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QUIVER VARIETIES AND SYMMETRIC PAIRS

YIQIANG LI

Abstract. We study fixed-point loci of Nakajima varieties under symplec-
tomorphisms and their antisymplectic cousins, which are compositions of a
diagram isomorphism, a reflection functor, and a transpose defined by cer-
tain bilinear forms. These subvarieties provide a natural home for geomet-
ric representation theory of symmetric pairs. In particular, the cohomology
of a Steinberg-type variety of the symplectic fixed-point subvarieties is con-

jecturally related to the universal enveloping algebra of the subalgebra in a
symmetric pair. The latter symplectic subvarieties are further used to geomet-
rically construct an action of a twisted Yangian on a torus equivariant coho-
mology of Nakajima varieties. In the type A case, these subvarieties provide
a quiver model for partial Springer resolutions of nilpotent Slodowy slices of
classical groups and associated symmetric spaces, which leads to a rectangular
symmetry and a refinement of Kraft–Procesi row/column removal reductions.
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1. Introduction

To a Dynkin diagram of ADE type, one can attach a simply laced complex simple
Lie algebra, say g, and a class of Nakajima’s quiver varieties [N94,N98]. The latter
provides a natural home for a geometric representation theory of the former. If
the algebra g is further equipped with an involution, it yields a complex Cartan
decomposition of g:

g = k⊕ p,(1)

where k is the fixed-point subalgebra under involution, and p is the eigenspace of
eigenvalue −1. The pair (g, k) is a so-called symmetric pair and p is the associated
symmetric space. The purpose of this paper is to develop a geometric theory for
the symmetric pair (g, k) and its symmetric space p by using Nakajima varieties
together with their fixed-point loci under certain symplectic and antisymplectic
involutions.

Thanks to É. Cartan, the classification of symmetric pairs is equivalent to the
classification of real simple Lie algebras, which is given by Satake diagrams [H,OV].
These are bicolor Dynkin diagrams with black or white vertices, equipped with
diagram involutions. Representation theory of symmetric pairs was developed under
the influence of Harish-Chandra’s theory of (g,KR)-modules with KR a real adjoint
group of k ([D]). A quantum version was obtained later by Letzter in [Le], where a
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coideal subalgebra U′
q(k) of the quantum algebra Uq(g) is used as a q-analogue of

the universal enveloping algebra of k .
Recently, the algebra U′

q(k) of type AIII/AIV without black vertices found
its applications in the study of orthosymplectic Lie superalgebras by Bao and
Wang [BW13] and even special orthogonal Lie algebras by Ehrig and Stroppel [ES13],
independently. A new canonical basis was constructed for certain tensor modules
of U′

q(k) in [BW13], for idempotented U′
q(k) in [BKLW,LW15], and finally a gen-

eral theory of canonical basis for k of any type was obtained in [BW16]. These
works have inspired many developments in various directions, such as categorifica-
tion [BSWW] and K-matrix [BaK16].

In the work [BKLW], there is a geometric realization of U′
q(k) of type AIII/AIV

without black vertices by using n-step isotropic flag varieties, in the spirit of Beilin-
son, Lusztig, and MacPherson’s influential work [BLM]. In light of the role of loc.
cit. in the works [G91] by Ginzburg and [N94, N98] by Nakajima, the geometric
favor in [BKLW], as the tip of the iceberg, strongly suggests the existence of a new
class of quiver varieties for a general k parallel to Nakajima varieties for g. Such
an existence is conjectured independently, and maybe earlier, by Wang through
his iProgram in [BW13, Introduction]. This new class of quiver varieties, called
σ-quiver varieties, turns out to be fixed-point subvarieties of Nakajima varieties
under certain symplectic involutions. More precisely, the symplectic involution σ is
a composition of a diagram involution, a reflection functor, and a symplectic trans-
pose induced from certain bilinear forms. Note that the prototype of the involution
σ has been used in [N03, Section 9] (see also [VV03, 4.6]) for reinterpreting Lusztig’s
opposition [L00b], which serves as a crucial ingredient in a construction of canonical
bases. As we learned from [N18] and via private communication, it is known to
Nakajima that in an affine analogue of [N15, A(iv)], fixed-point subvarieties of σ on
the regular parts of Nakajima varieties provide a quiver model for SO/Sp-instantons
moduli spaces on ALE spaces, similar to the instantons-moduli-space origin [KN90]
of Nakajima varieties; see also Remark 9.2.4(3).

Just like Nakajima varieties, type A σ-quiver varieties possess many desirable
properties.

Theorem A (Theorems 6.2.1, 8.3.3, Corollary 8.3.4). Nilpotent Slodowy slices of
k of type AI/AII and their partial Springer resolutions are examples of type A σ-
quiver varieties.

In type AI/AII, the algebra k is an orthogonal/symplectic Lie algebra, and thus
we recover the geometry used in [BKLW]. Theorem A is a classical analogue of
the well-known Nakajima–Maffei theorem that Nakajima varieties of type A are
nilpotent Slodowy slices of sln and their partial Springer resolutions [N94,M05].
There are two easy but interesting applications from Theorem A. Note that the
sln-version, presented in Sections 7.2 and 7.3, has been done by Henderson [H15].
The first one is a symmetry in classical groups.

Theorem B (Theorem 8.4.1, Remark 8.4.2). There is a rectangular symmetry for
partial Springer resolutions of nilpotent Slodowy slices of classical groups, that is,
if the partitions involved can be fit into a rectangle of a certain size (see Figure 2),
then the associated varieties are isomorphic.

The rectangular symmetry is further applied to prove a conjecture in Henderson
and Licata’s work [HL14] on Springer resolutions of two-row nilpotent Slodowy
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slices of classical groups, and recover relevant results in loc. cit. and [W15]; see
Example 8.4.3.

The second one is an enhancement of Kraft–Procesi’s column/row removal re-
ductions which play critical roles in the study of minimal singularities in classical
nilpotent orbits. Kraft-Procesi [KP82] showed smooth equivalences of singularities

between nilpotent Slodowy slices Sg

μ′,λ and Sg
′

red(μ′),red(λ) for certain classical Lie

algebras g and g′, where red(μ′), (resp., red(λ)) is obtained from partition μ′ (resp.,
λ) by removing certain rows/columns from μ′ (resp., λ); see Figure 3.

Theorem C (Propositions 8.5.1, 8.5.2). The nilpotent Slodowy slices in Kraft–
Procesi’s column/row removal reductions in [KP82] are isomorphic.

Nilpotent orbits and their intersections with Slodowy slices in k have been studied
via categorical quotients in [KP82,K90], [N94, Remark 8.5 (4)], and [N15, Appen-
dix A(i)–A(iv)]. The latter approach, which is quite restricted, is closely related to
the approach we take in this paper. They represent two different orders of taking
GIT quotients and taking fixed points. A closed immersion, which is conjecturally
isomorphic, between varieties which appeared from these two approaches is estab-
lished in Proposition 9.2.1.

In a parallel direction, nilpotent orbits and, more generally, nilpotent Slodowy
slices in the symmetric space p have been studied by Kostant and Rallis [KR71],
Sekiguchi [S84], and Ohta [O86]. They have important applications in the orbit
method of real reductive groups [V86,V89]. A slight alteration of the transpose in
the involution σ yields an antisymplectic involution σ̂. Its fixed-point subvariety,
called a σ̂-quiver variety, can be regarded as the quiver variety for the symmetric
space p, since results similar to Theorems A–C remain valid in this setting (see
Section 10). To this end, the geometries surrounding nilpotent elements in the
triple (g, k, p) in (1) have their quiver counterparts:

Nakajima varieties, symplectic subvarieties, Lagrangian subvarieties.

With Theorems A–C in hand, it is expected that there is a geometric represen-
tation theory for k via general σ-quiver varieties, parallel to Nakajima’s original
theory for g. A further study shows that σ-quiver varieties and their Lagrangian
cousins admit many favorable properties inherited from ambient Nakajima varieties.
In particular, they are nonsingular, if the ambient Nakajima variety is so, and they
carry a Weyl group action. The new Weyl groups contains Weyl groups of type
B�/C�/F4. A Weyl group action of type G2 is realized by using an automorphism
of order 6 on Nakajima varieties. Furthermore, a conjecture is formulated in the
following, with supporting evidence given in Proposition 5.3.3 and (66).

Conjecture (Conjecture 5.3.4). Let (g, k) be a symmetric pair listed in Table 1
in Section 5.3. There is a nontrivial algebra homomorphism from the enveloping
algebra of k to the top Borel–Moore homology of the σ-fixed-point, for a certain σ,
of a Steinberg-type variety in the setting of Nakajima varieties.

From the table, one observes that Conjecture 5.3.4, if it holds, would provide
a new geometric construction of the universal enveloping algebra of simple Lie
algebras of type B and their representations. In addition to developing a geomet-
ric/quiver theory of k (and p), there is a substantial interest in making a connection
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with the original Nakajima theory for g to have a more interesting theory for (g, k)-
modules. The following theorem reflects such a flavor and is obtained by applying
the machinery of Maulik–Okounkov’s R-matrix [MO12,N16] to σ-quiver varieties.

Theorem D (Theorem 5.6.2). There is a (Y(g),Yσ)-action on the localized torus
equivariant cohomology of Nakajima varieties, where Y(g) is the Yangian of g and
Yσ is a twisted Yangian constructed in this paper via a geometric K-matrix.

The twisted Yangian Yσ should coincide with its algebraic counterpart, which
can be traced back to Cherednik’s work [Ch84]; see [M07, GRWa, GRWb]. It is
our hope that Theorem D will serve as a small step towards a geometric theory of
(g,KR)-modules, which in turn will shed light on that of unitary representations of
the associated real simple group.

Finally, we caution the reader that in the main body of the paper the auto-
morphisms σ and σ̂ do not have to be involutive and the underlying graph is not
necessarily of type ADE.

2. Nakajima varieties

In this section, we recall Nakajima’s quiver varieties from the works [N94,N96,
N98].

2.1. Graph. Let Γ be a graph without loops, with I and H being the vertex and
arrow set, respectively. For each arrow h, let o(h) and i(h) be its outgoing and

incoming vertex so that we can depict h as o(h)
h→ i(h). There is an involution on

the arrow set¯: H → H, h �→ h̄ such that o(h̄) = i(h) and i(h̄) = o(h).
Let C = (cij)i,j∈I be the Cartan matrix of the graph Γ defined by

cij = 2δi,j −#{h ∈ H|o(h) = i, i(h) = j}.(2)

For each i ∈ I, we define a bijection si : Z
I → ZI by si(ξ) = ξ′, where ξ′j = ξj−cjiξi,

ξ = (ξj)j∈I , ξ
′ = (ξ′j)j∈I ∈ ZI . Let W be the the subgroup of Aut(ZI) generated

by si for all i ∈ I. The group W is the Weyl group of Γ. It admits a presentation
with generators si for all i ∈ I and the following defining relations:

s2i = 1 ∀ i ∈ I.

sisj = sjsi, if cij = 0.

sisjsi = sjsisj , if cij = −1.

For a fixed w = (wi)i∈I ∈ ZI , we define a second (affine) W-action on ZI by
si∗v = v′, where v = (vi)i∈I ,v

′ = (v′
i)i∈I ∈ ZI such that v′

i = vi−
∑

j∈I cijvj+wi

and v′
j = vj if j �= i. We will put a subscript w under ∗, that is, si ∗w v, if needed.

If w = si1si2 · · · sil is a sequence of simple reflections, we set w∗v = si1 ∗· · ·∗sil ∗v.
We have

C(si ∗w v) = si(Cv −w) +w.(3)

2.2. The variety ΛζC(v,w). Let V =
⊕

i∈I Vi and W =
⊕

i∈I Wi be two finite-
dimensional I-graded vector spaces over the complex field C of dimension vectors
v = (vi)i∈I and w = (wi)i∈I , respectively. We consider the vector space

M(v,w) ≡ M(V,W ) =
⊕
h∈H

Hom(Vo(h), Vi(h))⊕
⊕
i∈I

Hom(Wi, Vi)⊕Hom(Vi,Wi).
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A typical element in M(v,w) will be denoted by x ≡ (x, p, q) ≡ (xh, pi, qi)h∈H,i∈I ,
where xh ∈ Hom(Vo(h), Vi(h)), pi ∈ Hom(Wi, Vi), and qi ∈ Hom(Vi,Wi).

Let

Gv ≡ GV =
∏
i∈I

GL(Vi), Gw ≡ GW =
∏
i∈I

GL(Wi).(4)

The group Gv acts from the left on M(v,w) by conjugation. More precisely, for
all g = (gi)i∈I ∈ Gv and x ∈ M(v,w), we define g.x = x′ ≡ (x′

h, p
′
i, q

′
i), where

x′
h = gi(h)xhg

−1
o(h), p

′
i = gipi and q′i = qig

−1
i for all h ∈ H and i ∈ I. Similarly,

let Gw acts conjugately on M(v,w) from the left, i.e., for any f = (fi)i∈I ∈ Gw

and x ∈ M(v,w), we define f.x = x′ ≡ (x′
h, p

′
i, q

′
i), where x′

h = xh, p
′
i = pif

−1
i and

q′i = fiqi for all h ∈ H and i ∈ I. It is clear that the Gv-action and Gw-action
commute.

The space M(v,w) can be endowed with a symplectic structure, given by

ω(x,x′) =
∑
h∈H

tr(ε(h)xhx
′
h̄) +

∑
i∈I

tr(piq
′
i − p′iqi) ∀x,x′ ∈ M(v,w),(5)

where ε : H → {±1} is a fixed orientation function such that ε(h) + ε(h̄) = 0 for
all h ∈ H. The orientation of H associated to ε is Ω = ε−1(1). Let

μ ≡ μC : M(v,w) →
⊕
i∈I

gl(Vi)

be the moment map associated to the Gv-action on the symplectic vector space
M(v,w). Its projection at the ith component gl(Vi) is given by

μi : M(v,w) → gl(Vi), μi(x) =
∑

h∈H:i(h)=i

ε(h)xhxh̄ − piqi.

Let ζC = (ζ
(i)
C

)i∈I ∈ CI . We regard ζC as an element in
⊕

i∈I gl(Vi) via the

imbedding (ζ
(i)
C

)i∈I �→ (ζ
(i)
C

IdVi
)i∈I . Let

ΛζC(v,w) ≡ μ−1
C

(ζC) = {x ∈ M(v,w)|μi(x) = ζ
(i)
C

∀i ∈ I}.(6)

We shall use the notation ΛζC(V,W ) for ΛζC(v,w) if we want to emphasize the
pair (V,W ). Note that ΛζC(v,w) is an affine algebraic variety. Note also that

μi(g.x) = giμi(x)g
−1
i = ζ

(i)
C

for all g ∈ Gv and x ∈ ΛζC(v,w). So the Gv-action
on M(v,w) restricts to a Gv-action on ΛζC(v,w). Similarly, for all f ∈ Gw and
x ∈ M(v,w), we have μi(f.x) = μi(x). Hence we have a Gw-action on ΛζC(v,w).

2.3. Quiver varieties Mζ(v,w) and M0(v,w). Let ξ = (ξi)i∈I ∈ ZI . We define
a character χ ≡ χξ : Gv → C∗ by

χ(g) ≡ χξ(g) =
∏
i∈I

det(gi)
−ξi ∀g ∈ Gv.

Let C[ΛζC(v,w)]Gv,χ
n

be the space of regular functions f on ΛζC(v,w) such that
f(g.x) = χn(g)f(x) for all g ∈ Gv and x ∈ ΛζC(v,w). Then the sum

Rζ(v,w) =
⊕
n∈N

C[ΛζC(v,w)]Gv,χ
n

, ζ ≡ (ξ, ζC),

becomes an N-graded commutative algebra with a subalgebra

R0(v,w) = C[ΛζC(v,w)]Gv,χ
0

.
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Following Nakajima [N94,N98], we define the quiver varieties: for any ζ ≡ (ξ, ζC) ∈
ZI × CI ,

Mζ(v,w) = Proj Rζ(v,w), M0(v,w) = Spec R0(v,w).(7)

The inclusion R0(v,w) → Rζ(v,w) of the two rings involved induces a projective
morphism of algebraic varieties:

π : Mζ(v,w) → M0(v,w).(8)

The Gw-action on ΛζC(v,w), which commutes with the Gv-action, induces Gw-
actions on Mζ(v,w) and M0(v,w). It is clear that the proper map π is Gw-
equivariant.

2.4. Stability condition. Fix an element x = (xh)h∈H in the first component of
M(v,w) and an I-graded subspace S = (Si)i∈ of V ; we say that S is x-invariant if
xh(So(h)) ⊆ Si(h) for all h ∈ H. The standard dot product on ZI is given by a · b =∑

i∈I aibi for all a, b ∈ ZI . Following Nakajima, a point x = (x, p, q) in M(v,w) is
called ξ-semistable if the following two stability conditions are satisfied. Assume S
and T are I-graded subspaces of V of dimension vector s and t, respectively. Then
the stability conditions say that

If S is x-invariant and S ⊆ ker q, then ξ · s ≤ 0.(S1)

If T is x-invariant and T ⊇ im p, then ξ · t ≤ ξ · v.(S2)

Let Λξ-ss
ζC

(v,w) be the set of all ξ-semistable points in ΛζC(v,w). We see that

Λξ-ss
ζC

(v,w) is Gv-invariant. For convenience, let [x] denote the Gv-orbit of x in

M(v,w). From Mumford’s geometric invariant theory, we have the following.

Proposition 2.4.1 ([N96, 3.ii]). The geometric points in Mζ(v,w) are Λξ-ss
ζC

(v,w)/

∼, where the GIT equivalence relation ∼ is defined as x ∼ y if and only if [x]∩ [y]∩
Λξ-ss
ζC

(v,w) �= Ø where the overline denotes the Zariski closure of the underlying

orbit in ΛζC(v,w).

Recall that C is the Cartan matrix of the graph Γ. We set

R+ = {γ ∈ NI | tγCγ ≤ 2} − {0},
R+(v) = {γ ∈ R+|γi ≤ vi ∀i ∈ I},

Dγ = {a ∈ CI |a · γ = 0}.

So the set R+ consists of positive roots of C and the set Dγ is the wall defined by
γ. Note that there is tγCγ = 2

∑
i∈I γ

2
i −

∑
h∈H γo(h)γi(h).

Definition 2.4.2. A parameter ζ = (ξ, ζC) ∈ ZI×CI is called generic if it satisfies

ξ ∈ ZI\
⋃

γ∈R+(v)

Dγ or ζC ∈ CI\
⋃

γ∈R+(v)

Dγ .(9)

Proposition 2.4.3 ([N94, Theorem 2.8]). Assume that the parameter ζ is generic.

Then the group Gv acts freely on Λξ-ss
ζC

(v,w) and Mζ(v,w) = Λξ-ss
ζC

(v,w)/Gv, the

GIT quotient of Λξ-ss
ζC

(v,w) by Gv. Moreover, Mζ(v,w) is smooth.
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Hence the geometric points of the quiver variety Mζ(v,w) under (9) are parame-

trized by the Gv-orbits in Λξ-ss
ζC

(v,w). We set

Mζ(w) =
∐
v

Mζ(v,w).(10)

Assumption 2.4.4. The parameter ζ is assumed to be either generic or zero,
unless otherwise stated.

Remark 2.4.5. Our ξ is corresponding to the parameter ζR where ζR =
√
−1ξ

in [N03].

3. Isomorphisms on Nakajima varieties

In this section, we introduce three classes of isomorphisms on Nakajima varieties.
The fixed-point loci of their compositions, when they become automorphisms, will
be studied in the next section.

3.1. Reflection functors. To each element ω ∈ W , Nakajima [N94,N03], Lusztig
[L00], and Maffei [M02] define the so-called reflection functor

Sω : Mζ(v,w) → Mω(ζ)(ω ∗ v,w) ∀ζ subject to (9),(11)

which is an isomorphism of varieties such that Sω′Sω = Sω′ω. When ω is a simple
reflection, the definition is very much like Bernstein, Gelfand, and Ponomarev’s
reflection functor [BGP], from which it is named.

Retain the pair of vector spaces (V,W ) of dimension vector (v,w). Fix i ∈ I
and set

Ui = Wi ⊕
⊕

h∈H:o(h)=i

Vi(h).

Let V ′ be a third vector space of dimension v′ = si ∗ v such that V ′
j = Vj if

j �= i. In particular, dimV ′
i + dimVi = dimUi. To a point x ∈ M(v,w), we set

ai(x) = (qi, xh)h:o(h)=i and bi(x) = (pi, ε(h̄)xh)h:i(h)=i. Let F be the pair of points
(x,x′) ∈ M(v,w)×M(v′,w) such that the following conditions (R1)–(R4) hold:

0 −−−−→ V ′
i

ai(x
′)−−−−→ Ui

bi(x)−−−−→ Vi −−−−→ 0 is exact,(R1)

ai(x)bi(x)− ai(x
′)bi(x

′) = ζ
′(i)
C

, ζ ′C = si(ζC),(R2)

xh = x′
h, pj = p′j , qj = q′j , if o(h) �= i, i(h) �= i, and j �= i,(R3)

μj(x) = ζ
(j)
C

, μj(x
′) = ζ

′(j)
C

, if j �= i.(R4)

The Gv×Gv′ -action on M(v,w)×M(v′,w) induces a Gv∪v′ = Gv×GL(V ′
i )-action

on F .
Assume that the parameter ξ satisfies ξi < 0 or ζ

(i)
C

�= 0. We have the following
diagram:

Λξ-ss
ζC

(V,W )
π1←− F ss(V, V ′,W )

π2−→ Λ
si(ξ)-ss
si(ζC)

(V ′,W ),(12)

where F ss(V, V ′,W ) = F ∩
(
Λξ-ss
ζC

(V,W )× Λ
si(ξ)-ss
si(ζC)

(V ′,W )
)
, π1, and π2 are the

natural projections. It is known that π1 and π2 are GL(V ′
i ) and GL(Vi) principal

bundles, respectively. This induces isomorphisms of varieties:

Mζ(v,w)
π1←− Gv∪v′\F ss(V, V ′,W )

π2−→ Msi(ζ)(si ∗ v,w).(13)
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The simple reflection Si on quiver varieties is defined by

Si = π2π
−1
1 : Mζ(v,w) → Msi(ζ)(si ∗ v,w), if ξi < 0 or ζ

(i)
C

�= 0.(14)

Since (si(ξ))i > 0 if ξi < 0, we can define the reflection Si when ξi > 0, by
switching the roles of x and x′. So if ω = si1si2 · · · sil ∈ W and ζ satisfies the
condition (9), the reflection functor Sω in (11) is defined to be

Sω = Si1Si2 · · ·Sil : Mζ(v,w) → Mω(ζ)(ω ∗ v,w).

When ζ = 0, the reflection functor Sω : M0(v,w) → M0(ω ∗ v,w) is defined to
be the identity morphism when ω ∗ v = v, following [L00, 2.1].

If we let Gw act diagonally on M(v,w) ×M(v′,w) in the above construction,
we see that the simple reflections Si and hence the general Weyl group action Sω
are Gw-equivariant.

3.2. The isomorphism τ . A finite-dimensional vector space E equipped with
a nondegenerate bilinear form (−,−)E is called a formed space. To any linear
transformation T : E → E′ between two formed spaces, we define its right adjoint
T ∗ : E′ → E by the rule

(T (e), e′)E′ = (e, T ∗(e′))E ∀e ∈ E, e′ ∈ E′.

It is clear that the map T �→ T ∗ defines an isomorphism Hom(E,E′) ∼= Hom(E′, E)
of vector spaces. If further E′′ is a formed space and T ′ : E′ → E′′ is a linear
transformation, then (T ′T )∗ = T ∗T ′∗.

Similarly, we can define the left adjoint T ! of T by (e′, T (e))E′ = (T !(e′), e)E for
all e ∈ E and e′ ∈ E′. We have (T ∗)! = T and (T !)∗ = T .

Let δ be either +1 or −1. A formed space E is called a δ-formed space if the
associated form (−,−)E on E satisfies that (e1, e2)E = δ(e2, e1)E for all e1, e2 ∈ E.
When δ = 1, we have a symmetric form, while when δ = −1, we have a symplectic
form. In this case, the form (−,−)E is called a δ-form. If E′ is a δ′-formed space
for some δ′ ∈ {±1}, then we have (T ∗)∗ = δδ′T .

Assume the vector space E is a formed space and admits an I-grading E =⊕
i∈I Ei. We call E an I-graded formed space if the restriction (−,−)Ei

of the
form (−,−)E to each subspace Ei is a nondegenerate form and (Ei, Ej)E = 0 if
i �= j. Let E be an I-graded formed space and fix a function δ = (δi)i∈I ∈ {±1}I .
We call E a δ-formed space, or a formed space with sign δ, if the restriction
(−,−)Ei

is a δi-form for all i ∈ I. We call δ the sign of E.
Recall the pair (V,W ) of vector spaces of dimension vector (v,w) and M(v,w)

from Section 2.2. Assume that V and W are two I-graded formed spaces. We
define an automorphism

τ : M(v,w) → M(v,w), x = (xh, pi, qi) �→ τx = (τxh,
τpi,

τqi),(15)

where τxh = ε(h)x∗
h̄
, τpi = −q∗i and τqi = p∗i for all h ∈ H and i ∈ I. Its inverse

is defined by taking the left adjoints, that is, τ−1(x) = (τ
−1

xh,
τ−1

pi,
τ−1

qi), where
τ−1

xh = ε(h̄)x!
h̄
, τ−1

pi = q!i, and
τ−1

qi = −p!i.
By the properties of taking adjoints, we have μi(

τx) = −μi(x)
∗. So the auto-

morphism on M(v,w) restricts to an isomorphism still denoted by τ :

τ : ΛζC(v,w) → Λ−ζC(v,w).(16)
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Further, for any regular function f in C[ΛζC(v,w)]Gv,χ
n
ξ , we have

fτ (g.x) = f(τg.τx) τgi = (g−1
i )∗

= χn
ξ (

τg)f(τx)

= χn
−ξ(g)fτ (x) ∀g ∈ Gv,x ∈ Λ−ζC(v,w).

So fτ ∈ C[Λ−ζC(v,w)]Gv,χ
n
−ξ . This implies that the assignment f �→ fτ defines

an isomorphism of graded associative algebras: Rζ(v,w) → R−ζ(v,w), where
Rζ(v,w) is from Section 2.3.

The above isomorphism shows that the isomorphism on ΛζC(v,w) restricts to

an isomorphism Λξ-ss
ζC

(v,w) → Λ
(−ξ)-ss
−ζC

(v,w). Due to τ (g.x) = τg.τx, it further

induces the isomorphism: recall that [x] denotes the Gv-orbit of x,

τζ : Mζ(v,w) → M−ζ(v,w), [x] �→ [τx],(17)

such that the following diagram commutes:

Mζ(v,w)
τζ−−−−→ M−ζ(v,w)

π

⏐⏐� π

⏐⏐�
M0(v,w)

τ0−−−−→ M0(v,w)

(18)

Now we show that the isomorphism τζ depends only on the forms on W .

Proposition 3.2.1. The τζ in (17) is independent of the choices of forms on V .

Proof. If we fix a basis for each vector space Vi and Wi, then to give a form on Vi

or Wi is the same as to give a certain invertible matrix, say Mi or Ni. In this way,
the right adjoints are presented as x∗

h = M−1
o(h)

txhMi(h) and p∗i = N−1
i

tpiMi and

q∗i = M−1
i

tqiNi for all h ∈ H and i ∈ I. If we attach to each Vi a new form with

associated matrix M̃i, we can have a new automorphism, say τ̃ , on M(v,w), and

a new point τ̃x for each x ∈ M(v,w). Set g = (gi)i∈I ∈ Gv with gi = M̃−1
i Mi

∀i ∈ I. Then the proposition follows from g.τx = τ̃x. �

For f ∈ Gw, we set τ f = (f−1)∗. Then τ (f.[x]) = τ f.τ ([x]) for all f ∈ Gw and
[x] ∈ Mζ(v,w).

Proposition 3.2.2. If W is a formed space with sign δw, then the isomorphism τζ
on Mζ(v,w) satisfies τ4ζ = 1. Moreover, if the δw is Γ-alternating, i.e., δw,o(h)δw,i(h)

= −1 for all h ∈ H, then τ2ζ = 1.

Proof. From the property of taking adjoints twice with respect to δ-forms, it is
straightforward to see the first statement in the proposition. By Proposition 3.2.1,
we can attach to each Vi a symmetric form. Then for x = (xh, pi, qi), we have
τ2(x) = (−xh,−δw,ipi,−δw,iqi). Let g = (−δw,iidVi

)i∈I ; then we have g.τ2(x) = x.
This implies that τ2ζ = 1. �

We now show that the isomorphism τζ commutes with the reflection functors.
Recall the setting from Section 3.1. We fix a vertex i ∈ I and a triple (V, V ′,W )
of I-graded vector spaces of dimension vector (v,v′,w) such that Vj = V ′

j for all
j �= i and v′ = si ∗ v. We assume that all spaces in this triple are I-graded formed
spaces. For simplicity, let BV = (−,−)V , BW = (−,−)W stand for the bilinear
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forms on V and W , respectively. Similar to the isomorphism τζ ≡ τζ(BV , BW ) as
above, we have an isomorphism

τsi(ζ) ≡ τsi(ζ)(BV ′ , BW ) : Msi(ζ)(si ∗ v,w) → M−si(ζ)(si ∗ v,w).

Lemma 3.2.3. We have Siτζ(BV , BW ) = τsi(ζ)(BV ′ , BW )Si, where Si is the re-
flection functor defined in Section 3.1.

Proof. By Proposition 3.2.1, we can assume that the forms on Vj and V ′
j coincide

for all j �= i. We observe that ai(
τx) = bi(x)

∗ and bi(
τx) = −ai(x)

∗. So the short
exact sequence in (R1) gives rise to the following short exact sequence:

0 −−−−→ Vi
ai(

τx)−−−−→ Ui
bi(

τx′)−−−−→ V ′
i −−−−→ 0.

Similarly, the equation in (R2) yields the equality ai(
τx′)bi(

τx′) − ai(
τx)bi(

τx) =

ζ
′(i)
C

. As a consequence, we have the commutative relation in the lemma. �

3.3. The diagram isomorphism a. Let a be an automorphism of Γ, that is, there
are permutations of vertex and edge sets, both denoted by a, such that a(o(h)) =

o(a(h)), a(i(h)) = i(a(h)), and a(h̄) = a(h) for all h ∈ H. We further assume
that a is compatible with the function ε in the definition of the moment map μ in
Section 2.2: there exists a constant c ≡ ca,ε ∈ {±1} such that

ε(a(h)) = c · ε(h) ∀h ∈ H.(19)

The automorphism a on Γ induces operations on I-graded vector spaces and vectors.
If V is an I-graded space, we denote a(V ) as the I-graded vector space whose ith
component is Va−1(i). Similarly a(v) is a vector whose i-entry is the a−1(i)th entry
of v. Given any point x = (x, p, q) ∈ M(v,w) ≡ M(V,W ), we define a point

a(x) = (a(x), a(p), a(q)) ∈ M(a(v), a(w)) ≡ M(a(V ), a(W ))

by

a(p)i = pa−1(i), a(q)i = qa−1(i), a(x)h = ε(h)
1−c
2 xa−1(h) ∀i ∈ I, h ∈ H.

By definition, μi(a(x)) = μa−1(i)(x). Thus it induces a diagram isomorphism of
finite order on Nakajima’s varieties:

a : Mζ(v,w) → Ma(ζ)(a(v), a(w)).(20)

The order of this isomorphism is the same as that of the diagram.
The isomorphism a is a variant of diagram automorphisms studied in [HL14].

Just like loc. cit., it can be generalized as follows. Let us fix (f0, g0) ∈ Gw × Gv;
we can define an isomorphism af0,g0 : Mζ(v,w) → Ma(ζ)(a(v), a(w)) to be the

composition of a with the action of (f0, g0). Specifically, for any [x] ∈ Mζ(v,w),
the element af0,g0([x]) is represented by af0,g0(x) = (af0,g0(x), af0,g0(p), af0,g0(q)),
where for all i ∈ I, h ∈ H,

af0,g0(p)i = g0a−1(i)pa−1(i)(f
0
a−1(i))

−1,

af0,g0(q)i = f0a−1(i)qa−1(i)(g
0
a−1(i))

−1,

af0,g0(x)h = ε(h)
1−c
2 g0i(a−1(h))xa−1(h)(g

0
o(a−1(h)))

−1.

Similar to Proposition 3.2.1, the isomorphism af0,g0 is independent of the choice of
g0. Hence it makes sense to denote this isomorphism by af0 , and the a in (20) is
a1.
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There is a permutation, f �→ af, on Gw given by (af)i = fa−1(i) for all i ∈ I. It
is clear that

af0(f.[x]) =
af0.af([x]) ∀[x] ∈ Mζ(v,w), f ∈ Gw.(21)

It is also clear that the isomorphism a is compatible with the reflection functor Si:

af0 ◦ Si = Sa(i) ◦ af0 .(22)

Subsequently, Sw0
◦ af0 = af0 ◦ Sw0

when Γ is Dynkin and w0 is the longest Weyl
group element since a(w0) = w0. The two isomorphisms τζ and af0 are compatible
as well. Precisely,

τaζ(a(BV ), a(BW ))af0 = aτ f0τζ(BV , BW ).(23)

Finally, we remark that the composition aτζ is similar to automorphisms in [E09]
and a special case of τζ appeared in [KP82]; see additionally Section 9.

4. Geometric properties of σ-quiver varieties

In this section, we study the fixed-point subvarieties, called σ-quiver varieties,
of the compositions of the three classes of isomorphisms of Nakajima varieties in-
troduced in the previous section.

4.1. The σ-quiver varieties, I: ζ generic. In this subsection, we assume that ζ
is generic. We consider the following isomorphism on quiver varieties:

σ := aSωτζ : Mζ(v,w) → M−aω(ζ)(a(ω ∗ v), a(w)),(24)

where τζ , Sω, and a are defined in (17), (11), and (20), respectively. We shall
write σζ,ω,a for σ if we want to emphasize that σ depends on ζ, ω, and a. By the
commutativity of the three isomorphisms from Lemma 3.2.3, (22), and (23), we
have the following proposition.

Proposition 4.1.1. If the forms involved are δ-forms and ω is of finite order, then
the order of σ is finite and a divisor of the least common multiple l.c.m.{4, |ω|, |a|}.

By summing over all v, we have an isomorphism.

σ : Mζ(w) → M−aω(ζ)(a(w)).

If −aω(ζ) = ζ and a(w) = w, then σ becomes an automorphism on Mζ(w). We
set

Sζ(w) ≡ Mζ(w)σ

to be its fixed-point subvariety. If further a(ω ∗ v) = v, let

Sζ(v,w) ≡ Mζ(v,w)σ

be the fixed-point subvariety of Mζ(v,w) under the automorphism σ. Then we
have

Sζ(w) =
⊔

a(ω∗v)=v

Sζ(v,w), if − aω(ζ) = ζ, a(w) = w.(25)

Definition 4.1.2. The varieties Sζ(v,w) and Sζ(w) are called the σ-quiver vari-
eties.

Before we proceed, we make a remark.
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Remark 4.1.3. A more general isomorphism σf0 can be defined by using af0 , a
generalization of a, in Section 3.3. To control its order in this case, f0 has to satisfy
a compatibility assumption in [HL14]. Specifically, we can identify Wi with Wa(i)

for all i ∈ I due towi = wa(i). For each i ∈ I, letmi = #{an(i)|n ∈ Z}. Fixm such

that mi|m ∀i ∈ I. The compatibility condition for f0 reads f0i f
0
a(i) · · · f0am−1(i) = 1

∀i ∈ I. Then the order of af0 is m. For the sake of simplicity, we focus on the
simpler version σ instead of σf0 .

The definition of σ-quiver varieties depends on the forms on V and W . But by
Proposition 3.2.1, it only depends on the form on W , which is recorded as follows.

Proposition 4.1.4. The variety Sζ(v,w) is independent of the choice of the form
on V .

By combining Proposition 4.1.1 and Proposition 4.1.4, it yields the following.

Proposition 4.1.5. If W is a δw-formed space and ω is of finite order, then the
order of σ is a divisor of l.c.m.{4, |ω|, |a|}. If further the sign δw is Γ-alternating
and a2 = ω2 = 1, then σ2 = 1.

The following example shows that σ-quiver varieties include quiver varieties.

Example 4.1.6. Let Γ̂ be the product of four copies of Γ. Let a be the obvious
cyclic permutation of order 4 on Γ̂. Then there is an automorphism σ with ω = 1
on MΓ̂ = Mζ(v,w) × M−ζ(v,w) × Mζ(v,w) × M−ζ(v,w). If the space W is a
formed space of sign δw, then we see that SΓ̂

∼= Mζ(v,w). In particular, if the δw
is alternating, then we only need two copies of Γ to realize Mζ(v,w) as a σ-quiver
variety.

It is well known, e.g., [I72, Proposition 1.3], [E92, Proposition 3.4], or [CG,
Lemma 5.11.1], that the fixed-point subvariety of an action of a reductive group,
in particular, a finite group, on a smooth variety is smooth. If the automorphism
σ has a finite order N , then it is the same as a ZN -action on quiver varieties. So it
gives rise to the following proposition.

Proposition 4.1.7. Assume that ζ is generic. The σ-quiver variety Sζ(v,w) is
smooth, provided that it is nonempty and the order of σ is finite.

The reflection functor Sω does not always exist on M0(v,w) and, if it exists,
they are not isomorphic in general. So to define σ-quiver varieties as a fixed-
point locus on M0(v,w) does not work in general. When the graph is Dynkin, the
reflection functor does exist on the global/limit version M0(w) of M0(v,w), thanks
to Lusztig’s work [L00], so in this case it is possible to define σ-quiver variety in
M0(w) as a fixed-point locus, which is treated in the following section. The σ-
quiver variety in M0(v,w) is then obtained by taking the intersection of M0(v,w)
with the σ-quiver variety in M0(w). Here, instead, we define the following:

S1(v,w) ≡ π(Sζ(v,w)), if ζ = −aω(ζ), a(ω ∗ v) = v, aw = w,

S1(w) =
⊔

a(ω∗v)=v

S1(v,w), if ζ = −aω(ζ), aw = w.(26)

In particular, the proper morphism π in (8) restricts to a proper morphism:

πσ : Sζ(v,w) → S1(v,w) and πσ : Sζ(w) → S1(w).(27)
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Let Gσ
w = {f ∈ Gw|f = aτ f}. Since Sω is Gw-equivariant and τζ and a satisfy

τζ(f.[x]) = τ f.τζ([x]) and a(f.[x]) = af.[x] for all f ∈ Gw and [x] ∈ Mζ(v,w), we
see that the automorphism σ satisfies the following property:

σ(f.[x]) = aτ f.σ([x]) ∀f ∈ Gw, [x] ∈ Mζ(v,w).(28)

It induces Gσ
w-actions on Sζ(v,w) and S1(v,w), which are compatible with the

proper map πσ. There is a natural C×-action on M(v,w) given by x =
(xh, pi, qi)h∈H,i∈I �→ t.x = (txh, tpi, tqi)h∈H,i∈I for all t ∈ C×. This C×-action
commutes with the isomorphisms a and τ on M(v,w), which in turn induces a
C×-action on S1(v,w). If the parameter ζC = 0, then the C×-action on M(v,w)
restricts to a C×-action on ΛζC(v,w), and then on Mζ(v,w). This action clearly
commutes with the Gσ

w-actions on Sζ(v,w) and S1(v,w). In this case the mor-
phism πσ is Gσ

w × C×-equivariant. The above analysis yields the following propo-
sition.

Proposition 4.1.8. The map πσ is Gσ
w-equivariant. If ζC = 0, it is Gσ

w × C×-
equivariant.

4.2. The σ-quiver varieties, II: ζ = (0, ζC). In this section, we assume that Γ
is Dynkin and ζ = (0, ζC), which is not necessarily generic. We give a definition
of σ-quiver varieties under these assumptions by making use of Lusztig’s reflection
functor and global versions of the transpose τ and the diagram isomorphism a
defined as follows.

4.2.1. Lusztig’s variety ZζC
w . Let F be the space of paths in the Dynkin graph Γ.

The concatenation operation, (ρ, ρ′) �→ ρ · ρ′ = δo(ρ),i(ρ′)ρρ
′, of the paths defines

an associative algebra structure on F . The bar involution on Γ defines an anti-
involution on F , which we shall denote by the same notation. Let i(f) and o(f)
be the ending and starting vertex of the path f . Let [i] be the path of length zero
such that i([i]) = o([i]) = i. For ζC ∈ CI , let

θi,ζC =
∑

h:i(h)=i

ε(h)hh̄− ζ
(i)
C

[i] ∀i ∈ I.

Recall that W is an I-graded vector space of dimension w. Let ZζC
w be the set of

linear maps π′ from F to End(W ) such that

• π′(f) ∈ Hom(Wo(f),Wi(f)) ⊆ End(W ) for all path f ,
• π′(f)π′(f ′) = π′(f ·θi,ζC ·f ′) for all paths f and f ′ such that i(f ′) = i = o(f).

ZζC
w is an affine algebraic variety by [L00] and isomorphic to M(0,ζC)(v,w) for v

very large. As a set, ZζC
w can be identified with M0(w) under a proper treatment.

Following [L00, 2.3], there is a C×-action on the totality
⊔

ζC∈CI ZζC
w given by

t : ZζC
w → Zt2ζC

w and (t.π′)(f) = ts+2π′(f) if f = h1 · · ·hs for all π′ ∈ ZζC
w . Fol-

lowing [L00, 2.4], there is a Gw-action on ZζC
w by (g.π′)(f) = gi(f)π

′(f)g−1
o(f) for all

path f and π′ ∈ ZζC
w .

4.2.2. The transpose τ0. We extend the orientation function ε to a function on the
set of paths in Γ by defining ε([i]) = 1 and ε(f) =

∏s
i=1 ε(hi) if f = h1 · · ·hs. Now

assume further that W is an I-graded formed space. We define an isomorphism

τ0 : ZζC
w → Z−ζC

w , π′ �→ τ0(π
′),(29)

where τ0(π
′)(f) = −ε(f)π′(f̄)∗ for any path f in Γ.
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We must show that τ0 on ZζC
w is well-defined, that is, τ0(π

′) ∈ Z−ζC
w . Clearly

τ0(π
′)(f) ∈ Hom(Wo(f),Wi(f)). For any two paths f, f ′ in Γ such that i(f ′) = i =

o(f), we have

τ0(π
′)(f)τ0(π

′)(f ′) = ε(f)ε(f ′)π′(f̄)∗π′(f ′)∗

= ε(f)ε(f ′)
(
π′(f ′)π′(f̄)

)∗
= ε(f)ε(f ′)

(
π′(f ′θi,ζC f̄)

)∗
= −ε(f)ε(f ′)

(
π′(fθi,−ζCf

′)
)∗

= τ0(π
′)(fθi,−ζCf

′).

(30)

Therefore the well-definedness of τ0 follows.
There is a morphism of varieties ΛζC(v,w) → ZζC

w sending a point x = (xh, pi, qi)
to π′ such that π′(f) = qi(h1)xh1

· · ·xhs−1
xhs

po(hs) for any path f = h1 · · ·hs. The
morphism then induces an immersion ϑ : M(0,ζC)(v,w) → Zw. It is clear that the

isomorphism τ on ΛζC(v,w) in (16) is compatible with the isomorphism τ0 on ZζC
w .

This implies that the isomorphisms τ0 on M(0,ζC)(v,w) and ZζC
w are compatible

under the immersion ϑ, that is, the following diagram commutes:

M(0,ζC(v,w)
τ0−−−−→ M(0,−ζC)(v,w)

ϑ

⏐⏐� ϑ

⏐⏐�
ZζC
w

τ0−−−−→ Z−ζC
w

(31)

This indicates that the notation τ0 on ZζC
w and M(0,ζC)(v,w) will not cause any

confusion.

Remark 4.2.3. We have (Z0
w)τ0 ={π′∈Z0

w|π′(f)=−ε(f)π′(f̄)∗ for any path f in Γ}.
This description is similar to the definition of classical Lie algebras in (80).

4.2.4. Diagram isomorphism Θa,ε. Retaining the setting in Section 3.3, the auto-
morphism a on Γ naturally induces an automorphism, still denoted by a, on F such
that a : i �→ a(i) and a : h �→ a(h). We define another automorphism on F by
rescaling a−1 on F :

Φa,ε : F → F , [i] �→ a−1([i]), h �→ ε(h)
1−c
2 a−1(h) ∀i ∈ I, h ∈ H.(32)

This is an algebra homomorphism, due to the multiplicative property of ε: ε(ff ′) =
ε(f)ε(f ′) if f and f ′ are two paths such that i(f ′) = o(f). Let a−1(ζC) be the tuple

whose ith entry is ζ
(a(i))
C

. The reason why we define Φa,ε this way is due to the
following identity:

Φa,ε(θi,ζC) = θa−1(i),a−1(ζC) ∀i ∈ I.(33)

Indeed, we have

Φa,ε(θi,ζC) =
∑

i(h)=i

ε(h)(−1)
1−c
2 a−1(h)a−1(h̄)− ζ

(i)
C

[a−1(i)]

=
∑

i(h)=i

ε(a−1(h))a−1(h)a−1(h̄)− a−1(ζC)
(a−1(i))[a−1(i)] = θa−1(i),a−1(ζC).

Recall that a(W ) is the I-graded space whose ith component is Wa−1(i). We
then have an isomorphism of vector spaces by permutation sa : W → a(W ) so
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that sa(w)i = wa−1(i), where w = (wi)i∈I ∈ W . This isomorphism defines an
isomorphism

ra : End(W ) → End(a(W )), φ �→ ra(φ) := sa ◦ φ ◦ s−1
a .

Let

Θa,ε : Z
ζC
w → Z

a−1(ζC)
a−1(w)(34)

be the isomorphism defined by Θa,ε(π
′) = ra−1 ◦ π′ ◦ Φ−1

a,ε ∀π′ ∈ ZζC
w . Due to

(33), Θa,ε is well-defined. Θa,ε is compatible with the diagram isomorphism a−1

on M(0,ζC)(v,w) in (20).

Lemma 4.2.5. There is a commutative diagram

M(0,ζC)(v,w)
a−1

−−−−→ M(0,a−1(ζC))(a
−1(v), a−1(w))

ϑ

⏐⏐� ⏐⏐�ϑ

ZζC
w

Θa,ε−−−−→ Z
a−1(ζC)
a−1(w)

Proof. Let [x] = [x, p, q] ∈ M(0,ζC)(v,w). It suffices to show that ϑ ◦ a−1(x) =
Θa,ε ◦ ϑ(x). Given any arrow h, the evaluations of the left- and right-hand sides
on h are equal to qa(i(h))xa(h)pa(o(h)). So the equality must hold, and the lemma
follows. �
4.2.6. Lusztig’s reflection functor on ZζC

w . Lusztig [L00] defined a reflection functor

Si : Z
ζC
w → Zsi(ζC)

w , π′ �→ Si(π
′),(35)

where the evaluation of Si(π
′) on a given path f is defined to be

Si(π
′)(f) =

{
π′([j]) + δj,iζ

(i)
C

idWi
, if f = [j],∑

J:J⊂J0

(∏
t∈J −ε(ht)ζ

(i)
C

)
π′((h1 · · ·hs)

∨J ), if f = h1 · · ·hs, s ≥ 1.

Here J0 = {t ∈ [2, r]|i(ht−1) = i = o(ht)} and the superscript ∨J is the operation of
removing the arrows ht−1, ht for all t ∈ J . (Note that J can be an empty set.) Since
the isomorphism Si satisfies the Weyl group relations, we define Sω = Si1 · · ·Sis for
any ω = si1 · · · sis ∈ W .

4.2.7. The σ-quiver variety S(0,ζC)(w). Let

σ0 = Sω ◦Θa,ε ◦ τ0 : ZζC
w → Z

−ωa−1(ζC)
a−1(w) .

When the isomorphism σ0 becomes an automorphism, we can take its fixed-point.

Definition 4.2.8. S(0,ζC)(w) =
(
ZζC
w

)σ0 , if w = a−1(w), ζC = −ωa−1(ζC).

When there is no danger of confusion, we use S0(w) for S(0,ζ)(w). By (31),
Lemma 4.2.5, and [L00], the definition is compatible with the varieties Sζ(v,w)
with a replaced by a−1, and so we have proper morphisms

πσ : Sζ(v,w) → S0(w), πσ : Sζ(w) → S0(w).(36)

There is a Gσ
w-action on S0(w) induced from ZζC

w , and further a Gσ
w × C×-action

on S0(w) if ζC = 0. It is clear that the morphisms in (36) are Gσ
w-equivariant

(resp. Gσ
w × C×-equivariant if ζC = 0). It is also clear that πσ factors through the

map under the same notation πσ in (27) and S1(v,w) is a closed subvariety of
S(0,ζC)(w).
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Remark 4.2.9. We can define S0(v,w) = M0(v,w) ∩ S0(w) in corresponding to
Sζ(v,w). This definition makes sense even when Γ is not Dynkin, but in this
generality we are not sure if S0(v,w) is an algebraic variety. On the other hand,
we can always define the fixed-point locus M0(v,w)aτ as long as a(v) = v and
a(w) = w. This fixed-point locus does not have to assume Γ being Dynkin either.

Lemma 4.2.10. When ζC = 0 and ω ∗ v = v, M0(v,w)aτ = S0(v,w).

Proof. In this case the reflection functor is the identity morphism by [L00]. �

4.3. Weyl group action on σ-quiver varieties. Let ζ be generic in this section.
The diagram automorphism a induces an automorphism on the Weyl group W .
Let Wω,a = {x ∈ W|xω = ωx, a(x) = x}. This implies that the action Sx for
x ∈ Wω,a on quiver varieties commutes with the action Sω and a. Further, thanks
to Lemma 3.2.3, it commutes with the isomorphism σ. Hence we have the following
proposition.

Proposition 4.3.1. The action Sx for x ∈ Wω,a restricts to an action on σ-quiver
varieties:

Sσ
x : Sζ(v,w) → Sx(ζ)(x ∗ v,w) ∀x ∈ Wω,a.(37)

As a consequence, we obtain the following corollary.

Corollary 4.3.2. The group Wω,a acts on the cohomology group H∗(Sζ(v,w),Z)
when w −Cv = 0.

Remark 4.3.3. When Γ is of Dynkin type, a = 1 and ω = w0, the group Wω,a is a
Weyl group of type B� if Γ is of type A2�, C� if Γ is of type A2�−1, B� if Γ is of type
D�+1, � even, or of type F4 if Γ is of type E6. If Γ is of type D4, ω = w0, and a is
the unique automorphism of order 3, then the group Wω,a is the Weyl group G2.

4.4. Symplectic structure on Sζ(v,w). In this section, we assume that the pa-
rameter ζ is generic. Recall the symplectic vector space M(v,w) from Section 2.2.
It is straightforward to check that the isomorphisms a and τ on M(v,w) in (20)
and (15), respectively, are symplectomorphisms. The varieties Mζ(v,w) inherit
from M(v,w) a symplectic structure. In turn, the fact that a and τ being symplec-
tomorphisms implies that the induced isomorphisms a and τζ on Mζ(v,w) are also
symplectomorphisms. By the analysis in [N03, Theorem 6.1], the reflection functor
Sω is a hyper-Kähler isometry and in particular a symplectomorphism. Altogether,
we see that the isomorphism σ on Mζ(v,w) is a symplectomorphism.

Proposition 4.4.1. Assume that W is a δw-formed space and the order of ω is
finite. Then the σ-quiver variety Sζ(v,w) is a symplectic submanifold of Mζ(v,w).

Proof. We only need to show that the restriction of the form ω to Sζ(v,w) is non-
degenerate. Fix a point [x] ∈ Sζ(v,w); the differential dσ[x] of the automorphism σ
at [x] is an automorphism on the tangent space T[x]Mζ(v,w). By the assumption,

we see from Proposition 4.1.5 that σN = 1 for some N , and hence (dσ[x])
N = 1.

By a result of Edixhoven [E92], the fixed points of dσ[x], i.e., the eigenspace of
eigenvalue 1, is exactly the tangent space T[x]Sζ(v,w) of Sζ(v,w) at [x]. It thus
yields the following eigenspace decomposition:

T[x]Mζ(v,w) = T[x]Sζ(v,w)⊕ C,
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where C consists of linear combinations of eigenvectors of eigenvalues other than
1. By the above analysis, the automorphism σ is a symplectomorphism, and so
this implies that T[x]Sζ(v,w) and C are orthogonal with each other. Hence the
restriction of the symplectic form on them are nondegenerate. We are done. �

Since the zero fiber π−1(0) is Lagrangian, we see that the fiber (πσ)−1(0) =
π−1(0)σ is isotropic. But the fiber (πσ)−1(0) is not coisotropic and hence not
Lagrangian in general; see Remark 6.2.2(3). A nice consequence of Proposition 4.4.1
is the semismallness of πσ.

Corollary 4.4.2. The map πσ : Sζ(v,w) → S1(v,w) is semismall.

Proof. By [N98, Theorem 7.2], the fiber product Mζ(v,w)×M0(v,w) Mζ(v,w) is a
lagrangian subvariety inMζ(v,w)×Mζ(v,w). So its σ-analogueSζ(v,w)×S1(v,w)

Sζ(v,w) is isotropic in Sζ(v,w) × Sζ(v,w), and thus has at most half of the
dimension of the latter manifold. So we have

dimSζ(v,w)×S1(v,w) Sζ(v,w) = dimSζ(v,w).

According to [CG, 8.9.2], it implies the corollary. �
Remark 4.4.3.

(1) We refer to Remark 5.3.2 for an alternative proof of Corollary 4.4.2.
(2) By Corollary 4.4.2, to show that Sζ(v,w) is equidimensional, a.k.a., of pure

dimension, it is enough to show that the images of all connected components under
πσ coincide.

5. Quiver varieties and symmetric pairs

In this section, we assume that the graph Γ is a Dynkin diagram, |a| = 1 or 2,
the Weyl group element ω = w0 is the longest element in the Weyl group of Γ, and
the sign function δw is Γ-alternating in the definition of the automorphism σ. In
this case, we have σ2 = 1 by Proposition 4.1.5.

5.1. Restriction diagram. Now we assume that ζC = 0 and ξi = 1 for all i ∈ I.
Let T be a torus in Gw. Let Mζ(v,w)T be the T-fixed-point subvariety of

Mζ(v,w). For each homomorphism ρ : T → Gv, let

Mζ(ρ) = {[x] ∈ Mζ(v,w)|t.x = ρ(t)−1.x ∀t ∈ T}.
Nakajima [N00] showed that the Mζ(ρ) depends on the Gv-conjugacy class of ρ
and there is a partition of Mζ(v,w)T into connected components: Mζ(v,w)T =∐

Mζ(ρ), where the union is over the set of all Gv-conjugacy classes, say 〈ρ〉, of
homomorphisms ρ : T → Gv. We define

Sζ(v,w)T = Sζ(v,w) ∩Mζ(v,w)T.(38)

Thus there is a decomposition

Sζ(v,w)T =
∐
〈ρ〉

Sζ(ρ), Sζ(ρ) = Sζ(v,w) ∩Mζ(ρ).

In the special case T = C× ⊆ Gσ
w, we can further define

Sζ(v,w)+C
×
= {[x] ∈ Sζ(v,w)| lim

t→0
t.[x] exists},(39)

Sζ(v,w)−C
×
= {[x] ∈ Sζ(v,w)| lim

t→∞
t.[x] exists}.(40)
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Similarly, there are varieties Mζ(v,w)±C
×
. Since the chosen C× is in Gσ

w, we have

Sζ(v,w)±C
×
= Sζ(v,w) ∩Mζ(v,w)±C

×
.

Thus there is the following hyperbolic localization/restriction diagram:

Sζ(v,w)+C
×

κ+

����
���

���
���

ι+

�����
���

���
���

Sζ(v,w) Sζ(v,w)C
×

Sζ(v,w)−C
×

ι−

������������ κ−

�������������

(41)

where ι± and κ± are natural embeddings and projections.

5.2. A characterization of Sζ(v,w)T. Assume now that we have a decomposi-
tion W = W 1⊕W 2⊕W 3 of the formed space W such that the following conditions
hold:

• For all i ∈ I, the restrictions of the form to W 1
i and W 2

i ⊕ W 3
i are non-

degenerate.
• For all i ∈ I, W 1

i and W 2
i ⊕W 3

i are orthogonal to each other.
• For all i ∈ I, we have (W 2

i )
⊥
W 2

i ⊕W 3
i

= W 3
i , (W 3

i )
⊥
W 2

i ⊕W 3
i

= W 2
i , where

(−)⊥
W 2

i ⊕W 3
i

is taken in W 2
i ⊕ W 3

i , and hence W 2
i and W 3

i are maximal

isotropic in W 2
i ⊕W 3

i of the same dimension.
• a(W 1) = W 1, a(W 2) = W 2, and a(W 3) = W 3.

Set dimW 1 = w1, dimW 2 = w2, and dimW 3 = w3 so that they satisfy the
condition as follows from the above assumption:

w2 = w3,w2 = aw2, aw1 = w1, and w = w1 + 2w2.

Consider the following 1-parameter subgroup in Gσ
w:

λ : C× → Gσ
w, t �→ idW 1 ⊕ t · idW 2 ⊕ t−1 · idW 3 .(42)

By a result [VV00, Lemma 4.4] of Varagnolo and Vasserot, we have that Mζ(ρ) is
empty unless ρ is Gv-conjugate to the group homomorphism

C× → Gv, t �→ idV 1 ⊕ t · idV 2 ⊕ t−1 · idV 3 ,(43)

for some decomposition V = V 1⊕V 2⊕V 3. Moreover, if ρ is of the latter form with
the dimension vector of V 1, V 2, and V 3 being v1, v2, and v3, respectively, then we
have

Mζ(ρ) = Mζ(v
1,w1)×Mζ(v

2,w2)×Mζ(v
3,w3).(44)

Since λ(C×) ≤ Gτ
w ∩Ga

w ≤ Gσ
w and σ is Gσ

w-equivariant, we see that

σ(Mζ(v,w)λ(C
×)) ⊆ Mζ(aw0 ∗ v, aw)λ(C

×).

Recall that the automorphism σ is a composition aτSw0
. If ρ is of the form (43),

we write w0(ρ) to be the group homomorphism

C× → Gv, t �→ idw0∗w1V 1 ⊕ t · idw0∗w2V 2 ⊕ t−1 · idw0∗w2V 3 ,(45)
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where w0 ∗w1 V 1, w0 ∗w2 V 2, and w0 ∗w2 V 3 are vector spaces of dimension vectors
w0 ∗w1 v1, w0 ∗w2 v2, and w0 ∗w2 v3, respectively. Since the construction of the
automorphism σ is independent of the choice of forms on V , we can, and shall,
assume that the nondegenerate symmetric form on V has its restriction to V 1, V 2,
and V 3 nondegenerate and that the latter spaces are orthogonal with each other.
Note that a(λ(C×)) = λ(C×) and τ (λ(C×)) = λ(C×). We observe that

a(Mζ(ρ))⊆Maζ(a◦ρ◦a−1), τ (Mζ(ρ))⊆M−ζ(τ◦ρ◦τ−1), Sw0
(Mζ(ρ))⊆Mw0ζ(w0(ρ)).

Thus we have σ(Mζ(ρ)) ⊆ M−aw0ζ(w0(
aτρ)), where aτρ is the composition of ρ

with the automorphism aτ on Gv. This implies that Sζ(ρ) is empty unless

ρ = w0(
aτρ), up to a Gv-conjugate.(46)

By comparing (45) for w0(
aτρ) and (43), we see that Sζ(ρ) is empty unless

v1 = a(w0 ∗w1 v1) and v2 = a(w0 ∗w3 v3).(47)

Assume now that the condition (47) holds. If [x2] ∈ Mζ(v
2,w2), then a slight

generalization of the operation σ yields an element in Mζ(v
3,w3), denoted abu-

sively by σ([x2]). (The involution τ in the definition is changed to be an iso-
morphism Mζ(v

2,w2) → M−ζ(v
2,w3) with respect to the above decomposition.)

Similarly, we can define σ([x3]). By definition, if ([x1], [x2], [x3]) ∈ Mζ(ρ) under
the identification (44), then

σ([x1], [x2], [x3]) = (σ([x1]), σ([x3]), σ([x2])).

Thus, in light of the fact that σ2 = 1, ([x1], [x2], [x3]) ∈ Sζ(ρ) if and only if
[x1] = σ([x1]) and [x2] = σ([x3]). Therefore, under the assumption (47), it yields

Sζ(ρ) ∼= Sζ(v
1,w1)×Mζ(v

2,w2).(48)

Summing up the above analysis, there is the following proposition.

Proposition 5.2.1. Assume that T = λ(C×) in (42). Then there is an isomor-
phism

Sζ(v,w)λ(C
×) ∼=

∐
(v1,v2)

Sζ(v
1,w1)×Mζ(v

2,w2),(49)

where w = w1 + 2w2, aw = w, aw1 = w1, and the union is over (v1,v2) such
that

v1 = a(w0 ∗w1 v1), v1 + v2 + a(w0 ∗w2 v2) = v.(50)

We shall write “v1 + v2 |= v” if the condition (50) is satisfied. In general, we
can consider a 1-parameter subgroup in Gσ

w defined by

λ : C× → Gσ
w, t �→ idW 1 ⊕

m⊕
i=2

(tλi idW i ⊕ t−λi idW i,−),(51)

where the pair (W i,W i,−) play a similar role as (W 2,W 3) in (42) and 0 < λ1 <
λ2 < · · · < λm. By applying the same argument, it gives rise to the following
decomposition:

Sζ(v,w)λ(C
×) ∼=

∐
v1+(

∑m
i=2 vi)|=v

Sζ(v
1,w1)×

m∏
i=2

Mζ(v
i,wi),
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where the product is taken in the natural order. By summing up all v, the above
decomposition gives rise to the following. See [N01] for a comparison.

Proposition 5.2.2. Assume that λ is given by (51), and there is an isomorphism:

Sζ(w)λ(C
×) ∼= Sζ(w

1)×
m∏
i=2

Mζ(w
i), w = w1 + 2

m∑
i=2

wi, a(wi) = wi.(52)

Now consider an arbitrary torus T ∈ Gσ
w and the space Hom(C×,T) of 1-

parameter subgroups in T. We form the real form Hom(C×,T) ⊗Z R. There

are generic 1-parameter subgroups in T, i.e., those λ such that Sζ(v,w)λ(C
×) =

Sζ(v,w)T. The remaining ones are called special, giving rise to larger fixed-
point subvarieties. The special 1-parameter subgroups form unions of hyperplanes,
i.e., walls, in Hom(C×,T) ⊗Z R, separating generic 1-parameter subgroups into
chambers, i.e., connected components of the complements of the unions of walls.
From our analysis above, we see that if T is a maximal torus in Gσ

w, then the
chamber structure can be identified with the usual Weyl chambers of type B/C.

5.3. Coideal structure. We shall write ICX as the intersection cohomology com-
plex attached to an algebraic varietyX (see [BBD82]). In particular, if X=

⊔n
i=1 Xi

is a disjoint union of irreducible smooth varieties, then ICX =
⊕n

i=1 CXi
[dimXi],

where CXi
is the constant sheaf on Xi with coefficients in C.

Recall from (36) that there is a proper map

πσ : Sζ(w) → S0(w).

So one can consider the following complex:

PS0(w) = (πσ)!ICSζ(w).(53)

Similarly, we define the complexes PM0(w) and PS0(w)T . The complexes PS0(w),
PM0(w), and PS0(w)T are semisimple perverse sheaves, since the map πσ is semis-
mall by Corollary 4.4.2. Now we study the hyperbolic localization/restriction func-
tor of Braden [B03] and Drinfeld–Gaitsgory [DG14] on the level of σ-quiver varieties.

Theorem 5.3.1. There exists a canonical isomorphism

canC : PS0(w)T
∼=−→ κ+

∗ (ι
+)!PS0(w),(54)

where κ+ and ι+ are in (41) with the 1-parameter subgroup of T in the chamber C.

Proof. For each z ∈ C, let ζC(z) ∈ CI be the element whose ith component is z.
Let ζ(z) = (ξ, ζC(z)), where ξ ∈ CI is the element whose ith component is 1. We
consider

S
♣(v,w) =

⊔
z∈C

Sζ(z)(v,w) and S
♣
1 (v,w) =

⊔
z∈C

Sζ(z),1(w),

where Sζ(z),1(v,w) is the S1(v,w) with ζ(z) emphasized. Similarly, one can con-

sider M♣(v,w) and M
♣
1 (v,w). These are algebraic varieties defined in a similar

way as Mζ(v,w) and M1(v,w), and so are S♣(v,w) and S
♣
1 (v,w) as fixed-point

subvarieties of automorphisms on the former algebraic varieties. Similarly, there is
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a proper morphism over C:

S♣(v,w)
Πσ

��

f
���

��
��

��
��

�
S

♣
1 (v,w)

f0
�����

��
���

��

C

(55)

where the morphisms to C are defined by sending a point in Sζ(z)(v,w) and
Sζ(z),1(v,w) to z. The Πσ is a 1-parameter deformation of πσ. In particular,
the fiber of Πσ over 0 ∈ C is exactly πσ. Moreover, the fiber over C − {0} is an
isomorphism

S♣(v,w)\Sζ(v,w) ∼= S
♣
1 (v,w)\S1(v,w).(56)

Now we apply the argument in [N16, 5.4]. By (56), there is a canonical isomorphism

ψf0 [−1]IC
S

♣
1 (v,w)|S♣

1 (v,w)\S1(v,w)
∼= πσ

! ICS(v,w),(57)

where ψf0 is the nearby cycle functor with respect to f0. Similarly, there is an
isomorphism

ψfT
0
[−1]IC

S
♣
1 (v,w)T |S♣

1 (v,w)T\S1(v,w)T
∼= πσ,T

! ICS(v,w)T ,(58)

where fT
0 is an analogue of f0 in (55) and πσ,T is the restriction of πσ to its T-fixed

point part. By (56) and the relative symplectic form on M♣(v,w) induced from
(5), it yields a canonical isomorphism

IC
S

♣
1 (v,w)T |S♣

1 (v,w)T\S1(v,w)T
∼=−→ κ̃∗ι̃

!ICS1(v,w)|S♣
1 (v,w)T\S1(v,w)T ,(59)

where κ̃ and ι̃ are the counterparts of κ+ and ι+, respectively, on S
♣
0 (v,w). There-

fore, there is a canonical isomorphism

πσ,T
! ICS(v,w)T

(58)∼= πσ,T
! ψfT [−1]ICS♣(v,w)T |S♣(v,w)T\S(v,w)T

(�)∼= ψfT
0
[−1]Πσ,T

! ICS♣(v,w)T |S♣(v,w)T\S(v,w)T

(†)∼= ψfT
0
[−1]IC

S
♣
1 (v,w)T |S♣

1 (v,w)T\S1(v,w)T

(59)∼= ψfT
0
[−1]κ̃∗ι̃

!IC
S

♣
1 (v,w)|S♣

1 (v,w)T\S1(v,w)T

(�)∼= (κ+)∗(ι
+)!ψf0 [−1]IC

S
♣
1 (v,w)|S♣

1 (v,w)\S1(v,w)

(57)∼= (κ+)∗(ι
+)!πσ

! ICS(v,w),

(60)

where (�) is due to the fact that a nearby cycle functor commutes with proper maps,
(†) is due to the fact that πT is an isomorphism when it restricts to S♣(v,w)T\
S(v,w)T, and (�) is due to the fact that a nearby cycle functor commutes with
hyperbolic restrictions. The theorem follows by summing the above (60) over all v.

�

Remark 5.3.2.
(1) We refer the reader to [N13, 3(iv)] for the subtleties in choosing an isomor-

phism in (54).
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(2) Since a nearby cycle functor, shifted by [−1], sends perverse sheaves to
perverse sheaves, the isomorphism (57) implies that the complex π∗ICS(v,w) is
a semisimple perverse sheaf. This in turn implies that the map πσ is semismall
onto its image (see Corollary 4.4.2).

By Proposition 5.2.2, we see that there is a canonical isomorphism

PS0(w)T
∼=

⊕
v2|=v

πσ
! ICSζ(w1) � π!ICMζ(w2).

Thus the complex PS0(w)T is a direct summand of the complex PS0(w1)�PM0(w2).

So the restriction functor κ+
∗ (ι

+)! induces an algebra homomorphism

Δσ
w1,w2 : End(PS0(w)) → End(PS0(w1))⊗ End(PM0(w2)),(61)

where w1 + 2w2 = w and awi = wi for i = 1, 2. (Here the endomorphisms are
taken inside abelian categories of perverse sheaves.)

Now we consider the following Steinberg-like varieties:

Yζ(w) =
⊔

v1,v2

Yζ(v
1,v2,w), Yζ(v

1,v2,w) = Sζ(v
1,w)×S0(w) Sζ(v

2,w).

(62)

Similarly, the notation Zζ(w) is defined with respect to Nakajima varietiesMζ(v,w).
Let Htop(X) denote the top Borel–Moore homology of X; see [CG]. From [CG,
8.9.7], there is an algebra isomorphism

End(PS0(w)) ∼= Htop(Yζ(w)) and End(PM0(w)) ∼= Htop(Zζ(w)).

In terms of top Borel–Moore homology, the algebra homomorphism in (61) becomes
the following algebra homomorphism, denoted by the same notation:

Δσ
w1,w2 : Htop(Yζ(w))→Htop(Yζ(w

1))⊗Htop(Zζ(w
2)), if w1+2w2=w, awi=wi.

(63)

In the same vein, we have an algebra homomorphism:

Δw1,w2 : Htop(Zζ(w)) → Htop(Zζ(w
1))⊗Htop(Zζ(w

2)), if w1 +w2 = w.(64)

By the canonical choice of isomorphism in Theorem 5.3.1, we obtain the following
proposition.

Proposition 5.3.3. The algebra homomorphism Δσ
w1,w2 satisfies the coassociativ-

ity, that is,

(Δσ
w1,w2 ⊗ 1) ◦Δσ

w1+w2+w3,w3 = (1⊗Δw2,w3) ◦Δσ
w1,w2+w3 ,(65)

for all w1 + 2(w2 +w3) = w and awi = wi for i = 1, 2, 3.

To w, we define rw by (rw)i =
wi

2 − 1−(−1)wi

4 , that is, (rw)i is the rank of the ith
isometry group with respect to the ith δw,i-form. Let sw = w − 2rw. If Sζ(sw) =
{pt}, then the coproduct (63) becomes the following algebra homomorphism:

j : Htop(Yζ(w)) → Htop(Zζ(rw)), if Sζ(sw) = {pt}.(66)

Recall that Γ is a Dynkin diagram and w0 is the longest element in the associated
Weyl group. There is an involution θ on I such that w0(αi) = −αθ(i), where αi

is the ith simple root of Γ. Let gΓ be the simple Lie algebra associated to Γ with
Chevalley generators {ei, fi, hi|i ∈ I}. Then the assignment ei �→ faθ(i), fi �→ eaθ(i),
and hi �→ −haθ(i) for all i ∈ I defines an involution, denoted by σ, on gΓ. It is known
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Table 1

(Γ, |a|) gσ ≡ k Satake type
(A�, 1) : � = 2p slp ⊕ glp+1 AIII

(A�, 1) : � = 2p− 1 slp ⊕ glp AIII

(A�, 2) so�+1 AI
(D�, 1) : � odd so�−1 ⊕ so�+1 DI
(D�, 1) : � even so� ⊕ so� DI
(D�, 2) : � odd so� ⊕ so� DI
(D�, 2) : � even so�−1 ⊕ so�+1 DI
(E6, 1) sl2 ⊕ sl6 EII
(E6, 2) sp4 EI
(E7, 1) sl8 EV
(E8, 1) so16 EVIII

that the fixed-point Lie subalgebra gσΓ is generated by ei + faθ(i) and hi − haθ(i)

for all i ∈ I. The algebra gσΓ is usually denoted by k in the introduction. The pair
(gΓ, g

σ
Γ) then forms a so-called symmetric pair. The Lie algebra gσΓ is classified by

the Satake diagrams without black vertices (i.e., X = Ø in [K14]). Specifically,
they are listed in Table 1.

Let U(gσΓ) be the universal enveloping algebra of gσΓ. With the coassociativity
and (66) in hand, we make the following conjecture.

Conjecture 5.3.4. There is a nontrivial algebra homomorphism

U(gσΓ) → Htop(Yζ(w))

.

When the Dynkin diagram Γ is of type A and a = 1, this conjecture can be
shown by the results in [BKLW] and an argument similar to [BG99].

5.4. The stable map StabC. Recall that Sζ(w) has a C×-action by scaling. Since
the maps πσ and πσ,T are T ≡ T × C×-equivariant, the isomorphism canC in (54)
also holds in the derived category of T-equivariant C-constructible sheaves. This
T-equivariant version of the canonical isomorphism (54) is the same as the one
given by Maulik–Okounkov’s stable envelope [MO12], as explained in [N16] (the
statement after Corollary 5.4.2 therein). With the help of canC in (54), one obtains
the stable map on the torus-equivariant cohomologies:

StabC : H
[∗]
T
(Sζ(w)T) → H

[∗]
T
(Sζ(w)),(67)

where [∗] is the shifted degree defined by H
[∗]
T
(?) = H∗+dim?

T
(?). This sheaf-theoretic

definition of StabC is formal and contained in [N16]. For the convenience of the
reader, we reproduce it here. For simplicity, we write X ≡ Sζ(w) and X0 ≡ S0(w)
in this process. There are canonical isomorphisms/identifications:

H
[∗]
T
(XT)∼=Ext∗T(CXT , ICXT)∼=Ext∗T((π

σ,T)∗CXT
0
, ICXT)∼=Ext∗T(CXT

0
, (πσ,T)∗ICXT).

(68)
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On the other hand, there are canonical isomorphisms

Ext∗T ∗ (CXT
0
, κ+

∗ (ι
+)!πσ

∗ ICX) ∼= Ext∗T(CX
+C×
0

, (ι+)!πσ
∗ ICX)

∼= Ext∗T(CX
+C×
0

, (π̃σ)∗(ι̃)
!ICX)

∼= Ext∗T(CX+C× , (ι̃)!ICX)

∼= Ext∗T(CX, (ι̃)!(ι̃)
!ICX),

(69)

where the 1-parameter subgroup C× is chosen from the chamber C, π̃σ and ι̃ are
given in the following cartesian diagram:

X
ι̃←−−−− X+C

×

πσ

⏐⏐� ⏐⏐�π̃σ

X0
ι+←−−−− X

+C
×

0

Note that there is an adjunction adj : (ι̃)!(ι̃)
! → id, which induces a morphism

adj : Ext∗T(CX, (ι̃)!(ι̃)
!ICX) → Ext∗T(CX, ICX) = H

[∗]
T
(X).(70)

The stable map is thus defined to be the following composition:

H
[∗]
T
(XT)

(68)
= Ext∗T(CX, (ι̃)!(ι̃)

!ICX)
canC−→ Ext∗T ∗ (CXT

0
, κ+

∗ (ι
+)!πσ

∗ ICX)

(69)
= Ext∗T(CX, (ι̃)!(ι̃)

!ICX)
adj−→ H

[∗]
T
(X).

(71)

So, modulo the canonical identifications in (68) and (69), we have StabC = adj ◦
canC.

5.5. Universal K-matrix. Let C[Lie(T)] be the coordinate ring of the Lie al-
gebra Lie(T), as an affine space. Let FT be its rational field. The cohomologies

H
[∗]
T
(Sζ(w)T) and H

[∗]
T
(Sζ(w)) are C[Lie(T)]-modules (since H∗

T
({pt}) = C[Lie(T)])

and the map Stab is compatible with the C[Lie(T)]-module structures. It is known
that after a change of coefficients from C[Lie(T)] to FT, the stable map is invertible.
Following Maulik–Okounkov [MO12], the K-matrix is defined by

KC′,C = Stab−1
C′ ◦ StabC ∈ EndC[Lie(T)](H

∗
T(Sζ(w)T))⊗C[Lie(T)] FT.(72)

Clearly, one has

KC′′,C′KC′,C = KC′′,C and KC,C = 1.(73)

If the chamber C is determined by the inequalities am > · · · > a1 > 0 and
S(w)T ∼=

∏m
i=1 M(wi), we write K−C,C by Kw(a), where w = (w1, · · · ,wm) and

a = (a1, · · · , am). For w = (w1) and a = (a1), we write Kw1(a1) for Kw(a). Let
us list an example of the K-matrix.

Example 5.5.1. Let Γ = A1 and w = 2 with δw = −1 so that Sζ(w) = T ∗Bsp2 ∼=
T ∗P1 is the cotangent bundle of the complete flag variety of Sp2

∼= SL2. So
by [MO12, 4.1.2], we have

K1(a) =

1− �

a

[
0 1
1 0

]
1− �

a

∈ End(C2(�, a)).
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Figure 1. Reflection equation

Since KC,C = 1, the identity in (73) yields the following proposition.

Proposition 5.5.2. The K-matrix is unitary, i.e., Kw(−a) = Kw(a)
−1.

Suppose that T is a two-dimensional torus in Gσ
w. A typical 1-parameter sub-

group in T is given similar to (51) for various (a1, a2) ∈ Z2:

λa1,a2
: C× → Gσ

w, t �→ idW 0 ⊕ (ta1 idW 1 ⊕ t−a1 idW 1,−)⊕ (ta2 idW 2 ⊕ t−a2 idW 2,−).

(74)

The real form of Lie(T) is thus a plane R2 whose walls are the lines a1 = 0, a2 = 0,
a1 − a2 = 0, and a1 + a2 = 0. In particular, there are 8 chambers in Lie(T),
which is exactly the Weyl chambers of type B2/C2 (see Figure 1). Let RC′,C denote
Maulik–Okounkov’s R-matrix on the torus equivariant cohomology of Nakajima
variety. Under this setting, the K-matrix satisfies the reflection equation, instead
of the Yang–Baxter equation for the R-matrix.

Proposition 5.5.3. The K-matrix satisfies the following reflection equation:

Kw2(a2)R(a1 + a2)Kw1(a1)R(a1 − a2) = R(a1 − a2)Kw1(a1)R(a1 + a2)Kw2(a2),

(75)

where the Kwi(ai)’s are understood as Kw1(a1)⊗ 1 and 1⊗Kw2(a2), respectively.

Proof. If the R’s in the equation are replaced by the K’s, then this holds because
both sides are the same as K−C,C, where C is the chamber in Figure 1. It remains
to show that R(a1 ± a2) = K(a1 ± a2). Under the setting (74), the condition

a1 − a2 = 0 defines a subtorus T′ in T so that Sζ(w)T
′ ∼= Sζ(w

0)×Mζ(w
1 +w2)

by Proposition 5.2.1. By general properties of K/R-matrices, the K-matrix KC′,C

of crossing the wall a1 − a2 = 0 in Figure 1 is the same as the K-matrix for the
torus T/T′ on Sζ(w)T

′
. Note that T/T′ acts trivially on the component Sζ(w

0),
so the latter K-matrix is Maulik–Okounkov’s original R-matrix R(a1−a2) on quiver
varieties. This shows that K(a1 − a2) = R(a1 − a2). The other equality can be
obtained by the same argument. The proposition is thus proved. �
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In general, the K-matrix Kw(a) can be obtained from the Kwi(ai)’s via the so-
called fusion procedure. In particular, when w contains two components, it reads
as follows.

Proposition 5.5.4. One has

Kw1,w2(a1, a2) = R(a2 − a1)Kw2(a2)R(a1 + a2)Kw1(a1)

= Kw1(a1)R(a1 + a2)Kw2(a2)R(a2 − a1).
(76)

Proof. We have Kw1,w2 = K−C′,C′(a1, a2), where the chamber C′ is given in Fig-
ure 1. The proposition follows by multiplying R(a2−a1) on both sides of Equation
(75) and using the unitary property of the K-matrix. �

Remark 5.5.5. As we learnt from Weiqiang Wang, the algebraic K-matrix for quan-
tum symmetric pairs of type AIII/IV first appeared in [BW13]. The relationship
between the K-matrix in this section and the algebraic ones in [BaK16] is not clear.

5.6. Twisted Yangian via the FRT formalism. Let Y be Maulik–Okounkov’s
Yangian, which is formulated in the framework of Faddeev–Reshetikhin–Takhtajan
[FRT]. In particular, the algebra Y is a subalgebra in the product

∏
w,T H∗

T
(Sζ(w)T)

⊗FT generated by the matrix coefficients in the R-matrix R0,1(a0−a1) · · ·R0,m(a0−
am) with respect to a0 (see [MO12, 6.2.6]). Let Yσ be the subalgebra of Y generated
by the matrix coefficients with respect to a0 of the operators

R0,m(a0 − am) · · ·R0,1(a0 − a1) ·K0(a0) · R0,1(a0 − a1) · · ·R0,m(a0 − am).(77)

Note that operators of the above form satisfy the reflection equation, which can
be shown by induction in the following. In light of this property, we shall call Yσ a
twisted Yangian.

Proposition 5.6.1. Let Rij(ai − aj) be an R-matrix at the (i, j)-component on
the tensor F0(a0) ⊗ F1(a1) ⊗ · · · ⊗ Fm(am). Let K0(a0) be a K-matrix at the 0-
component. Then the operator, say S(a0), in (77) satisfies the reflection equation

R0,1(a0 − b0)S0(a0)R0,1(a0 + b0)S1(b0) = S1(b0)R0,1(a0 + b0)S0(a0)R0,1(a0 − b0),

in the tensor F0(a0)⊗ F0(b0)⊗ F1(a1)⊗ · · · ⊗ Fm(am).

Proof. We shall prove the proposition by induction. When m = 1, we shift the
subindex by 1 and set (a0, b0, a1) = (u, v, w). Then we have

R12(u− v)S1(u)R12(u+ v)S2(v)

= R12(u−v) (R13(u−w)K1(u)R13(u−w))R12(u+v) (R23(v−w)K2(v)R23(v−w))

= R12(u− v)R13(u− w)K1(u)R23(v − w)R12(u+ v)R13(u− w)K2(v)R23(v − w)

= R12(u− v)R13(u− w)R23(v − w)K1(u)R12(u+ v)K2(v)R13(u− w)R23(v − w)

= R23(v − w)R13(u− w)R12(u− v)K1(u)R12(u+ v)K2(v)R13(u− w)R23(v − w)

= R23(v − w)R13(u− w)K2(v)R12(u+ v)K1(u)R12(u− v)R13(u− w)R23(v − w)

= R23(v − w)R13(u− w)K2(v)R12(u+ v)K1(u)R23(v − w)R13(u− w)R12(u− v)

= R23(v − w)K2(v)R13(u− w)R12(u+ v)R23(v − w)K1(u)R13(u− w)R12(u− v)

= R23(v − w)K2(v)R23(v − w)R12(u+ v)R13(u− w)K1(u)R13(u− w)R12(u− v)

= S2(v)R12(u+ v)S1(u)R12(u− v),
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where the second equality is due to the modified Yang–Baxter equation

R13(u− w)R12(u+ v)R23(v − w) = R23(v − w)R12(u+ v)R13(u− w),

via the unitary property of R, the third equality is due to the commutativity of
Ki(a) with Rj,k if i �= j, k, and the fifth one is due to the reflection equation of the
K-matrices.

In general, we write S(m)(u) for the S on F0(a0)⊗ · · · ⊗ Fm(am). Then we have

S(m)(u) = R0,m(a0 − am)S(m−1)(u)R0,m(a0 − am).

In particular, there is the following with (a0, b0) = (u, v):

R01(u− v)S
(m)
1 (u)R01(u+ v)S

(m)
2 (v)

= R01(u− v)R0,m+1(u− am)S
(m−1)
1 (u)R0,m+1(u− am)R01(u+ v)R1,m+1(v − am)

S
(m−1)
2 (v)R1,m+1(v − am)

= R01(u− v)R0,m+1(u− am)R1,m+1(v − am)S
(m−1)
1 (u)R01(u+ v)S

(m−1)
2 (v)

R0,m+1(u− am)R1,m+1(v − am)

= R1,m+1(v − am)R0,m+1(u− am)R01(u− v)S
(m−1)
1 (u)R01(u+ v)S

(m−1)
2 (v)

R0,m+1(u− am)R1,m+1(v − am)

= R1,m+1(v − am)R0,m+1(u− am)S
(m−1)
2 (v)R01(u+ v)S

(m−1)
1 (u)R01(u− v)

R0,m+1(u− am)R1,m+1(v − am)

= R1,m+1(v − am)R0,m+1(u− am)S
(m−1)
2 (v)R01(u+ v)S

(m−1)
1 (u)R1,m+1(v − am)

R0,m+1(u− am)R01(u− v)

= R1,m+1(v − am)S
(m−1)
2 (v)R0,m+1(u− am)R01(u+ v)R1,m+1(v − am)S

(m−1)
1 (u)

R0,m+1(u− am)R01(u− v)

= R1,m+1(v − am)S
(m−1)
2 (v)R1,m+1(v − am)R01(u+ v)R0,m+1(u− am)S

(m−1)
1 (u)

R0,m+1(u− am)R01(u− v)

= S
(m)
2 (v)R01(u+ v)S

(m)
1 (u)R01(u− v).

The proposition is thus proved. �

From the definition, both algebras Y and Yσ act on H∗
T
(Mζ(w))⊗ FT and their

tensor products. Summing up the above analysis, it yields the following theorem.

Theorem 5.6.2. There is a (Y,Yσ)-action on H∗
T
(Mζ(w))⊗ FT and their tensor

products.

6. Example I: Cotangent bundles of isotropic flag varieties

In this section, we show that a natural involution on the cotangent bundle of the
n-step partial flag variety of type An is a special case of the automorphism σ. As
a consequence, we show that cotangent bundles of partial flag varieties of classical
type are examples of the quiver varieties Sζ(v,w).
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6.1. Notation. In this section, we assume that the graph Γ is a Dynkin diagram
of type An:

An(n ≥ 1) : 1
��
2		

�� · · ·		
��
n		(78)

Assume further that the dimension vectors v and w of the pair of vector spaces V
and W satisfy that wi = 0 for i ≥ 2 and w1 ≥ v1 ≥ v2 ≥ · · · ≥ vn. Let Fv,w be
the variety of n-step partial flags, F = (W ≡ F0 ⊇ F1 ⊇ · · · ⊇ Fn ⊇ Fn+1 ≡ 0),
such that dimFi = vi for all 1 ≤ i ≤ n. The cotangent bundle T ∗Fv,w of Fv,w can
be defined as follows:

T ∗Fv,w = {(x, F ) ∈ End(W )× Fv,w|x(Fi) ⊆ Fi+1 ∀0 ≤ i ≤ n}.(79)

From Section 3.2, we assume that W ≡ W1 is a formed space with the bilinear-
form (−,−)W . Let G(W ) be the subgroup of GL(W ) leaving the form invariant.
In particular, if the form is a δ-form, then G(W ) = Ow1

is the orthogonal group if
δ = 1 and G(W ) = Spw1

is the symplectic group if δ = −1. Let g(W ) be the Lie
algebra of G(W ). Then we have

G(W ) = {g ∈ GL(W )|gg∗ = 1},
g(W ) = {x ∈ End(W )|x = −x∗}.(80)

For each subspace Fi ⊆ W , we can define its orthogonal complement F⊥
i =

{w ∈ W |(x, Fi)W = 0}. We set F⊥ = (F⊥
n+1 ⊇ F⊥

n ⊇ · · · ⊇ F⊥
1 ⊇ F⊥

0 ). Note that

w0∗v = (w1−vn,w1−vn−1, . . . ,w1−v1). So if F ∈ Fv,w, then F⊥ ∈ Fw0∗v,w, thus
taking ⊥ defines an involution σ1 : Fv,w → Fw0∗v,w. In the case when w0 ∗ v = v,
that is, vi + vn+1−i = w1 for all 1 ≤ i ≤ n, the fixed point subvariety Fσ1

v,w under
σ1 is a partial flag variety of the classical group G(W ). Its cotangent bundle is
given by

T ∗Fσ1
v,w = {(x, F ) ∈ g(W )× Fσ1

v,w|x(Fi) ⊆ Fi+1 ∀0 ≤ i ≤ n}.

More generally, the assignment (x, F ) �→ (−x∗, F⊥) defines an isomorphism

σ1 : T ∗Fv,w → T ∗Fw0∗v,w.(81)

We must prove the well-definedness of σ1. We only need to show −x∗(F⊥
i ) ⊆

F⊥
i−1 for all 1 ≤ i ≤ n+ 1. For any u ∈ Fi−1 and u′ ∈ F⊥

i , one has

(u,−x∗(u′))W = −(x(u), u′)W = 0,(82)

since x(u) ∈ Fi. This implies that −x∗(u′) ∈ F⊥
i−1, as required.

From the above analysis, one has

T ∗Fσ1
v,w = (T ∗Fv,w)σ1 , if w0 ∗ v = v.(83)

Note that f �→ τ f = (f∗)−1 defines an automorphism τ : Gw → Gw. The
isomorphism σ1 is τ -equivariant, i.e., σ(f.(x, F )) = τf.σ1(x, F ) for all f ∈ Gw and
(x, F ) ∈ T ∗Fv,w. In turn, this induces a G(W )-action on the fixed point variety
T ∗Fσ1

v,w.
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6.2. Identification with σ-quiver varieties. In this section, we assume that
a = 1 and ω = w0 is the longest element in the Weyl group W . Let θ : I → I
be the involution defined by θ(i) = n + 1 − i for all 1 ≤ i ≤ n. Assume that the
parameter ζ = (ξ, ζC) satisfies that ζC = 0, θ(ξ) = ξ, and ξi > 0 for all i ∈ I. We
choose the function ε : H → {±1} to be ε(h) = o(h)− i(h) with the label in (78).
Recall from [N94, Theorem 7.3], that is an isomorphism φ : Mζ(v,w) → T ∗Fv,w

of varieties given by

[x]=[xh, pi, qi] �→ (q1p1,W1 ⊇ im q1 ⊇ im q1y1 ⊇· · ·⊇ im q1y1· · ·yn−1 ⊇ 0),(84)

where yi is the xh such that o(h) = i+ 1 and i(h) = i.

Theorem 6.2.1. Under Nakajima’s isomorphism, the isomorphism σ = σζ,w0
for

ω = w0 (24) on quiver varieties gets identified with the isomorphism σ1 (81) on the
cotangent bundle of flag varieties. In particular, if w0 ∗ v = v, the quiver variety
Sζ(v,w) is the cotangent bundle T ∗Fσ1

v,w.

Proof. Similar to [N94, Theorem 7.3], there is an isomorphism ψ : M−ζ(v,w) →
T ∗Fw0∗v,w of varieties given by

[x] �→ (q1p1,W1 ⊇ kerxn−1 · · ·x1p1 ⊇ · · · ⊇ kerx1p1 ⊇ ker p1 ⊇ 0),(85)

where xi stands for the xh with o(h) = i and i(h) = i + 1. The proof consists
of two steps. The first step of the proof is to show that the following diagram is
commutative:

Mζ(v,w)
τζ−−−−→ M−ζ(v,w)

φ

⏐⏐� ⏐⏐�ψ

T ∗Fv,w
σ1−−−−→ T ∗Fw0∗v,w

where the isomorphism τζ is from (17). Note that τq1
τp1 = −(q1p1)

∗. So it suffices
to show that the associated flags to [x] and [τx] can be obtained from each other
via the operator ⊥. More precisely, setting x0 = y0 = 1, we need to show that

(im q1y1 · · · yi−1)
⊥ = ker τxi−1 · · · τx1

τp1, ∀1 ≤ i ≤ n.(86)

Let fi = q1y1 · · · yi−1. Then by definition, τxi−1 · · · τx1
τp1 = (−1)if∗

i . So for
all u ∈ im fi, u

′ ∈ ker (−1)if∗
i = ker f∗

i , there is vi ∈ Vi such that fi(vi) = u
and (u, u′)W1

= (fi(vi), u
′)W1

= (vi, f
∗
i (u

′))Vi
= 0. Hence we obtain that ker f∗

i ⊆
(imfi)

⊥. Since the linear maps q1, y1, . . . , yi−1 are injective, we have that dim imfi+
dimker f∗

i = dimVi +dimW1 − dimVi = w1, which implies the equality (86). This
proves that the above diagram is commutative.

The second step is to show that the involution Sw0
: M−ζ(v,w) →

Mζ(w0 ∗ v,w) commutes with the maps in (84) and (85), that is, ψ = φSw0
.

Here we use w0(−ξ) = θ(ξ) = ξ. Let us fix a reduced expression of the longest
element w0 = sn(sn−1sn) · · · (s1 · · · sn), so that, Sw0

= Sn(Sn−1Sn) · · · (S1 · · ·Sn).
Observe that each time we apply Si, the parameter on the affected quiver varieties
always has a negative value at i. This allows us to use the definition (14). Now fix
a point [x] ∈ M−ζ(v,w), with x given by

W1

p �� ��
V1

q
		

x1 �� ��
V2

y1

		
x2 �� �� · · · · · ·
y2

		
xn−2 �� ��

Vn−1
yn−2

		
xn−1 �� ��

Vn
yn−1

		



QUIVER VARIETIES AND SYMMETRIC PAIRS 31

By applying S1 · · ·Sn to x, the point [x] gets sent to a point represented by

W1

qp��
kerxn−1 · · ·x1p��

		
p �� ��

kerxn−1 · · ·x1
q

		
x1 �� ��

y1

		

· · · · · ·
xn−3 �� ��

kerxn−1xn−2
yn−3

		
xn−2 �� ��

kerxn−1
yn−2

		

where the arrow without a name is the natural inclusion. By applying Si · · ·Sn for
i = 2, . . . , n consecutively, we see that the point Sw0

([x]) is represented by

W1

qp��
kerxn−1 · · ·x1p��

		
qp ��

kerxn−2 · · ·x1p��
		

qp ��
��

		

· · · · · ·
qp ��

kerx1p��
		

qp ��
ker p
��

		

By (84) and (85), it implies immediately that φSw0
([x]) = ψ([x]), completing the

proof. �

Remark 6.2.2. The identification in Theorem 6.2.1 indicates that the geometry of
general σ-quiver varieties is quite complicated as we shall see from the following
remarks:

(1) In general, the quiver variety Sζ(v,w) is not connected. An example is as
follows. When δ = 1 and w1 is even, G(W ) = Ow1

is an even orthogonal
group, hence the cotangent bundle T ∗Fσ1

v,w has two connected/irreducible
components if n is odd.

(2) The morphism πσ is not a resolution of singularities in general. Indeed, we
have a commutative diagram

Sζ(v,w)
φ−−−−→∼=

T ∗Fσ1
v,w

πσ

⏐⏐� ⏐⏐�Π

S1(v,w)
φ0−−−−→ g(W )

where Π is the first projection. So we only need to know that Π is not a
resolution of singularities. But this is well known; see [Fu03]. For example,

the morphism Π : T ∗F
sp6
v,w → Osp6

(22,12), with v = (5, 1) and w = (6, 0), is
not a resolution of singularities since the fiber at any point of Jordan type
22, 12 contains two points. Note that Π is generically finite to its image.

Note that Π factors through the affinization map of T ∗Fσ1
v,w which is a

resolution of singularities. It is not clear if the same holds for the affinization
map of Sζ(v,w).

(3) The fiber (πσ)−1(0) is not equidimensional/lagrangian in general. Indeed,
by Corollary 8.3.4, it corresponds to the fiber of a partial resolution of
nilpotent Slodowy slices at e0, which is not necessarily equidimensional/
lagrangian.

(4) In general, the variety S1(v,w) is nonnormal. In [KP82], the orbit closure
O32,12 in sp8 is connected nonnormal, which is a special case of S1(v,w).
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7. Nakajima–Maffei isomorphism and symmetry

In this section, we assume again that the Dynkin diagram is of type An. We
recall Nakajima–Maffei’s isomorphism of the quiver varieties and partial Springer
resolutions of nilpotent Slodowy slices of type A. We deduce, as preliminary results
for later study, a rectangular symmetry and the column-removal and row-removal
reductions in [KP81, Proposition 5.4]. (During the preparation of this paper, we
noticed that these applications have appeared in [H15, Section 9].)

7.1. Nakajima–Maffei theorem. Recall from Section 6.2 that we define ε(h) =
o(h) − i(h) for all arrows h. For any pair (v,w), we define a new pair (ṽ =
(ṽi)1≤i≤n, w̃ = (w̃i)1≤i≤n), where

ṽi = vi +
∑

j≥i+1

(j − i)wj , w̃i = δi,1
∑

1≤j≤n

jwj ∀1 ≤ i ≤ n.(87)

To a pair (V,W ) of I-graded vector spaces of dimension vector (v,w), we associate

a new pair (Ṽ , W̃ ) of dimensional vector (ṽ, w̃) whose ith component is given by

Ṽi = Vi ⊕
⊕

1≤h≤j−i

W
(h)
j , W̃1 =

⊕
1≤h≤j

W
(h)
j ,(88)

where W
(h)
j is an identical copy of Wj for all h. For convenience, we set V0 = 0 and

Ṽ0 = W̃1. With respect to the decomposition of Ṽi, a linear map x̃i : Ṽi → Ṽi+1 is
a collection of the following four types of linear maps:

Xi : Vi → Vi+1, TV
i,j,h : Vi → W

(h)
j , T j′,h′

i,V : W
(h′)
j′ → Vi+1, T j′,h′

i,j,h : W
(h′)
j′ → W

(h)
j ,

(89)

for all j ≥ i + 1, 1 ≤ h ≤ j − i. Similarly, to give a linear map ỹi : Ṽi+1 → Ṽi is
the same as to give a collection of the following four types of linear maps for all
j ≥ i+ 1, 1 ≤ h ≤ j − i:

Yi : Vi+1 → Vi, SV
i,j,h : Vi+1 → W

(h)
j , Sj′,h′

i,V : W
(h′)
j′ → Vi, Sj′,h′

i,j,h : W
(h′)
j′ → W

(h)
j .

(90)

Following Maffei, we define the following numerical data:

grad(T j′,h′

i,j,h ) = min(h− h′ + 1, h− h′ + 1 + j′ − j),

grad(Sj′,h′

i,j,h ) = min(h− h′, h− h′ + j′ − j).
(91)

Let W ′
i =

⊕
1≤h≤j−iW

(h)
j so that Ṽi = Vi ⊕ W ′

i for all 0 ≤ i ≤ n. Let ei :

W ′
i → W ′

i be a linear map whose component W
(h)
j

ei→ W
(h−1)
j is equal to idWj

for

2 ≤ h ≤ j− i and 0 otherwise. Let fi : W
′
i → W ′

i be a linear map whose component

W
(h)
j

fi→ W
(h+1)
j is equal to h(j − i− h)idWj

for 1 ≤ h ≤ j − i− 1 and 0 otherwise.

The triple (ei, fi, [ei, fi]) in sl(W ′
i ) is a Maffei sl2-triple.

Now assume that ζC = 0 and we write Λ(V,W ) instead of ΛζC(V,W ). We pre-
serve the convention used in previous sections: xi/yi stands for the map associated
to the arrow i → i+ 1/i+ 1 → i. Following Maffei, an element x̃ = (x̃i, ỹi, p̃i, q̃i) ∈
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Λ(Ṽ , W̃ ), represented in the form of (89)–(90), is transversal if it satisfies the fol-
lowing conditions:

TV
i,j,h = 0,(t1)

T j′,h′

i,V = 0, if h′ �= 1,(t2)

T j′,h′

i,j,h = 0, if grad(T j′,h′

i,j,h ) < 0,(t3)

T j′,h′

i,j,h = 0, if grad(T j′,h′

i,j,h ) = 0, (j′, h′) �= (j, h+ 1),(t4)

T j′,h′

i,j,h = idWj
, if grad(T j′,h′

i,j,h ) = 0, (j′, h′) = (j, h+ 1),(t5)

Sj′,h′

i,j,h = idWj
, if grad(Sj′,h′

i,j,h ) = 0, (j′, h′) = (j, h),(s5)

Sj′,h′

i,j,h = 0, if grad(Sj′,h′

i,j,h ) = 0, (j′, h′) �= (j, h),(s4)

Sj′,h′

i,j,h = 0, if grad(Sj′,h′

i,j,h ) < 0,(s3)

SV
i,j,h = 0, if h �= j − i,(s2)

Sj′,h′

i,V = 0,(s1)

[πW ′
i
ỹix̃i|W ′

i
− ei, fi] = 0.(r1)

Proposition 7.1.1 ([M05, Lemma 19]). There is an injective morphism Φ : Λ(V,W )

→ Λ(Ṽ , W̃ ) of varieties defined by the following rules. For all x = (xi, yi, pi, qi) ∈
Λ(V,W ), the element Φ(x) is the unique transversal element in Λ(Ṽ , W̃ ) that sat-
isfies

Xi = xi, Yi = yi,(92)

T i+1,1
i,V = pi+1, SV

i,i+1,1 = qi+1.(93)

Moreover, T j,h
i,V and SV

i,j,h are zero unless j > i, and in this case they are

T j,h
i,V = δh,1yi+1 · · · yj−1pj , SV

i,j,h = δh,j−iqjxj−1 · · ·xi+1.(94)

Assume the parameter ξ satisfies that ξi > 0 for all i ∈ I. The homomorphism
Φ restricts to an injective homomorphism Λξ-ss(v,w) → Λξ-ss(ṽ, w̃) which is com-
patible with the Gv- and Gw-actions on the respective varieties. Hence it induces
closed immersions with ζC = 0:

ϕ : Mζ(v,w) → Mζ(ṽ, w̃), ϕ0 : M0(v,w) → M0(ṽ, w̃)(95)

such that we have the following diagram:

Mζ(v,w)
ϕ−−−−→ Mζ(ṽ, w̃)

π

⏐⏐� ⏐⏐�π

M0(v,w)
ϕ0−−−−→ M0(ṽ, w̃)

(96)

Moreover, ϕ0(0) = e0, where e0 is in the sl2 triple (e0, f0, [e0, f0]) from the para-
graph below (91). Now set

μ = (ṽ0 − ṽ1, ṽ1 − ṽ2, . . . , ṽn−1 − ṽn, ṽn).
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We have μi = wi + · · · + wn − vi + vi−1. Reorder the entries in μ in decreasing
order: ρ1 ≥ ρ2 ≥ ρ3 ≥ · · · ≥ ρn+1 and set

μ′ = 1ρ1−ρ22ρ2−ρ3 · · ·nρn−ρn+1(n+ 1)ρn+1 .

Let Oμ′ be the nilpotent GL(W̃1)-orbit in gl(W̃1) whose Jordan blocks have size

μ′. It is known that the closure Oμ′ of the orbit Oμ′ is the image of the first

projection Π from the cotangent bundle T ∗Fṽ,w̃ to gl(W̃1) so that via (84) we have
a commutative diagram:

Mζ(ṽ, w̃)
φ−−−−→∼=

T ∗Fṽ,w̃

π

⏐⏐� ⏐⏐�Π

M1(ṽ, w̃)
φ0−−−−→∼=

Oμ′

(97)

where M1(ṽ, w̃) is the image of π. Recall again Maffei’s sl2-triple (e0, f0, [e0, f0])
from the paragraph below (91). Following [Sl80a, Sl80b], the Slodowy transversal
slice of the orbit of e0 at e0 is defined to be

Se0 = {x ∈ gl(W̃1)|x is nilpotent, [x− e0, f0] = 0}.

Note that e0 ∈ Oλ, where λ = 1w12w2 · · ·nwn . For simplicity, we also say the
trivial triple (0, 0, 0) is an sl2-triple, and in this case the Slodowy slice is the whole
nilpotent cone. For convenience, we set

Sμ′,λ = Oμ′ ∩ Se0 and S̃μ′,λ = Π−1(Sμ′,λ),(98)

where Π is from (97). The following theorem is conjectured by Nakajima [N94,
Conjecture 8.6] and proved by Maffei [M05, Theorem 8].

Theorem 7.1.2 ([M05, Theorem 8], [N94, Conjecture 8.6]). The compositions
φϕ and φ0ϕ0 of morphisms from (95) and (97) yield isomorphisms Mζ(v,w) �
S̃μ′,λ and M1(v,w) � Sμ′,λ, respectively. In particular, we have the following
commutative diagram:

Mζ(v,w)
φϕ−−−−→ S̃μ′,λ

π

⏐⏐� ⏐⏐�Π

M1(v,w)
φ0ϕ0−−−−→ Sμ′,λ

(99)

In what follows, we discuss two applications of the above remarkable theorem,
which could have been stated in [M05] and has been discussed in [H15, Section 9].
We present the two applications in the following as a preparation to the analogous
results in classical groups and their associated symmetric spaces.

7.2. Rectangular symmetry. In this section, we deduce a rectangular symmetry
from Theorem 7.1.2. If we relabel the vertex set I by i → θ(i), where θ(i) =
n+ 1− i, we can repeat the process in Section 7.1 again. In particular, we obtain
an immersion

Mζ(v,w) → T ∗Fv̂,ŵ,
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μ′

μ̂′

n+ 1

�(λ)
λ

λ̂

n+ 1

Figure 2. Rectangular symmetry

where the pair (v̂, ŵ) is given by

ŵi = δi,1
∑

1≤j≤n

(n+ 1− j)wj , v̂i = vn+1−i +
∑

j:j≥i+1

(j − i)wn+1−j ∀1 ≤ i ≤ n.

(100)

Similar to the sl2-triple (e0, f0, [e0, f0]), we have an sl2-triple (ê0, f̂0, [ê0, f̂0]) where
the nilpotent element ê0 has the Jordan type 1wθ(1)2wθ(2) · · · iwθ(i) · · ·nwθ(n) . Similar
to the partition μ, we also have a partition μ̂ ≡ (μ̂i)1≤i≤n+1 = (v̂i−1 − v̂i)1≤i≤n+1

determined by v̂ and let μ̂′ be its transpose. Observe that

v̂n−i+1 − v̂n−i+2 = w1 + · · ·+wi−1 + vi − vi−1.

This implies that

μi + μ̂n−i+2 = w1 +w2 + · · ·+wn ∀1 ≤ i ≤ n+ 1.(101)

In particular, if the transpose μ′ is μ′ = 1μ
′
12μ

′
2 · · · (n+ 1)μ

′
n+1 , then the transpose

μ̂′ of μ̂ is

μ̂′ = 1μ
′
n2μ

′
n−1 · · ·nμ′

1(n+ 1)μ
′
0 = (iμ

′
θ(i))1≤i≤n+1, μ′

0 =
∑

1≤i≤n

wi −
∑

1≤i≤n+1

μ′
i.

(102)

Hence we have a similar result as in Theorem 7.1.2 in describing the new immersion

via the intersection Sμ̂′,λ̂ = Oμ̂′ ∩ Sê0 and its partial Springer resolution S̃μ̂′,λ̂ :=

Π−1
v̂,ŵ(Sê0), where Πv̂,ŵ is the natural projection similar to Π. Altogether, we have

the following result.

Proposition 7.2.1. Let (ṽ, w̃) and (v̂, ŵ) be the pairs defined by (87) and (100)
such that associated compositions μ and μ̂ satisfy (101) (see also (102)). Then the
following diagram is commutative with isomorphic horizontal maps, which sends e0
of Jordan type (iwi)1≤i≤n to ê0 of Jordan type (iwθ(i))1≤i≤n in the base:

S̃μ′,λ
∼=−−−−→ S̃μ̂′,λ̂

Πṽ,w̃

⏐⏐� ⏐⏐�Πv̂,ŵ

Sμ′,λ
∼=−−−−→ Sμ̂′,λ̂

(103)

In light of (102), the partitions μ′ and μ̂′ fit into a rectangle of size (n + 1) ×∑
1≤i≤n wi. Similarly, the Jordan types λ = (1wi)1≤i≤n and λ̂ = (1wθ(i))1≤i≤n

of e0 and ê0 fit into a rectangle of the same size, depicted in the following. This
explains the name of the section.
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⊕ μ′ = μ̆′

⊕
λ

=

λ̆

Figure 3. Column-removal reduction

Remark 7.2.2. Proposition 7.2.1 yields an identity on the Kostka numbers:

Kλ,μ′ = Kλ̂,μ̂′ , with λ = (iwi)1≤i≤n, λ̂ = (iwθ(i))1≤i≤n,

first proved by Briand–Orellana–Rosas in [BOR15].

7.3. Column/row-removal reductions. Now we discuss the second application
of Theorem 7.1.2. It is clear that the quiver varieties Mζ(v,w) are isomorphic to
the quiver varieties Mζ(v̆, w̆)′ of Dynkin diagram An+1 with the dimension vectors
v̆, w̆ given by

v̆0 = 0, v̆i = vi−1; w̆0 = 0, w̆i = wi−1 ∀2 ≤ i ≤ n+ 1.

By Theorem 7.1.2, we haveMζ(v̆, w̆)′ ∼= S̃μ̆′,λ̆, where μ̆ has an extra entry
∑

1≤i≤nwi

than μ and λ̆ = ((i+ 1)wi)1≤i≤n. It yields the following proposition.

Proposition 7.3.1. The following diagram is commutative with isomorphic hori-
zontal maps, which sends e0 of Jordan type (iwi)1≤i≤n to ĕ0 of Jordan type ((i +
1)wi)1≤i≤n in the base:

S̃μ′,λ
∼=−−−−→ S̃μ̆′,λ̆⏐⏐� ⏐⏐�

Sμ′,λ
∼=−−−−→ Sμ̆′,λ̆

(104)

If we write the partitions involved as Young diagrams, then the partition λ can

be obtained from λ̆ by removing the left-most column of λ̆ via Figure 3. The
partition μ′ can be obtained from μ̆′ by removing part of the left-most column μ̆′.
Thus, Proposition 7.3.1 is a geometric version of Kraft–Procesi’s column removal
reduction in [KP81, Proposition 5.4].

Now we turn to provide a geometric version of Kraft–Procesi’s row-removal re-
duction in [KP81, Proposition 4.4]. This is obtained in exactly the same spirit as
that of column-removal reduction. Precisely, we can identify the variety Mζ(v,w)
with another quiver variety Mζ(v̈, ẅ)′ of type An+1, where the vectors v̈ and ẅ
are given as follows:

v̈i = vi, v̈n+1 = 0, ẅi = wi, ẅn+1 = a ∀1 ≤ i ≤ n.
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⊕ μ′ = μ̈′

⊕
λ

=

λ̈

Figure 4. Row-removal reduction

If the associated pair of partitions to w,w is (μ′ = (iμ
′
i)1≤i≤n+1, λ = (1wi)1≤i≤n,

then the similar one for v̈, ẅ will be given as

μ̈′ = 1μ
′
1 · · ·nμ′

n(n+ 1)μ
′
n+1+a, λ̈ = 1w1 · · ·nwn(n+ 1)a.(105)

(Note that ˜̈vi = vi +
∑

j>i(j − i)wi + (n+ 1− i)a.) Therefore, by Theorem 7.1.2

and the identification Mζ(v,w) ∼= Mζ(v̈, ẅ)′, we obtain the following proposition.

Proposition 7.3.2. The following diagram is commutative with isomorphic hori-
zontal maps, which sends e0 of Jordan type (iwi)1≤i≤n to ë0 of type ((1w1 · · ·nwn(n
+ 1)a) in the base:

S̃μ′,λ
∼=−−−−→ S̃μ̈′,λ̈⏐⏐� ⏐⏐�

Sμ′,λ
∼=−−−−→ Sμ̈′,λ̈

(106)

Note that the partitions μ′ and λ can be obtained from μ̈′ and λ̈ by removing the
respective first ath rows in Figure 4. So Proposition 7.3.2 is a geometric version of
Kraft–Procesi’s row-removal reduction. Of course, by combining Propositions 7.3.1
and 7.3.2 we obtain a geometric version of the general reduction in [KP81, Propo-
sition 3.1], which plays a critical role in the study of minimal singularities in GLn.

8. Example II: Partial resolutions of nilpotent Slodowy slices

This section is devoted to the compatibility of Maffei’s morphism and the isomor-
phism σ. From this, we see that the σ-quiver varieties encompass partial Springer
resolutions of nilpotent Slodowy slices of classical groups. As a consequence, we
deduce the rectangular symmetry for classical groups. The symmetry provides a
natural home for the recent results of [HL14,W15] on the interactions of two-row
Slodowy slices of symplectic and orthogonal groups. We also briefly discuss a geo-
metric version of Kraft–Procesi’s column-removal and row-removal reductions for
classical groups in [KP82, Proposition 13.5].

We again assume that ω = w0 and a = 1.
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8.1. Maffei’s morphism and the bilinear forms on Ṽ and W̃ . Assume that
V and W are formed spaces with signs δ̃v and δw, respectively. Recall that we

set V0 = 0 and Ṽ0 = W̃1. We define a nondegenerate bilinear form on Ṽi, for all
0 ≤ i ≤ n, by

〈
(vi, w

(h)
j )j≥i+h

∣∣∣ (v′i, u(h)
j )j≥i+h

〉
Ṽi

= (vi, v
′
i)Vi

+
∑

j≥i+h

(−1)j−i+h
(
w

(h)
j , u

(j−i+1−h)
j

)
Wj

,

(107)

where vi, v
′
i ∈ Vi and w

(h)
j , u

(h)
j ∈ W

(h)
j such that 1 ≤ h ≤ j − i. The form 〈−|−〉Ṽi

on Ṽi may not be a δ-form. However, if the signs δ̃v and δw alternate, it turns out
to be the case.

Lemma 8.1.1. If the sign δw is Γ-alternating as in Proposition 3.2.2, then W̃1 is
a (−1)i+1δw,i-form (for each i). If further δ̃v is Γ-alternating and δ̃v,iδw,i = −1

for all i, then the form on Ṽi is a δ̃v,i-form for all 1 ≤ i ≤ n.

Proof. We only need to observe that for a fixed j0 such that j0 − i is even (resp.,

odd), then the restriction of 〈−|−〉Ṽi
to

⊕
1≤h≤j0−iW

(h)
j0

is a −δw,j0 -form (resp.,

δw,j0-form). Specifically, we have

〈(u(h)
j0

)1≤h≤j0−i|(w(h)
j0

)1≤h≤j0−i〉Ṽi

= (−1)j0−i+1δw,j0〈(w
(h)
j0

)1≤h≤j0−i|(u(h)
j0

)1≤h≤j0−i〉Ṽi
,

for all elements (w
(h)
j0

)1≤h≤j0−i, (u
(h)
j0

)1≤h≤j0−i in
⊕

1≤h≤j0−i W
(h)
j0

. �

Let T � : Ṽj → Ṽi denote the right adjoint of the linear map T : Ṽi → Ṽj , with

respect to the forms on Ṽi and Ṽj . In particular, the right adjoint of a point in

Λ(Ṽ , W̃ ) represented as the collection of linear maps in (89) and (90) satisfies the
following:

X�
i = X∗

i , Y �
i = Y ∗

i ,

(T i+1,1
i,V )� = (T i+1,1

i,V )∗, (SV
i,i+1,1)

� = (SV
i,i+1,1)

∗,

(108)

(T j′,h′

i,j,h )� = (−1)j−j′+h−h′−1(T j′,h′

i,j,h )∗, (Sj′,h′

i,j,h )
� = (−1)j−j′+h−h′+1(Sj′,h′

i,j,h )
∗.

Indeed, the identities in the first two rows are due to the fact that the signs of

the forms on Vi and W
(1)
i+1 at vertex i remain unchanged. For simplicity, we write

t = T j′,h′

i,j,h and then

(−1)j−(i+1)+h(t(u), v)Wj
= 〈t(u)|v〉Ṽi+1

= 〈u|t�(v)〉Ṽi
= (−1)j

′−i+h′
(u, t�(v))Wj′ ,

for all u ∈ W
(h′)
j′ and v ∈ W

(h)
j . So we have t� = (−1)j−j′+h−h′−1t∗, which is the

first identity in the last row of (108). Identities in the second column of (108) are
proved in a similar way.

By the definition (15), we have an automorphism τ̃ : Λ(Ṽ , W̃ ) → Λ(Ṽ , W̃ ) with

respect to the forms on Ṽ and W̃ . We have the following compatibility result of

Maffei’s morphism and the automorphisms τ in (15) and its analog τ̃ on Λ(Ṽ , W̃ ).
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Proposition 8.1.2. The following diagram commutes:

Λ(V,W )
Φ−−−−→ Λ(Ṽ , W̃ )

τ

⏐⏐� ⏐⏐�τ̃

Λ(V,W )
Φ−−−−→ Λ(Ṽ , W̃ )

Proof. Fix a point x = (xi, yi, pi, qi) ∈ Λ(V,W ). By definition, the point Φτ (x) is

a point in Λ(Ṽ , W̃ ) determined by the transversal conditions (s1)–(s5), (t1)–(t5),
(r1) and the following:

Xi = −y∗i , Yi = x∗
i ,(109)

T i+1,1
i,V = −q∗i+1, SV

i,i+1,1 = p∗i+1.(110)

So it suffices to show that the point τ̃Φ(x) satisfies the transversal conditions and
the above.

We put a superscript τ̃ on the upper left for the decomposition (89)–(90) of

τ̃Φ(x) with respect to the fixed decompositions of Ṽ and W̃ . By (108), the point
τ̃Φ(x) satisfies

τ̃Xi = −Y �
i = −y∗i ,

τ̃Yi = X�
i = x∗

i ,(111)

τ̃T i+1,1
i,V = −(SV

i,i+1,1)
� = −q∗i+1,

τ̃SV
i,i+1,1 = (T i+1,1

i,V )� = p∗i+1.(112)

Hence it remains to show that the point τ̃Φ(x) satisfies the transversal conditions.
The conditions (ti) and (si) for 1 ≤ i ≤ 5 for τ̃Φ(x) follow from the conditions (si)
and (ti) for Φ(x), respectively. More precisely, for (t1), we have

τ̃TV
i,j,h = −(Sj,j−i+1−h

i,V )� = 0.

For (t2), we notice that h′ �= 1 if and only if (j′ − i + 1 − h′) �= j′ − i. So by the
(s2) of Φ(x),

τ̃T j′,h′

i,V = −(SV
i,j′,j′−i+1−h′)� = 0.

This shows that τ̃Φ(x) satisfies the condition (t2). For (t3), we observe that

grad(T j′,h′

i,j,h ) = grad(S
j,j−(i+1)+1−h
i,j′,j′−i+1−h′ ),

and (j′, h′) �= (j, h+ 1) if and only if (j, j − i− h) �= (j′, j′ − i+ 1− h′). Thanks to
these observations and the (s3)–(s4) of Φ(x), it leads to

τ̃T j′,h′

i,j,h = −(S
j,j−(i+1)+1−h
i,j′,j′−i+1−h′ )

� = 0,

if either grad( τ̃T j′,h′

i,j,h ) < 0 or grad( τ̃T j′,h′

i,j,h ) = 0 and (j′, h′) �= (j, h + 1). If

grad( τ̃T j′,h′

i,j,h ) = 0 and (j, j − i− h) = (j′, j′ − i+ 1− h′), then

(S
j,j−(i+1)+1−h
i,j′,j′−i+1−h′ )

� = −(S
j,j−(i+1)+1−h
i,j′,j′−i+1−h′ )

∗ = −(idWj
)∗ = −idWj

,

where the second equality is from the (s5) of Φ(x). So we have

τ̃T j′,h′

i,j,h = idWj
, if grad( τ̃T j′,h′

i,j,h ) = 0, (j′, h′) = (j, h+ 1).

By now, it has been shown that the point τ̃Φ(x) satisfies the conditions (t1)–(t5).
By an entirely similar argument, we can check that the point τ̃Φ(x) satisfies the

conditions (s1)-(s5), once we observe from (108) that (T j,j−i+1−h
i,j,j−i−h )� = (T j,j−i+1−h

i,j,j−i−h )∗

for (s5).
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Recall that the automorphism τ̃ on sl(W ′
i ), compatible with τ̃ on Λ(ṽ, w̃), is

given by x �→ −x�. By a similar analysis as above, one can check that τ̃ei = ei
and τ̃fi = fi. This implies that the point τ̃Φ(x) satisfies the last condition (r1),
completing the proof. �

By Proposition 8.1.2, (18) and (95), we have the following.

Proposition 8.1.3. Assume that ζ = (ξ, 0) with ξ satisfying that ξi > 0 for all
i ∈ I. Then the automorphism τζ in (17) and the embeddings ϕ and ϕ0 in (95) are
compatible. Specifically, we have the following commutative diagram.

M−ζ(v,w)
ϕ ��

π





M−ζ(ṽ, w̃)

π̃





Mζ(v,w)

τζ
�������������

ϕ ��

π





Mζ(ṽ, w̃)

τ̃ζ
�������������

π̃





M0(v,w)
ϕ0 �� M0(ṽ, w̃)

M0(v,w)

τ0

��

ϕ0 �� M0(ṽ, w̃)

τ̃0

�������������

(113)

8.2. Maffei’s morphism and reflection functors. In this section, we show the
compatibility of Maffei’s morphism and the reflection functors on quiver varieties
in Section 3.1.

Recall that to a pair (v,w) and a fixed vertex i ∈ I, we associate a new pair
(v′,w) = (si∗wv,w) in Section 3.1. To the same pair, we attach a third pair (ṽ, w̃)
in Section 7.1. Now apply the operation in (3.1) to (ṽ, w̃); we have ((ṽ)′, w̃) =
(si ∗w̃ ṽ, w̃), while applying the procedure in Section 7.1 yields (ṽ′, w̃). We now
compare (ṽ)′ and ṽ′. If j �= i, then (ṽ)′j = (ṽ)j = (ṽ′)j . With the convention
ṽ0 = w̃1, the two vectors (ṽ)

′ and ṽ′ coincide at j = i by the following computation:

(ṽ)′i = ṽi−1 + ṽi+1 − ṽi = v′
i +

∑
j≥i+1

(j − i)wj = ṽ′
i.

As a result, we have (ṽ)′ = ṽ′.
Similar to Section 3.1, we fix a triple (V, V ′,W ) of dimension vector (v,v′,w)

and Vj = V ′
j for all j �= i. We define Ṽ , W̃ , and Ṽ ′ as in Section 7.1. In particular,

Ṽ ′
j = Ṽj = Vj⊕

⊕
k≥j+1,1≤h≤k−j W

(h)
k if j �= i and Ṽ ′

i = V ′
i ⊕

⊕
k≥i+1,1≤k≤k−iW

(h)
k .

Recall diagram (12) from Section 3.1. We write Λξ-ss(V,W ) for Λξ-ss
ζC

(V,W )
when ζC = 0. With the above preparation, we are ready to state the compatibility
of Maffei’s morphism Φ in Proposition 7.1.1 with the reflection functor diagram
(12).

Proposition 8.2.1. Fix i ∈ I. Assume that ζ = (ξ, 0) and there is w ∈ W such
that w(ξ)j > 0 for all j ∈ I (equivalently, here is w ∈ W such that w(ξ)j < 0
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∀j ∈ I). The following diagram commutes:

Λξ-ss(V,W ) ←−−−− F ss(V, V ′,W ) −−−−→ Λsi(ξ)-ss(V ′,W )

Φ

⏐⏐� ΦF

⏐⏐� ⏐⏐�Φ′

Λξ-ss(Ṽ , W̃ ) ←−−−− F ss(Ṽ , Ṽ ′, W̃ ) −−−−→ Λsi(ξ)-ss(Ṽ ′, W̃ )

where the rows are (12) attached to the triples (V, V ′,W ) and (Ṽ , Ṽ ′, W̃ ), the ver-
tical morphisms Φ and Φ′ on the left and right are the restriction of the mor-
phism from Proposition 7.1.1, and the middle one is defined to be ΦF (x,x

′) =
(Φ(x),Φ′(x′)).

Proof. We first assume that ξj < 0 for all j < 0. Then the morphism Φ is well-
defined by [M05, Lemma 19]. In this case, it suffices to show that the pair (x̃, x̃′) ≡
(Φ(x),Φ′(x′)) satisfies the conditions (R1)–(R4). In light of [M02, Lemmas 28, 30],
this shows that the maps Φ′ and ΦF are well-defined, which is not obvious since
the x̃ and x̃′ are defined inductively.

We define a new element ỹ ∈ M(Ṽ ′, W̃ ), as a package of linear maps with respect

to the decompositions of Ṽ , Ṽ ′, and W̃ , such that a linear map in ỹ is defined to
be its counterpart in x̃′ if it involves V ′

i , or its counterpart in x̃ otherwise.
If we can show that the pair (x̃, ỹ) satisfies the conditions (R1)–(R4), then we

have ỹ ∈ Λsi(ξ)-ss(Ṽ ′, W̃ ) by [M02, Lemma 28, Lemma 30]. By the definition
of ỹ and [M05, Lemma 18], we immediately see that ỹ = x̃′, which implies the
well-definedness of ΦF .

It remains to show that the pair (x̃, ỹ) satisfies (R1)–(R4). Clearly from the
definitions, the pair satisfies (R3) and (R4). We now prove that the sequence in
(R1) for the pair (x̃, ỹ) is a complex, i.e., bi(x̃)ai(ỹ) = 0. We consider the restriction

to the subspace W ′
i =

⊕
j≥i+1,1≤h≤j−iW

(h)
j of Ṽ ′ = V ′

i ⊕W ′
i , and we get

bi(x̃)ai(ỹ)|W ′
i
= bi(x̃)ai(x̃)|W ′

i
= −μi(x̃)|W ′

i
= 0.

We then consider the restriction of bi(x̃)ai(ỹ) to V ′
i in two cases. The first one is

to consider πVi
bi(x̃)ai(ỹ)|V ′

i
, where πVi

is the project to the component Vi. Any

component in πVi
bi(x̃)ai(ỹ)|V ′

i
passing through W ′

i+1 is zero. The possible nonzero

component of the linear map πVi
bi(x̃)ai(ỹ)|V ′

i
passing through W ′

i−1 is when it fac-

tors through its subspaceW
(1)
i , which is piq

′
i if we use the notation x = (xi, yi, pi, qi)

and x′ = (x′
i, y

′
i, p

′
i, q

′
i). Hence we have

πVi
bi(x̃)ai(ỹ)|V ′

i
= bi(x)ai(x

′) = 0.

The second case is to consider the component πW ′
i
bi(x̃)ai(ỹ)|V ′

i
. In this case, the

possible nonzero component factored through the map πW ′
i
bi(x̃)|W ′

i−1
is when it

factors through the linear map T j,j−i+1
i−1,j,j−i : W

(j−i+1)
j → W

(j−i)
j , and it equals

SV ′

i−1,j,j−i+1(x̃
′) of x̃′. On the other hand, the possible nonzero component fac-

tored through the map πW ′
i
bi(x̃)|W ′

i+1
is when it factors through the linear map

−SV
i,j,j−i(x̃) of x̃ and it equals −SV

i,j,j−i(x̃)x
′
i = −SV ′

i−1,j,j−i+1(x̃
′). The two sums

to zero, and therefore we obtain

πW ′
i
bi(x̃)ai(ỹ)|V ′

i
= 0.

Altogether, it confirms that the sequence in (R1) for (x̃, ỹ) is a complex.
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It remains to show that the map ai(ỹ) is injective for the pair (x̃, ỹ) to satisfy

(R1). Clearly ai(ỹ)|V ′
i
= ai(x̃

′)|V ′
i
is injective. The fact that Sj,h

i−1,j,h = idWj
implies

that ai(ỹ)|W ′
i
is injective. So ai(ỹ) is injective, and thus (R1) holds for (x̃, ỹ).

Now we show that the pair (x̃, ỹ) satisfies the last condition (R2). We observe
from the definition of ỹ that ai(x̃)|W ′

i
πW ′

i
bi(x̃) − ai(ỹ)|W ′

i
πW ′

i
bi(ỹ) = 0. So it is

reduced to show that ai(x̃)|Vi
πVi

bi(x̃) − ai(ỹ)|V ′
i
πV ′

i
bi(ỹ) = 0. By using the (t1)

and (s1) of x̃ and ỹ, we have

[ai(x̃)|Vi
πVi

bi(x̃)− ai(ỹ)|V ′
i
πV ′

i
bi(ỹ)]|W ′

i+1
= 0,

πW ′
i+1

[ai(x̃)|Vi
πVi

bi(x̃)− ai(ỹ)|V ′
i
πV ′

i
bi(ỹ)] = 0.

Moreover, in light of (t2) and (s2), it yields

πW ′
i−1

[ai(x̃)|Vi
πVi

bi(x̃)− ai(ỹ)|V ′
i
πV ′

i
bi(ỹ)]|W ′

i−1

=
⊕
j>i

SV
i,j,j−iπVi+1

[ai(x)bi(x)− ai(x
′)bi(x

′)]|Vi+1

⊕
j′>i

T j′,1
i,V = 0.

The following vanishing results can be obtained in a similar manner:

πUi
[ai(x̃)|Vi

πVi
bi(x̃)−ai(ỹ)|V ′

i
πV ′

i
bi(ỹ)]|Ui

= ai(x)bi(x)− ai(x
′)bi(x

′) = 0,

πUi
[ai(x̃)|Vi

πVi
bi(x̃)−ai(ỹ)|V ′

i
πV ′

i
bi(ỹ)]|W ′

i−1

= [ai(x)bi(x)− ai(x
′)bi(x

′)]|Vi+1

⊕
j′>i

T j′,1
i,V = 0,

πW ′
i−1

[ai(x̃)|Vi
πVi

bi(x̃)−ai(ỹ)|V ′
i
πV ′

i
bi(ỹ)]|Ui

=
⊕
j>i

SV
i,j,j−iπVi+1

[ai(x)bi(x)− ai(x
′)bi(x

′)] = 0.

These analyses imply that the pair (x̃, ỹ) satisfies (R2). This finishes the proof
under the assumption that ξj < 0 for all j ∈ I.

As a result, we see that the map Φ is well-defined if ξ is chosen so that the
entries in si(ξ) are positive. Now the general case is obtained by an induction on
the length of w. The proposition is thus proved. �

Let S̃i : Mζ(ṽ, w̃) → Msi(ζ)(si∗ṽ, w̃) be the reflection functor in (14) defined for
the pair (ṽ, w̃). As a consequence of Proposition 8.2.1, we have the compatibility
of the reflection functor Si (14) and Maffei’s morphism ϕ (95).

Proposition 8.2.2. Fix i ∈ I. Assume that ζ = (ξ, 0) and there is an element
w ∈ W such that w(ξ)j > 0 for all j ∈ I, or w(ξ)j < 0 for all j ∈ I. Then the
reflection functor Si in (14) and the imbedding ϕ in (95) are compatible with each
other. More precisely, we have the following commutative diagram:

Mζ(v,w)
ϕ−−−−→ Mζ(ṽ, w̃)

Si

⏐⏐� ⏐⏐�S̃i

Msi(ζ)(si ∗ v,w)
ϕ−−−−→ Msi(ζ)(si ∗ ṽ, w̃)

(114)

8.3. σ-quiver varieties and partial resolutions of nilpotent Slodowy slices.
For the pair (ṽ, w̃), let σ̃ : Mζ(ṽ, w̃) → M−w0(ζ)(w0∗ṽ, w̃) denote the isomorphism
defined by (24). By combining Propositions 8.1.3 and 8.2.2, we obtain the compat-
ibility of the isomorphism σ (24) and the immersion ϕ (95).
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Proposition 8.3.1. Assume that the parameter ζ = 0 or ζ = (ξ, 0) satisfies that
ξi > 0 for all i ∈ I. Then the isomorphism σ = σζ,w0

for ω = w0 in (24) and
the imbedding ϕ in (95) are compatible, so that we have the following commutative
diagram:

Mζ(v,w)
ϕ−−−−→ Mζ(ṽ, w̃)

σ

⏐⏐� ⏐⏐�σ̃

M−w0(ζ)(w0 ∗ v,w)
ϕ−−−−→ M−w0(ζ)(w0 ∗ ṽ, w̃)

(115)

By an abuse of notation, let σ̃ be the isomorphism on T ∗Fṽ,w̃ defined by (81)

with respect to the form on W̃ in (107), which is compatible with the isomorphism
on Mξ(ṽ, w̃) under the same notation by Theorem 6.2.1. So we have the following
corollary.

Corollary 8.3.2. Under the setting of Proposition 8.3.1, the isomorphism σ is
compatible with the isomorphism σ̃ on T ∗Fṽ,w̃ via φϕ.

Recall the varieties S̃μ′,λ and Sμ′,λ from (97). We have the following analogue
for classical groups of the Nakajima–Maffei theorem.

Theorem 8.3.3. Assume that ζ = (ξ, 0) with ξi > 0 for all i ∈ I and θ(ξ) = ξ.
Assume further that w0∗v = v. The compositions φϕ and φ0ϕ0 of morphisms from
(95) and (97) yield isomorphisms (σ = σζ,w0

for ω = w0)

Sζ(v,w) ∼= S̃ σ̃
μ′,λ and S1(v,w) ∼= S σ̃

μ′,λ.(116)

In particular, we have the following commutative diagram:

Sζ(v,w)
φϕ−−−−→ S̃ σ̃

μ′,λ

πσ

⏐⏐� ⏐⏐�Π

S1(v,w)
φ0ϕ0−−−−→ S σ̃

μ′,λ

(117)

Proof. The isomorphisms are consequences of Corollary 8.3.2 and Theorem 7.1.2.
�

We now derive some specific results from Theorem 8.3.3 assuming that W is
a formed space with alternating sign δw. Recall from Lemma 8.1.1 that if δw
alternates, then W̃ is a δ-form with δ = δw,1. Precisely, we write S̃ow̃

μ′,λ for S̃ σ̃
μ′,λ if

the form associated to σ̃ is a symmetric form. Similarly there are notation Sow̃

μ′,λ,

S̃spw̃

μ′,λ, and Sspw̃

μ′,λ.

Corollary 8.3.4. If δw alternates, i.e., δw,iδw,i+1 = −1 for all 1 ≤ i ≤ n−1, then
the isomorphisms in (116) read as follows:

Sζ(v,w) ∼= S̃ow̃

μ′,λ, S1(v,w) ∼= Sow̃

μ′,λ, if δw,i = (−1)i+1.(118)

Sζ(v,w) ∼= S̃spw̃

μ′,λ, S1(v,w) ∼= Sspw̃

μ′,λ, if δw,i = (−1)i.(119)
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8.4. Rectangular symmetry for classical groups. By combining the rectan-
gular symmetry for general linear groups in Section 7.2 and Theorem 8.3.3, we
can obtain a rectangular symmetry for classical groups. We repeat the process in
Section 7.2. We have an immersion

Sζ(v,w) → T ∗Fσ̂
v̂,ŵ,

where the pair (v̂, ŵ) is in (100) and σ̂ is the automorphism induced from a form of
the vector space of dimension ŵ1 defined similar to (107). There is a similar result as

Theorem 8.3.3 in describing the new immersion via the intersection S σ̂
μ̂′,λ̂

= Oσ̂

μ̂′∩S σ̂
ê0

and its partial Springer resolution S̃ σ̂
μ̂′,λ̂

= Π−1
v̂,ŵ(Sê0)

σ̂. Thus, we have the following

counterpart of Proposition 7.2.1.

Theorem 8.4.1. Let (ṽ, w̃) and (v̂, ŵ) be the pairs defined by (87) and (100)
such that associated compositions μ and μ̂ satisfy (101) (see also (102)). Then the
following diagram is commutative with isomorphic horizontal maps, which sends e0
of Jordan type (iwi)1≤i≤n to ê0 of Jordan type (iwθ(i))1≤i≤n in the base:

S̃σ
μ′,λ

∼=−−−−→ S̃ σ̂
μ̂′,λ̂

Πṽ,w̃

⏐⏐� ⏐⏐�Πv̂,ŵ

Sσ
μ′,λ

∼=−−−−→ S σ̂
μ̂′,λ̂

(120)

Remark 8.4.2. Perhaps the most important case of Theorem 8.4.1 and Corol-
lary 8.3.4 is the rectangular symmetry between geometries of Sp2w and O2w′ for
various w and w′ and respective Lie algebras sp2w and o2w′ . Specifically, assume
that n is even and δw alternates with δw,i = (−1)i. Then Theorem 8.4.1 (120)
yields the following commutative diagram:

S̃spw̃

μ′,λ

∼=−−−−→ S̃oŵ

μ̂′,λ̃

Πṽ,w̃

⏐⏐� ⏐⏐�Πv̂,ŵ

Sspw̃

μ′,λ

∼=−−−−→ Soŵ

μ̂′,λ̂

(121)

Further, the associated Springer fibers F
spw̃

ṽ,w̃;e0
and F

oŵ

v̂,ŵ;ê0
of Πṽ,w̃ and Πv̂,ŵ are

isomorphic:

F
spw̃

ṽ,w̃;e0
∼= F

oŵ

v̂,ŵ;ê0
.(122)

In the case when n is even and δw alternates with δw,i = (−1)i+1, one has a
similar diagram with the pair (spw̃, oŵ) replaced by (ow̃, spŵ). In a similar manner
for n being odd, one gets similar diagrams with the pair (spw̃, oŵ) replaced by
either (spw̃, spŵ) or (ow̃, oŵ).

Now we single out a special pair of (v,w) for (121) and (122) in the following
example and relate it to the works of Henderson–Licata [HL14] and Wilbert [W15]
(see also [ES12]).

Example 8.4.3. Fix an integer k such that 0 < k ≤ n − k. Define w† by w†
i =

δi,k + δi,n−k. Recall that n is even and set r = n/2 for convenience. Let v† be a
vector defined as follows:

i 1 2 · · · k − 1 k · · · r r + 1 · · · n− k n− k + 1 · · · n− 1 n

v†
i 1 2 · · · k − 1 k · · · k k + 1 · · · k + 1 k · · · 2 1
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With respect to the pair (v†,w†), the data in (121) read

ṽ† = (n− 1, . . . , r + 1, r, r, r − 1, . . . , 1), w̃†
i = δi,1n,

v̂† = (n+ 1, . . . , r + 3, r + 2, r, r − 1, . . . , 1), ŵ†
i = δi,1(n+ 2).

Note that ṽ† has an extra r, while r+ 1 is missing from v̂†. In particular, we have

μ′ = n1, e0 ∈ Ok1(n−k)1 ∩ spn,

μ̂′ = 11(n+ 1)1, ê0 ∈ O(k+1)1(n+1−k)1 ∩ on+2.

The bottom row of (121) reads as the following, which is Corollary 5.2 in [HL14]:

Sspn

n1,k1(n−k)1
∼= Son+2

11(n+1)1,(k+1)1(n+1−k)1 .(123)

Note that both sides in (123) are empty unless k is even or k = n− k.
Observe the F

spn

ṽ†,w̃† is the complete flag variety of Spn. Hence the left-hand

side of (122) is the Springer fiber, say B
spn
e0 , of e0. In light of the fact that the

complete flag variety of O2 consists of two points, the F
on+2

v̂†,ŵ† is isomorphic to a

connected component, say Bson+2 , of the complete flag variety of On+2. So we get
T ∗Bson+2 ∼= T ∗F

on+2

v̂†,ŵ† . So the right-hand side of the (122) for (v†,w†) is exactly

the Springer fiber B
son+2

ê0
of ê0. Thus, the equality (122) is transformed into the

following isomorphism, which is Theorem B in [W15]:

Bspn
e0

∼= B
son+2

ê0
.(124)

Finally, the top row of (121) implies the following isomorphism of the Springer
resolutions of the nilpotent Slodowy slices in (123), which proves a conjecture
in [HL14, 1.3]:

S̃spn

n1,k1(n−k)1
∼= S̃on+2

11(n+1)1,(k+1)1(n+1−k)1 .(125)

The isomorphism (125) together with [HL14, Theorem 1.2] implies a conjecture by
McGerty and Lusztig on the relationship between type D Nakajima varieties and
Slodowy varieties in [HL14, 1.3].

8.5. Column/row removal reductions for classical groups. Now we investi-
gate the classical counterpart of the geometric column/row removal reductions in
Section 7.3. Recall from Section 7.3 that we have the isomorphism Mζ(v,w) ∼=
Mζ(v̆, w̆)′. If V and W are formed spaces with signs δ̃v and δw), respectively, then

the associated vector space V̆ of dimension v̆ (resp., W̆ ) naturally inherit one from

δ̃v (resp. δw). So we have an automorphism σ′ on Mζ(v̆, w̆)′. In particular, we
have the following geometric incarnation of [KP82, Proposition 13.5].

Proposition 8.5.1. There is S σ̃
μ′,λ

∼= S σ̃′

μ̆′,λ̆
, where σ̃ is from (8.3) and σ̃′ is defined

similarly.

Since the definition of σ′ involves the longest Weyl group element of the Dynkin

diagram of typeAn+1, it is not immediately clear how to compare S̃ σ̃
μ′,λ and S̃ σ̃′

μ̆′,λ̆
. In

general, the two varieties are not isomorphic. However, in the case when (μ′, λ) and

(μ̆′, λ̆) satisfy the conditions in Theorem 8.4.1, they are isomorphic. Example 8.4.3
is such a case. Similarly, we have the following counterpart of Proposition 7.3.2.

Proposition 8.5.2. Suppose that the pair (μ̈′, λ̈) is defined by (105). There is an
isomorphism S σ̃

μ′,λ
∼= S σ̈

μ̈′,λ̈
, where σ̃ is from (8.3) and σ̈ is defined similarly.
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By Propositions 8.5.1 and 8.5.2, one has a geometric version of Theorem 12.3
in [KP82].

9. Fixed-points and categorical quotients

In this section, we consider quiver varieties M0(v
0,w0)τ of a general Dynkin

graph for those pairs of formed spaces (V 0,W 0) of dimension vectors (v0,w0),

and signs δ̃v0 and δw0 are chosen to be alternating, i.e., δ̃v0,iδw0,i = −1 for all

i ∈ I and δ̃v0,i(h)δ̃v0,o(h) = −1 for all h ∈ H. In Remark 9.2.4, we will consider

M0(v
0,w0)aτ . We show that there is a closed immersion from Kraft–Procesi–

Nakajima’s construction [KP82,N94] via categorical quotients to σ-quiver varietes
M0(v,w)aτ .

9.1. Polynomial invariants on M(v0,w0)τ . Recall the automorphism τ on
M(v0,w0) from (15) and Gv0 from (4). Let Gτ

v0 = {g ∈ Gv0 |gig∗i = 1}, and
let Mτ = M(v0,w0)τ be the variety of τ -fixed points in M(v0,w0). We are inter-

ested in finding a set of generators for the algebra RGτ
v0 of Gτ

v0 -invariant regular

functions on Mτ . Following Lusztig, we consider the following elements in RGτ
v0 .

A sequence h1, . . . , hs of arrows in H is called a path if i(hi) = o(hi+1) for all
1 ≤ i ≤ s − 1. It is called a cycle if it further satisfies i(hs) = o(h1). For a cycle
h1, . . . , hs in H, we define a Gτ

v0 -invariant function trh1,...,hs
on Mτ by

trh1,··· ,hs
(x) = trace(xhs

xhs−1
· · ·xh1

) ∀x ∈ Mτ .(126)

For any path h1, . . . , hs ∈ H and a linear form χ on Hom(W 0
o(h1)

,W 0
i(hs)

), we define

a Gτ
v-invariant function χh1,...,hs

on Mτ by

χh1,...,hs
(x) = χ(qi(hs)xhs

xhs−1
· · ·xh1

po(h1)) ∀x ∈ Mτ .(127)

The following theorem is an analogue for classical groups of [L98, Theorem 1.3].

Theorem 9.1.1. Assume that the signs δ̃v0 and δw0 alternate. The algebra RGτ
v0

is generated by the functions of the forms (126) and (127). In particular, the
algebra of Gτ

v0-invariant regular functions on Λ(v0,w0)τ in (16) is generated by
the restriction of the functions (126) and (127) to Λ(v0,w0)τ .

The remaining part of this section is devoted to the proof of Theorem 9.1.1. The
proof is modeled on that of [L98, Theorem 1.3] with slight modifications. Instead
of the results on tensor invariants for general linear groups, we need a similar result
on tensor invariants for classical groups as follows. Let E be a δ-formed space with
the form (−,−)E, and let G(E) be the group of isometries with respect to the
form (−,−)E. If n is even and x = {(i1, j1), . . . , (in/2, jn/2)} is a set of ordered
pairs such that {i1, j1, . . . , in/2, jn/2} = {1, . . . , n}, we define the following G(E)-

invariant linear forms on T = E⊗n by

fx(e1 ⊗ · · · ⊗ en) =

n/2∏
k=1

(eik , ejk) ∀e1 ⊗ · · · ⊗ en ∈ E⊗n.(128)

Proposition 9.1.2 ([W39]). The space of G(E)-invariant linear forms on the ten-
sor space T is zero when n is odd, and it is spanned by the forms fx (128) for
various x when n is even.
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Now we begin to prove Theorem 9.1.1. For simplicity we write V and W for
V 0 and W 0, respectively, in the proof. Recall the function ε : H → {±1} from
Section 2.2. Let Ω = ε−1(1) and we set

MΩ = MΩ(v
0,w0) =

⊕
h∈Ω

Hom(Vo(h), Vi(h))⊕
⊕
i∈I

Hom(Vi,Wi).

Since the parameters δ̃v0 and δw0 alternate, there is an isomorphism

Mτ ∼= MΩ

given by projection. After fixing a basis Bi for Wi and identifying Vi and V ∗
i via

the forms, we have

MΩ
∼=

⊗
h∈Ω

Vo(h) ⊗ Vi(h) ⊕
⊕

i∈I,b∈Bi

Vi,b,(129)

where Vi,b is a copy of Vi indexed by b.
Following Lustig, it is enough to show that the space of Gτ

v0 -invariant regular
functions on Mτ of homogenous degree n is spanned by various products of func-
tions of the form (126) and (127). Thanks to [L98, Lemma 1.4], it is reduced to show
that this is also the case for the space of Gτ

v0 -invariant linear forms on (Mτ )⊗n. To
this end, it is further reduced to study the Gτ

v0 -invariant linear forms on the tensor
space T = E1⊗· · ·⊗En, where Ei is either Vo(h)⊗Vi(h) or Vi,b. Write T =

⊗
i∈I E

i,

where Ei is the tensor product of all Vi in T . In light of [L98, Lemma 1.5], the
Gτ

v0-invariant linear forms on T are the tensor products of G(Vi)-invariant linear
forms on Ei. If T can be decomposed as the tensor product of components of the
following forms,

Vo(h1) ⊗ V ⊗2
i(h1)

⊗ V ⊗2
i(h2)

⊗ · · · ⊗ V ⊗2
i(hs−1)

⊗ Vi(hs),where h1 · · ·hr is a cycle in H,

Vo(h1),b ⊗ Vo(h1) ⊗ V ⊗2
i(h1)

⊗ · · · ⊗ V ⊗2
i(hs−1)

⊗ Vi(hs) ⊗ Vi(hs),b′ ,

where b ∈ Bo(h1), b
′ ∈ Bi(hs), h1 · · ·hr is a path in H,

then by applying Proposition 9.1.2 the space of Gτ
v0-invariant linear forms on T

is spanned by the tensor products of the fx in (128) for various x. The latters in
turn are products of various functions in (126) and (127). Now following the proof
of [L98, Theorem 1.3] we see that the space of Gτ

v0-invariant linear forms on T
is spanned by products of linear forms in (126) and (127). Theorem 9.1.1 is thus
proved.

9.2. The closed immersion ι. Recall Λ(v0,w0) = ΛζC(v
0,w0) from (6) with

ζC = 0. We can consider the categorical quotient Λ(v0,w0)τ//Gτ
v0 . Unlike

M0(v
0,w0)τ , the variety Λ(v0,w0)τ//Gτ

v0 depends on the forms associated to v0.
For example, when Γ = A1 and the forms on v0,w0 do not alternate, Λ(v0,w0)τ//
Gτ

v0 = {pt}; otherwise it is isomorphic to the determinantal variety in g(w0)
of endomorphisms of rank ≤ dimv0. For the latter fact, we refer the reader
to [KP82, Theorem 1.2].

By the universality of the categorical quotient, there is a morphism

Λ(v0,w0)τ//Gτ
v0 → Λ(v0,w0)//Gv0 = M0(v

0,w0),

which factors through M0(v
0,w0)τ so that we have a morphism of varieties:

ι : Λ(v0,w0)τ//Gτ
v0 → M0(v

0,w0)τ .(130)
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Proposition 9.2.1. The morphism ι in (130) is a closed immersion for an arbi-
trary graph.

Proof. It is enough to show that the induced map

C[Λ(v0,w0)]Gv0 → C[Λ(v0,w0)τ ]G
τ
v0

of the inclusion Λ(v0,w0)τ → Λ(v0,w0) is surjective. But this is the case by [L98,
Theorem 1.3] and Theorem 9.1.1. The proposition is thus proved. �

For the remaining part of this section, we assume that Γ is of type An. When
w0

i = 0 for all i ≥ 2, the variety Λ(v0,w0)τ//Gτ
v0 is studied by Kraft–Procesi

in [KP82]. The generalization to arbitrary w0 is mentioned by Nakajima implicitly
in [N94, Remark 8.5.4] and explicitly in [N15, Appendix A(ii)]. See also [K90]. Now
we shall sharpen the previous result in type An. By Proposition 8.1.2, we have a
closed immersion:

Λ(v0,w0)τ
Φ−→ Λ(ṽ0, w̃0)τ̃ .

There is a natural imbedding Gv0 → Gṽ0 with respect to the decomposition (88),
which restricts to an imbedding Gτ

v0 → Gτ̃
ṽ0 . This induces a morphism of varieties

Λ(v0,w0)τ//Gτ
v0

ϕ′
0−→ Λ(ṽ0, w̃0)τ̃//Gτ̃

ṽ0 .(131)

Putting (130) and (131) together yields the following commutative diagram:

Λ(v0,w0)τ//Gτ
v0

ϕ′
0−−−−→ Λ(ṽ0, w̃0)τ̃//Gτ̃

ṽ0

ι

⏐⏐� ⏐⏐�ι̃

M0(v
0,w0)τ

ϕ0−−−−→ M0(ṽ
0, w̃0)τ ,

(132)

where ι and ι̃ are the morphisms defined in (130).

Proposition 9.2.2. When the graph is of Dynkin type An and the signs δ̃v0 , δw0

alternate, the morphism ϕ′
0 in (131) is a closed immersion and ι̃ in (132) is an

isomorphism.

Proof. We have a commutative diagram

Λ(ṽ0, w̃0)τ̃//Gτ̃
ṽ0

ι̃ ��

����
���

���
���

M0(ṽ
0, w̃0)τ

�����
���

���
��

gl(w̃0)σ̃

where the morphism on the right is from (120) and the one on the left is defined
in a similar way. Both morphisms are closed immersions with the same image
by Theorem 8.3.3 and (a slightly general version of) [KP82, Theorem 5.3], which
implies that ι̃ is isomorphic.

Since ϕ0 and ι are closed immersions, so is ϕ′
0 by using the commutative diagram

(132). The proposition is thus proved. �

Remark 9.2.3. In light of [K90, N15] and Theorem 8.3.3, it is expected that ι in
(130) is an isomorphism for a Dynkin graph of type An. We conjecture that this
holds for any graph.
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Most results in this section can be extended to a more general situation where
the isomorphism a in Section 3.3 is involved in a straightforward manner. We end
this section with a remark on the connection with [N15, (Ai), (Aiii), (Aiv)], which
is grown out from a discussion with Professor H. Nakajima.

Remark 9.2.4.
(1) Consider the Dynkin diagram of type A2n+1. Then there is a closed-immersion

similar to (130):

ι′ : Λ(v0,w0)aτ//Gaτ
v0 → M0(v

0,w0)aτ .

The domain of ι′ is an S1-equivariant instanton moduli space on R4 in [N15, (Aiii)].
Specifically, if the form on w0

i is an orthogonal form for all i, then the domain of
ι′ is exactly the SO(r)-instantons in loc. cit., Figure 7. (Note that w0

n corresponds
to w0 in Figure 7 in loc. cit.) The orthogonal/symplectic forms in loc. cit. are
defined over Vi ⊕ V−i and Wi ⊕W−i, similar to [E09]. In our setting, we assign to
Vn a symplectic form and each Wi and Vi for i �= n an orthogonal form (−|−), set
Wi = W2n−i, Vi = V2n−i. From these data, we can obtain orthogonal/symplectic
forms used in loc. cit. on Wi ⊕W−i or Vi ⊕ V2n−i by the rule [(u1, u2), (w1, w2)] =
(u1|w2)±(u2|w1), where the choice of + leads to an orthogonal form and the choice
of − leads to a symplectic form as desired. Under this setting, the domain of ι′ is
exactly the instanton moduli space given in Figure 7 of loc. cit. Note that in this
setting, the orders of a and τ are 4, while their composition aτ has order 2.

(2) If our graph allows loops, the arguments in this section still work through,
with a minor modification in the proof of Theorem 9.1.1. In particular, when the
graph is a Jordan quiver, i.e., a vertex with two arrows, then we have a closed-
immersion

ι′′ : Λ(v0,w0)−aτ//Gaτ
v0 → M0(v

0,w0)aτ ,

where a is induced by the obvious involution on the Jordan quiver. The domain of
ι′′ is an SO/Sp instanton moduli space on R4 in [N15, (Ai)]. (See [Ch16] for further
details.)

(3) Let H be a finite subgroup in SU(2). By taking the H-equivariant parts
in ι′′, one obtains a similar closed immersion whose domain is exactly the SO/Sp
instanton moduli space on R4/H, which is discussed in [N15, (Aiv)].

Composing aτ or τ with the reflection functor Sw0
, it also gives rise to the SO/Sp

instanton moduli space on ALE spaces if M0(v
0,w0) is replaced by M

reg
ζ (v0,w0)

for ζ generic. In particular, if the McKay diagram of H is of type D
(1)
2n , E

(1)
7 , or E

(1)
8 ,

one uses τSw0
, and aτSw0

is used for the remaining cases A
(1)
n , D

(1)
2n+1, and E

(1)
6 .

This is known to Nakajima (see [N18]) and is implicitly given in [N03, Sect. 9].

10. Quiver varieties and symmetric spaces

In this section, we study fixed-point subvarieties of Nakajima varieties under
an antisymplectic automorphism. In the type A case, we identify them with the
symmetric space of a given symmetric pair of type AI/AII.

10.1. The antisymplectic automorphism τ̂ζ. Similar to τζ , we define a simpler
automorphism

τ̂ : M(v,w) → M(v,w),x = (xh, pi, qi) �→ (τ̂xh,
τ̂pi,

τ̂qi),
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where τ̂xh = x∗
h̄
, τ̂pi = q∗i ,

τ̂qi = p∗i ∀h ∈ H, i ∈ I. The τ̂ζ only differs from τζ by a

minus sign at xh for h ∈ ε−1(−1) and pi. Despite this minor perturbation, the new
automorphism behaves quite differently from τζ , as we shall see in the following,
and yet proofs are always in parallel with the old ones with minor modifications,
which often involve the removal of minus signs. It is easy to see that μ(τ̂x) = μ(x)∗.
So it induces an isomorphism on Mζ(v,w):

τ̂ζ : M(ξ,ζC)(v,w) → M(−ξ,ζC)(v,w).

It is also clear that τ̂ζ is independent of the choices of forms on V by the same
argument for the similar property of τζ . In contrast with its symplectic analogue
τζ , the τ̂ζ is antisymplectic, that is,

ω(τ̂x, τ̂x′) = −ω(x,x′),

which can be verified by definition. Now we determine the order of τ̂ζ .

Proposition 10.1.1. If the forms on W are uniform, i.e., δw,i = δw,j for all
i, j ∈ I, then the τ̂ζ is involutive: τ̂2ζ = 1. In general, if W is a formed space with

sign δw, then τ̂4ζ = 1.

Proof. The proof follows the same line as that of Proposition 3.2.2 with the obser-
vation that τ̂2([x]) = [(xh, δw,ipi, δw,iqi)] = [x], where the last equality is given by
the action of the element (δw,iidVi

)i∈I ∈ Gv. The above observation indicates that
τ̂4ζ = 1. The proposition is thus proved. �

It is clear that the isomorphism τ̂ζ commutes with the isomorphisms a and Sω.

Lemma 10.1.2. One has Siτ̂ζ = τ̂siζSi and aτ̂ζ = τ̂aζa.

10.2. The σ̂-quiver varieties. Similar to σ, we consider the following isomor-
phism:

σ̂ := aSωτ̂ζ : M(ξ,ζC)(v,w) → M(−aωξ,aωζC)(aω ∗ v, aw) ∀ω ∈ W .(133)

The σ̂-quiver variety is defined to be

Pζ(v,w) ≡ Mζ(v,w)σ̂,

whenever aωζC = ζC, −aωξ = ξ and aω ∗ v = v. By summing over all v, we have

Pζ(w) ≡ Mζ(w)σ̂.

It is clear that Pζ(v,w), and hence Pζ(w), is independent of the choice of the form
on V , due to the same property on τζ . Since the a and Sω are symplectomorphisms
and τ̂ζ is antisymplectic, the σ̂ is antisymplectic. Summing up, we have the following
proposition.

Proposition 10.2.1. Pζ(v,w) is a fixed-point subvariety of Mζ(v,w) under an
antisymplectic automorphism. Its definition is independent of the choice of the form
on V . If ζ is generic, then Pζ(v,w) is smooth if it is nonempty and σ̂ is of finite
order. If W is a formed space with sign δw and ω is of finite order, then the order
of σ̂ is a divisor of l.c.m.{4, |ω|, |a|}. If further δw is uniform and a2 = ω2 = 1,
then σ̂2 = 1.

Just like σ-quiver varieties, the σ̂-quiver varieties include original quiver vari-
eties. By a general property of antisymplectic involution, we have the following
proposition.
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Proposition 10.2.2. If |σ̂| = 2, i.e., σ̂ is anti-involutive, then Pζ(v,w) is a
Lagrangian subvariety of Mζ(v,w). In particular, the dimension of Pζ(v,w), if
nonempty, is half of the dimension of Mζ(v,w).

Via restriction, there is a proper map

πσ̂ : Pζ(v,w) → P1(v,w),(134)

where P1(v,w) is defined in the same way as S1(v,w) in (4.2.8).
Arguing in a similar way as the σ case, it yields the following proposition.

Proposition 10.2.3. The map πσ̂ is Gσ
w-equivariant and if ζC = 0, it is Gσ

w×C×-
equivariant.

Recall the fixed-point subgroup Wω,a. For any x ∈ Wω,a, the original reflection
functor induces an action on the σ̂-quiver varieties

Sσ̂
x : Pζ(v,w) → Pxζ(x ∗ v,w).

Further, the group Wω,a acts on the cohomology group H∗(Pζ(v,w),Z) when w−
Cv = 0.

10.3. σ̂-quiver varieties of type A. Recall the setting from Section 6.1. We
define

p ≡ p(W ) = {x ∈ End(W )|x = x∗}.(135)

This is called a symmetric space with respect to the symmetric pair (gl(W ), g(W )).
Let N (p) be the variety of nilpotent elements in p.

Consider the automorphism σ̂1 on T ∗Fv,w defined by (x, F ) �→ (x∗, F⊥), and
the fixed point subvariety (T ∗Fv,w)σ̂1 . Let

Π̂ : (T ∗Fv,w)σ̂1 → N (p)

be the first projection.
Retain the setting from Section 6.2. In particular, wi = 0 for all i ≥ 2.

Proposition 10.3.1. Let a = 1, and let ω = w0. Then the σ̂ gets identified with
the automorphism σ̂1. If further w0 ∗ v = v, then there is a commutative diagram

Pζ(v,w)
∼=−−−−→ (T ∗Fv,w)σ̂1

πσ̂

⏐⏐� ⏐⏐�Π̂

P1(v,w) −−−−→ N (p)

Proof. The proof is the same as that of Theorem 6.2.1 with minus signs removed.
�

Remark 10.3.2. The above identification implies that πσ̂ is not semismall in general.
For example, when the form on W is symplectic and (v,w) = (1, 2), the map Π̂ is
the projection from the projective line P1 to a point.

Now we discuss the σ̂ counterpart of the results in Section 8. Recall that it is
assumed that forms on V and W are δ-forms. We define a nondegenerate bilinear
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form {−|−} on Ṽi by

{
(vi, w

(h)
j )j≥i+h

∣∣∣ (v′i, u(h)
j )j≥i+h

}
Ṽi

= (vi, v
′
i)Vi

+
∑

j≥i+h

(
w

(h)
j , u

(j−i+1−h)
j

)
Wj

,

(136)

where v, v′ ∈ Vi and w
(h)
j , u

(h)
j ∈ W

(h)
j such that 1 ≤ h ≤ j − i.

Lemma 10.3.3. If the forms on W are uniform δ-forms, then so is the form on

W̃1. If further V and W are uniform δ-forms, then so is the form on Ṽi, similar
to τ̃ in Proposition 8.1.2.

With the form {−|−}, one can define the automorphism τ̂{−|−} on Λ(Ṽ , W̃ ).

Proposition 10.3.4. The following diagram is commutative:

Λ(V,W )
Φ−−−−→ Λ(Ṽ , W̃ )

τ̂

⏐⏐� ⏐⏐�τ̂{−|−}

Λ(V,W )
Φ−−−−→ Λ(Ṽ , W̃ )

Proof. The proof is the same as that of Proposition 8.1.2 with minus signs removed
at appropriate places. �

Following the line of arguments in Section 8, we reach the identification of σ̂-
quiver varieties with nilpotent Slodowy slices in symmetric space p, a counterpart
of Corollary 8.3.2. Let σ̂{−|−} denote the automorphism on T ∗Fṽ,w̃ defined with
respect to the form {−|−}.
Theorem 10.3.5. Assume that ζ = (ξ, 0) with ξi > 0 for all i ∈ I and θζ = ζ.
Assume also that w0 ∗ v = v. Then there is a commutative diagram

Pζ(v,w)
∼=−−−−→ S̃ σ̂{−|−}

μ′,λ

πσ̂

⏐⏐� Π̂

⏐⏐�
P1(v,w) −−−−→ S σ̂{−|−}

μ′,λ

Remark 10.3.6.
(1) One still has a counterpart of Theorem 8.3.3, with δw alternates replaced by

δw being uniform.
(2) One still has a rectangular symmetry similar to Theorem 8.4.1. Note that

the σ̂ therein is not the same as the σ̂ in this section.
(3) One still has the column/row removal reduction in the symmetric space

setting, similar to Propositions 8.5.1, 8.5.2. This is a refinement of results in [O86]
(see also [O91]).

(4) Via the Kostant–Sekiguchi–Vergne correpondence [S87], [Ve95] and the works
of Barbasch-Sepanski [BS98, Theorem 2.3] and Chen-Nadler [CN18], we see that
results in the preceding remarks can be transported, at least diffeomorphically, onto
the nilpotent Slowdowy slices of the associated real groups.

Finally, we return to study the relationship between fixed-point subvarieties and
categorical quotients. We assume that forms on V and W are uniform. We can
consider the fixed-point subvariety M(v,w)τ̂ under τ̂ . We can define the Gτ

v-
invariant functions trh1,...,hs

(−) and χh1,...,hs
(−) in exactly the same manner as



QUIVER VARIETIES AND SYMMETRIC PAIRS 53

(111) and (112). Then using a similar argument as the proof of Theorem 9.1.1, we
have the follwoing proposition.

Proposition 10.3.7. The algebra of Gτ
v-invariant regular functions on M(v,w)τ̂

is generated by the functions trh1,...,hs
(−) and χh1,...,hs

(−) for various paths h1, . . . ,
hs.

From the above proposition, we have the following.

Proposition 10.3.8. There is a closed immersion ι̂ : Λ(v,w)τ̂//Gτ
v → P1(v,w)

with a = 1.

Acknowledgments

We thankWeiqiangWang for fruitful collaborations, especially the work [BKLW],
and several enlightening conversations. We also thank Dave Hemmer, Jiuzu Hong,
Jim Humphreys, Ivan Losev, George Lusztig, Hiraku Nakajima, and Catharina
Stroppel for stimulating discussions.

The results in this paper were announced at the ICRT VII in Xiamen, China, July
2016, the AMS special session on “Geometric methods in representation theory,”
Charleston, NC, March 2017, the Taipei workshop on Lie superalgebras and related
topics, National Center for Theoretical Sciences, Taipei; Colloquia in Shanghai
Jiaotong University and Xiamen University, July 2017, and the Algebra Seminar
at University of Virginia, November 2017. It is a pleasure to thank the organizers
for the invitation.

We thank the anonymous referees for careful readings, helpful comments, and
insightful suggestions.

References

[BaK16] M. Balagovic and S. Kolb, Universal K-matrix for quantum symmetric pairs, Journal
für die reine und angewandte Mathematik (2016).

[BSWW] H. Bao, P. Shan, W. Wang, and B. Webster, Categorification of quantum symmetric
pairs I, Quantum Topol. 9 (2018), no. 4, 643–714, DOI 10.4171/QT/117. MR3874000

[BW13] H. Bao andW. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum
symmetric pairs (English, with English and French summaries), Astérisque 402 (2018),
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