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AN EULER-POINCARÉ FORMULA FOR

A DEPTH ZERO BERNSTEIN PROJECTOR

DAN BARBASCH, DAN CIUBOTARU, AND ALLEN MOY

Abstract. Work of Bezrukavnikov–Kazhdan–Varshavsky uses an equivari-
ant system of trivial idempotents of Moy–Prasad groups to obtain an Euler–
Poincaré formula for the r–depth Bernstein projector. We establish an Euler–
Poincaré formula for natural sums of depth zero Bernstein projectors (which is
often the projector of a single Bernstein component) in terms of an equivariant
system of Peter–Weyl idempotents of parahoric subgroups GF associated to a
block of the reductive quotient GF /G+

F .

1. Introduction

The results expounded here are the merger of several themes in the representation
theory of reductive p-adic groups. Suppose k is a non-archimedean local field, and
G is a connected reductive linear algebraic group defined over k. Let G = G(k)
denote the group of k-rational points, and let B = B(G) denote the Bruhat–Tits
building of G.

Two themes introduced in the 1980s were Euler-Poincaré functions [K] and the
Bernstein center [B,BD].

• When G is semisimple, simply connected, Kottwitz selected a set S of rep-
resentatives for the orbits of G on the facets of B, and defined an Euler-
Poincaré function fEP ∈ C∞

c (G) (locally constant compactly supported
functions on G) as fEP =

∑
σ∈S(−1)dim(σ) 1

Stab(σ) sgnσ (see [K] for the

description of the character sgnσ of Stab(σ) and other normalizations). It
is obvious that changing the set S changes fEP, but not its orbital integrals.
Kottwitz showed the usefulness of fEP as a function to enter into the trace
formula.

• The Bernstein center Z = Z(G) of G is a commutative algebra (with
unity). Its geometrical realization is as the algebra of G-invariant essen-
tially compact distributions on G. A distribution is essentially compact if
∀ f ∈ C∞

c (G), the convolutions D�f and f �D are in C∞
c (G). If (π, Vπ) is a

smooth representation of G, one can, by integration, canonically obtain an
algebra representation πZ : Z(G) −→ EndG(Vπ). When π is irreducible,
by Schur’s Lemma, each πZ(D) (D ∈ Z) is a scalar.
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Let Ĝ sm denote the smooth dual (equivalence classes of smooth irre-
ducible representations). We write the map {π} → πZ(D) as a map

InfD : Ĝ sm −→ C given by InfD({π}) = πZ(D). The smooth dual is
naturally topologized with the Fell topology, a non-Hausdorff topology.

There is natural Hausdorff topological quotient Ω(G) of Ĝ sm. The map
InfD factors to a map Ω(G) −→ C (that we also denote as InfD). The
points of Ω(G) can be parametrized as equivalence classes of pairs (M, σ),
where M is a Levi subgroup of G, and σ is an irreducible cuspidal represen-
tation of M. The equivalence relation comes from the adjoint action on the
Levi component. The equivalence class of a pair (M, σ) is denoted [M, σ].
For a fixed Levi subgroup M, the complex group Xun(M) of unramified
characters acts on the set of elements [M, σ] by twisting the representation
component (see [B, ChII]), and the orbit (denoted Ω([M, σ])) is a Bernstein
component. Thus, Ω(G) is partitioned into Bernstein components. The
component Ω([M, σ]) inherits a complex algebraic structure from Xun(M).
The restriction (InfD)|Ω of the function InfD to a Bernstein component
Ω = Ω([M, σ]) is a regular function. Let R(Ω) denote the algebra of regu-
lar functions on Ω. In [BD], it is shown that the map FTΩ : Z(G) → R(Ω)
defined as FTΩ(D) = (InfD)|Ω is a surjective algebra homomorphism, and
there is an ideal IΩ of Z(G) so that FTΩ on IΩ is an isomorphism, while
FTΩ on IΩ′ (Ω �= Ω′) is zero. So, Z(G) is a product of the ideals IΩ. The
unique element P (Ω) ∈ Z(G) satisfying (InfP (Ω))|Ω′ = δΩ,Ω′ is called the
projector of the Bernstein component Ω. At the time (1980s) extremely
little was known explicitly about the distribution P (Ω). The most illumi-
nating result at that time was a 1976 result of Deligne [Dn]. Suppose G has
compact center. Then, Deligne’s result is: The support of the character
of an irreducible cuspidal representation is in the set of compact elements
(those elements which belong to a compact subgroup) of G. This was ex-
tended by Dat [Dt] in 2003 to the statement that the projector P (Ω) of a
Bernstein component Ω has support in the compact elements of G.

In the 1990s, exploitation of the Bruhat–Tits building achieved advances in two
directions.

• Moy–Prasad [MPa,MPb] used points in B to define subgroups of G and
lattices of g = Lie(G) which satisfy descent properties. In particular, these
subgroups and lattices allow one to attach to any irreducible smooth rep-
resentation (π, Vπ) a non-negative rational number ρ(π) called the depth.
The application of the parabolic induction functor or the Jacquet functor to
an irreducible representation, yields a representation whose constituents all
have the same depth as the input. Thus, all the irreducible representations
attached to a Bernstein component Ω have the same depth, i.e., one can
define the depth ρ(Ω) of a component Ω. It is clear from their definitions
that the Moy–Prasad groups and lattices are G-equivariant objects of B.

• Schneider–Stuhler [SS] attached to a smooth representation (π, Vπ) a G-
equivariant coefficient system γe(Vπ). To a facet F of the building with
parahoric subgroup UF (notation that of Schneider–Stuhler), and positive
integer e, they define a subgroup UF,e (which, if y is a generic point of F , is
in fact the Moy–Prasad group Gy,e). The coefficient system is γe(Vπ)(F ) :=

V
UF,e
π . The space of global sections with compact support in the facets of
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a given dimension i is a projective smooth representation of G. Schneider–
Stuhler used the standard boundary map to get a complex, and under
suitable circumstances they proved the important result that this complex
is a projective resolution of Vπ.

No serious attempt was made in the 1990s to synthesize these two directions to-
gether.

An important development made by Meyer–Solleveld [MS] in 2010 was to replace
the coefficient systems of Schneider–Stuhler with idempotent operators eσ (σ a
facet in B) in EndC(Vπ). The situation of Schneider-Stuhler can be recovered from
Meyer–Solleveld by taking eσ to be the idempotent which projects to the space of
Uσ,e-fixed vectors. A key aspect of their idempotent approach is that the chain
complex on B attached to the idempotents has the property that its restriction to
a finite polysimplicial convex subcomplex Σ of B is a resolution of the vector space∑

x∈Σo ex(Vπ), where Σ
o is the set of vertices in Σ. Most importantly, under certain

assumptions on the system of idempotents (see [MS]), they showed the operator∑
σ∈Σ (−1)dim(σ) eσ is idempotent and projects Vπ to

∑
x∈Σo ex(Vπ).

The work of Bezrukavnikov–Kazhdan–Varshavsky [BKV] in 2016 linked the
Schneider-Stuhler and Meyer-Solleveld theme to Bernstein projectors. For ease
of exposition of their work, we assume G is absolutely quasisimple (see [BKV] for
their more general situation). Suppose r ≥ 0 is a rational number (write r = a

b
with a, b ∈ N, gcd(a, b) = 1). They modify the Meyer-Solleveld approach:

(i) They take a natural refinement of the simplicial structure on an apartment
subdividing the space between two consecutive parallel affine hyperplanes
into b congruent regions. This refinement of the simplicial structure has
the feature that the filtration subgroups Gy,r and Gy,r+ (recall Gy,r+ :=⋂

t>r Gy,t) are constant on the interiors of the new facets. For a new facet
F , define GF,r+ to be Gy,r+ of an interior point y.

(ii) They replaced the idempotents in End(Vπ) with idempotents

eF,r+ =
1

meas(GF,r+)
1GF,r+

in the Hecke algebra H(G). (H(G) is C∞
c (G) together with a choice of Haar

measure.)
(iii) They considered an increasing family Σn (n ∈ N) of finite convex sub-

complexes whose union is the entire building.

The resulting sums
∑

F ∈Σn
(−1)dim(F ) eF,r+ have limit the depth r Bernstein pro-

jector

Pr =
∑

ρ(Ω)≤r

P (Ω) ,

and furthermore, as a distribution, Pr has a presentation as an Euler-Poincaré sum
Pr =

∑
F ⊂B (−1)dim(F )eF,r+ .

Here, under the condition that the k-group G is absolutely quasisimple, we
further develop the new direction of [BKV]. We establish an Euler–Poincaré pre-
sentation of the projector for an arbitrary Bernstein component of depth zero. The
condition that G is absolutely quasisimple has the simplifying convenience that the
Bruhat–Tits building B(G) (G = G(k)) is a simplicial complex.

When L is a Levi subgroup of G, let BG(L) be the union of the apartments
A(S) as S runs over the maximal split tori in L. The space BG(L) is the extended
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building of L. Suppose Ω([M, π]) is a depth zero Bernstein component. It is known
from [MPb] that there exists a cuspidal pair (F, σ) consisting of:

(i) a facet F in BG(M) satisfying (M ∩ GF )/(M ∩ G+
F ) = GF /G

+
F ,

(ii) an irreducible representation σ of MF := (M∩GF ) inflated from a cuspidal
representation of the finite field group (M ∩ GF )/(M ∩ G+

F ) = GF /G
+
F ,

so that π = c-IndMFF
(τ ), where FF is the normalizer subgroup NM(MF ), and τ is

an extension of σ. Here, G+
F is the maximal normal pro-p-subgroup of GF . If y is a

generic point of F , so GF = Gy,0, then G+
F = Gy,0+ . The relation (M ∩ GF )/(M ∩

G+
F ) = GF /G

+
F means σ is also canonically a representation of GF .

If τ ′ is any extension of σ to FF , then π′ = c-IndMFF
(τ ′) is an irreducible cuspidal

representation ofM and any irreducible smooth representation containing σ has this
form (see [MPb]). Let Ω(F, σ) be the (finite) union of the Bernstein components
Ω([M, π]) in which the restriction of π to MF contains σ. Define

P (F, σ) := Bernstein projector to Ω(F, σ).

Let MV be a parabolic subgroup containing M, and set Vπ = IndGMV(π). If E is
any facet of B, it follows from [MPb] that a necessary and sufficient condition for

the invariants V
G+

E
π to be non-zero is the existence of a facet F ′ so that:

(i) F ′ ⊃ E,
(ii) F ′ is associate to F , i.e., there exists g ∈ G, so that (GF ′ ∩ GgF ) surjects

onto both GF ′/G+
F ′ and GgF /G

+
gF . Note that we then have an identification

GF ′/G+
F ′ = (GF ′ ∩ GgF )/(G

+
F ′ ∩ G+

gF ) = GgF /G
+
gF .

Let E(σ,E) denote the set of representations ρ ∈ ĜE/G
+
E which appear in V

G+
E

π .

With the obvious identifications and inclusions, this set is those ρ ∈ ĜE/G
+
E whose

restriction to GF ′/G+
F ′ (= GgF /G

+
gF ) contains the representation Ad(g)σ.

For the Bernstein component Ω([M, π]) if (F1, σ1) and (F2, σ2) are as above, then
F1 and F2 are associated by some g ∈ G with Ad(g)σ1 = σ2.

Fix a cuspidal pair (F, σ). We define idempotents as follows:

eE =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 when V

G+
E

π = { 0 } ,

1
meas(G+

E)

∑
ρ∈E(σ,E)

deg(ρ)Θρ when V
G+

E
π �= { 0 }.

Since we have fixed (F, σ), we suppress it in the notation eE . We call eE the
Peter–Weyl idempotent. This defines a G-equivariant system of idempotents on B.
The first and third authors established in earlier work that eE = P (F, σ) � eG+

E
.

Once the G-equivariant system of idempotents is in hand, it remains to show (see
Theorem 5.2.5, Corollary 5.2.6, and Theorem 6.1.3) the following.

Theorem. Suppose G is a connected absolutely quasisimple k-group. Let G =
G(k), and let B = B(G) be the Bruhat–Tits building. Suppose (F, σ) is a cuspidal
pair, and define a G-equivariant system of idempotents eE as above. Then,

• The Euler–Poincaré sum

P =
∑

L⊂B(G)

(−1)dim(L)eL
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over the facets of B(G) defines a G-invariant essentially compact distribu-
tion.

• The distribution P is the projector P (F, σ).

We note, for the Iwahori component (smooth irreducible representations with
non-zero Iwahori fixed vectors), the (Iwahori) Peter–Weyl idempotent eF of a facet
F is the sum of the character idempotents of those irreducible representations of
the finite field group GF /G

+
F which have a non-zero Iwahori fixed vector, i.e., a Borel

fixed vector.
We sketch the argument to show the Euler-Poincaré infinite sum defines an

essentially compact distribution. We fix a chamber C0, and define the convex ball
Ball(C0,m) to be the simplicial subcomplex which is the union of all chambers
whose Bruhat length from C0 is at most m. The union of these balls obviously
exhaust B, and Ball(C0, (m+1)) is obtained by adding chambers of Bruhat length
(m + 1) to Ball(C0,m). If D has Bruhat length (m + 1), let C(D) be the set of
facets of D which are not already in Ball(C0,m). We note that if k is the number
of faces of D in C(D), then #(C(D)) = 2k. If J is any open compact subgroup of
G, we show the convolution

Con =
( ∑
E∈C(D)

(−1)dim(E) eE
)

� eJ

vanishes once m is sufficiently large, say m ≥ N . Hence,∑
E∈Ball(C0,n)

(−1)dim(E) eE � eJ =
∑

E∈Ball(C0,N)

(−1)dim(E) eE � eJ for all n ≥ N .

We deduce that the infinite Euler-Poincaré sum defines a G-invariant essentially
compact distribution P . A slight modification of the argument then allows us to
establish P is the projector P (Ω) to the component Ω.

We briefly explain here why the convolution Con vanishes when m is sufficiently
large. In the set C(D), there is a minimal facet D+ contained in all the other facets.
This means GD+

⊃ GE ⊃ G+
E ⊃ G+

D+
holds for all E ∈ C(D), and consequently

GE/G
+
D+

is a parabolic subgroup in GD+
/G+

D+
. A convolution vanishing result is

established in the finite field group GD+
/G+

D+
, which when the Bruhat length is

sufficiently large implies the vanishing of Con.
We briefly outline the presentation of results. In section 2, we introduce notation,

and prove preliminary results on facets in the Bruhat–Tits building. A key result
(Proposition 2.5.5) on facets is proved in the last subsection. Section 3 is a review
of basic results on representations of connected reductive groups over a finite field
that follows from Harish-Chandra’s philosophy of cusp forms [HC]. In sections 4
and 5 we prove the main result when G is split. In section 6, we indicate the
modifications that adapt the proofs of sections 4 and 5 to the non-split setting.

We make two remarks about our idempotent systems and the work in [MS] and
[BKV].

• In [MS], axioms for a system of idempotents are introduced, and it is
established that an Euler–Poincaré sum over a finite convex subcomplex Σ
is a certain explicit projection operator. They then take a limit and obtain
elements of the Bernstein center (their terminology is central idempotent in
the multiplier algebra). They provide examples related to GL(m), the work
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of Schneider–Stuhler [SS], and cases associated to certain supercuspidal
representations.

• When r is a rational number, in [BKV], it is established directly that Euler–
Poincaré sums of idempotents of the trivial representation of Moy–Prasad
groups Gx,r+ provide a presentation of the depth r Bernstein projector
Pr. In particular, when r is not integral, a simplicial refinement of the
building is required. These provide interesting examples of Euler–Poincaré
sum presentations (for natural finite sums) of Bernstein projectors.

In our work here, for an individual Bernstein projector PΩ of depth zero, we define
a system of Peter-Weyl idempotents and show directly the Euler–Poincaré sum of
these idempotents provides a presentation of PΩ. If we fix a facet F and sum over
the Bernstein components of depth zero, then by Harish–Chandra’s philosophy of
cusp forms, and the Peter-Weyl Theorem, the sum is the inflation of the regular
representation of GF /G

+
F , i.e., the idempotent 1

meas(G+
F )

1G+
F
. This is the Euler–

Poincaré presentation of P0 in [BKV]. We mention it can be shown a posteriori our
system of idempotents satisfy the axioms in [MS].

The evidence provided by the Euler–Poincaré formula for P0 and individual
depth zero projectors, leads to the expectation there should be an Euler–Poincaré
formula for suitable combinations of Bernstein projectors. In the extreme case of a
single Bernstein component and positive depth, the equivariant data should involve
refinements of the unrefined minimal K-types of [MPa,MPb].

2. Notation, review, and results on facets

in the Bruhat–Tits building

2.1. Notation. Suppose k is a non-archimedean local field. Denote by Ok, ℘k,
and Fq = Ok/℘k, respectively, the ring of integers, prime ideal, and residue field
of k. Let G be a connected reductive linear algebraic group defined over k. If H
is a k-subgroup of G, we write H for the group of k-rational points of H, e.g.,
G = G(k). For convenience, we assume G is k-split and absolutely quasisimple.
Set 
 = rank(G). Let B = B(G) be the reduced Bruhat-Tits building of G. Let S
be a maximal k-split torus of G, and let A = A(S) be the apartment associated
to S = S(k) ⊂ G. Our hypotheses on G (split, quasisimple) mean the apartments
are simplicial complexes, and hence B is too. The group G acts transitively on the
chambers (
-simplices) of B. The choice of a hyperspecial point x0 ∈ A corresponds
to the choice of a Chevalley basis for the Lie algebra g of G.

Let Φ = Φ(S) be the roots (of G) with respect to S, and let Ψ = Ψ(A) be the
system of affine roots on A. If α (resp., ψ) is a root (resp., affine root), set Uα

(resp., Xψ) to be the associated root (resp., affine root) group. If Φ+ is any set of
positive roots of Φ, let Δ denote the simple roots subset of Φ+.

• Fix a Borel subgroup B ⊃ S of G, and let Φ+
B = Φ(S,B) denote the set

of positive roots with respect to B, and ΔB = {α1 , . . . , α� } the simple
roots.
(i) Let ψi ( 1 ≤ i ≤ 
) be the affine roots so that grad(ψi) = αi, and

ψ(x0) = 0.
(ii) Let ψ0 be the affine root so that grad(ψ0) is the negative of the highest

root, and ψ0(x0) = 1 (we have normalized the value group [T, §0.2] to
be Z).
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• Set

S : = {x ∈ A | ψi(x) > 0 ∀ 1 ≤ i ≤ 
 }
the positive Weyl chamber in A with respect to x0 and Φ+,

S0 : = {x ∈ A | ψi(x) > 0 ∀ 0 ≤ i ≤ 
 } .

Note S0 ⊂ S, and its closure S0 is a chamber (affine Weyl chamber) in A,
and with respect to S0, the sets

Ψ+ = { ψ ∈ Ψ(A) | ψ(x) > 0 ∀ x ∈ S0 } and Δ0 = { ψ0, ψ1, . . . , ψ� }
are the positive affine roots, and the simple affine roots, respectively. The
affine roots Ψ(A) are integer combinations ψ =

∑
niψi satisfying grad(ψ)

∈ Φ.
• For x ∈ B, and r ≥ 0, let Gx,r be the Moy-Prasad subgroup associated to
x and r.

• We fix a Haar measure on G. If J is an open compact subgroup of G, we
define eJ to be the idempotent:

eJ (x) :=
1

meas(J)

{
1 if x ∈ J,

0 otherwise .

2.2. A simplex lemma. We recall and designate some nomenclature. An 
-
dimensional simplex D is the convex closure of a set Vert = { v0, v1, . . . , v� } of
(
 + 1) points in an affine space so that v1 − v0, v2 − v0, . . . , v� − v0 are linearly
independent. For a non-empty subset K ⊂ Vert with (k+1) elements, we designate:

• facet(K) := convex closure of K. It is a k-facet of D.
• The convex set

recess(K) := facet(K) \
⋃

L�K

facet(L) .

The recess is the interior of facet(K) when k ≥ 1 and equal to facet(K)
for k = 0. A useful feature of recesses is that the simplex D is partitioned
by them, and there is a one-to-one correspondence from recesses to facets,
namely the process of taking the closure. For convenience, when E is a
facet of D, we write recess(E) for the recess whose closure is E.

• It is elementary that:
(i) the number of k-facets contained in a j-facet (j ≥ k) is

(
j+1
k+1

)
,

(ii) the total number of facets is 2�+1 − 1.
A face of D is, by definition, the convex closure of 
 points of V , i.e., a
maximal proper facet of D.

• If F is a facet in B(G), and y ∈ recess(F ), let GF denote the parahoric
subgroup Gy,0, and let G+

F = Gy,0+ .

Lemma 2.2.1. Suppose D is an 
-dimensional simplex, and F is a non-empty
collection of faces of D. Set m = #(F). Then

(i) The union P =
⋃

F ∈F F is a simplicial complex inside D. The number
of k-facets of D in P is

m∑
r=1

(−1)(r−1)

(
�+ 1− r

k + 1

)(
m

r

)
.
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(ii) Let C be the facets of D occurring in the complement of P. Then:
(ii.1) A facet in C has codimension at most (
+ 1−m).

(ii.2) The number of facets of codimension j is
(
�+1−m

j

)
.

(ii.3) The total number of facets in C is 2�+1−m.

We note: (i) when F is all the 
 + 1 faces, then C consists of D, (ii) when F
is all but one of the faces, then C consists of two elements (the remaining face, and
D itself), (iii) when F = {F } is a single face F , then C consists of all the facets
not contained in F .

Proof. The proof of (i) is based on inclusion and exclusion. Suppose Σ is the closure

of a j-facet in the union P. For k ≤ j, the number of k-facets in Σ is
(
j+1
k+1

)
. The

intersection of r distinct face closures is the closure of a unique (
− r)-facet, e.g., a

single face is an (
− 1)-facet. This (
− r)-facet has
(
�−r+1
k+1

)
k-facets in its closure.

By the principle of inclusion and exclusion, the number of k-facets in the union P
is the stated

m∑
r=1

(−1)(r−1)

(
�+ 1− r

k + 1

)(
m

r

)
.

To prove statement (ii), we consider the sum obtained by extending the index r to
r = 0, i.e., the sum

m∑
r=0

(−1)(r−1)

(
�+ 1− r

k + 1

)(
m

r

)
.

This is (−1)(�−k+1) times the coefficient of x(�−k) in the power series expansion of
1

(1+x)(k+2) (1 + x)m.

When m ≥ (k+2), the power series is the polynomial (1+ x)((m−2)−k), and the
coefficient of x(�−k) is zero; so,(

�+ 1

k + 1

)
=

m∑
r=1

(−1)(r−1)

(
�+ 1− r

k + 1

)(
m

r

)
.

In particular, all k-facets of D are in the union P, so none are in C.
When m < (k + 2), the coefficient of x(�−k) in the power series expansion of

1
(1+x)((k+2)−m) is (−1)(�−k)

(
�+1−m
k+1−m

)
. Thus,

m∑
r=1

(−1)(r−1)

(
�+ 1− r

k + 1

)(
m

r

)
=

(
�+ 1

k + 1

)
−

(
�+ 1−m

k + 1−m

)
.

Thus, the number of k-facets (of D) in C is
(
�+1−m
k+1−m

)
=

(
�+1−m
�−k

)
. The integer

j = 
− k is the codimension. �

Suppose D is a chamber of B, and F is a non-empty collection of m faces of D.
Let W = {E1, E2, . . . , E(�+1−m)} be the faces of D complementary to the faces
in F . Then, the facets in the complement C of codimension j can be described as
follows: Given a subset Y ⊂ W of j faces, let

F (Y ) =
( ⋂
E∈Y

E
)

a (
− j)-facet .

When Y = ∅, we use the convention F (∅) = D; so, GF (∅) = GD. Clearly, all

the 2(�+1−m) facets in C are obtained in this fashion. If ( ∅ ⊂) Y1 ⊂ Y2 ⊂ W ,
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then D ⊃ F (Y1) ⊃ F (Y2) ⊃ F (W ); so, GD ⊂ GF (Y1) ⊂ GF (Y2) ⊂ GF (W ), and

G+
D ⊃ G+

F (Y1)
⊃ G+

F (Y2)
⊃ G+

F (W ). The quotient B = GD/G+
F (W ) is a Borel subgroup

of the finite field group G = GF (W )/G
+
F (W ). The parahoric subgroups which fix the

2(�+1−m) facets of Lemma 2.2.1 part (ii.3) corresponds to the standard parabolic
subgroups of G which contain the Borel subgroup B.

2.3. Bruhat height. We fix an apartment A = A(S) of the building, and a
chamber C0 in A. Let Sc denote the maximal bounded (compact) subgroup of S.
We recall that the normalizer N = NG(S) of S acts on A, with action kernel equal
to Sc, i.e., the action factors through the extended affine Weyl group

W a := NG(S)/Sc .

For n ∈ W a, let 
Bru(n) denote the Bruhat length of n. If D = n.C0, we define the
Bruhat height of D with respect to C0 as:

htC0
(D) := 
Bru(n) .

Figure 1 illustrates the height function htC0
for C2.

Figure 1. Illustration of the height of chambers in an apartment
when G is of type C2.

If ψ is an affine root, we set the associated affine hyperplane as :

(2.3.1) Hψ := the zero locus (an affine hyperplane) of ψ .

We also use the notation H±ψ for this affine hyperplane.
For any facet F (not necessarily a face) of D, we set

(2.3.2) Ψ(F ) := set of affine roots ψ which vanishes on F .
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A face F (facet of dimension (
− 1)) of D is in the zero hyperplane set of a unique
pair of affine roots ±ψ, i.e., Ψ(F ) = {±ψ}. When F is a face of D, set

(2.3.3)
rF (∈ W a ) = the affine reflection across the hyperplane H±ψ ,

oppF (D) = the chamber obtained from D by reflection across F .

Any chamber D of A can be obtained from C0 by a composition of reflections
rF (∈ W a ). We find it useful to define for a pair of roots {±γ} ⊂ Φ, the {±γ}-
height of a chamber D with respect to C0 as:

(2.3.4)

ht±γ
C0

(D) :=

⎧⎪⎨⎪⎩
The number of affine hyperplanes Hψ satisfying:

(i) grad(ψ) = ±γ, and

(ii) Hψ separates C0 and D.

Then we have the following.

Lemma 2.3.5. Fix a base chamber C0 in A. If D is a chamber in A, then the
minimum number of affine reflections needed to take C0 to D is the sum

htC0
(D) =

∑
{±γ}

ht±γ
C0

(D)

over all pairs of roots in Φ.

Proof. In W a, let X = S/Sc, and W = NG(S)/S, the finite Weyl group of G. If we
take a hyperspecial point x0 in A, then every element w ∈ W , has a representative
nw ∈ (Gx0,0 ∩NG(S)), which is unique modulo Sc. Let Wx0

= {nw | w ∈ W } be a
set of such representatives of W . Then, any n ∈ NG(S) can be written as n = xnw

with x ∈ S and nw ∈ Wx0
.

Suppose D is a chamber of A. Take n = xnw ∈ NG(S) so that D = (xnw)C0.
Fix a positive system of roots Φ+ ⊂ Φ. Denote the negative roots as Φ−. By
Proposition 1.23 of [IM], the Bruhat length Bru(n) of n is

Bru(n) = Bru( xnw ) =
∑

α ∈ Φ+

w−1(α) ∈ Φ+

| 〈x, α〉 | +
∑

α ∈ Φ+

w−1(α) ∈ Φ−

| 〈x, α〉 − 1 | .

For α ∈ Φ+, the geometric meaning of the function

Htα( xnw ) :=

{
| 〈x, α〉 | when w−1(α) ∈ Φ+

| 〈x, α〉 − 1 | when w−1(α) ∈ Φ−

is precisely the function ht±α
C0

. The lemma follows. �

We note that if A′ is another apartment of B containing C0, then the two height
functions agree on chambers in the intersection A ∩ A′. Thus, there is a unique
extension of the height function htC0

to all the chambers of B.
We observe that if F is a face of a chamber D ⊂ A, and Ψ(F ) = {±ψ}, then

for z ∈ recess(F ) and small positive ε, the point z + ε grad(ψ) is either in D or
oppF (D). With respect to D, we define:
(2.3.6)
(i) ψ is outwards oriented if z + ε grad(ψ) is in oppF (D) for small positive ε ,

(ii) ψ is inwards oriented if z + ε grad(ψ) is in D for small positive ε .
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Suppose D is a chamber in the apartment A. Set

(2.3.7)
c(D) = { F a face of D — htC0

(oppF (D)) = htC0
(D) + 1 } ,

p(D) = { F a face of D — htC0
(oppF (D)) = htC0

(D) − 1 } .

Clearly any face of D belongs to either c(D) or p(D). Mnemonically, the set p(D)
(resp., c(D)) is the set of “parent” or “inward” (resp., “child” or “outward”) faces
of the chamber D.

Proposition 2.3.8. Suppose D is a chamber of an apartment A, and F is a face of
D, and htC0

(oppF (D)) = htC0
(D) + 1. Write Ψ(F ) = {±ψ} (notation (2.3.2)),

and choose ψ to be outward oriented for D (notation 2.3.6). Set α = grad(ψ). Then
for any y ∈ recess(D) and x ∈ recess(F ),

Gy,0+ ∩ Uα = Gx,0+ ∩ Uα .

Proof. One verifies both subgroups equal the affine root subgroup Xψ+1. �

2.4. Chamber based sectors in an apartment. We fix a maximal torus S

and its associated apartment A = A(S). If ψ is an affine root, set
(2.4.1)

Hψ>0 : = { x ∈ A | ψ(x) > 0 } and Hψ≥0 : = { x ∈ A | ψ(x) ≥ 0 } .

Suppose Φ+ is a choice of positive roots in Φ = Φ(S), and C0 is a chamber. Set:

(2.4.2)

S(C0,Φ
+) : =

⋂
grad(ψ) ∈ Φ+

C0 ⊂ Hψ≥0

Hψ≥0 .

We call such a set the C0-chamber based sector with respect to the positive roots
Φ+. Figure 2 illustrates 3 C0-based sectors in C2.

Proposition 2.4.3. The chamber based sector S(C0,Φ
+) is the set of chambers

which can be obtained from C0 by repeated application of affine reflections sψ with
grad(ψ) ∈ Φ+, and outwards oriented.

We note:

• The union of the sets S(C0,Φ
+), as Φ+ runs over positive roots subsets of

Φ, is A.
• A chamber D can belong to more than one S(C0,Φ

+). This happens when
D is near a (Weyl chamber) wall.

If D is a chamber of A, set

R(C0, D) : = { Φ+ a set of positive roots | D ⊂ S(C0,Φ
+) } ,

B(C0, D) : =
⋂

Φ+∈R(C0,D)

S(C0,Φ
+) .

Alternatively, we define a subset Φ(C0, D) of the roots Φ as follows:

(i) Suppose α is a root and there is an affine root ψ with grad(ψ) = α, and
the zero hyperplane Hψ (= H−ψ) separates C0 and D. We define D to be
grad(ψ) oriented with respect to C0 if for y ∈ Hψ and x ∈ recess(D) we
have:

(2.4.4) 〈 ( x − y ) , grad(ψ) 〉 > 0 .
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Figure 2. Illustration of three chamber based sectors when G is
of type C2.

Obviously, D is either grad(ψ) or grad(−ψ) oriented with respect to C0.
Also, D is grad(ψ) oriented if, for any positive ε, the point y + ε grad(ψ)
and points of recess(D) are on the same side of the zero hyperplane Hψ.
Set α = grad(ψ). Clearly, there is an affine root α−k with smallest possible
k so that Hα−(k+1) separates C0 and D, but Hα−k does not, i.e.,

H(α−k),>0 : = { x ∈ A | (α− k)(x) > 0 }

contains recess(C0) and recess(D), and is the smallest of the affine root
half-spaces Hψ,>0 with grad(ψ) = α which does so.

(ii) Suppose α is a root so that for any affine root ψ with grad(ψ) = ±α, the
zero hyperplane Hψ of ψ does not separate C0 and D. Here, by replacing
α by −α if necessary, there is an affine root ψ = α − k so that recess(C0)
and recess(D) lie in the band

Bα := { x ∈ A | k < α(x) < (k + 1) } .

We define a canonical set Φ(C0, D) as:

Φ(C0, D) = the union of the roots grad(ψ) in (i) .

In the situation when there are no roots of type (ii), then the roots Φ(C0, D) are a
positive system of roots, and B(C0, D) = S(C0,Φ(C0, D)).
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We explain the significance of the roots of types (i) and (ii). Suppose x ∈ C0

and y ∈ D. Then, as we move from x to y along the line segment (1− t)x+ ty :

• For α ∈ Φ(C0, S),

(2.4.5)
G((1−t)x+ty),0+ ∩ Uα increases from Gx,0+ ∩ Uα to Gy,0+ ∩ Uα ,

G((1−t)x+ty),0+ ∩ U−α decreases from Gx,0+ ∩ U−α to Gy,0+ ∩ U−α .

• If ±α is a root of type (ii), then

(2.4.6) G((1−t)x+ty),0+ ∩ Uα is constant .

The roots of type (ii) are the roots of a Levi subgroup L containing S. The roots
of type (i) are those of a unipotent radical V of a parabolic subgroup P = LV. Let

V denote the opposite radical V. For x ∈ A(S), set

Lx,0+ := Gx,0+ ∩ L , Vx,0+ := Gx,0+ ∩ V , Vx,0+ := Gx,0+ ∩ V .

Then

Gx,0+ = Lx,0+ Vx,0+ Vx,0+ in any order .

Proposition 2.4.7. Suppose D is a chamber of A. Define the Levi L and V as
above. Let c(D) be the set of child faces of D, and suppose E,F ∈ C(c(D)), so that
F is a face of E. Then, for y ∈ recess(E), and x ∈ recess(F ):

Vy,0+ = Vx,0+ and Ly,0+ = Lx,0+ .

Proof. Apply Proposition 2.3.8. �

2.5. A finiteness condition on chambers. Define a non-empty set of affine
root pairs X = {±ψ1, . . . ,±ψk } to be permissible if :

• grad(ψ1), . . . , grad(ψk) are linearly independent. Here, we have selected
one affine root from each pair. Let

(2.5.1) AS(X ) := H±ψ1
∩ · · · ∩ H±ψk

be an (
− k)-dimensional affine subspace of A.
• There exists a chamber D so that each intersection Hψi

∩ D is a face of
D. We name this relationship as the chamber D being incident with X . In
this situation, the intersection D ∩ AS(X ) is an (
− k)-dimensional facet
of D.

If D is a chamber, set

(2.5.2) Ξ(D) := set of affine root pairs ±ψ so that H±ψ ∩D is a face of D .

We observe :
(2.5.3)

• If D is a chamber, then any non-empty proper subset X = {±ψi1 , . . . , ±ψik }
of Ξ(D) is permissible.

When D is incident with (a permissible set) X , let

X ′
D = {±φk+1, . . . , ±φ�+1 } = Ξ(D) \ X

be the affine root pairs so that the remaining (
+1− k) faces of D lie in the affine
hyperplanes H±φk+1

, . . . , H±φ�+1
. The affine subspace AS(X ′

D) has dimension (k−
1), and the two subsimplices (D ∩ AS(X ) ) and (D ∩ AS(X ′

D) ) of the simplex D
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are opposite subsimplices, i.e., any vertex of D lies in precisely one of the two
subsimplices. Define vector spaces

Vect(AS(X ) ) : = translations of A which leave AS(X ) invariant,

Vect(AS(X ′
D) ) : = translations of A which leave AS(X ′

D) invariant.

A consequence of the oppositeness of the two subsimplices (D ∩ AS(X ) ) and (D ∩
AS(X ′

D) ) of D is that Vect(AS(X ) ) and Vect(AS(X ′
D) ) are linearly independent.

They span a subspace of dimension (
− 1).
We note if X is permissible and dim(AS(X )) = (
 − k) > 0, then there are

infinitely many distinct chambers D incident with X , and AS(X ) is tiled by the
intersections D ∩ AS(X ) as D runs over all chambers incident with X . Indeed, let
Sc be the maximal bounded (hence compact) subgroup of S. We recall the discrete
(free commutative of rank 
) group Γ(A) := S/Sc acts as translations on A. Set

Γ(AS(X )) : = subgroup of Γ(A) preserving AS(X ) ,

Γ(AS(X ′
D)) : = subgroup of Γ(A) preserving AS(X ′

D) .

These subgroups are of ranks (
− k) and (k − 1), respectively, and

Vect(AS(X )) = Γ(AS(X ))⊗Z R, Vect(AS(X ′
D)) = Γ(AS(X ′

D))⊗Z R .

If D is an incident chamber to X , and x ∈ Γ(AS(X )), then the translated chamber
D + x is also incident. We deduce there are finitely many distinct X incident
chambers D1 , . . . , DM so that the union of facets

(2.5.4) UF = (D1 ∩ AS(X ) ) ∪ . . . ∪ (DM ∩ AS(X ) )

is a fundamental domain for the translation action of Γ(AS(X )) on AS(X ).

Proposition 2.5.5. Fix a chamber C0, and suppose X = {±ψ1, . . . ,±ψk } is a
permissible set of affine roots. Then, the number of chambers D which are incident
with X , and satisfy

c(D) = { H±ψi
∩ D | 1 ≤ i ≤ k }

(notation (2.3.7)) is finite.

We remark about the extreme cases:

• If k = 
, and X is permissible, then there is a unique chamber incident with
X , so the assertion is obvious.

• If k = 1, the singleton pair set X = {±ψ} is automatically permissible,
AS(X ) is H±ψ, and for any X -incident chamber D, the intersection E =
(D∩AS(X )) is a face of D, and (D∩AS(X ′

D)) is the vertex opposite to E.

Proof. Suppose D is a chamber incident with X , and X ′
D = Ξ(D)\X . For each

affine root pair ±ψi in X , or ±φj in X ′
D it is convenient for us to select a preferred

affine root. We do this by designating ψi to be the affine root so that the chamber
D lies in the half-space Hψi≤0 for 1 ≤ i ≤ k. Similarly, for a pair ±φj in X ′

D, we
designate φj to be the affine root so that D is in the half-space Hφi≥0.

The proposition’s hypothesis that c(D) is the set { Hψi
∩ D | 1 ≤ i ≤ k } means

(2.5.6) C0 ⊂ Cone(X , D) :=
( ⋂

1≤i≤k

Hψi≤0

) ⋂ ( ⋂
(k+1)≤i≤(�+1)

Hφi≤0

)
.



168 DAN BARBASCH, DAN CIUBOTARU, AND ALLEN MOY

We define and observe:

ConeX : =
( ⋂

1≤i≤k

Hψi≤0

) depends only on the permissible set X , and
not on the chamber D,

ConeD : =
( ⋂
(k+1)≤i≤(�+1)

Hφi≤0

)
is dependent on the incident chamber D.

Obviously, cones ConeX and ConeD are Vect(AS(X ))-invariant and Vect(AS(X ′
D))-

invariant, respectively. If we translate the chamber D by y ∈ Γ(AS(X ) ), to obtain
another incident chamber D + y, we have :

ConeD+y = (ConeD ) + y and Cone(X , D + y) = Cone(X , D) + y .

We consider the (Vect(AS(X )) + Vect(AS(X ′
D))-invariant band

Bn(C0) : = C0 + Vect(AS(X )) + Vect(AS(X ′
D))

= {x+ y + z | x ∈ C0 , y ∈ Vect(AS(X )) , z ∈ Vect(AS(X ′
D)) } .

If C0 lies in both Cone(X , D) and Cone(X , D + y), we must have

(2.5.7) C0 ⊂
(
Cone(X , D) ∩ Bn(C0)

)
∩

( (
Cone(X , D) ∩ Bn(C0)

)
+ y

)
.

Since the set (Cone(X , D) ∩ Bn(C0)) is compact, and Γ(AS(X ) ) are (discrete)
translations, the set of y ∈ Γ(AS(X ) ) satisfying (2.5.7) is finite.

To summarize: If D is a chamber incident to (a permissible set) X and C0 ⊂
Cone(X , D), then there are only finitely many y ∈ Γ(AS(X ) ) satisfying C0 ⊂
Cone(X , D + y) as well. As mentioned above, we can find finitely many disjoint
incident chambers so that the union (2.5.4) of their closures is a fundamental domain
for Γ(AS(X ) ). The statement of the proposition follows. �

2.6. A criterion for a distribution to be essentially compact. A much
exploited criterion (see [BD, §1.7]) for a distribution D to be essentially compact
is the following.

Lemma 2.6.1. Suppose D is a G-invariant distribution on G. Then, D is essen-
tially compact, and therefore in the Bernstein center Z(G), if and only if for any
open compact subgroup J , the function D � 1J is compactly supported.

3. Harish-Chandra cuspidal classes and idempotents

Throughout this section, G is a connected reductive linear algebraic group de-
fined over a finite field Fq. When P is a parabolic subgroup of G, we denote its
unipotent radical by rad(P). Given a fixed Borel subgroup B ⊂ G, a B-standard par-
abolic subgroup, is one which contains B. Let G = G(Fq), B = B(Fq), P = P(Fq),
etc., denote the groups of Fq-rational points. We take the Haar measure on G and
its subgroups to be the point mass.

3.1. A convolution property of idempotents of rad(P). For H any sub-
group of G, and a representation κ of H, let Θκ signify its character. The function

(3.1.1) eκ :=
1

#(H)
deg(κ) Θκ =

1

#(H)
deg(κ)

∑
g∈H

Θκ(g) δg

is a convolution idempotent (in C(G)).
Take T to be a maximal torus in B, let Φ+ = Φ+(T ) be the positive roots

determined by B, and let Δ be the simple roots of Φ+. The B-standard parabolic
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subgroups are indexed by subsets of Δ. A subset A ⊂ Δ corresponds to the
parabolic subgroup PA generated by the Borel subgroup B and the root groups

U−α, α ∈ A. In particular, P∅ = B, and PΔ = G.

Lemma 3.1.2. Suppose R � Q are two B-standard parabolic subgroups and V =
rad(Q) are their unipotent radicals. Then,( ∑

R⊃P⊃B
(−1)rank(P) erad(P)

)
� eV = zero function .

Proof. As mentioned above, we index a B-standard parabolic subgroup by subset

A ⊂ Δ. For convenience, we use the notation eA to denote the idempotent erad(PA).

Then, eA � eB = eA∩B. Denote by Q and R the subsets of Δ satisfying Q = PQ,
and R = PR.

The alternating sum of the idempotents is a sum over 2#(R) terms. Since Q � R,

we have Q � R, i.e., the complement Q
′
:= R\Q is non-empty. For each subset

q ⊂ Q, we consider the subsets of R obtained from q by adding a subset q′ of Q
′
.

The convolution of eQ with the sum over these 2#(Q′) subsets is, up to ±1:( ∑
q′⊂Q′

(−1)#(q∪q′) eq∪q′

)
� eQ = (−1)#(q)

∑
q′⊂Q′

(−1)#(q′) eq∪q′ � eQ

= (−1)#(q)
∑
q′⊂Q′

(−1)#(q′) eq

= zero function .

The statement of the lemma follows. �

3.2. Harish–Chandra cuspidal classes. Define a Harish-Chandra cuspidal

class to be an equivalence class L of pairs (L, σ), modulo conjugation by G, con-
sisting of a Levi subgroup L ⊂ G and an irreducible cuspidal representation σ
of L. So, (L, σ) ∼ (L′, σ′), if there exists g ∈ G satisfying L = g−1L′g, and
σ(x) = σ′(gxg−1) for all x ∈ L. We recall two parabolic subgroups P and P ′ are
associate if they have Levi factors L and L′ which are G conjugate.

A Harish-Chandra cuspidal class L defines up to conjugation by G a Levi sub-
group L, and thus an associativity class of parabolic subgroups, and possibly several

irreducible cuspidal representations of L. A Harish-Chandra cuspidal class L de-
termines a subcategory RL of the category of representations R of G, namely
(3.2.1)

RL =

⎧⎪⎪⎨⎪⎪⎩
Representations of G whose irreducible subrepresentations are
equivalent to representations in the induced representation

IndGLU (σ), where (L, σ) ∈ L, and LU is a parabolic subgroup con-
taining the Levi subgroup L.

If L is a Harish-Chandra cuspidal class, take (L, σ) ∈ L, and set

(3.2.2)
eL,L : =

1

#(L)
∑
κ ∈ ̂L

(L, κ) ∈ L

deg(κ) Θκ .
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For a parabolic subgroup P = LU , set

(3.2.3) eP,L : =
1

#(U) inflation to P of eL,L ,

We extend eL,L, eP,L, and eU to functions on G by setting their values outside L,
P, and U , respectively, to be zero. In G, it is obvious

eP,L = eL,L � eU .

To any parabolic subgroup Q, we wish to attach an idempotent eQ,L. We do
this as follows: Fix (L, κ) ∈ L. Let Q = MV be a Levi decomposition of Q. We
consider whether or not there is a conjugate of L contained in M.

• When a conjugate L′ = gLg−1 of L is contained inM, we take P ′ = L′U ′ to
be a parabolic subgroup (of G) which is contained in Q. Then L′ (M∩U ′)
is a parabolic subgroup of M. Set

(3.2.4) eM,L :=
1

#(M)

∑
τ∈̂M

′
deg(τ ) Θτ ,

where the sum
∑′ is over the irreducible representations τ of M for

which the invariants τM∩U ′
contain an irreducible representation σ′ of L′

with (L′, σ′) ∈ L. We also set

(3.2.5) eQ,L : =
1

#(V) inflation of eM,L to Q = eM,L � eV .

Let
(3.2.6)

RM,L =

⎧⎨⎩ the subcategory of representations π of M so that if τ is an
irreducible subrepresentation of π, and σ′ is an irreducible L′-

subrepresentation of the invariants τM∩U ′
, then (L′, σ′) ∈ L.

In particular, RG,L = RL. The idempotent eM,L is characterized as

(3.2.7) π(eM,L) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
IdVπ

for any representation (π, Vπ) of

M in the subcategory RM,L,

0Vπ
for any irreducible representation

(π, Vπ) of M not in RM,L.

• When the Levi M does not contain any G-conjugate of L, we set

(3.2.8) eQ,L := zero function .

Proposition 3.2.9. Suppose L is a fixed Harish-Chandra cuspidal class. Let Q be
a parabolic subgroup, and let Q = MV be a Levi decomposition. Then

(3.2.10) eG,L � eV = eQ,L .

Proof. Suppose ρ is any irreducible representation of G. We claim:

(3.2.11) ρ(eG,L � eV) = ρ(eQ,L) .

Assuming the validity of the claim, we have for all g ∈ G that ρ(δg−1 � eG,L � eV) =
ρ(δg−1 � eQ,L), so

(3.2.12) trace(ρ(δg−1 � eG,L � eV)) = trace(ρ(δg−1 � eQ,L)) .
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Since we can recover any function f on G as

(3.2.13) f(x) = (δx−1 � f)(1) =
1

#(G)
∑
ρ∈̂G

deg(ρ) trace( ρ(δx−1 � f) ) ,

we see (3.2.12), hence (3.2.11) implies the conclusion (3.2.10).
To establish the claim, we note that since eG,L is central in the group algebra

C(G), it commutes (under convolution) with eV , and so the operators ρ(eG,L) and
ρ(eV) commute. Also

ρ(eG,L) =

{
IdVρ

when ρ ∈ RL ,

0Vρ
otherwise .

The operator ρ(eV) projects to the V-invariants (which we note is a representation
of M). Therefore ρ(eV � eG,L) is the projection to the V-invariants when ρ ∈ RL,
and is the zero operator otherwise. Since eQ,L = eM,L � eV , we see the operator
ρ(eQ,L) projects to RM,L when ρ ∈ RL and is zero otherwise. Thus, the claim
follows. �

We fix a Borel subgroup B ⊂ G, and consider the following alternating sum
function over B-standard parabolic subgroups :

(3.2.14)
∑
P⊃B

(−1)rank(P)eP,L .

The next corollary is the finite field result we shall use to show the Bruhat–Tits
building version of the above alternating sum belongs to the Bernstein center.

Corollary 3.2.15. Suppose Q ⊃ B is a proper standard parabolic subgroup, i.e,
V = rad(Q) �= {1}. Then,( ∑

P⊃B
(−1)rank(P)eP,L

)
� eV = zero function .

Proof. For a parabolic P ⊃ B, let rad(P) denote its radical. By the proposition,
eP,L = eG,L � erad(P). Then,( ∑

P⊃B
(−1)rank(P)eP,L

)
� eV =

( ∑
P⊃B

(−1)rank(P)eG,L � erad(P)

)
� eV

= eG,L �
( ∑

P⊃B
(−1)rank(P) erad(P) � eV

)
= eG,L � 0 = 0 .

�
More generally, we have the following.

Corollary 3.2.16. Suppose R � Q are two B-standard parabolic subgroups, and
V = rad(Q). Then,( ∑

R⊃P⊃B
(−1)rank(P)eP,L

)
� eV = zero function .

Proof. The proof is similar to the proof of Corollary 3.2.15. We use the property( ∑
R⊃P⊃B

(−1)rank(P) erad(P)

)
� eV = zero function . �
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4. The projector for the Iwahori–Bernstein component

We recall our notation: k is a non–archimedean local field, G = G(k) is the
group of k-rational points of a split connected quasisimple group G defined over k.
Let B = B(G) denote the Bruhat–Tits building of G. We fix a chamber C0 ⊂ B,
and let htC0

be the Bruhat height function on chambers. For m ∈ N, we define a
“ball and shell of radius m” as:

(4.0.1)
Ball(C0,m) : = { chamber D | htC0

(D) ≤ m } ,

Shell(C0,m) : =
{
chambers D | htC0

(D) = m
}
.

Clearly, Ball(C0,m) is a convex simplicial subcomplex of B.

4.1. An equivariant system of idempotents. We define a system of idem-
potents indexed by the facets of B = B(G) as follows:

• For a chamber F ⊂ B, we take eF to be the idempotent of the trivial
representation of the Iwahori subgroup GF .

• For a facet E ⊂ B, let F be a chamber whose closure contains E, so
GE ⊃ GF , G

+
E ⊂ G+

F , and B = GF /G
+
E is canonically a Borel subgroup of

G = GE/G
+
E . The pair L = (B, 1B) consisting of the trivial representation

of the Borel subgroup B of G is a Harish-Chandra cuspidal class for G. Let
(4.1.1) eE = inflation of the idempotent eB,L of G to GE .

The system of idempotents eF for the Iwahori subgroups, i.e., chambers F , is clearly
G-equivariant, and therefore the collection of canonically attached idempotents eE
for arbitrary facets is also G-equivariant.

4.2. Euler–Poincaré presentation of a distribution. The key result we show
is the following.

Theorem 4.2.1. For a facet F of B(G), let eF be the idempotent defined in (4.1.1).
The G-invariant distribution defined as the infinite alternating sum( ∑

E⊂ B(G)

(−1)dim(E) eE

)
over the facets is an essentially compact distribution on G, i.e., in the Bernstein
center.

To prove Theorem 4.2.1, it is enough to show for any open compact subgroup J ,
and eJ = 1

meas(J)1J , the convolution∑
E ⊂ B(G)

(−1)dim(E) eE � eJ

has compact support. Fix a chamber C0 ⊂ B, and let htC0
be the height function,

with respect to C0, on the chambers of B. When D is a chamber, we use htC0
to

partition the faces of D into the two subsets of parent p(D) faces and child faces
c(D) as in (2.3.7). We note c(D) is always non-empty, and when D �= C0, i.e.,
htC0

(D) > 0, then p(D) is non-empty too. In this latter situation (htC0
(D) > 0),

the intersection

(4.2.2) D+ :=
⋂

F∈c(D)

F
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is a facet of D. Set

(4.2.3) F+(D) := the set of facets E of D which contain D+ .

Theorem 4.2.4. Fix a chamber C0 ⊂ B. Suppose J is an open compact subgroup
of G. If D is a chamber with htC0

(D) sufficiently large (depending on J), then the
convolution

(4.2.5)
∑

E ∈F+(D)

(−1)dim(E) eE � eJ = zero function .

The proofs are in section 4.4 .

4.3. Some preliminary results. We need several preliminary results to prove
Theorem 4.2.4. Suppose S is a maximal split torus, and A = A(S) its associated
apartment. Given a choice of positive roots Φ+ ⊂ Φ = Φ(S), we write Δ for the
corresponding set of simple roots, and we write the vectors of the dual basis of Δ
as Δ� = {λα |α ∈ Δ }. Fix a chamber C0 ⊂ A. For any choice of a positive root
system Φ+ ⊂ Φ, we defined the C0-based sector S(C0,Φ

+) in A in (2.4.2). The
union

⋃
Φ+ S(C0,Φ

+) over all positive sets of roots is the apartment A.

Lemma 4.3.1. Suppose Φ+ ⊂ Φ(S) is a set of positive roots and Δ ⊂ Φ+ are the
simple roots. Fix a simple root α ∈ Δ, and suppose γ ∈ Φ+ satisfies λα(γ) > 0,
i.e., the expression of γ as a sum of simple roots has positive α coefficient. If
D ⊂ S(C0,Φ

+) is a chamber which is separated from C0 by L ≥ 2 distinct affine
root hyperplanes Hψ with grad(ψ) = α, then D is separated from C0 by at least L
distinct affine root hyperplanes Hψ with grad(ψ) = γ.

Proof. Let γ =
∑

β∈Δ nββ be the linear expansion of γ in terms of simple roots.
The hypothesis that there are L affine hyperplanes perpendicular to α separating
C0 and D means α(y)− α(x) > (L− 1) for any x ∈ recess(C0), and y ∈ recess(D).
Suppose β ∈ Δ \ {α }. If (i) D and C0 are separated by an affine hyperplane
perpendicular to β, then β(y) − β(x) > 0. Else, (ii) D and C0 are not separated
by any affine hyperplane perpendicular to β. Let Q be the set of these simple
roots. The set Q is linearly independent (as is any non-empty subset of Δ), and
therefore we can replace y by some y′ ∈ recess(D), so that β(y′) = β(x) for all
β ∈ Q. Therefore, γ(y′)− γ(x) =

∑
β∈Δ nβ(β(y

′)− β(x)) > nα(L− 1) ≥ (L− 1).
This means C0 and D are separated by at least L affine hyperplanes perpendicular
to γ. �
Corollary 4.3.2. Suppose D is a chamber in the C0-based sector S(C0,Φ

+),
and for all simple roots α ∈ Δ, D is separated from C0 by L ≥ 2 affine hyperplanes
perpendicular to α, then for any γ ∈ Φ+, D is separated from C0 by at least L
affine hyperplanes perpendicular to γ.

Proof. Clear. �
4.4. Proof of Theorems 4.2.4 and 4.2.1. We prove Theorem 4.2.4.

Proof. We can and do replace the open compact subgroup J by a group Gx0,ρ,
where x0 ∈ C0, and ρ is a sufficiently large integer to insure Gx0,ρ ⊂ J . The fact
that ρ is an integer means Gx,ρ = Gx0,ρ for any x ∈ recess(C0).

Take S to be a maximal split torus of G so that the apartment A = A(S) contains
C0 and D. We recall A is the union of the C0-based sectors S(C0,Φ

+) as Φ+ runs
over the sets of possible positive roots.
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Take Φ+ ⊂ Φ = Φ(S) to be a choice of positive roots so that the chamber based
sector S(C0,Φ

+) contains D. The choice of the particular set of positive roots may
not be unique. For a choice Φ+

D, let B+
D and B−

D be the Borel subgroups of G
associated to the sets of positive roots Φ+ and −Φ+. We have a decomposition of
the subgroup J = Gx0,ρ into subgroups:

Gx0,ρ = G−
x0,ρ Sρ G+

x0,ρ ,

where

G+
x0,ρ := Gx0,ρ ∩B+

D(k) is a product
∏

ψ , ψ(x0) ≥ ρ

grad(ψ) ∈ Φ+

Xψ

of affine root groups Xψ, with ψ(x0) ≥ ρ, and grad(ψ) ∈ Φ+. Similarly,

G−
x0,ρ := Gx0,ρ ∩B−

D(k) =
∏

ψ , ψ(x0) ≥ ρ

grad(ψ) ∈ −Φ+

Xψ .

Suppose α ∈ Φ+. The intersection G−
x0,ρ∩U−α is an affine root group Xφ (necessarily

grad(φ) = −α), and for all x ∈ C0, we have ρ + 1 > φ(x0) ≥ ρ. If the chambers
C0 and D are separated by at least (ρ+ 2) affine hyperplanes perpendicular to α,
then (ρ+ 1) ≤ φ(x0)− φ(y), so φ(y) ≤ −(ρ+ 1) + φ(x0) < 0 for all y ∈ recess(D),
and thus φ(y) ≤ 0 for all y ∈ D. This means the affine root group Xφ contains
Gy,0 ∩ U−α for all y ∈ D. We note that since φ(x) ≥ ρ for all x ∈ C0 (so for x0), it
is the case that Xφ is contained in J = Gx0,ρ.

To summarize: If γ ∈ Φ+, and D is a chamber of S(C0,Φ
+) separated from C0

by sufficiently many (at least (ρ + 2)) affine hyperplanes perpendicular to γ, then
G−
x0,ρ ∩ U−γ , hence Gx0,ρ, contains Gy,0 ∩ U−γ for any y ∈ D.
For k ∈ N, set

(4.4.1)

Rk = the set
{ chambers D of S(C0,Φ

+) satisfying : for each α ∈ Δ, the
chamber D is separated from C0 by at least k affine hy-
perplanes Hψ perpendicular to α.

}
Suppose D ∈ R(ρ+2). By Corollary 4.3.2, for any γ ∈ Φ+, the chamber D is
separated from C0 by at least (ρ+2) affine hyperplanes perpendicular to γ; hence,
Gx0,ρ contains Gy,0 ∩ U−γ for all y ∈ D.

When K is a facet in A, define :

(4.4.2)
Ψ(K) : = set of affine roots ψ which vanish on K ,

Ψ(K,Φ+) : = {ψ ∈ Ψ(K) | grad(ψ) ∈ Φ+ } .

Recall D+ is defined to be the facet of D which is the intersection of all the outward
oriented faces of D. We pick y to be a point in recess(D+). The finite field group
Gy,0/Gy,0+ has root system

Φ(Gy,0/Gy,0+) = { grad(ψ) | ψ affine root so that ψ|D+
≡ 0 } = grad(Ψ(D+)) .

Suppose ψ ∈ Ψ(D+,Φ
+). Set γ = grad(ψ). The hypothesis C0 and D are separated

by (ρ+ 2) affine hyperplanes perpendicular to γ means (ψ(y)− ψ(x0)) ≥ (ρ+ 1).
Since ψ(y) = 0, we get −ψ(x0) ≥ (ρ + 1). Thus, Gx0,ρ contains X−ψ. This latter
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subgroup is Gy,0 ∩ U−γ . It follows

(4.4.3) Vy :=
∏

ψ ∈Ψ(D+,Φ+)

X−ψ

is contained in Gx0,ρ and that VyG
+
D+

= G+
D (the subgroup Vy adds in the affine

root groups X−ψ), so VyG
+
D+

/G+
D+

⊂ GD+
/G+

D+
is the unipotent radical of the Borel

subgroup GD/G+
D+

.

This means, by Corollary 3.2.15, the convolution
(4.4.4)∑

E ∈F+(D)

(−1)dim(E) eE � eVy
=

∑
E ∈F+(D)

(−1)dim(E) ( eE � eGy,0+
) � eVy

=
∑

E ∈F+(D)

(−1)dim(E) eE � ( eGy,0+
� eVy

)

=
∑

E ∈F+(D)

(−1)dim(E) eE � ( e(Gy,0+ Vy) )

= zero function .

So, under the assumption D ⊂ R(ρ+2), we see
(4.4.5)∑

E ∈F+(D)

(−1)dim(E) eE � eGx0,ρ
=

∑
E ∈F+(D)

(−1)dim(E) eE � ( eVy
� eGx0,ρ

)

=
( ∑
E ∈F+(D)

(−1)dim(E) eE � eVy

)
� eGx0,ρ

= 0 � eGx0,ρ
= zero function .

We turn to the situation when the chamber D is in S(C0,Φ
+) \R(ρ+2).

For a subset I ⊂ Δ, and an integer k set

(4.4.6)
R{I,k} := {D ⊂ S(C0,Φ

+) | ht±α
C0

(D) ≥ k ∀ α ∈ I , and

ht±α
C0

(D) < k ∀ α ∈ (Δ \ I) } .
We note

(i) R{Δ,k} is the set Rk in (4.4.1) .

(ii) The set R{I,k} is finite precisely when I = ∅ .
(iii) For a fixed k, the sets R{I,k} partition S(C0,Φ

+) .

To complete the proof of Theorem 4.2.4, we need to show, when I is non-empty,

the convolution (4.2.5) vanishes for all D ∈ R{I,(ρ+2)} provided htC0
(D) is suffi-

ciently large. The case I = Δ has already been treated above. Set

Φ+(D+, I) := { γ ∈ grad(Ψ(D+,Φ
+)) | there exists α ∈ I, such that λα(γ) > 0} .

We recall the Sc-roots Φ(GD+
/G+

D+
, Sc) of the finite field group GD+

/G+
D+

are the

gradients of the affine roots in the set Ψ(D+) (see (4.4.2)). Suppose ψ ∈ Ψ(D+)
is such an affine root, and γ := grad(ψ) ∈ Φ+. If there is an α ∈ I such that
λα(γ) > 0, i.e., grad(ψ) ∈ Φ+(D+, I), then, by Lemma 4.3.1, necessarily C0 and
D are separated by at least ρ + 1 affine hyperplanes perpendicular to γ. Take
y ∈ recess(D+). Since ψ(y) = 0, we get −ψ(x0) = (ψ(y) − ψ(x0)) > ρ. This
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means both X−ψ ⊂ Gx0,ρ, as well as the image of X−ψ in the finite field group
Gy,0/G

+
y,0 (equal to GD+

/G+
D+

) is the (non-trivial) root group attached to −γ. Thus,

(4.4.7) Gx0,ρ ⊃ Vy :=
∏

ψ ∈ Ψ(D+)

grad(ψ) ∈ Φ+(D+, I)

(Gy,0 ∩ U−γ) .

Recall, the set {λα |α ∈ Δ } is the set of fundamental weights. We set

λI :=
∑
α∈I

λα .

Let F be the facet of D so that the GF /G
+
D+

is the standard parabolic whose

standard Levi is generated (modulo G+
D+

) by the affine root groups Xψ with ψ ∈
Ψ(D+) satisfying λI(grad(ψ)) = 0, and whose unipotent radical is the product
(modulo G+

D+
) of the root groups X−ψ with ψ ∈ Ψ(D+) and λI(grad(ψ)) > 0,

i.e., VyG
+
D+

/G+
D+

. Provided VyG
+
D+

/G+
D+

is not the trivial unipotent subgroup, the

ending argument for the case R(ρ+2) can be applied to deduce the convolution
(4.2.5) vanishes. By what we have argued above, this happens if there exists ψ ∈
Ψ(D+,Φ

+) and an α ∈ I with λα(grad(ψ)) �= 0. For these chambers the convolution
(4.2.5) vanishes.

Given a subset K ⊂ Δ, set

(4.4.8) Φ(K) := {α ∈ Φ | α is a linear combination of (simple) roots in K } .

We are reduced to investigating D ∈ R{I,(ρ+2)} so that every ψ ∈ Ψ(D+,Φ
+)

satisfies grad(ψ) ∈ Φ(Δ\I). Denote this set by R
last

I,(ρ+2); so,

R
last

{I,(ρ+2)} := { D ∈ R{I,(ρ+2)} | ψ ∈ Ψ(D+,Φ
+) satisfies grad(ψ) ∈ Φ(Δ\I) } .

The set of outward oriented faces of a chamber D ∈ R
last

{I,(ρ+2)} must have gradients

in Φ(Δ\I), but in principle, it could be a proper subset. We partition R
last

{I,(ρ+2)}
as follows: To a (non-empty) subset K of Δ\I, we set

R
K

{I,(ρ+2)} := { D∈R{I,(ρ+2)} | ψ ∈ Ψ(D+,Φ
+) satisfies

(i) grad(ψ) ∈ Φ(Δ\I)
(ii) each simple root β∈K occurs as a grad(ψ)} .

The sets R
K

{I,(ρ+2)} are a partitioning of R
last

{I,(ρ+2)} into 2#(Δ\I) − 1 subsets. Fur-

thermore, a chamber in R
K

{I,(ρ+2)} is incident with the permissible set K̃ := {ψ ∈
Ψ(D+,Φ

+) | grad(ψ) ∈ K } (see (2.5.3)). We apply Proposition 2.5.5 to say the

number of chambers in R
K

{I,(ρ+2)} is finite. So, R
last

{I,(ρ+2)} is finite, and we deduce

the Theorem 4.2.4 when D is a chamber in A with htC0
(D) sufficiently large.

The (compact) Iwahori subgroup GC0
acts transitively on the set A(C0) of apart-

ments containing C0. Fix an apartment A′ containing C0. Consider an apartment
gA′ (g ∈ GC0

). The above argument applied to the apartment gA′ shows there
is a compact open subgroup Kg and an integer Mg > 0 so that the convolution
(4.2.5) vanishes for all D ∈ hgA′ (h ∈ Kg) provided htC0

(D) ≥ Mg. The collection
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of sets {Kgg | g ∈ GC0
} is an open cover of GC0

, and so has a finite subcover
{ giKgi | i = 1, . . . , n }. Take M = max(Mg1 , . . . ,Mgn). The convolution (4.2.5)
vanishes for any chamber D of B satisfying htC0

(D) ≥ M . �

We turn to the proof of Theorem 4.2.1.

Proof. We recall that we can replace the open compact subgroup by a subgroup
Gx0,ρ ⊂ J with x0 ∈ C0 and ρ integral. We fix a chamber C0 and for a positive
integer m, consider the ball Ball(C0,m) of (4.0.1). We consider the convolutions

(4.4.9)
∑

E⊂Ball(C0,m)

(−1)dim(E) eE � eGx0,ρ
.

The sum is over the facets in Ball(C0,m). It is clear that the convolution over
Ball(C0, (m+1)) is obtained from the convolution over Ball(C0,m) by adding con-
volution terms of the form ∑

E ∈F+(D)

(−1)dim(E) eE � eGx0,ρ
,

whereD runs over the chambers satisfying htC0
(D) = (m+1), i.e., in Shell(C0, (m+

1)). By Theorem 4.2.4, these convolution terms vanish provided m is sufficiently
large. Therefore, the convolution over Ball(C0,m) and Ball(C0, (m + 1)) are the
same when m is sufficiently large. This establishes Theorem 4.2.1. �

4.5. The Iwahori–Bernstein component. The next proposition and corollary
show the essentially compact distribution of Theorem 4.2.1 is the projector to the
Bernstein component of representations with a non-zero Iwahori fixed vector.

Proposition 4.5.1. For any facet E ⊂ B = B(G), define the idempotent eE as in
(4.1.1). Fix a chamber C0 in B = B(G). Then:

(i) ∑
E ⊂C0

(−1)dim(E) eE � eC0
= eC0

.

(ii) For any chamber D �= C0:∑
E ∈F+(D)

(−1)dim(E) eE � eC0
= zero function .

(iii) ( ∑
E ⊂B(G)

(−1)dim(E) eE
)

� eC0
= eC0

.

Proof. Statement (i) follows from the fact that eE � eC0
= eC0

for any facet
E ⊂ C0.

Statement (ii) is seen by modifying the proof of Theorem 4.2.4. Let Φ+ ⊂ Φ
be a positive root system so that S(C0,Φ

+) contains D. The difference between
the two Iwahori subgroups GD and GC0

is the following: for α ∈ Φ+ it is the
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case (GC0
∩ Uα) ⊂ (GD ∩ Uα), while (GC0

∩ U−α) ⊃ (GD ∩ U−α). Thus, (GC0,0+ ∩
GD+,0)GD+,0+ = GD. So∑

E ∈F+(D)

(−1)dim(E)eE � eC0

=
( ∑
E ∈F+(D)

(−1)dim(E) eE � eGD+,0+

)
� ( e(GC0,0+∩GD+,0) � eC0

)

=
( ∑
E ∈F+(D)

(−1)dim(E) eE � ( eGD+,0+
� e(GC0,0+∩GD+,0) )

)
� eC0

=
( ∑
E ∈F+(D)

(−1)dim(E) eE � eGD

)
� eC0

= zero function .

Statement (iii) is an obvious consequence of statements (i) and (ii). �

Corollary 4.5.2. The distribution P :=
(∑

E ⊂B(G)(−1)dim(E) eE
)
is the projector

to the Bernstein component with non-zero Iwahori fixed vectors.

Proof. Suppose (π, Vπ) is an irreducible smooth representation of G. The oper-
ator π(P ) is a scalar operator.

For any facet E ⊂ B, the operator π(eE) projects to the subspace V
GE,0+

π .
Furthermore, from the definition of eE , any non-zero irreducible representation of

GE,0/GE,0+ in V
GE,0+

π must have a non-zero Iwahori fixed vector for any Iwahori

subgroup GD contained in GE . It follows that if V GD
π = {0} for any chamber D,

then the scalar π(P ) is zero, i.e., a necessary condition for π(P ) to be non-zero is
that π has a non-zero Iwahori fixed vector.

On the other hand, if there is a chamber D, so that V GD
π �= {0}, then V

GC0
π �= {0}

too. Since P � eC0
= eC0

, we conclude π(P ) = IdVπ
, and thus P is the Bernstein

projector for the component with non-zero Iwahori fixed vectors. �

5. General depth zero

5.1. Preliminaries. Suppose F is a facet of B. Let GF be the parahoric sub-
group attached to F [BTb], i.e., the Ok-rational points of the identity component
of the Ok-group scheme of the fixer group of F (which fixes each point x ∈ F ). The
quotient GF /G

+
F is the group of Fq-rational points of a reductive linear connected

group. We will take a cuspidal representation σ of GF /G
+
F , and use the correspond-

ing idempotent eσ of GF to define a natural sum of Bernstein projectors of G. In
order to do this we recall some preliminaries.

To a parahoric subgroup GF , we can attach a Levi subgroup M ⊂ G. We recall
some results from section 6.2 in [MPb]. We take a maximal split k-torus S so that
the apartment A(S) contains the facet F . Then S gives rise to a maximal split
Fq-torus in GF /G

+
F . We take the unique k-subtorus C of S so that (C∩GF )/(C∩G+

F )

is the center of GF /G
+
F . The centralizer

(5.1.1) M = ZG(C)

is a Levi subgroup with center C, and MF = M ∩ GF is a maximal parahoric of
M, and GF /G

+
F = MF /M

+
F . The torus S, hence M is defined up to a conjugation
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by GF . Let FF = NM(MF ) (⊃ C) denote the normalizer of MF in M. The quotient
group FF /C is compact.

We view an irreducible cuspidal representation σ of the finite field group GF /G
+
F

as also one of MF /M
+
F , and we continue to write σ for its inflation to an irreducible

representation of MF . Let
(5.1.2)

Σ(F, σ) :=

{
the collection of those irreducible representations of FF ,
up to equivalence, whose restrictions to MF contains σ.

Define τ1, τ2 ∈ Σ(F, σ) to be equivalent if there is an unramified character χ of M
so that τ2 = τ1 ⊗ χ|FF

. This equivalence relation partitions the collection Σ(F, σ)

into finitely many equivalence classes. We recall the following from [MPb].

Proposition 5.1.3 (Proposition 6.6 in [MPb]). Suppose F ⊂ B(G) is a facet
and M is a Levi subgroup attached to F as in (5.1.1), so GF /G

+
F = MF /M

+
F ,

and suppose σ is the inflation to MF of an irreducible cuspidal representation of
MF /M

+
F .

• Given τ ∈ Σ(F, σ), the representation c-IndMFF
(τ ) is a cuspidal representa-

tion of M.
• Suppose (π, Vπ) is an irreducible smooth representation of M which contains

σ upon restriction to MF . Then π is equivalent to c-IndMFF
(τ ) for some

τ ∈ Σ(F, σ).

Proposition 5.1.4 (Proposition 5.3 in [MPb]). Suppose:

• F and E are two facets of B(G), and τ and κ are irreducible representations
of GF and GE inflated from cuspidal representations of GF /G

+
F and GE/G

+
E,

respectively.
• (π, Vπ) is a smooth irreducible representation of G so that τ and κ appear
in the restriction of π to GF and GE, respectively.

Then, there exists g ∈ G so that GF ∩GgE surjects onto both GF /G
+
F and GgE/G

+
gE,

and κ = τ ◦Ad(g).

We note the fact that GF ∩ GgE surjects to GF /G
+
F and GgE/G

+
gE means there is

a canonical identification of these latter two groups, and hence a canonical way to
any representation of one as also a representation of the other.

Proposition 5.1.5 (Proposition 6.2 in [MPb]). Suppose F, E ⊂ B(G) are facets
so that GF ∩ GE surjects onto GF /G

+
F and GE/G

+
E, respectively, and σ is an ir-

reducible cuspidal representation of GF /G
+
F = GE/G

+
E . Let σF and σE denote,

respectively, the inflation of σ to GF and GE. If (π, Vπ) is an irreducible smooth
representation of G which contains σF upon restriction to GF , then π also contains
σE upon restriction to GE.

Recall from section 3.4 in [MPb], two parahoric subgroups GF and GE are as-
sociate if there exists g ∈ G so that (GF ∩ GgE ) surjects onto both GF /G

+
F and

GgE/G
+
gE . In this situation, we have a canonical identification GF /G

+
F = GgE/G

+
gE .

We define a cuspidal pair (E, σ) to be a facet E, and a cuspidal representation of
GE/G

+
E (inflated to GE).

If E is a facet in an apartmentA, letAS(A, E) denote the minimal affine subspace
of A which contains E. It is equal to the intersection of all the affine hyperplanes
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H±ψ (of A) which contain E. We observe that if E and F belong to A, then GF ∩GE

surjects onto both GF /G
+
F and GE/G

+
E precisely when AS(A, E) = AS(A, F ).

Lemma 5.1.6.

• Associativity of parahoric subgroups in G is an equivalence relation.
• If F, E ⊂ B(G) are associate facets, then the Levi subgroups attached to
them by the above procedure are conjugate in G.

Proof. To prove the first statement, it suffices to prove transitivity. Suppose
facets Fa, and Fb are associate. Take g ∈ G so that (GFa

∩ GgFb
) surjects onto

GFa
/G+

Fa
and GgFb

/G+
gFb

. This is equivalent to the equality of AS(A, Fa) and

AS(A, Fgb) for any apartment A containing both facets. Similarly, suppose Fb

and Fc are associate. This means there is an h ∈ G so that (GFb
∩ GhFc

) surjects
onto GFb

/G+
Fb

and GhFc
/G+

hFc
. Hence (GgFb

∩ GghFc
) surjects onto GgFb

/G+
gFb

and

GghFc
/G+

ghFc
. Choose a chamber C in A which contains the facet gFb. The Iwahori

subgroup GC acts transitively on the apartments containing C, so there is a k ∈ GC

satisfying k(ghFc) ⊂ A. In A, we have,

AS(A, Fa) = AS(A, (gFb)) = AS(A, (kgFb)) = AS(A, (kghFc)) ,

which means Fa and Fc are associate.
The second assertion follows from the first. This is because the Levi subgroup

attached to F is the centralizer CG(Z) of a lift Z (⊂ S ) of the central torus Z of
the finite field group GF /G

+
F . If E and F are associate, we can assume (GF ∩ GE )

surjects onto GF /G
+
F and GE/G

+
E , and thereby canonically identify the two, and

therefore their central torus, and hence lift. The assertion follows. �

We recall the equivalence relation in the data used to define a Bernstein compo-
nent: Suppose M is a parabolic k-subgroup of G, and πa and πb are two irreducible
cuspidal representations of M. Define
(5.1.7)

πa ∼ πb

{
when there is a g ∈ NG(M) so that the representation
πg
a := πa ◦Ad(g) is isomorphic to the representation πb.

Lemma 5.1.8. Suppose M is a parabolic subgroup of G, and F, E ⊂ B(G) are
facets contained in B(M) so that M ∩ GF and M ∩ GE are maximal parahoric
subgroups of M and

πa = c-IndMFF
(τ ), πb = c-IndMFE

(κ),

are equivalent irreducible cuspidal representations (πa ∼ πb). Then, the facets F, E
are associate.

Proof. We note that πa◦Ad(g) = c-IndMg−1FF g(τ◦Ad(g)) = c-IndMFg−1F
(τ◦Ad(g)).

Thus, the hypothesis that πg
a and πb are isomorphic representations of M means

there is h ∈ M so that Fg−1F = hFEh
−1 and κ = τ ◦Ad(g) ◦Ad(h). In particular,

this means the two facets F, E ⊂ B(G) are associate. �

5.2. Bernstein components. Suppose F is a facet in B(G), and σ is the infla-
tion to GF of an irreducible cuspidal representation of GF /G

+
F , i.e., in the termi-

nology of the introduction, (F, σ) is a cuspidal pair. Let M be a Levi subgroup as
in (5.1.1). As mentioned there, the group MF = (M ∩ GF ) is a maximal parahoric
subgroup of M. The unramified characters of M act by twists on Σ(F, σ). There
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are finitely many orbits. We take τ ∈ Σ(F, σ), and consider the irreducible cuspidal

representation π(τ ) = c-IndMFF
(τ ) (of the Levi M), and the Bernstein component

Ω([M, π(τ )]). Denote by

(5.2.1) P (F, σ)

the sum of the Bernstein projectors of the finitely many Bernstein components
obtained from τ ∈ Σ(F, σ).

Lemma 5.2.2. Suppose (F, σ) is a cuspidal pair and E is a facet which is con-
tained in facets F1 and F2 which are associates to F (say g1, g2 ∈ G so that
GF1

∩Gg1F surjects to GF1
/G+

F1
and Gg1F /G

+
g1F

, and GF2
∩Gg2F surjects to GF2

/G+
F2

and Gg2F /G
+
g2F

). Then, ρ ∈ ĜE/G
+
E contains Ad(g1)σ if and only if it contains

Ad(g2)σ.

We recall the fact that GFi
∩GgiF surjects to GFi

/G+
Fi

and GgiF /G
+
giF

means there
is a canonical identification of these latter two groups, and hence a canonical way
to view Ad(gi) σ as a representation of GFi

.

Proof. We easily reduce to the case that F1 = F ; so, suppose ρ ∈ ĜE/G
+
E contains

σ. We need to show ρ also contains Ad(g2)σ (as a representation of GF2
/G+

F2
).

For convenience we shorten notation F ′ and g′ for F2 and g2. Let M and M′

be Levi subgroups attached to F and F ′ as in (5.1.1). The representation ρ occurs

in any irreducible principal series Π = IndGMV (π), where π is an irreducible cuspi-
dal representation of M containing σ. Here, V is a suitable unipotent radical. The
principal series Π can also be realized as IndGM′V′ (π′) where π′ is an irreducible cus-

pidal representation containing Ad(g′)σ of M′
g′F /M

′+
g′F = Gg′F /G

+
g′F . We conclude

ρ occurs in IndGM′V′ (π′) from which we deduce that ρ contains Ad(g′)σ.

Reversing the roles of F1 and F2 we see that any τ ∈ ĜE/G
+
E which contains

Ad(g2)σ also contains Ad(g1)σ. The lemma is shown. �

We make the obvious definition that an associate class of cuspidal pairs is the
collection of all cuspidal pairs which are associate to one another. It is an imme-
diate consequence of Lemma 5.2.2 that given an associate class E = { (F, σ) } of
cuspidal pairs, the rule Bk = BkE which attaches to a facet L ⊂ B(G) the block or
representations:
(5.2.3)
BkE(L)

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ when � (F, σ) ∈ E so

that L ⊂ F,

{ ρ ∈ ĜL/G
+
L

∣∣ L ⊂ F and ρ contains
σ for some (F, σ) ∈ E } when ∃ (F, σ) ∈ E so

that L ⊂ F,

is G-equivariant. To E and L ⊂ B, we define the idempotent:

(5.2.4) eE,L :=
1

#(GL/G
+
L )

∑
Θκ∈BkE(L)

deg(κ)Θκ � eG+
L
.
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We call this idempotent the Peter–Weyl idempotent attached to E and L. This
clearly yields a G-equivariant system of idempotents.

We note:

• Suppose E is a facet associate to F , and facets K, L satisfy K ⊂ L ⊂ E,
i.e., GE/G

+
K ⊂ GL/G

+
K are parabolic subgroups of GK/G+

K . The finite field
results say:
(i) eE,K � eG+

L
= eE,L.

(ii) Under the hypothesis K � J ⊂ E, i.e., GJ/G
+
K is a proper parabolic

of GK/G+
K , with unipotent radical G+

J /G
+
K �= {1}; then( ∑

K ⊂ L ⊂ E

(−1)dim(L)eE,L
)

� eG+
J

= zero function .

Theorem 5.2.5. Suppose E is the associate class of a cuspidal pair (F, σ). Define
idempotents as in (5.2.4). Then, the Euler–Poincaré sum

P (E) :=
∑

L⊂B(G)

(−1)dim(L)eE,L

over the facets of B(G) defines a G-invariant essentially compact distribution.

Proof. The proof is an extension of the proof in the Iwahori setting. Fix a
chamber C0 and suppose D is an arbitrary chamber. We take S to be a maximal
split torus so that A(S) contains both chambers. Take Φ+ ⊂ Φ(S) to be a set of
positive roots so that D ⊂ S(C0,Φ

+). As before, let c(D), as in (2.3.7), denote
the set of outward oriented faces of D and define D+ and F+(D) as in (4.2.2) and
(4.2.3), i.e., D+ = ∩F∈c(D) F and F+(D) is the set of facets which contain D+.
Suppose J is an open compact subgroup. The key to adapting the Iwahori setting
proof to the present one is to show∑

E∈F+(D)

(−1)dim(E) eE,E � eJ = zero function

when htC0
(D) is sufficiently large (dependent on J). We may and do assume the

open compact subgroup J has the form J = Gx0,ρ for x0 ∈ recess(C0), and ρ is a
positive integer.

• Define R(ρ+2) as in (4.4.1). For y ∈ D ⊂ R(ρ+2), we again have Gx0,ρ

contains the group Vy of (4.4.3) and VyG
+
D+

= G+
D, so VyG

+
D+

/G+
D+

is the

unipotent radical of the Borel subgroup GD/G+
D+

of GD+
/G+

D+
. The ana-

logue of the computations (4.4.4) and (4.4.5) are∑
E ∈F+(D)

(−1)dim(E) eE,E � eVy
= zero function

and ∑
E ∈F+(D)

(−1)dim(E) eE,E � eGx0,ρ
= zero function .

A difference between the Iwahori setting and the general depth zero
setting is the following: In the Iwahori setting, the individual convolution
terms eE � eV are all non-zero, but their alternating sum is zero. In the
general setting, some of the individual convolutions eE,E � eV are zero due
to the cuspidal assumption on E .
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• We again use the sets in (4.4.6) to partition R(ρ+2). Fix I ⊂ Δ. With Vy

(y ∈ I) defined as in (4.4.7), we have VyG
+
D+

/G+
D+

is the unipotent radical

of a parabolic subgroup of GD+
/G+

D+
, i.e., there is a K ∈ F+(D) so that

VyG
+
D+

= G+
K . With finitely many exceptions, the unipotent radical is not

{ 1 }, and so Corollary 3.2.16 applies to give∑
E ∈F+(D)

(−1)dim(E) eτ,E � eVy

is the zero function, and therefore∑
E ∈F+(D)

(−1)dim(E) eτ,E � eGx0,ρ

vanishes too. We handle the finite number of exceptions by replacing (ρ+2)
by a larger value to exclude these finitely many exceptions. Again, some
of the convolutions eτ,E � eGx0,ρ

vanish due to the cuspidality of τ . The
theorem follows. �

Corollary 5.2.6. The distribution P (E) is the Bernstein projector P (F, σ) of
(5.2.1).

Proof. We replace the facet F by an associate one in the ‘base’ chamber C0. Then,
as extensions of the Iwahori situation we have:

(i)
∑

E ⊂C0

(−1)dim(E) eτ,E � eG+
F

= eτ,F .

(ii) For any chamber D �= C0:∑
E⊂F+(D)

(−1)dim(E) eτ,E � eG+
F

= zero function .

(iii) ( ∑
E ⊂B(G)

(−1)dim(E) eτ,E
)

� eG+
F

= eτ,F .

Set P = P (E) =
( ∑

E⊂B(G)(−1)dim(E) eτ,E
)
. If (π, Vπ) is an irreducible

smooth representation of G, by (iii), we have

π( eτ,F ) = π(P � eG+
F
) = π(P ) π( eG+

F
) .

When π belongs to a Bernstein component (M, c-IndMFF
(τ )) the left size is non-zero

and we conclude π(P ) is the identity. Additionally, the fact that the individual
terms of P have the form eτ,E means π(P ) is zero unless there exists a facet E so
that π(eτ,E) is non-zero. Hence, P is the Bernstein projector. �

5.3. The depth zero projector. When we sum over all the Bernstein compo-
nents of depth zero we obtain :

• P0 =
∑

ρ(Ω)= 0 P (Ω) , which is, by definition, the depth zero projector.

• For any facet F , the sum of the Peter–Weyl idempotents is 1
meas(GF ) times

the character of the regular representation of GF /G
+
F . This is the idempo-

tent eG+
F

= 1
meas(G+

F )
1G+

F
.

The resulting Euler-Poincaré formula for P0 is exactly the one in [BKV].
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6. Non-split groups

In this section, we explain the modifications needed in the proofs of sections 4
and 5 so that they apply when the k-defined group G is non-split. We assume
G is connected, absolutely quasisimple. Set G = G(k). Let K be the maximal
unramified extension of k, and let Gal(K/k) denote the Galois group.

6.1. We recall (see [T, §1.10]) there exists a torus S defined over k satisfying :

(i) S is a maximal split K-torus, and (ii) S := SGal(K/k) is a maximal split
k-torus. We also recall the result of Steinberg that G is quasisplit over K, and
therefore, the centralizer Z = CG(S) is a maximal k-torus. Furthermore :

• Since G is assumed to be absolutely quasisimple, the Bruhat–Tits build-
ing B(G(K)) is a simplicial complex, and both G(K) and Gal(K/k) act by
simplicial automorphisms. The building B(G) is the Gal(K/k)-fixed points
of B(G(K)).

• Let A(S(K)) be the apartment of S(K), and let Ψ(S(K)) be the cor-
responding system of affine roots. The fixed points A(S(K))Gal(K/k) and
B(G(K))Gal(K/k) are identified (defined) as the building B(G) and apart-
ment A(S) (S = S(k) = S(K)Gal(K/k)). Let Mo = CG(S), a minimal
Levi k-subgroup. Given a choice of positive roots Φ+, let Po = MoUo be
the corresponding minimal parabolic k-subgroup. We set Mo = Mo(k),
Uo = Uo(k), and Po = MoUo = Po(k).

• The affine root system Ψ = Ψ(S) on A consists of all non-constant re-
strictions to A of affine roots in Ψ(S(K)) (see [T, §1.10.1]). If E is a facet
of B, and x, y ∈ recess(E), then

Gx,0 = Gy,0 and Gx,0+ = Gy,0+ .

Because of these equalities, we denote the common subgroups as GE and
G+
E . We note that if F is a subfacet of E, then

GF ⊃ GE ⊃ G+
E ⊃ G+

F ,

and GE/G
+
F is a parabolic subgroup of GF /G

+
F .

• Let Z = Z(k), and let Zc be the maximal bounded (compact) subgroup
of Z. The group NG(Z) acts as orthogonal affine maps on A with Zc acting
trivially. We call NG(Z)/Zc the extended affine Weyl group of G. The
Coxeter group WΨ of Ψ(A), i.e., the symmetry group of A generated by
reflections in the hyperplanes Hψ (ψ ∈ Ψ) is a finite index subgroup of
NG(Z)/Zc. The action of WΨ is transitive on the chambers of A (see
[T, §1.8]). For x ∈ A, define

(6.1.1)

Wx :=

{
symmetry group of A generated by reflections across affine hyper-
planes Hψ containing x, i.e., ψ(x) = 0.

Set Φ := { grad(ψ) | ψ ∈ Ψ }, a possibly non-reduced root system, and let
WΦ denote the Coxeter group of Φ. We recall a point x is called special
if Wx and WΦ are the same. Special points always exist (see [T, §1.9]).
When x is special, the group NG(Z)/Zo is the semidirect product of the
group Wx and the normal subgroup of translations X = Z/Zc. Similarly,
WΨ is a semidirect product of the group of Wx and translation subgroup
of WΨ.
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Fix a chamber C0 ⊂ A which contains x. For α ∈ Φ, let S(α) be the set
of roots in Φ which are a multiple of α. Trivially, the sets S(α) partition
Φ. As in (2.3.4), define

(6.1.2)

ht
S(α)
C0

(D) :=

⎧⎪⎨⎪⎩
The number of affine hyperplanes Hψ satisfying:

(i) grad(ψ) ∈ S(α), and

(ii) Hψ separates C0 and D.

• The obvious analogue of Lemma 2.3.5 holds. Indeed, by [BTa, §1.4],
there is a canonical reduced root system Σo ⊂ Φ so that the affine root
system

Σaff := {α+ k | α ∈ Σo , k ∈ Z }
has associated affine hyperplanes Hψ, ψ ∈ Σaff exactly the same as the
affine hyperplanes of Ψ. In particular, the affine Weyl groups of the affine
root systems Σaff and Ψ are the same.

• The proof of Proposition 2.5.5 used only the affine hyperplanes H±ψ, and
it is valid in the non-split situation with Ψ replaced by Σaff; so, Proposition
2.5.5 holds. We use (2.4.2) to define the C0-based sector S(C0,Φ

+).
• The results of [MPb] stated in section 5 hold in the non-split situation.

Theorem 6.1.3. Suppose G is a connected absolutely quasisimple k-group. Let
G = G(k), and let B = B(G) be the Bruhat–Tits building. Suppose (F, σ) is a
cuspidal pair and E the associate class of (F, σ). Define a G-equivariant system of
idempotents as in (5.2.4). Then,

• The Euler–Poincaré sum

(6.1.4) P (E) =
∑

L⊂B(G)

(−1)dim(L)eτ,L

over the facets of B(G) defines a G-invariant essentially compact distribu-
tion.

• With Levi subgroup M defined as in (5.1.1), the distribution P (E) is the
Bernstein projector P (F, σ) of (5.2.1).

Proof. The proof of Theorem 6.1.3 is adapted from those of Theorems 4.2.4 and
4.2.1. We fix a chamber C0. Suppose D ( �= C0) is any other chamber. For an
arbitrary fixed open compact subgroup J we need to show P � eJ ∈ C∞

c (G). It
suffices to show ∑

E∈F+(D)

(−1)dim(E) eτ,E � eJ = zero function

when htC0
(D) is sufficiently large. Fix xo ∈ C0, and take ρ ∈ R>0 sufficiently large

so that Gxo,ρ ⊂ J . We replace J with Gxo,ρ. Take S ⊃ S (S = SGal(K/k)), as
above, so that D is in A = A(S), and take a positive system of roots Φ+ ⊂ Φ(S),
so that S(C0,Φ

+) contains D. Let N be a sufficiently large integer so that for any
simple root α ∈ Δ((Φred)+), when C0 and D are separated by N affine hyperplanes
perpendicular to α, then:

∀ ψ ∈ Ψ = Ψ(S), satisfying λα(grad(ψ)) > 0, i.e., when grad(ψ) is expressed as
a linear (non-negative) combination of simple roots the α coefficient is non-zero,
then ∀ x ∈ C0 and ∀ y ∈ D, we have (ψ(y)− ψ(x)) > ρ.
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If such a ψ vanishes on D+, and we take y ∈ D+, we see −ψ(x) = (ψ(y)− ψ(x))
> ρ, This means (Gx,ρ ∩ U−γ) ⊃ X−ψ, where γ = grad(ψ). We note in the non-
split situation, the root group U−γ and the affine root group X−ψ may be non-

commutative. Define RN as in (4.4.1); roughly the set of chambers which are
Bruhat distance at least N from the walls of S(C0,Φ

+). The above says for any

chamber D in RN , the subgroup Gx,ρ contains the subgroup

(6.1.5) V :=
∏

ψ∈Ψ(D+,Φ+)

X−ψ ,

and V G+
D+

/G+
D+

⊂GD+
/G+

D+
is the unipotent radical of the Borel subgroup GD+

/G+
D+

.

We then have the analogue of (4.4.4) and (4.4.5), i.e.,∑
E ∈F+(D)

(−1)dim(E) eE � eGx0,ρ
= zero function .

The situation when D is a chamber in S(C0,Φ
+) \RN is handled by defining

sets R{I,k} as in (4.4.6), and adapting the argument. We omit the very similar
details. This completes the proof that the Euler–Poincaré sum (6.1.4) defines a
Bernstein center distribution.

To establish that P is the projector, we use Corollary 3.2.15 and adapt the proof
of Corollary 4.5.2 to deduce :

(i)
∑

E ⊂C0

(−1)dim(E) eτ,E � eG+
F

= eτ,F .

(ii) For any chamber D �= C0:∑
E⊂F+(D)

(−1)dim(E) eτ,E � eG+
F

= zero function .

That P is the projector then follows. �
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