌1 + 2α̌3 + 2α̌4 + α̌2 + α̌5, α̌2, α̌4, α̌5, α̌6, α̌7},
Π̌s2w′ = {α̌1, α̌3, α̌3 + 2α̌4 + α̌2 + α̌5, α̌5, α̌6, α̌7},

Π̌s3w′ = {α̌1 + α̌3 + α̌4, α̌2, α̌3 + 2α̌4 + α̌2 + α̌5, α̌5, α̌6, α̌7},
Π̌s4w′ = {α̌1, α̌3 + α̌4 + α̌5, α̌4 + α̌2 + α̌3, α̌4 + α̌2 + α̌5, α̌6, α̌7},
Π̌s5w′ = {α̌1, α̌2, α̌3, α̌4 + α̌5 + α̌6, α̌5 + 2α̌4 + α̌2 + α̌3, α̌7},

Π̌s6w′ = {α̌1, α̌2, α̌3, α̌4, α̌5 + α̌6 + α̌7, α̌6 + 2α̌5 + 2α̌4 + α̌2 + α̌3},
Π̌s7w′ = {α̌1, α̌2, α̌3, α̌4, α̌5, α̌7 + 2α̌6 + 2α̌5 + 2α̌4 + α̌2 + α̌3}.

This is the set of simple roots of a root system of type D6. Hence rsiw′ is given by
substituting the simple roots in the formula for r in type D6 given in subsection
1.2 by the roots in Π̌s1w′ . We find the same result as for rw′ (given by r in type E7

in subsection 1.2) plus a multiple of α̌i. More precisely:

rs1w′ = rw′ − α̌1, rs2w′ = rw′ + α̌2, rs3w′ = rw′ + α̌3, rs4w′ = rw′ − α̌4,

rs5w′ = rw′ + α̌5, rs6w′ = rw′ − α̌6, rs7w′ = rw′ + α̌7.

1.13. In this subsection we preserve the setup and notation of subsection 1.11. We
show:

(a) Let z ∈ W2, s ∈ S be such that sz = zs. We have rsz = rz + N α̌s, where
N ∈ {−1, 1}.

By interchanging if necessary z, sz, we can assume that |z| > |sz|. By Lemma
1.4 we can find a sequence s1, s2, . . . , sk in S (with k ≥ 0) such that |z| > |s1zs1| >
|s2s1zss1s2| > · · · > |sk · · · s2s1zs1s2 · · · sk| and z′ := sk · · · s2s1zs1s2 · · · sk is the
longest element of a standard parabolic subgroup WJ of W such that z′ is in the
centre of WJ . Let σ = sk · · · s2s1 ∈ W . Applying Lemma 1.6(ii) repeatedly we see
that Ř+

sk···s2s1zs1s2···sk = sk(Ř
+
sk−1···s2s1zs1s2···sk−1

), . . . , Ř+
s2s1zs1s2 = s2(Ř

+
s1zs1),

Ř+
s1zs1 = s1(Ř

+
z ). It follows that Ř

+
sk···s2s1zs1s2···sk = sk · · · s2s1(Ř+

z ); that is, Ř
+
z′ =

sk · · · s2s1(Ř+
z ) = σ(Ř+

z ). This implies that:
(b) Π̌z′ = σ(Π̌z).
From our assumption we have z(α̌s) = −α̌s. Thus α̌s ∈ Ř+

z . Since α̌s is
a simple coroot in Ř, we necessarily have α̌s ∈ Π̌z. Using (b) we deduce that
σ(α̌s) ∈ Π̌z′ . From the definition of z′ we see that Π̌z′ consists of the simple
coroots of Ř such that the corresponding simple reflections are inWJ . Thus we have
σ(α̌s) = α̌s′ , where s

′ ∈ S∩WJ . It follows that σsσ
−1 = s′, σ(αs) = αs′ . Note that

s′z′ = z′s′ (since z′ is in the centre of WJ ) and |s′z′| < |z′| (since z′ is the longest
element of WJ). From Lemma 1.6(iv) we see that Ř+

sz = {α̌ ∈ R+
z ; 〈α̌, αs〉 = 0},

Ř+
s′z; = {α̌ ∈ R+

z′ ; 〈α̌, αs′〉 = 0}. If 〈α̌, αs〉 = 0, then 〈σ(α̌), σ(αs)〉 = 0; hence

〈σ(α̌), αs′〉 = 0. Since σ(R+
z ) = R+

z′ it follows that σ({α̌ ∈ R+
z ; 〈α̌, αs〉 = 0}) =

{α̌ ∈ R+
z′ ; 〈α̌, αs′〉 = 0}; that is, σ(Ř+

sz) = Ř+
s′z′ . This implies σ(Π̌sz) = Π̌s′z′ .

Using the definitions we deduce that σ(Esz) = Es′z′ ; hence σ(rsz) = rs′z′ . Similarly
we have σ(rz) = rz′ . Hence if (a) holds for z′, s′, that is, rs′z′ = rz′ +N α̌s′ where
N ∈ {−1, 1}, then rsz − rz = σ−1(N α̌s′) = N α̌s so that (a) holds for z, s. Thus
it is enough to prove (a) assuming in addition that z is the longest element of
a standard parabolic subgroup WJ of W such that z is in the centre of WJ . If
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WJ = W , (a) follows from subsection 1.11. If WJ is of type E7, (a) follows from
1.12. If WJ is of type other than E8andE7, then it is of type A1 × A1 × · · · or of
type Dl ×A1 ×A1 × · · · (with l ∈ {4, 6}). If s belongs to the A1 ×A1 × · · · -factor,
the result is trivial. If s belongs to the Dl-factor, the result follows from subsection
1.10. This completes the proof of (a).

1.14. In this subsection we assume that G is almost simple, simply connected,
simply laced, and that we are given an automorphism ι : G → G such that ι(T ) = T ,
ι(U) = U , and that for any s ∈ S, c ∈ k∗ we have xι(s)(c) = ι(xs(c)), yι(s)(c) =
ι(ys(c)). Then ι induces an automorphism of W and automorphisms of X and Y ,
leaving R, Ř, S stable; these are denoted again by ι. We also assume that if s, s′

in S are in the same ι-orbit, then ss′ = s′s. Let G̃ = Gι be a connected simply
connected algebraic group. Now T̃ = T ι is a maximal torus of G̃ and Ũ = U ι is
the unipotent radical of a Borel subgroup of G̃. Let W̃ be the Weyl group of G̃
with respect to T̃ . We can identify W̃ = W ι. Let w �→ |w|ι be the length function

on W̃ . Let S̃ = {w ∈ W̃ ; |w|ι = 1}. Now S̃ consists of the elements σ =
∏

s s,

where s runs over an ι-orbit in S. Let X̃ = Hom(T̃ ,k∗) (a quotient of X), and let

Ỹ = Hom(k∗, T̃ ) (a subgroup of Y ); we have Ỹ = Y ι. Let R̃ (resp., ˇ̃R) be the set of

roots (resp., coroots) of G̃ with respect to T̃ . Now R̃ consists of the images of roots

of G under X → X̃ and ˇ̃R consists of the elements of Y which are sums of coroots
in an ι-orbit on Ř. If σ ∈ S̃ corresponds to an ι-orbit O in S, then the simple root
ασ of G̃ corresponding to σ is the restriction to X̃ of αs for any s ∈ O; the simple
coroot of G̃ corresponding to σ is α̌σ =

∑
s∈O α̌s ∈ Ỹ . Let W̃2 = W2 ∩ W̃ . Let

{r̃w;w ∈ W̃2} be the elements of Ỹ defined like {rw;w ∈ W2} (see subsection 1.8)

in terms of G̃ instead of G. We show:
(a) For w ∈ W̃2 we have r̃w = rw.
We argue by induction on |w|ι. If |w|ι = 0 we have w = 1 and the result is

obvious. Assume now that |w|ι ≥ 1. Assume also that we can find σ ∈ S̃ such that
|σw|ι < |w|ι and σw �= wσ. We write O = {s1, . . . , sk} ⊂ S, σ = s1 · · · sk. Then
for some i ∈ [1, k] we have siw �= wsi. Hence for all i ∈ [1, k] we have siw �= wsi.
Hence we have s1w �= ws1, s2s1w �= ws1s2, . . . , sk · · · s1w �= ws1 · · · sk. By Lemma
1.9(a) for G and G̃ we have r̃w = σt̃swsσ and rw = s1(rs1ws1) = s1s2(rs2s1ws1s2) =
· · · = s1 · · · sk(rsk···s1ws1···sk) so that rw = σrσwσs. By the induction hypothesis we

have r̃σwσ = rσwσ; hence r̃w = rw. Next we assume that there is no σ ∈ S̃ such
that |σw|ι < |w|ι and σw �= wσ. Then, by Lemma 1.4 for G̃ we can find a standard

parabolic subgroup W̃ ′ of W̃ such that w is the longest element of W̃ ′ and w is
central in W̃ ′. In this case the equality r̃w = rw follows by comparing the formulas
in subsection 1.2 with those in subsection 1.10. This completes the proof of (a).

We return to the general case.

Lemma 1.15. Let w ∈ W2, s ∈ S be such that sw = ws. We have:
(a) rsw = rw +N α̌s, where N ∈ {−1, 0, 1}.
If in addition G is simply laced, then N ∈ {−1, 1}.

If the result holds when |w| > |sw|, then it also holds when |w| < |sw| (by
interchanging w, sw); thus we can assume that |w| > |sw|. We can assume that G
is almost simple. If G is of type Dl, l ≥ 4, the result follows from subsection 1.10.
If G is of type Al, the result follows from the corresponding result for a group of
type Dl′ with l < l′ ≥ 4. If G is of type E8, the result follows from subsection
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1.13(a). If G is of type E7 or E6 the result follows from the corresponding result
for a group of type E8. Thus (a) holds when G is simply laced.

Let G, ι, G̃, T̃ , W̃ , S̃, Ỹ , ||ι, W̃2 be as in the proof of subsection 1.14(a). To com-

plete the proof it is enough to show that (a) holds when G is replaced by G̃. Let

{r̃w;w ∈ W̃2} be the elements of Ỹ defined like {rw;w ∈ W2} in terms of G̃ instead

of G. We must show that {r̃w;w ∈ W̃2} satisfy conditions like (a). By subsection

1.14(a) we have r̃w = rw for w ∈ W̃2.

Now let w ∈ W̃2, σ ∈ S̃ be such that σw = wσ. We write O = {s1, . . . , sk} ⊂ S
and σ = s1 · · · sk, where ι permutes s1, s2, . . . , sk cyclically: s1 �→ s2 �→ · · · sk �→ s1.
(Note that k ≤ 3.) We have w(α̌σ) = α̌σ; hence w(α̌s1 + · · ·+ α̌sk) = α̌s1 + · · ·+ α̌sk .
If w(α̌si) ∈ −Ř+ for some i ∈ [1, k], then the same is true for any i ∈ [1, k]. Hence
w(α̌s1 + · · ·+ α̌sk) is an N-linear combination of elements in Ř+ and is also equal to
α̌s1+· · ·+α̌sk , a contradiction. Thus w(α̌si) ∈ Ř+ for any i ∈ [1, k]. This, combined
with w(α̌s1) + · · · + w(α̌sk) = α̌s1 + · · · + α̌sk , forces the equality w(α̌si) = α̌sh(i)

for all i ∈ [1, k], where h : [1, k] → [1, k] is a permutation. Note that h necessarily
commutes with the cyclic permutation of [1, k] induced by ι; hence it is a power of
this cyclic permutation. Moreover, we have h2 = 1; hence h = 1 unless k = 2.

Assume first that h = 1. We have

w(α̌s1) = α̌s1 , (s1w)(α̌s2) = α̌s2 , (sk−1 · · · s1w)(α̌sk) = α̌sk ;

hence s1w = ws1, s2s1w = s1ws2, . . . , sk · · · s1w = sk−1 · · · s1wsk. By (a) for G we
have rs1w − rw = ±α̌s1 , rs2s1w − rs1w = ±α̌s2 , and rsk···s2s1w − rsk−1···s1w = ±α̌sk .
Taking the sum we obtain rσw − rw = rsk···s2s1w − rw = c1α̌s1 + · · · + ckα̌sk with
c1, . . . , ck in {−1, 1}. Since rσw − rw is fixed by ι, so must be c1α̌s1 + · · ·+ ckα̌sk .
It follows that c1 = · · · = ck so that rσw − rw = ±(α̌1 + · · ·+ α̌k). We see that (a)

holds for G̃.
Next we assume that h �= 1; then k = 2 and w(α̌s1) = α̌s2 andw(α̌s2) = α̌s1 . It

follows that ws1w = s2. We have s1s2w = s1ws1 �= w and s1s2w = s2ws2 �= w.
By Lemma 1.9 for G we have rs1s2w = rs1ws1 = s1(rw) and rs1s2w = rs2ws2 =
s2(rw). In particular, we have s1(rw) = s2(rw); hence (s1s2)rw = rw. We have
s1(rw)− rw ∈ Zα̌s1 and s2(rw)− rw ∈ Zα̌s2 . Hence rs1s2w − rw ∈ (Zα̌s1)∩ (Zα̌s2).
We have (Zα̌s1) ∩ (Zα̌s2) = 0; hence rs1s2w = r′w, that is, rσw = rw. We see that

(a) holds for G̃. This completes the proof of (a).

1.16. Proof of Theorem 0.2. The map W2 → L, w �→ rw in subsection 1.8
satisfies Theorem 0.2(i) by definition, satisfies Theorems 0.2(ii) and (iv) by Lemma
1.9, and satisfies Theorem 0.2(iii) by Lemma 1.15. It satisfies Theorem 0.2(v) since
rw ∈ Yw and w acts as multiplication by −1 on Yw. This proves the existence part
of Theorem 0.2.

Assume now that w �→ r′w is a map W2 → L satisfying conditions like Theorem
0.2(i)–(iii). We show that r′w = rw for w ∈ W2 by induction on |w|. When |w| ≤ 1
this follows from Theorem 0.2(i). Now assume that |w| ≥ 2. Assume first that
there exists s ∈ S such that |sw| < |w| and sw �= ws. By the induction hypothesis
we have r′sws = rsws; hence, by Theorem 0.2(ii), s(r′w) = s(rw) so that r′w = rw.
Assume next that no such s exists. Then by Lemma 1.4, w is the longest element
in a standard parabolic subgroup WJ of W whose center contains w. Since |w| ≥ 2
we can find two distinct elements s1, s2 of S which are contained in WJ . Then
s1w ∈ W2, s2w ∈ W2 and |s1w| < |w|, |s2w| < |w|, so that by the induction
hypothesis we have r′s1w = rs1w and r′s2w = rs2w. Now let s ∈ S. If s �= s1, the
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coefficient of α̌s in r′w is equal to the coefficient of α̌s in rw (they are both equal
to the coefficient of α̌s in r′s1w = rs1w; see Theorem 0.2(iii)). If s = s1, then s �= s2
and the coefficient of α̌s in r′w is equal to the coefficient of α̌s in rw (they are both
equal to the coefficient of α̌s in r′s2w = rs2w; see Theorem 0.2(iii)). Thus r′w = rw.
This completes the induction. Theorem 0.2 is proved.

1.17. For w ∈ W2 and s ∈ S such that sw = ws. we define a number (w :
s) ∈ {−1, 0, 1} as follows. Assume first that G is almost simple and simply laced.
The root system Řw, Rw is simply laced and has no component of type Al, l > 1.
Moreover, we have α̌s ∈ Π̌w.

If the component containing α̌s is not of type A1, there is a unique sequence
α̌1, α̌2, . . . , α̌m in Π̌w such that α̌i, α̌i+1 are joined in the Dynkin diagram of Řw

for i = 1, 2, . . . ,m − 1, α̌1 = α̌s, and α̌m corresponds to a branch point of the
Dynkin diagram of Řw; if the component containing α̌s is of type A1, we define
α̌1, α̌2, . . . , α̌m as the sequence with one term α̌s (so that m = 1). We define
(w : s) = (−1)m if |sw| < |w| and (w : s) = (−1)m+1 if |sw| > |w|. Next we
assume that G is almost simple but not simply laced. Then G can be regarded as
a fixed point set of an automorphism of a simply connected almost simple, simply
laced group G′ (as in subsection 1.14) with Weyl group W ′, a Coxeter group with
a length preserving automorphism W ′ → W ′ with fixed point set W . When s is
regarded as an element of W ′, it is a product of k commuting simple reflections
s′1, s

′
2, . . . , s

′
k of W ′; here k ∈ {1, 2, 3}. If k ∈ {0, 3}, then we define (w : s) for W

to be (w : si) for G′, where i is any element of {1, 2, 3}. If k = 2 we have either
ws1 = s1w, ws2 = s2w (and (w : s) for G is defined to be (w : s1) = (w : s2) for
G′), or ws1 = s2w, ws2 = s1w (and (w : s) for G is defined to be 0). We now drop
the assumption that G is almost simple. Let G′′ be the almost simple factor of Gder

with Weyl group W ′′ ⊂ W such that s ∈ W ′′, and let w′′ be the W ′-component of
w. Then (w : s) for G is defined to be (w′′ : s) for G′′ (which is is defined as above).

The proof of Lemma 1.15(a) yields the following refinement of Lemma 1.15(a).

Lemma 1.18. Let w ∈ W2 and s ∈ S be such that sw = ws. We have
(a) rsw = rw + (w : s)α̌s.

2. The elements bw

Assume that we are in the setup of subsection 0.1. We have the following result.

Lemma 2.1.
(a) Let WJ be the parabolic subgroup of W generated by J ⊂ S; we assume that

WJ is an irreducible Weyl group and that the centre of WJ contains the longest
element wJ of WJ . Let α = αJ ∈ R be the unique root such that α =

∑
s∈J usαs

with us ∈ N and
∑

s us as large as possible. We have ṡ2α = rsα(ε).
(b) We have ẇ2

J = rwJ
(ε).

We can assume that W is irreducible. We denote the simple roots by {αi; i ∈
[1, l]} as in [Bou68] and the corresponding simple reflections as {si; i ∈ [1, l]}. We
write εi instead of εsi . We write i1i2 · · · ik instead of ṡi1 ṡi2 · · · ṡik .

We note that (a) does not hold in general if wJ is not central in WJ . For
example, if W = WJ is of type A2 we have (121)2 = 121121 = 12ε121 = 1ε11 =
ε1 = unit element and r121(ε) = ε1ε2.
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We prove (a). By an argument in the proof of subsection 1.14(a), we can reduce
the general case to the case where G is simply laced. Moreover, we can assume that
J = S; hence WJ = W . In this case the proof of (a) is case by case.

Type A1. We have ṡ2α = ṡ21 = ε1 = rα(ε).
Type Dl, l = 2n ≥ 4. We have

ṡα = 234 · · · (l − 2)(l − 1)(l)(l− 2) · · · 212 · · · (l − 2)(l)(l− 1)(l − 2) · · · 432.

A direct computation shows that ṡ2α = εnl−1ε
n
l , and this is also equal to rsα(ε) (see

subsection 1.2). For example, if l = 4 we have

234212342234212342 = 23421234ε234212342 = 2342123ε2ε43212342

= 234212ε2ε3ε4212342 = 23421ε3ε412342 = 2342ε3ε42342

= 234ε2ε3ε4342 = 23ε2ε332 = 2ε22 = unit element.

Type E7. We have

ṡα = 134567243156432545234651342765431.

(See [Lus83].) A direct computation (as for D4 above) shows that ṡ2α = ε3ε5ε7 =
rṡα(ε). (See subsection 1.2.)

Type E8. We have

ṡα = 876542314563457624587634524313425436785426754365413245678.

(See [Lus83].) A direct computation (as for D4 above) shows that ṡ2α = ε2ε5ε7 =
rṡα(ε). (See subsection 1.2.) This proves (a).

We prove (b). Let w be the longest element of W . By subsection 1.8(a) we
have w =

∏
β∈Ě sβ with sβ commuting with each other; moreover, each sβ is of

the form sαJ′ , where J ′ is like J in the lemma, and hence (a) is applicable to

it. Thus ṡ2β = rsβ (ε). From the description of Ě in subsection 1.1 we see that

|w| =
∑

β∈Ě |sβ|; hence ẇ =
∏

β∈Ě ṡβ and ẇ2 =
∏

β∈Ě ṡ
2
β (using the fact the sβ

commute). Using (a) for sβ we obtain ẇ2 =
∏

β∈Ě rṡβ (ε); hence ẇ2 = rw(ε). The
lemma is proved.

2.2. In this subsection we prove the following weak version of Theorem 0.3.
(a) For any w ∈ W2 one can find bw ∈ L/2L such that bw(ε)w(bw(ε)) = rw(ε)ẇ

2

or equivalently (ẇbw(ε))
2 = rw(ε).

We argue by induction on |w|. If |w| = 0 we can take bw = 0. Now assume that
|w| ≥ 1. Assume first that there exists s ∈ S such that |sw| < |w| and sw �= ws.
Then |sws| = |w| − 2. Using the induction hypothesis applied to w′ := sws and
Theorem 0.2(ii), we see that we can find b ∈ L/2L such that b(ε)w′(b(ε)) =
(s(rw))(ε)ẇ

′2. Let b′ = s(b) + α̌s ∈ L/2L so that b(ε) = s(b′(ε))εs We have
s(b′(ε)εs)s(w(b

′(ε)εs)) = s(rw(ε))ẇ
′2; hence b′(ε)εsw(b

′(ε))w(εs) = rw(ε)s(ẇ
′2).

We show that b′(ε)w(b′(ε)) = rw(ε)ẇ
2. It is enough to show that εsw(εs)ẇ

2 =
s(ẇ′2) or that εsw(εs)ṡẇ

′ṡṡẇ′ṡ = ṡ−1ẇ′2ṡ or that εsw(εs)ṡẇ
′εs = ṡ−1ẇ′ or that

εsw(εs)ṡw
′(εs) = εsṡ. This is immediate. Thus we can take bw = b′ and (a) holds

for w.
Next we assume that no s ∈ S as above can be found. Then, by Lemma 1.4, w is

the longest element in a standard parabolic subgroup of W whose centre contains
w. By Lemma 2.1 we have ẇ2rw(ε) = 1. Thus we can take bw = 0. This completes
the proof of (a).
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Note that the elements bw do not necessarily satisfy conditions Theorem0.3(ii),
(iii). The interest in proving the weaker result (a) is that unlike the proof of
Theorem 0.3, it does not rely on computer calculations.

2.3. We prove the uniqueness statement in Theorem 0.3. The argument is similar
to that in the proof of uniqueness in Theorem 0.2. Assume that b′ and b′′ are two
functions of W2 → L/2L satisfying conditions like (i), (ii), (iii) in Theorem 0.3.
We show that b′(w) = b′′(w) for w ∈ W2 by induction on |w|. When |w| ≤ 1 this
follows from Theorem 0.3(i). Now assume that |w| ≥ 2. Assume first that there
exists s ∈ S such that |sw| < |w| and sw �= ws. By the induction hypothesis
we have b′sws = b′′sws; hence, by Theorem 0.3(ii), s(b′w) + α̌s = s(b′′w) + α̌s so that
b′w = b′′w. Assume next that no such s exists. Then by Lemma 1.4, w is the longest
element in a standard parabolic subgroup WJ of W whose center contains w. Since
|w| ≥ 2 we can find two distinct elements s1, s2 of S which are contained in WJ .
Then s1w ∈ W2, s2w ∈ W2 and |s1w| < |w|, |s2w| < |w|, so that by the induction
hypothesis we have b′s1w = b′′s1w, b′s2w = b′′s2w. Now let s ∈ S. If s �= s1, the
coefficient of α̌s in b′w is equal to the coefficient of α̌s in b′′w (they are both equal to
the coefficient of α̌s in b′s1w = b′′s1w (see Theorem 0.3(iii)). If s = s1, then s �= s2
and the coefficient of α̌s in b′w is equal to the coefficient of α̌s in b′′w (they are both
equal to the coefficient of α̌s in b′s2w = b′′s2w; see Theorem 0.3(iii)). Thus b′w = b′′w.
This completes the inductive proof of uniqueness.

2.4. We sketch a proof of the existence part of Theorem 0.3 in the setup of subsec-
tion 1.10. In this case the set Σ of simple coroots consists of

e1 − e2, e2 − e3, . . . , el−1 − el, el−1 + el.

Let w ∈ W2. For any two element subset {β, β′} of Ěw we define a subsetMβ,β′ ⊂ Σ
as follows:

(a) Assume that {β, β′} = {ei− ej , ek − eh}, where i < j, k < h, i �= k, i �= h, j �=
k, j �= h. Then Mβ,β′ consists of all ea − ea+1 ∈ Σ such that i ≤ a < a + 1 ≤ j,
k ≤ a < a+ 1 ≤ h.

(b) Assume that {β, β′} = {ei−ej , ek+eh}, where i < j, k < h, i �= k, i �= h, j �=
k, j �= h. Then Mβ,β′ consists of all ea − ea+1 ∈ Σ such that i ≤ a < a + 1 ≤ j,
k ≤ a < a+ 1 ≤ h.

(c) Assume that {β, β′} = {ei+ ej , ek + eh}, where i < j, k < h, i �= k, i �= h, j �=
k, j �= h. Then Mβ,β′ consists of all ea − ea+1 ∈ Σ such that a = n − 2 mod 2,
i ≤ a < a+ 1 ≤ j, k ≤ a < a+ 1 ≤ h.

(d) Assume that {β, β′} = {ei − ej , ei + ej}, where i < j. Then Mβ,β′ consists
of all ea − ea+1 ∈ Σ such that a = n− 2 mod 2, i ≤ a < a+ 1 ≤ j.

Let S′ be a halving of S. We have rw =
∑

s∈S csα̌s, where cs ∈ N. We set

rS
′

w =
∑

s∈S c′sα̌s ∈ L/2L, where c′s = cs if s ∈ S′ and c′s = 0 if s ∈ S − S′. We
define

bw = rS
′

w +
∑

β,β′

∑

s∈S;α̌s∈Mβ,b′

α̌s,

where {β, β′} runs through all 2 element subsets of Ěw. One can verify that the
elements bw, w ∈ W2, satisfy conditions (i)-(iv) in Theorem 0.3. This, together with
subsection 2.3 proves Theorem 0.3 when G is almost simple of type Dl (except for
condition Theorem 0.3(v)).
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Now if G is adjoint of type Al, l ≥ 1, then G can be regarded as the adjoint
group of a Levi subgroup of a parabolic subgroup in a group of type Dl′ for some l′

such that l < l′ ≥ 4, and Theorem 0.3 for G can be deduced from the results above
(for type Dl′) (except for condition Theorem 0.3(v)).

Next, the argument in the proof of uniqueness in subsection 2.3 can be viewed as
an inductive method to compute bw in Theorem 0.3 for any w ∈ W2 by induction
on |w|. This can be used to prove the existence statement in Theorem 0.3(i)–(iv)
in any given case with a powerful enough computer. We have used this method to
prove the existence statement in Theorem 0.3(i)–(iv) for G of type E8. (I thank
Gongqin Li for carrying out the programming in GAP using the CHEVIE package.)
Then Theorem 0.3(i)–(iv) automatically holds for G of type E7 and E6. We see that
Theorem 0.3 holds for any simply laced G (except for condition Theorem 0.3(v)).

2.5. We show:
(a) If Theorem 0.3(i)–(iv) is assumed to hold for G, then Theorem 0.3(v) holds

for G.
We prove the equality in Theorem 0.3(v) for w ∈ W2 by induction on |w|. If

|w| = 0 the result is obvious. Assume first that there exists s ∈ S such that
sw �= ws, |sw| < |w|. We have |sws| = |w| − 2. By the induction hypothesis we
have w′(bw′(ε))bw′(ε) = rw′(ε)ẇ′2 where w′ = sws. As in the proof in subsection
2.2 we deduce that b′ := s(bw′) + α̌s satisfies w(b′(ε))b′(ε) = rw(ε)ẇ

2. By Theorem
0.3(ii) we have b′ = bw. Thus Theorem 0.3(v) holds for w. Next we assume that
no s as above can be found. Then, by Lemma 1.4, w is the longest element of a
standard parabolic subgroup WJ of W and w is in the centre of WJ . In this case,
using Lemma 2.1, we see that it is enough to show that w(bw(ε)) = bw(ε). From
the definition we see that bw =

∑
s∈J asα̌s, where as ∈ {0, 1}. Hence to show that

w(bw(ε)) = bw(ε) it is enough to show that for any s ∈ J we have w(α̌s) = α̌s in
L/2L. This is clear since w(α̌s) = −α̌s in L. This completes the proof of (a).

We see that Theorem 0.3 holds for any simply laced G.

2.6. In this subsection we assume that G, ι, G̃, T̃ , W̃ , S̃, Ỹ , ||ι, W̃2 are as in the proof
of subsection 1.14(a). Assume that S′ is a halving of S such that ι(S′) = S′. (Such
a halving exists.) Assume also that w �→ bw is a function W2 → L/2L satisfying

Theorem 0.3(i)–(iv) for G. Let S̃′ be the subset of S̃ consisting of the elements

σ =
∏

s s, where s runs over an ι-orbit in S′. Clearly, S̃′ is a halving of S̃ (and any

halving of S̃ is of this form). Let L̃ be the subgroup of L generated by the coroots of

G̃. We have canonically L̃/2L̃ = (L/2L)ι. We define a function b̃ : W̃2 → L̃/2L̃ by

w �→ b̃w = bw. (Note that if w ∈ W̃2, then ι(bw) = bw, by the uniqueness statement
in Theorem 0.3.) We show:

(a) The function W̃2 → L̃/2L̃, w �→ b̃w satisfies Theorem 0.3(i)–(iv) for G̃.

We have b̃1 = 0. Let σ ∈ S̃. Now σ corresponds to an ι-orbit O in S. We can
view σ as an element of W2 and we have b̃σ = bσ =

∑
s∈O α̌s if O ⊂ S′ and b̃σ = 0

if O ⊂ S − S′ (this follows from Theorem 0.3(i) for b applied to each s ∈ O and

from Theorem 0.3(iii) for G applied to σ ∈ W2). Thus Theorem 0.3(i) holds for b̃.

Now let w ∈ W̃2 and σ ∈ S̃ be such that σw �= wσ. We write σ = {s1, . . . , sk} ⊂
S. Then for some i ∈ [1, k] we have siw �= wsi. Hence for all i ∈ [1, k] we
have siw �= wsi. Hence we have s1w �= ws1, s2s1w �= ws1s2, . . . , sk · · · s1w �=
ws1 · · · sk. By Theorem 0.3(ii) for b we have bw = s1(bs1ws1) + α̌s1 , s1(bs1ws1) =
s1s2(bs2s1ws1s2)+α̌s2 , and s1 · · · sk(bsk···s1ws1···sk) = s1 · · · sk−1(bsk−1···s1ws1···sk−1

)+



42 G. LUSZTIG

α̌sk so that bσwσ = σ(bw)+ α̌s1 + · · ·+ α̌sk; that is, b̃σwσ +σ(b̃w)+ α̌s1 + · · ·+ α̌sk.

We see that 0.3(ii) holds for b̃.

Next, let w ∈ W̃2 ∩ W̃ and σ ∈ S̃ be such that σw = wσ. We write O =
{s1, . . . , sk} ⊂ S, σ = s1 · · · sk, where ι permutes s1, s2, . . . , sk cyclically: s1 �→
s2 �→ · · · �→ sk �→ s1. (Note that k ≤ 3.) As in the proof of subsection 1.15 we have
w(α̌si) = α̌sh(i)

for all i ∈ [1, k], where h is a permutation of [1, k] such that h = 1
unless k = 2.

Assume first that h = 1. We have:

w(α̌s1) = α̌s1 , (s1w)(α̌s2) = α̌s2 , . . . , (sk−1 · · · s1w)(α̌sk) = α̌sk ;

hence s1w = ws1, s2s1w = s1ws2, . . . , sk · · · s1w = sk−1 · · · s1wsk, |s1w| > |w|,
and |s2s1w| > |s1w|, . . . , |sk · · · s1w| > |sk−1 · · · s1w|. By Theorem 0.3(iii) for b we
have bs1w − bw = l1α̌s1 , bs2s1w − bs1w = l2α̌s2 , and bsk···s2s1w − bsk−1···s1w = lkα̌sk

with l1, . . . , ll in {0, 1}. Taking the sum we obtain bσw − bw = bsk···s2s1w − bw =
l1α̌s1 + · · · + lkα̌sk . Since bσw − bw is fixed by ι, so must l1α̌s1 + · · · + lkα̌sk . It
follows that l1 = · · · = lk so that bσw − bw = l1(α̌1 + · · · + α̌k). We see that

Theorem 0.3(iii) holds for b̃. Repeatedly using Theorem 0.3(iv) for b we have
σ(bw) = s1s2 · · · sk(bw) = bw (here we use the fact that G is simply laced). We see

that Theorem 0.3(iv) holds for b̃ (in this case we have rσw − rw = ±(α̌1 + · · ·+ α̌k)
by the proof of Lemma 1.15).

Next we assume that h �= 1; then k = 2 and w(α̌s1) = α̌s2 , w(α̌s2) = α̌s1 . It
follows that ws1w = s2. We have s1s2w = s1ws1 �= w and s1s2w = s2ws2 �= w. By
Theorem 0.3(ii) for b we have

bs1s2w = bs1ws1 = s1(bw) + α̌s1 = bw + c1α̌1,

bs1s2w = bs2ws2 = s2(bw) + α̌s2 = bw + χ2α̌2 where c1, c2 ∈ {0, 1}.

It follows that c1α̌1 = c2α̌2 in L/2L. Hence c1 = c2 = 0 and bs1s2w = bw; that

is, bσw = bw. We see that Theorem 0.3(iii) holds for b̃. By Theorem 0.3(ii) for b
we have bws1s2 = bs1ws1 = s1(bw) + α̌1 and bws1s2 = bs2ws2 = s2(bw) + α̌2; hence
s1(bw) + α̌1 = s2(bw) + α̌2. Applying s1 we obtain s1s2(bw) + α̌2 = bw + α̌1; hence

σ(bw) = bw + α̌1 + α̌2. We see that Theorem 0.3(iv) holds for b̃ (in this case we
have rσw − rw = 0 by the proof of Lemma 1.15). This completes the proof of (a).

2.7. From subsection 2.6 we see that Theorem 0.3(i)–(iv) can be reduced to the
case where G is simply laced. Using this and the results in subsection 2.5 we see
that Theorem 0.3 holds in the general case.

2.8. Let S′ be a halving of S. Then clearly S − S′ is a halving of S. We define
W2 → L/2L by w �→ b∗w = bw + rw, where bw = bS

′

w . We have:

(a) bS−S′

w = b∗w.
The fact that b∗ satisfies Theorem 0.3(i) for S−S′ is immediate; that it satisfies

Theorem 0.3(ii) for S − S′ follows from Lemma 1.9(a); that it satisfies Theorem
0.3(iii) for S−S′ follows from subsection 1.13(a). Then (a) follows from the unique-
ness in Theorem 0.3.

2.9. Proof of Theorem 0.5. In this subsection we assume that we are in the
setup of subsection 0.4. Let w, c, S′ be as in Theorem 0.5. We must show that

φ(nw,c,S′)nw,−φ(c),S′ = 1.
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We write bw instead of bS
′

w . We have φ(ẇ) = ẇ, φ(rw(c)) = rw(φ(c)), and φ(bw(ε)) =
bw(ε); hence

φ(nw,c,S′)nw,−φ(c),S′ = φ(ẇrw(c)bw(ε))ẇrw(−φ(c))bw(ε)

= ẇrw(φ(c))bw(ε)ẇrw(−φ(c))bw(ε) = ẇ2w(rw(φ(c)))w(bw(ε))rw(−φ(c))bw(ε)

= w(rw(φ(c)))rw(−φ(c))rw(ε) = w(rw(φ(c)))rw(φ(c)).

This equals 1 since w(rw(φ(c))) = rw(φ(c)
−1) by Theorem 0.2(v). Theorem 0.5 is

proved.

2.10. Assume now that G is almost simple. Then there are exactly two halvings
S′, S−S′ for S. Let w ∈ W2. We note that the family of elements {nw,c,S′ ; c ∈ k∗}
coincides with the family of elements {nw,c,S−S′ ; c ∈ k∗}. Indeed, by subsection
2.8(a) we have

nw,c,S−S′ = ẇrw(c)b
S′

w (ε)rw(ε) = nw,εc,S′ .

2.11. In this subsection we assume that k, G, φ, φ′, Fq are as in subsection 0.4 (in
case subsection 0.4(i)). Now:

(a) g1 : g �→ g1gφ(g1)
−1

defines an action of Gφ2

= G(Fq2) on Gφ′
. Indeed for g1 ∈ Gφ2

, g ∈ Gφ′
. We have

φ(g1gφ(g1)
−1)g1gφ(g1)

−1 = φ(g1)φ(g)g
−1
1 g1gφ(g1)

−1

= φ(g1)φ(g)gφ(g1)
−1 = φ(g1)φ(g1)

−1 = 1,

and our claim follows. We have 1 ∈ Gφ′
and the stabilizer of 1 for the action above

is Gφ. Thus we have an injective map Gφ2

/Gφ → Gφ′
. We show that this is a

bijection. Let g ∈ Gφ′
. By Lang’s theorem we have g = g1φ(g1)

−1 for some g1 ∈ G.
We have gφ(g) = 1; hence g1φ(g1)

−1φ(g1)φ
2(g1)

−1 = 1. That is, g1φ
2(g1)

−1 = 1 so

that g1 ∈ Gφ2

. We see that g is in the Gφ2

-orbit of 1. Thus we have the following
result.

(b) The action (a) of Gφ2

= G(Fq2) on Gφ′
is transitive; the stabilizer of 1 for

this action is Gφ. Hence �(Gφ′
) = �(Gφ2

)/�(Gφ).
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