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JORDAN DECOMPOSITIONS OF COCENTERS
OF REDUCTIVE p-ADIC GROUPS

XUHUA HE AND JU-LEE KIM

ABSTRACT. Cocenters of Hecke algebras 3 play an important role in studying
mod ¢ or C harmonic analysis on connected p-adic reductive groups. On the
other hand, the depth r Hecke algebra J{ + is well suited to study depth
r smooth representations. In this paper, we study depth r rigid cocenters

ﬁl:f of a connected reductive p-adic group over rings of characteristic zero or
l p. More precisely, under some mild hypotheses, we establish a Jordan
Y. y

decomposition of the depth r rigid cocenter, hence find an explicit basis of
—rig

g{r+~

INTRODUCTION

0.1. Let G be a connected reductive p-adic group. Let R be an algebraically closed
field of characteristic not equal to p. Let Hr be the Hecke algebra of locally
constant, compactly supported R-valued functions on G. The trace map

Trg : ﬁR — SRR(G)*

relates the cocenter Hr = Hp/[Hg, Hr] and the Grothendieck group Rr(G) of
smooth admissible representations of G over R.

In most cases, the cocenter is expected to be “dual” to the representations. For
R = C, Bernstein, Deligne, and Kazhdan in [5] and [I6] proved that the trace map

Tre : He =N Rc(G),.q 15 a bijection between the cocenter and the “good linear

goo:
forms” on M¢(G). For modular representations over R, the surjection Trg : Hp —
RR(G);o0q is established in [6] under the assumption that the cardinality of the
relative Weyl group of G is invertible in R. It is conjectured that the injection holds
if the pro-p order of any open compact subgroup of G is invertible in R.

This motivates our study of the structure of the cocenter of the Hecke algebra.
To be precise, we mainly consider the integral form H = H(G), i.e., Hg(G) with
R = Z[%}. This will allow us to apply the results on I to both the ordinary and
the modular representations of G.

0.2. In [I2, Theorem B] and [I3] Theorems C and 6.5], the first-named author
showed that o o _
H = (M),
M

where M runs over all the standard Levi subgroups of G and F(M )&+ is the +-
rigid part of the cocenter of the Hecke algebra H(M), i.e., the Z[%]—submodule
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of H(M) consisting of elements represented by the functions supported in the
compact-modulo-center elements of M whose Newton points are dominant (in G)
and with centralizer equal to M. In other words, the rigid cocenters of the Hecke
algebras of various standard Levi subgroups form the “building block” of the whole
cocenter . We refer to [I2L[13] for the details.

Note that if M = G, then we write T for H(G)"&+, the Z[%]—submodule of

I represented by functions supported in the subset G of compact-modulo-center
elements of G. We call 7 © the rigid cocenter. In this paper, we focus on the depth

r rigid cocenter ﬁ;if for any real number r > 0, defined as follows.
For any element x in the reduced Bruhat—Tits building B(G) of G, Moy and
Prasad [21] associated a subgroup G, .+ of G. Let H,+ = 37 ) Ce(G/Gy rt)

and H,r be its image in F, the depth r cocenter. The depth r rigid cocenter
FH¥ =T ®NH,+. According to Howe’s conjecture (now proved in [FL[7112]), this
is a finitely generated Z[%]—module. Moreover, we have that T = . ﬁ:}f .

The main purpose of this paper is to establish the “Jordan decomposition” of
—rig

J,y. Note that the “Jordan decomposition” in the paper is compatible with taking
the “+” part and thus apply to JH(M)" &+ as well.

0.3. Before stating the main result, we make a short digression and discuss a “toy
model”, the cocenter of the group algebra Z[H| of a finite reductive group H.

For any element g € H, we have the Jordan decomposition g = gsg,, where g, is
the semisimple part of g and g, is the unipotent part of g. Then we have the Jordan
decomposition of the group algebra Z[H| = @, _ ;.. Z[C(s)""*?], where H** is the
set of semisimple elements of H, C'i(s) is the centralizer of s, and C'y(s)*“™? is the
set of unipotent elements in Cy(s). Based on the Jordan decomposition on the
group algebra Z[H], one deduces the Jordan decomposition of the cocenter

ZH] =Z[H]/[ZH], ZH] = P  Z[Cu(s)"7],
[s]eClss(H)

where C1*%(H) is the set of semisimple conjugacy classes of H and Z[C (s)“P] is
the image of Z[Cg (s)*"] in Z[Cy (s)], which is a free Z-module with basis indexed
by the unipotent conjugacy classes of Cgy (s).

0.4. Now we come back to connected reductive p-adic groups. As any element in
the Hecke algebra I is a locally constant function, there seems no analogous Jordan
decomposition on H. However, under the hypotheses in §2.2] we have the analogous
part of semisimple conjugacy classes and unipotent conjugacy classes in the context
of the cocenter of Hecke algebras.

By the work of Adler and Spice [3], we may write a semisimple compact-modulo-

center element v as a “good product”. Since we are working with the cocenter ﬁ?f
of depth r, we use the truncated part <, of 7. The equivalence classes §, of
semisimple compact-modulo-center elements of GG, roughly speaking, are generated
by the conjugation action and the truncated operation (see §2] for the precise def-
inition). The set 8, is the analogue of semisimple conjugacy classes and serves as

the index set of the desired Jordan decomposition on ﬁ:f.
For any [v] € 8,, we pick up the truncation y<, (see Definition 2.4 for details)
of a representative v € [y] and denote by Cq(y<,) the centralizer of y<,. The
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isomorphism class of Cg(7<,) is independent of the choice of v and its truncation
V< '

Now we come to the unipotent part. Let ﬁfj be the Z[%]—submodule of ﬁ;lf ,
represented by functions in )" €B(G) CC(GI,T/GJU ~+) with support in

G+ = U Gyt

z€B(G)

Based on the work of DeBacker in [8] and [9], ﬁﬁb is a free module with basis
indexed by the unipotent conjugacy classes of G. This is the analogy of the set
of unipotent conjugacy classes, or in other words, the analogy of Z[H%"P] in the
cocenter of the group algebra Z[H]. Now we state the main results of this paper.

Theorem A (TheoremsB.I12 and L21]). Fiz r € Rso. Suppose the hypotheses in
422 hold. Then
—;:g ~ @ g{Cc(W@)b
(V€S

—rig .
Moreover, 3,5 is a free Z[%]-module.

Theorem B (Theorem [3.)). Let J(G*8) denote the space of C-valued invariant
distributions of G with support on G*8. Suppose the hypotheses in §2.2 hold. Then
the restriction J(G*®) lo¢,, . has a basis given by the restriction of orbital integrals
O_,u to Myt ¢, where [y] € 8., and u runs over the representatives of the unipotent
conjugacy classes of Ca(v<r).

0.5. In g1l we review some background material on Moy—Prasad filtration subgroups

and the cocenter H of G. Toward the decomposition of ﬁ?f in Theorem[A] in §2, we
first decompose G™# into a disjoint union of G-domains X} := “(vCq(vy<,),+) pa-
rameterized by [v] € 8. We use good products of semisimple elements ([3]) to prove
that G*i& = U['y] s, X[y)- The Lie algebra version of such decompositions can be
found in [I'7, §7]. Then, it is easy to see that there is a corresponding decomposition
of H*& according to this decomposition: "8 = @D, H(X[y) (LemmaLZ3) where
H(X|y)) is the submodule consisting of f € H,+ with Supp(f) C X|,;. However,
since each domain X\, is not necessarily G, ,+ bi-invariant, @[w]esr Hyr (X)) s

in fact a proper submodule of Uffnif (see §3.1)).

Now, Theorem [Al asserts that the desired decomposition holds at the level of
cocenters. In @ we prove Theorem [Al via the following strategy: we first represent
clements in H,.; by elements in Hor+ 1= Dpen(q) Ce (Z(G)Stabg(x) /Gyt ) in
the cocenter, and then represent elements in f}{o ~+ by elements in EB[W] FH(X ()
In these steps, we use the descent arguments developed by Howe, Harish-Chandra,
Waldspurger, and most recently by DeBacker. In particular, DeBacker’s arguments
in [9] are aptly adaptable in our situations in view of recent developments in har-

monic analysis on p-adic groups. As a result, most of our hypotheses are inherited

from [3] and [9]. Lastly, we prove .+ (X)) ~ ﬁff ()b using inductive descents

(see Proposition B4T]). A Lie algebra version of inductive descents can be found
in [I9] §6].

In §4, we prove Theorem [Bl We combine inductive descents and the parame-
terization of unipotent conjugacy classes in [9]. However, since the centralizer of a
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semisimple element is not necessarily connected in this paper, one needs to adapt
DeBacker’s parameterization for our case.

In §5l we present examples to illustrate the duality between cocenters and rep-
resentations.

Notation and conventions. Let F' be a non-archimedean local field with finite
residue field F,». Let G be a connected reductive group defined over F'. For any
finite extension F of F', let G(FE) be the group of E-rational points of G. We will
simply write G for G(F'). Denote the Lie algebras of G and G(E) by g and g(E),
respectively.

In general, we use bold characters H, M, and N, etc., to denote algebraic groups.
If they are defined over F', we will use corresponding Roman characters H, M, and
N to denote the groups of F-points, and h, m, and n to denote the Lie algebras of
H, M, and N. Let G := G /Z(G) where Z(G) is the center of G. We also denote
the center of G as Z(G).

We denote by G** the set of semisimple elements in GG, by U the set of unipotent
elements in G, and by G"& the set of compact-modulo-center elements in G.

We let ug denote a fixed Haar measure on G.

For g € G, 9X denotes gXg~ ' and for S, H C G, 1S :={9X | X € S, g€ H}.

We set R=RU{rt;r € R} U{oc} and define the partial order on R as follows:
forrseR, r<sTifr<s,r" <standrt <sifr <s, and r,r" < co for any
reR.

We denote by H, the Hecke algebra of locally constant, compactly supported
Z[%]—valued functions on G. The cocenter H = H/[H, H]. Let & be the Z[%]-
submodule of 3 consisting of functions supported in G™&. The rigid cocenter e
is the image of H"¢ in K.

1. PRELIMINARIES

1.1. Moy-Prasad filtrations.

1.1.1. Apartments and buildings. For a finite extension F of F, let B(G, E)
denote the extended Bruhat-Tits building of G over E. Recall that B(G, E) ~
B(G, E) x (X«(Z(G), E) ® R), and X.(Z(G), E) is the abelian group of E-rational
cocharacters of the center Z(G) of G.

If T is a maximal F-torus in G which splits over E, let A(T, E) be the corre-
sponding apartment over F. It is known that for any tamely ramified finite Galois
extension E’ of E, B(G, E) can be embedded into B(G, E’) and its image is equal
to the set of the Galois fixed points in B(G, E’) (see [25, (5.11)] or [23]).

For a maximal F-torus T in G which splits over a tamely ramified finite Galois
extension E of F, we write A(T, F) for A(T,E) N B(G, F). This is well defined
independent of the choice of E. Moreover, A(T, F') is the set of Galois fixed points
in A(T, E). For simplicity, we write B(G) = B(G, F), A(T) = A(T, F), etc.

1.1.2. Moy-Prasad filtrations. Regarding G as a group defined over E, Moy
and Prasad associate g(E)., and G(E), |, (resp., g9(E),,+ and G(E), |, +) to
(z,r) € B(G, F) x R with respect to the valuation normalized as follows ([22]): let
E* be the maximal unramified extension of F, and let L be the minimal extension
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of E* over which G splits. Then the valuation used by Moy and Prasad maps L*
onto Z.

In this paper, we let v = vp be the valuation on F such that v(F*) = Z, vg
extends v. Let F be an algebraic closure of F. For an extension field E of F, let
vg be the valuation on E extending v. We will just write v for vg. Then, with
respect to our normalized valuation v, we can define filtrations in g(E) and G(E).
Then our g(E), , and G(E),,, correspond to g(E)g cir and G(E), ¢ of Moy and
Prasad, where e = e¢(E/F) is the ramification index of E over F and | = [L : E"].

This normalization is chosen to have the following property [I (1.4.1)]:

(1) For a tamely ramified Galois extension E’ of E and x € B(G, E) C B(G, E'),

for r € R, we have

g(E)r,r = g(El)z,r N g(E)
If r >0,
G(E)yr = G(E" ) NG(E).
(2) For r € %Zzoy two points z and y in B(G, E) lie in the same facet if and
only if
G(E)gyr =G(E)y, and G(E),,+ =G(E), .
1.1.3. For simplicity, we put Gy, = G(F),,, etc. We will also use the following
notation. For r € Rxq, let

GT = U Ga:,rv Gr+ = U Gs~
z€B(G) s>r
Let ®(T,G, E) be the set of E-roots of T in G, and let ¥(T,G, E) be the cor-
responding set of affine roots in G. If ¢ € U(T,G, E), let ¢ € ®(T,G, E) be the
gradient of v, and let U(Ew C G(F) be the root group corresponding to . We
denote the root subgroup in IU(EM corresponding to ¢ by U(E),.
Let X.(T, E) be the set of cocharacters of T, and let X*(T, E) be the set of
characters of T. Let Ty be the maximal compact subgroup of T'. For r > 0, set
T, :={teTy|v(x(t)—1) > r for all x € X*(T, E)},
Z.:=T.NZg.
Note that Z,. is well defined independent of the choice of T'.

In the rest of this paper, E will denote a tamely ramified finite extension of F'
unless otherwise stated.

1.2. Cocenters.

1.2.1. For 5 € Rxg, let H(G,G,.,) be the space of compactly supported, Gy 5 X
G s-invariant Z[%]—valued functions on G and let C.(G/G,,s) be the space of com-
pactly supported, right G, s-invariant Z[%]—valued functions on G. Note that for
any g € G and = € B(G), we have

G — /‘LG(GQZ,S) o o
9Gz s MG(Gm,Sng,S) z,s9Gx s

Thus H(G, G.s) and C.(G/Gy ) have the same image in . We denote by H, the
image of H, = ZweB(G) C.(G/G.) in K. Then H = @S Hs.

We set ﬁrig = ﬁrig N H,. Then ﬁrig =1 ﬁrig.
S gs S

1 mod [, H].
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A G-domain, by definition, is an open and closed subset of GG that is stable under
the conjugation action of G. We have the following simple facts about the cocenter
.

Lemma 1.2.2. Let X be a G-domain and let H(X) be the Z[%]—submodule of H
consisting of functions supported in X. Then H(X) N [H,H] is spanned by f — 9f
for f e H(X) and g € G.

Proof. Let f € H(X) N [H,H]. By [12, Proposition 1.1], f =>".(f; — 9 f;), where
fi € Hand g; € G. Since X is a G-domain, f; |x€ H(X) and (9 ;) |x=%(fi |x)
for any 4. Thus f=>".(fi |x =% fi |x)- O

Lemma 1.2.3. Let {Xq}aer be a family of G-domains in G such that XoNXor = 0
forany a # o'. Then ) . H(Xa) C H is a direct sum. Here H(X,) is the image
of H(X,) in K.

If moreover G = | |,.; Xa, then H = @, H(Xa).

acl

Proof. Let fo € H(X4), o € I such that ' := {«; f, # 0} is a finite set. Suppose
that > cp fo € [J(,H]. Then by [IZ, Proposition 1.1], there exists finitely many
pairs (f;,z;) € H x G such that

(a) S fa=> (fi="f)
ael’ %

Restricting both sides of (a) to X,, we have fo, = > .(fi |x, —(*fi) |x.). Since
X, is a G-domain, we have f;|x, € H and (% fi)|x,= " (filx.)-

Thus fo = > ;(filx. = (fi|x.)) € [3,H]. Therefore the image of f, in I is
zero and ., H(X,) C K is a direct sum.

If moreover G = Uy Xy, then for any f e H, f=>" flx.€ >, H(X,). Hence
H =Y H(X,). By what we proved above, this is a direct sum. O

2. SEMISIMPLE ELEMENTS AND DECOMPOSITION OF G'8

From now on, let r be a positive real number.

2.1. Depth functions and good elements. The following definitions in Defini-
tions 2.0 and coincide with those in [3] when N = Z(G).

Definition 2.1.1. Write Z := Z(G). For x € B(G), define the depth-mod-center
function

d®(x, ) : Z Stabg(z) — R U {o0},

such that
0 if g € ZStabg(z) \ ZG, o+,
d%(z,g) = { max{s | zg € G, for some z € Z} if g € ZGpo+ \ Z,
00 if ge Z.
Define also

d®(g) = max{d®(z,g) | = € B(G), g € Stabg(z)}.

We simply write d for d® if there is no confusion.
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We observe the following:

(1) If g€ ZGy 0+ \ Z, d(z, g) is the unique value t so that g € ZG,; \ ZG, 4+.
In most applications, it is possible to assume that g € G\ ZG, 4+ without
loss of generality. In this case, we call g noncentral mod G, ;+.

Likewise, when d(g) = 0, one may assume that g € Stabg(z) \ ZG, o+
in most cases. Note that Stabg(z) is compact since B(G) is an extended
building. Again, we say g is noncentral mod G, o+ if g € Stabg(2)\ZG o+

(2) d(y,g) < d(g) for any y € B(G), g € Stabg(y) .

(3) If g € ZGo \ Z, d(g) is the unique nonnegative real number ¢ such that
g < ZGt \ ZGt+ .

(4) d(z,g) = d(z,g') for all ¢’ € gG, 1+ where d(x,g) = t.

(5) d(g) = oo if and only if g € ZUN G. This follows from [2, Lemma 3.7.13].

(6) Let g € G*&. If g = ~yu is the Jordan decomposition of g with v € G** and
u € U, we have d(g) = d(v).

This follows from the proof of [2 Lemma 3.7.18]. Although the lemma
assumes the characteristic of I’ being zero, the proof requires only v being
rational and the residue field of F' being finite. We thank Jeff Adler for
clarification.

Definition 2.1.2 (cf. Definition 6.1 of [3]). For v € G™&, v is a G-good mod
center element if there is a maximal F-torus T which splits over a tamely ramified
extension F such that one of the the following holds:

(1) v € ZT° \ ZTy+ and the image of v in G is absolutely semisimple (see
[11] or [3, Definition 4.11] for a definition), where T is the set of compact
elements in 7.

(2) Thereis t > 0 so that v € ZT; \ ZT;+ with v(a(y) —1) =t or a(y) =1 for
any a € ®(T, G, E).

(3) ye Z.

We will simply say v is G-good of depth t if v is G-good mod center and if either
dv)=0and y €T ord(y)=t>0and v € Ty.

Remarks 2.1.3. Keeping the situation as in the above definition, we observe the
following:

(1) The depth of a good mod center element 7 is given as follows:

0 in case (1),
d(y) =4t in case (2),
oo in case (3).
(2) If y € T\ Z is a good mod center element of depth ¢ > 0 (resp., 0), v = 2y
for some z € Z and a good element ~; € Ty \ T+ (resp., v € T\ Ty+).
(3) Let v € G** and G’ = Cg(7). Let d® be the depth function defined on
G'Mi& as in Definition 1.1l In general d¢ # d® on G'™S. However, if
g € GMe\ Z(G') is G-good, it is also G’-good and d® (g) = d®(g).

2.2. Hypotheses. We collect here some assumptions that we need in this paper.
We will be clear when each hypothesis is used. Many of them are due to results we
use from [3] and [9]. Rather than repeating the statements of the hypotheses, we
refer the reader directly to [3] and [9].
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Hypotheses (A)-(D). These are Hypotheses (A)-(D) in [3, §2].
Hypotheses (DB). These are the hypotheses in §§2.1 and 4.3 in [9).

Hypothesis 1. The Jordan decomposition is defined over F', i.e., for any g € G =
G(F) and Jordan decomposition g = su of g with s,u € G(F'), we have s,u € G.

Hypothesis 2. For any vy € G*°, all the unipotent elements in Cg(7y) are contained
in Ca(v)°.

Hypothesis 3. Any torus in G splits over a finite tamely ramified extension of F.

Hypothesis 4 (Definition 6.3 of [3]). For any torus S C G which splits over a
tamely ramified extension E, and r > 0, every nontrivial coset in S,./S,+ contains
a good element.

Hypothesis 5. For any g € G*'8, the orbital integral O, converges over C.

Hypothesis [[l holds if F is of characteristic zero, or if p > rank.s(G) + 1. But
it fails when F' is of positive characteristic and p is small. See [20, Proposition 48
and Remark 49]. Hypothesis Pl automatically holds if F' is of characteristic zero. If
F is of characteristic p, then it holds when p is large but fails for some small p. For
example, when p = 2 and Cg(y) has two connected components, then any elements
in Cg(7) \ Ca(vy)° of order 2 is unipotent. Hypotheses Bl and ] hold when G splits
over a tamely ramified extension and p does not divide the order of the Weyl group
of G (see [10]). Hypothesis[Blholds if F' is of characteristic zero (see [24]), and holds
under some mild assumptions on G and on p if F' is of positive characteristic (see
[20, Theorem 61] for the precise statement).

2.3. Good elements and B(G). Many results here can be found in [3]. For the
Lie algebra versions, we refer to [L7HI9].

In the following four lemmas and a corollary, we let v € T be a G-good mod
center element of depth ¢ > 0. We also let G’ := Cg(7).

Lemma 2.3.1. Suppose Hypotheses (A) and (B) hold. Define B(~y) as follows:

{z € B(G) | v € ZStabg(x)} ift=0,00,
(e €B(G) |dz,7) = ()} ift>0.
Then, we have B(y) = B(G', F).

B(y) =

Proof. It v € Z, clearly B(vy) = B(G). Otherwise, without loss of generality, we
may assume that v is G-good of depth ¢. Then, the lemma follows from [3, Lemma
7.6]. O

Lemma 2.3.2. Suppose Hypothesis (A) holds. Let x € B(G'). Then, for 0 <t <s
and u € G, , NG, we have GIvS*t('qu;S) =yuGg.s.

Proof. One may assume that v is semisimple since G"** NuGY, ;N G}, # (). Then,
this follows from [3], Corollary 7.5]. O

Lemma 2.3.3. Suppose Hypothesis (C) holds. If g € G is such that 9(yG}.) N
(vGhi) #0, then g € G' = G'(F).

Proof. Without loss of generality, we may assume v is G-good. Then, this is [3]
Lemma 7.1]. O
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Lemma 2.3.4. Suppose Hypotheses (A) and (B) hold. Let x € B(G) \ B(G") and
u' € Gﬁi(,yﬁ.
(1) Ift =0, vu' & Z Stabg(x).

(2) Ift >0, then either yu' ¢ Z Stabg(x) or d(x,vyu') < d(7).

In particular, {x € B(G) | d(z,yu') = d(yu')} C B(G").

Proof. When v’ = 1, this is [3, Lemma 7.6].

If v € Z, the statement is empty. We may assume that v is a G-good element.

(1) Suppose yu' € Stabg(x). Then, we have v 'z = w/z and B := {y " "z |
n € Zso} = {u""z | n € Zso} C B(G). Since u'?" — 1 as n — oo, the set B
is finite and « = w'?"x = 4~ P"z for sufficiently large n. On the other hand, since
v is absolutely semisimple and the order of  is relatively prime to p, there is an
ne € Z-o such that vP"°" =4~ for any £ € Z-,.

Hence yx = xz, that is, v € Stabg/(z), which is a contradiction to Lemma 223711

(2) As in [3] Lemma 7.6], we may assume that v is split. Write ¢ = d(y). Write
~" for yu/, and define

B(Y) = {2z € B(G, F) | d(x,7) > t}.

Note that B(7') is convex and is a union of closures of chambers.

It is enough to show that B(vy') C B(G/, F).

Suppose first that « is split and G’ is an F-Levi subgroup of G. Then, ¢t € N.
Let P be a k-parabolic subgroup of G having Levi decomposition P = G’N. Let P
be the parabolic subgroup opposite to P with respect to this Levi decomposition
P = G'N. Let N be the unipotent radical of P. Now, assume B(y') \ B(G', F) # (),
and let D be a chamber in B(y') \ B(G', F). From the convexity of B(v'), we may
assume that D shares a facet I of codimension one with B(y’) N B(G’, F). Choose
y € F. From [2], (2.4.1)], there is u € Gy,0 N N such that uD C B(G', F'). Then for
x € D, ux € uD C B(G', F). Since ux € B(G', F) [22] and uD is maximal, Gy
has an Iwahori decomposition with respect to (P, N), that is,

(T) Guw,t = Nux,t . G;w7t : Nuw,ta

where Nyt = Guze NN and Num = Gug,t N N. From this and the fact that
u € N, we can decompose “y' as

(1) Y =" (Y)Y € Gyt/Gy i+,

where v € G' NGy, = G, and v/~ € Ny,. Since G4+ C Guyy+ C Guay C
Gy.t, comparing (f) and (1), we have 9/ € G' N Guar = G, 4 and Y7l € Nyt
Moreover,
(1) u' € Gua:,t‘h (ll) u,y/ € ’ylGuw,t‘* = VGuw,t‘*‘
(i) follows from the fact that uD is a chamber and v’ € Gz, NG} (recall t € N).
(ii) follows from (i) and the fact that uD is a chamber and thus Nyz ¢ = Ny i+
Then from Lemma23.2 thereisa k € G,y 0+ and au” € G/ = G'NGyy ¢+ such

uzx,tt
that %y = *(yu"). By Lemma 233 u € k- G’ C Gyp 0+ G'. Since ux € B(G', F),
we have Gz ot = (NN Gupo+) - (G' N Guzor) - (NN Guzor) 22, (4.2)]. So, we
can conclude that u € G, o+ and u(ux) = ux = x. Then z € B(G’, F), which is a
contradiction. ]

The following is a corollary of the above lemmas.
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Corollary 2.3.5. Suppose Hypotheses (A) and (B) hold. Let v’ € G::l(n/)+' Let
z € B(G).

(1) If t =0 and yu’ € Z Stabg(x), both v and v’ are also in Z Stabg(x).
(2) Ift >0 and yu' € Gy, both v and u' are also in ZG .

Proof. This follows from Lemmas 2.3.1] and 2341 a

2.4. Good products.

Lemma 2.4.1. Suppose Hypothesis (C) holds. Let T be a mazimal F-torus in
G which splits over a tamely ramified Galois extension E. Let y1, -+ ,v, € T be
G-good elements of depth b = by,--- ,b,, respectively. Let v = ~,v1 with v, € Z.
Let HO := G and H' := Cyi—1 (7).

(1) Let v € vH},. Then, Cq(y') € H'. If o is also G-good mod center of
depth b, then Cq(y') = H'.

(2) Suppose by < by < -+ <b,. Firie€ {0,1,---,n} and ¥* =,y ---vi. Let
V" €N . If Y =+" for some g € G, then g € H'.

i

(3) H' = Cri-1(v%) = Ca(v?). In particular, Ca(y"*) C H',i=1,--- ,n.

Proof. (1) If v, = 1, the first statement is Lemma[233] Since v, € Z, the statement
remains valid for this case. For the second statement, since ' is also good of depth
b, H' C Cg(v'). Combining this with the first statement, the second statement
follows.

(2) We use induction on i. Since ®(T,H’, E) C ®(T,G, E) and ; € Ty,, each
Yi, i = 1,--- k is also H"1-good. When i = 1, it is (1). Assume the statement
is true for 4 — 1 > 1. Note that v/, € Wng_+~ Suppose %' = ~" for some

g € G. Since v',v" € ’y’;lH;:l, we have g € H*~! by the induction hypothesis
i—1

and 9(y'(y71) 1) =" (v Since /(v ) Th A (v ) T € viH)y and v, s

H'~'-good and v*~' € Z(H'™'), g € H' = Cpi-1(7i) = Cpi-1 (') by (1).

(3) The first equality follows since v~ € Z(H*"!) and v* = 4'~14;. To prove
the second equality, we use an induction. If 4 = 1, it is trivial. Suppose ¢ — 1 > 1.
The inclusion CHi—l('yi) C Ca(v?) is obvious. If g € Cg(v?), we have 99% % €
viHZJr C wi*IHZIl. Then, g € H=! by (2). Hence, Cg(7%) C Cri-1(7?). O

k3 i—1

Lemma 2.4.2. Let T be a mazximal F'-torus in G which splits over a tamely ramified
Galois extension E. Let v1,v2 € T be G-good mod center elements of depth by, ba,
respectively. Let H' = Cg(vi), i = 1,2. Suppose by < by and vo € Z(H'). Then,
v17Y2 is also a G-good element of depth by.

Proof. Write v = y172. Let @ := ®(T, G, E) be the set of E-rational T-roots in G.
Let a € ®. Since H' C Cg(7y2), a(y1) = 1 implies a(y2) = 1, thus a(y1y2) = 1.

If a(m) # 1, since a(y172) — 1 = a(n)a(yz) — aly) + alr2) — 1, v(a(y2)) = 0
and by = v(a(y1) — 1) < by < v(a(y2) — 1), we have v(a(y) — 1) = min(v(a(y1) —
1), v(a(y2) — 1)) = by. Hence, v is G-good mod center of depth b;. O

Proposition 2.4.3. Suppose Hypotheses (C) and [ hold. Let T be an E-split
torus and v € ZT¢. Then v is a product of good elements mod r™ with decreasing
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centralizers in the following sense:
(1) v = voy1 - VYot where v, € Z and each ~y; is G-good of depth b; with
by <by < -+ <bp <r and .+ CTpr, that is, d(vy,+) > r.
(2) H 2 H?2 2 --- 2 H* where H' = Cg(y1 -+ 7i)-

Proof. It d(v) > r, v = 7, - Y+ for some v, € Z and ~,+ € T,+. Now, we assume
that d(v) = a1 <.

We first assume that v € T, that is, v is noncentral mod T, - Then, ~T, +
contains a good element, say, J,, of depth a; by Hypothesis [ 1f a; > 0 and by
Corollary 2.35 of [20] if a; = 0. Write v = 74, (77,,}) with a2 = d(v35,") > d(7).
We can choose 7,, so that vy, L € T,, by multiplying 7,, with a central element
if necessary (note that ay = d(v7,,') implies only 73,! € ZT,,). Applying the
above process for 7%‘11, we find a G-good element 7,, 6 7%‘11 Ta; such that v =
Far Vaz (V(Far ¥az) 1) and az = d(7(Fa,7a,) ") < d(’y'?a_ll)‘ Repeatedly, we have

Y= ;?al:ytw e :Yam;?r*a
where 7,, is a G-good element of depth a; with a1 < a2 < --- < ap, < 7 and
d(¥,+) > 7. This procedure is finite because d(Ty) C E(E—l/F)Z. Put apmiq =1t
and Y, = Yr+-

Set S := {a1,as, - ,am41}, and for a,b € I@, set Yg,p = Hagaj<b%j- We
find a subsequence by < by < --- < b, < byq1 of S as follows: let b; := a; and
H' := Cg(Ya,)- Let by be the maximal element in {ag, - - , am1} With the property
that if a; < by, then 5,, € Z(H"). Note that H' = Cq;,('ybl by ). Let H? := Cy (Y, ).
Then H' D H2. Let v1 := Jp,.5,- Inductively, suppose b;, H' and 7;_1 are defined
for i > 2. Let b;11 be the maximal element in {a; € S | a; > b;} with the property
that for any a; < biy1, Yo, € Z(H*). Let H'™ := Cyi (Fp,.,) and v = o, p,,,- We
repeat the process until b, 1 = a1 = 7.

Then each v; is also a G-good element of depth b;, and we have H' = Cyi—1(p,) =
Cyi-1(v;),i=1,--- ,n by Lemma[2Z4T(1) . Now, one can easily check

(*) Y=Y VYt

satisfies the required properties.

Now suppose v € ZT,,. Then one can write v = 7,7’ with v, € Z and v’ € T,
noncentral mod Ta1+. Write v/ =71 - Yo Y+ as in (%). Then, v = v.v192 - Yn Yot
satisfying the required properties. ([l

Definition 2.4.4.

(1) We call the expression 7, - 71 -+ yx¥,+ of v in Proposition a good
product of v mod r+. That is, ¥ = v, - y1 -+ VkVr+, Where v, € Z, ; is
G-good of depth b; with b; < --- < by < r and the sequence of centralizers
Hi(y) = Cq(v.71 -+ 7:) is strictly decreasing. In this case, we also write
V<r =Y V1 Yk

(2) Let v = .71 - Y7+ be a good product as in (1). Define HY" := HF (7).
We will often write H” for HY" for simplicity.

In 3], (72,71, -+ ,vk) is called an r™-normal approzimation to v. The following
is similar to [3, Proposition 8.4].

Lemma 2.4.5. Suppose Hypothesis (C) holds. Suppose v = v,v1 -+ vk and v =
VLR g are two good products of v mod r with d(7y;) = b; and d(v]) = b}. Write
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H! = Cg(voy1 - y:) and H' = Cg(vovy -+ -7L). Then, we have k = k', b; = b and
H = H.
Proof. We have 'yi,'y;- € Cal(y) C (M HYN(N;HY) = HFNH' forie {z,1,--+ ,k}
and j € {z,1,--- ,k'}.

Note that d(y) = by = ). Since v.v; € vzfylH;+, Y71 € vgwngi and ~y,v; and

1 1

7.7; are G-good mod center, H' = H'' by Lemma ZZTl By induction, suppose
that b, = b;- and HY = H"Y for 1 < j <4. Write 7* =1 ---v; and v* =~ - ,.

Suppose bi1 < bj,,. Then, (v/)™19" € 7i+1HZ£11' Since G-good element ;11 is

also H'-good, we have H' C Cg((7)~14") € H**! by Lemma Z41(2). This is a
contradiction to H® C H**!. Hence, b;;1 = b;,,. Now we have
(i) d(vie1) = d(vi17" (7)) = by
(i) 7*(v') "t € Z(H'); .
(ifl) Yit+1, Y47 (v") " are H'-good.
Combining (i)-(iii), it follows that Cg(7"**) = Cyi (vit1) = Cui (vi41) = Ce (v ).
Hence, Hit! = H'**+!. Similarly, one can show k = k'. O

2.5. Decomposition of G*&. We first observe that G*& = 7. (Umeg(g) Stabg(x)),
and ZGo C G*& where Gy = Umeg(g) G0

Definition 2.5.1. Let v,7' € G*i8.

(1) Suppose that v and +' are G-good mod center. We say that they are G-good

rt-equivalent and write v & ~/ if there are g € G and a maximal torus 7'
such that %y € vT;+ C T where ¢ = min{d(y),r}. We write a G-good
r*-equivalence class of v as [y]y. Let

(217 ={lzls | Z € Z/Z,+},
8¢ = [Z]8U{[y]g | 7 is G-good mod center of depth d(y) < r}.

(2) For v,y € G™8, we say v and 7/ are 7 -equivalent and write v ~ +/ if
there are g € G, a maximal torus T, and good products of v and ' so that
g’}/gr € FYS?"TT+ cT.

We write an rt-equivalence class of v as [y], and let 8, be the set of
rT-equivalence classes of semisimple compact-modulo-center elements.

Lemma 245 and the following proposition shows that the definition in (2) does
not depend on the choice of truncation v<, and v,

Proposition 2.5.2. Suppose Hypotheses (A)—(D) and 1-4 hold. Then, we have
the following:
(1) For v, € G, “(vH),) N G('y’HZJ:) # (0 if and only if v and +' are
rT-equivalent.

(2) Iy~ Syl ) = 0 HL).
3)
|_| C(vH.) =G,
RIS
(4) Each G(wHZJr) 1s open and closed.
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Proof. (1) For <=, by Lemma 245 we have yH, = v<,H, and ’y’HZJ/r = 7’<TH:;
independent of the choices of v<, and ~%,. Since y<,T+ C H7, hence 7., €
G(7H1+) N G('V/H:+)-

For = and (2), without loss of generality, one may assume that vH ', Ny H;ﬁ # 0.
One may also assume that v =1 .-y and 7' =74 - - -5, with by, b}, <, that is,
Yo+ = =1. Let § e yH, ﬂ’y’H;Y:r. Then, § =~-h=+'-h' with h € H), and
n e H:jr Let h = hgh, (resp., K’ = hlhl) be the Jordan decomposition of h in
H? (resp., W' in HY"). Then, yhsh, and 4'h.h!, are two expressions of the Jordan
decomposition of §. By the uniqueness of Jordan decomposition, vhs = +'h’. Note
d(hs) = d(h) > r and d(h}) = d(h') > r. By applying Lemma 245l to vhs, we have
HYhs = HY = HY'. Hence, yH], =~hH], = W’H;’; and v ~ ~'.

For (3), write Gg, for U[V]ESTG(’}/HA). Clearly, Gs, C G"& and Gg, is a
disjoint union by (1). Conversely, for any g € G*&, there is z € B(G) and z € Z
so that gz € Stabg(z). By [26, Theorem 2.38], we have the topological Jordan
decomposition of gz = ga.go+ with g, absolutely semisimple and go+ € Gy, where
G' = Cg(ga). By Lemma 234 « € B(G'). By Corollary 233 we have g, €
Stabg(z). Let go+ = gsgu be the Jordan decomposition of gg+ in G'. Let gs =
g1+ grgr+ be a good product of g mod r+ with d(g;) = b;. Then, since g,
commutes with gs, g, € Car(g1 -+ gx) = H%9 by Lemma 2.4.1J(2) and thus gz =
9a9sGu € gagsH?% . Hence, g € Gs, and G™& C G, .

For (4), let ¥ = .71 - YxY,r+ and let H® be as in Proposition 2223l We may
assume v+ = 1. Let g € G and h € H, so that 9yh) € “(yH),). We may
assume that g = 1. Let y € B(H") with yh € vH;)TJr C vH),. By Lemma 232

Hk—l Hk—l
(r—by)t Y — k-1 (r—by)t Y — k=1 o
we have v (v H) L) =y H, o and thus vt (*yHy)ﬁ) =H, "} since

i—1
Y- ye—1 € Z(H*1). Inductively, setting H? = G, we have H?"(T"’“J’(WH;TJ =
yH!"L for i = 1,--- k. Hence, vh € vG,, .+ C ¢(vH),) and hence &(yH,) is

yr
open. It is also closed since its complement is open. O

Corollary 2.5.3. Suppose Hypotheses (A)—(D) and 1-4 hold.

(1) For g € G*& with d(g) < oo, we have g = v - u for a G-good mod center
element v of depth d(g) and u € G;(W)Jr where G7 = Cg (7).

(2) We have

arie _ | G(“YGZ(«N) Ul || =G

[V]e €S\ [Z]7 [z]e€[2]F

Proof. (1) Applying the above proposition when 7 := d(g), we have g € G, for a
G-good mod center element «y of depth d(g).

rig _ G
(2) By (1) 6" = (Up, ez © (1630 ) ) U (Upnerzs %G ).
To prove the disjointness, suppose [Y]g, [V]g &[Z]g. If ¢ (’ng(v)Jr)ﬁ G(V/GZ(,Y/)+)
#0, d(v) = d(v') and G('YGg(w)*) = G(V/Gg(yﬁ) follows from the above lemma
by setting r = d(y). The other cases are easier. (Il
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3. DESCENTS
3.1. Theorem A. From now on, we fix r € Rsq. For any [7] € §,, let H(“(vH,))
be the Z[%]-submodule of 3 consisting of functions supported in “(yH,) and let
ﬁ(c('val)) be its image in H. By Lemma [[L2.3] and Proposition 5.2l we have

HE = @@ HE(HL)), FH @ H((vH))
[y]€Sy

Let H,+ ((vH,)) := H,+ NH(YvH],)). Then we have
HED P Hor (AvH)))
V€S,

Note that the intersection of a double coset of G, ,+ with a given G-domain
“(yH,), in general, is not closed under the left (or equivalently, right) multi-
plication of G, ,+. Thus we have

HE % D He (C(vH]L)).
[]es,
Let H,+(%(vH],)) be the image of H,+(%(vH],)) in H,+. In other words,
H,+ (Y(vH,)) is the Z[%]-submodule of H consisting of elements represented by

functions in 3.+ (Y(vH),)).
The main purpose of this section is to show that we still have the desired direct

sum decomposition of %ilf = 69[”/]657- ﬁrJr(G('yH:Jr)).

Definition 3.1.1.
(1) For any s € @Zov we define

D C(G/Gyy).
z€B(G)
For s,t € If@ with 0 <t < s, and 7, € Z (mod Z,+), define
J{?S () = Z Ce((V: - Gait) /Gays) s
z€B(G)

H ()= > Cel GoiNGyt)) /Gas) .
z€B(G)

We note that FEP

s,st
X =7.9G, s+ € 7:Gr s/ Gy o+

for some g € G, s and x € B(G) with gG, .+ C Gy+ by [2, Corollary 3.7.8
and Corollary 3.7.10]. For simplicity, we will also write

G,b G,b
j{tcfs = }thfs(l)’ J{t,s (1) = j{t,s .

(72) is spanned by 1 x, where

(2) Let v = .71 YkYr+ € T be a good product of v with d(~;) = b;.
(i) Let H” = Cg(v<r). Define

}CG ° = Z C ’Y<r ﬂ HZ+)G:E,T+) /Gz,rJr) .
z€B(HY)
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In particular, for any v, € Z(G), we have

f]'be = Z C’ (Ggr NGpr) x’ﬁ) /Gm,ﬁ).
z€B(G)
(i) If [v]g := [v271]g € 88 with 71 G-good of depth by < r, define
J{ny]i = Z Ce ((’Yz’}/l ( b1 N Hblf)Gz,r+> /Gm,r+) )
ce€B(HY)

where H' = Cg(m). If [v]g = [7:]g, let

Gb . qrGh
:H[ zle 9{[’72]
Note that we have J—fﬁ]b = J—[[Ci]b }CTG:«#( ).

In all cases, we denote the image of each Z[E]—submodule in the cocenter H using

L eg., f]-f fJ-C

ts’

Theorem 3.1.2. Suppose Hypotheses (A)—~(D) and 1-4 hold.

(1) T = @y, T 1L ).
—Gp
(2) For any [y] € 8, H,+ (Y(vH],)) = KL

We will prove the above theorem in the rest of this section. We first need some
lemmas.

3.2. Some lemmas. The following is [9] Lemma 4.5.1].

Lemma 3.2.1. Suppose Hypotheses (DB) and Rlhold. Let xz € B(G, F) and suppose
s <r. Let S C G be a mazimal k-split torus of G such that x € A(S,F). If
u € (UG, o+ N (Gays \ Gust)), then there exist v € “=(uG, o+) and A € X.(S, F)
such that for sufficiently small € > 0, we have

(1) vGy s+ C Gyyer s+ and

(2) vv,Gw+ez\,T+ C GI’(Tis)(’U(U/Gw,T‘*') for any v’ S Gm,s+'

Definition 3.2.2 ([]). For any g € G, the displacement function d, : B(G) — R
is defined as d,(z) = dist(Z, gZ) where dist(Z,gZ) is a geodesic distance in the
reduced building B(G) between Z and gZ where Z is the image of 2 in B(G). Define
d(g) := min{d,(z) | z € B(G)}. For any subset S C B(G) with compact image in
B(G), define dg(g) := min{d,(z) | z € S}. Note that dg is well defined since S has
a compact image in B(G).

We would also need the notion of generalized r-facets. In [§], they are defined as
certain subsets of the reduced building B(G). One can define generalized r-facets
on the extended building B(G) in a similar way.

Definition 3.2.3 ([§]). For x € B(G), define
F* (1‘) = {y S B(G) | Gaz,r = By,r and Oz rt = gy,r*}
= {y € B(G) | GHE,T’ = Gyﬂ’ and Gm,r‘*‘ = Gyw‘*’}’
F(r):={F"(x) |z € B(G)}.
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An element in F(r) is called a generalized r-facet in B(G). We will often write F™*
for F*(z) when there is no confusion. Note that the closure F" of F* € F*(r) has

a compact image in B(G). For F* = F*(z) € F(r), define

- +

gF* ‘= QBz,r, p+ = g$77‘+ 5
- +

Gpe = Gap,  Gh.=GCoypr .

Remarks 3.2.4. Let y € B(G) and let S be a maximal F-split torus of G with
y € A(S). Let C be an alcove (0-facet of maximal dimension) with y € C' C A(S).
For g € G, there are n € Ng(S) and b; € G¢ with g = binbs where Go = G o for
z € C. Define ¢’ = % 'g = nbyb;. Then, we have the following;

(1) Forr >0, since by € Ng(Gy,)NNg(G, ,+), we have by € Stabg(F™*) where
F* is the r-facet containing y.

(2) We have ]lgG;:* = ﬂg,G;* mod [H,H]. Here for X C G, 1x denotes the
characteristic function with support X.

(3) Since y € C, we have g’y = nbobyy = ny € A(S).

(4) dg/(y) = dg(y).

The proof of the following lemma is adapted from that of [, Corollary 4.2.9].
We include the proof for completeness.

Lemma 3.2.5. Let F* € F(r) and g € G. Suppose d(g) = 0 and m := dz-(g) > 0.
]

Then, there is a finite set {g;} and constants c; € Z[% and F} € F(r) such that

(1) dz=(g9) > dz=(gi) for each i, and
(2) ﬂgG;* = Zi ciﬂgiG;‘* mod [j‘f,g‘q

Proof. We divide the proof into two cases.
Case 1. There is y € F* with d,(y) = d%=(g).

Choose S and C' as in Remarks [3.24] and keep the notation from there. Write
[y, ny] for the geodesic in A(S) between y and ny. Observe that [y, ny| NF = {y}
(see the proof of [9, Lemma 4.2.6] for details). Let F;* € F(r) be the first generalized
r-facet that (y,¢'y] = (y,ny] passes through when traveling from y to ny. Note
that F; NA # (). Since F* c F, thus F* N A C F, N A. Note that G}. C G%I.
Let

Q:={weVS,G,F)|Y|(FfNA)>rand p|(F*NA)=r}.
Then,

+ _ ot
Gl =Gh- [] Us,
PeQ

where the product over @ may be taken in any order. Fix ¢ € Q. Since (n=1%)(y) =
Y(ny) > r, we have "71U¢ = U,-1y C Gf.. We also have UJ; C Gf.. By (2) of
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the above remarks, we have

1 1

g9Gh. = “g-GL.
=c § : Lp—tnbbicton
he([Tyeq Uv)/(Tyeq Uf)
=C- E 1 +
9'Gr«h

EE(HweQ Uw)/(nquQ UJ)
=c- ﬂg,G;f mod [H, H],

—1

where the constant ¢ = § ((HweQ Up)/(Iyeq UJ)) € Z[%]. Note that for all z €
Frn(y,g'y) # 0, we have from [9, Lemma 4.2.1] that dg(z) < dg(y). Combining
with (4) of the above remarks, we have

min dg (z) <dg (y) = dg(y) = min dy(z).
z€Fy z€F~

Case 2. For all x € F*, dg(z) > dz=(9).

Choose y € F \ F* such that d(g9) = dg(y). There exists F| € F(r) such that
y € Ff and Ff ¢ F". Then,

ﬂgG;* - Z ﬂgaG;f'

+ ot
aEGF*/G +

Note that for all @ € Gf., we have dy(z) = dgo(z) for all z € F" and dgo(y) =
dF;‘ (ga) for all @ € GF... Now, one can apply Case [l to each summand Lo, s

+ + =
a € Gp./Gp., and F. O
3.3. Descents.

Proposition 3.3.1. Let gG, .+ C G"&. Write s := d(y,g) and t := d(g). There
exists a finite indexing set {i}, {g;} C G, and ¢; € Z[%] such that lyg . =
>icilga, . (mod [}, H]) with d(g;) = d(gi,ys) <7 orgi € Z - (Grv NGy, r).

Note that s < ¢. Note also that if s < r, we have d(y,g9) = d(y,¢’) for all
g € 9Gy +.

Proof. We prove the statement in three cases below. Without loss of generality, we
may assume that g is compact.

Case 1. s=t=0o0rs>r.
Done since Ilggy _, already satisfies the required condition. In particular, when
s>r, gGy .+ = 2G, .+ for some z € Z.

Case 2. d(g) =0 and g € Z Stabg(x) \ Z Stabg(y).

In this case, d,(y) > 0. Let F* € F(r) with y € F.

If d+(g) = 0, from Case [[lin Lemma B.2.5] we may assume that there is z € F
such that dy(z) = 0. Then, ¢G, ,+ = gG, .+ C Stabg(z), which reduces to Case [l
below.
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Now, let d&+(g) > 0. By applying Lemma [B.2.5] repeatedly, we can write
HgGy,ﬁ = ]lgG;* = Z ci]lgiG;*
Z ;

with {i} a finite set, F;* € F(r), and d&-(g;) = 0 for all 7. More precisely, applying
Lemma[3.2.5 repeatedly, we find a sequence of triples (g;, /', y;) € GxF(r) xB(G),
J € N such that y; € F; and

dg, (y5) = dzr(95) > dmz(9j+1) = dg,a (Yj41) > 0.

Since dg, (y;) is a discrete decreasing sequence in Rxq, for sufficiently large j,

J

dg, (y;) = 0 (see the proof of [9, Theorem 4.1.4-(1)]).
Case 3. 0 <s<t.

If t = s, it is done.
Now, suppose that ¢t > s. Then, g € G s N UG, o+. We claim that there is a
finite set {¢} such that

(1) leq, . = ZciﬂgicW+ mod [H, H]

with ¢; € Z[%] and d(z;, g;) > s.

Let F* C B(G) be the generalized r-facet with y € F*. Let S be a maximal,
maximally F-split torus in G so that F* C A(S, F'). Since d( ,g) is continuous on
B(G), for fixed g € G, d( , g) restricted to F" attains its maximum since the image
of F in the reduced building is compact. That is, there is s’ € R>g with s > s

and z € F such that
s =d(z,g9) > d(w, g)

for all w € F*_
Since # € F, we have Oyt C gt C gr+ C gur. Therefore,

ﬂgGy,ﬁ = E : ﬂg‘an,T+'
EEG%T.F /Gm,r+

Note that each a € G, and d(z, g) = d(z, go) = s.

Now, for each ga, we will show that there is a 2, € B(G) such that lsac,
is a linear combination of characteristic functions of the form ﬂgan with g,); €
G., s+ (see (@) below).

Since we are treating each ga, for simplicity of notation, we may write u for ga.
Note that u € G, s NGg+ C UG, o+. Then, we can find v € Gw(qu)sw) and A as
in Lemma 3.2l so that for sufficiently small € > 0, we have (i) vG, s+ C Gypen s+
and (i) v0'Gyqer+ C va“*S)(vv’GLﬁ) for any v' € G, o+. Fix € satisfying (i)
and (ii). Write z = x + eX. Let

a= {vilhvhil ‘ E € Gw,(r—s’)/Gz,(rfs’)Jr}Gz,rJr-
We have a C Gy C Gy g+ and G, .+ C a. Then,

(2) Lug, .+ = lg, . =c¢ § : Lhon-1a, .+
EGGzy(Tfs/)/G "+

@ (r—s)

=c-ly,a=c- Z Lusg, . mod [I, 3],
EEa/G’zYH.

art
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where ¢ = (H(Gw)(r_sl)/Gxﬁ(r,slﬁ))71 S Z[%]. For all 8 € a, we have L3¢ _ , €
C(G, ¢+ /G, +), and the claim is now proved.

Now one can repeat the process for 1,,¢ in () until each coset satisfies

zi,r"’
d(g;) = d(x;,9;) or d(z;,g;) > r. This is a finite process as in the proof of [9

Theorem 4.1.4-(1)]. We omit the details. O

Remarks 3.3.2. Suppose Hypotheses (A)—(D) and 1-4 hold. We observe the fol-
lowing: Suppose gG,, ++ satisfies t := d(g) = d(y,g). Write g = v - u such that v
is a G-good mod center element and u € G'd(,y)+ where G’ = Cg (%) (see Corollary

253). Then,
1) d(g) = d(v) = d(y, g) = d(y, ),
2) y € B(G', F),
3) y¢€ ZGUt, ue Gy, NG,
) 1 + € C. ((’}/ : (G;;,t N G2+)Gy’,~+) /Gy7r+).
The first equality d(g) = d(v) follows from Lemma 234l (2) is Lemma 23] and
(3) is Corollary

(
(
(
(4

The following is a corollary of Proposition B.3.11
Corollary 3.3.3. Suppose Hypotheses (A)—(D), (DB), and 1-4 hold. Then, we

have
rlg
T+_ @ g{’Y]g

Proof. Tt follows from Corollary 2.5.3] Propositionm Lemmall.2.3] and Remarks
3.3.2(4). O

3.4. Descent via induction.

Proposition 3.4.1. Let v = .71 be a G-good mod center element of depth t > 0,
where v, € Z(G) and v, is G-good of depth t. Let s € R with s >t. We set G' =

1o (Ga ) Lyha,, . forz € B(G') and h € G, ;NG

Ca(v). Then the map Lpa,  — s

induces a well-defined map

’
)

—G —G
ly,s j{t,s - j{t,s(’yz)'

Moreover, for any s' € R with s' > s, we have the following commutative diagram:

—G'b iys —G
J{t s :H:s

]

—G'. b i,Y’S/ —
T T
Remark 3.4.2. Note that the elements 1,g:  for z € B(y) and h € G}, , NG}, are

not linearly independent in . Thus the map ﬂhG&,s — % 1 kG, , may not

give a well-defined map from J{S ;’b to HE. However, we will see that it induces a
well-defined map on the cocenter.
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Proof of Proposition B.41l Let x € B(y) and h € G, NG},. Let e = s —¢.
By Lemma 232 for any k£ € G, 5, there exists g € G, such that 9(yhk) €
YhG', 5. Note that (Gu.c, G 5) C Gz sye Then G Gy sy is a subgroup of G and
G sGaste) = Gy G spe. We have 9(yhEG), (G sye) = YhGl Gy sye and

LyhkGy, Gavere = Lynay, Gowye  mod [J,H].

Similarly, for any n € N and k € Gy s4ne, we may write G, ; = | |, G, ¢4, for
hi € Gy /G sine- Since Gy oo C Gy sine, we have WG, o = | |, hluki G, for

x,5+ne

ki = hy "kh; € Gy sine. Note that hhy € G, , N G.. By Lemma 232 there exists
g € Gy (nt1)e such that 9(yhhik;) € yh G, o, Note that (G, (ni1)e) Gl sine) C

Gast(2nt1)e- Then G, (1, Gy oy (2n41)e IS a subgroup of G and
o (G;7s+neG$7S+2(n+1)€) = G;,s+neG$,S+(2n+1)€'
We have 9 (YhhikiGY, o\ G st 2nt1)e) = YMGY, o0 eGa st (2n41)e and

ﬂ’thG;,SGz,sﬂszrl)s = E :ﬂ’thle;,erner,er(%Jrl)é
l

= Z LyhhiGy Gt anine
l
= ﬂ"/hG;,st,er(szrme mod [J, H].

In particular, we have

e = MH We G
YhGz,s MG(G;7st,s+e) ThGy sGz,ste

= NG(GLS)
ILLG(G(/E7SGI,5+(2TL+1)6

) H’YhGQn,st,er(szrl)e mod [g{a :}q

Moreover, for any open compact subgroup K with G, s (2n+1)e € K C Gy stne,

_ bG (G K)
we have thG;,sK = MG(G;iGw,stnH)e) ﬂva’z,sGm,s+<2n+1>e mod [H, H] and hence
/"I’G(GI s)
a Lo, = PG T2s) g o e mod [H, H].
( ) ¥ R /LG(G;%:;K) Y z,s [ ]

Now suppose that > a;lp,c.  =0¢€ U—Cf;’b. We may choose a sufficiently large
n € N such that the subgroup generated by G, s (2nt1)e for all i is contained in
K = NGy, stne- Then, G, s1ant1)e € K C Gy, sine for all i. By definition,

. 1o (Go, s)
Do aiﬂhiG;i,s is mapped to ), aiuGc(Giw.l,s) Lyn,c,, .- By (a),

e (G, ) per (G )
2 G (Gars) LyhiGape =) Y oG K) Lyny  x mod [3, H].
Note that :GG(/C(??Z% — MG;:E;G(IIQ)K) for all i. Moreover, we have . a; ﬂ'yhiG;i,sK —

0as ) ;ailpc, . =0. Therefore, under the map in the proposition, the image of
v G

> iailpn,cr  equals 0. Hence it gives a well-defined map from 4., , : J{,ﬁ;’b — K, .

Now let ¢ =" —t. Let f € }Cgé’b C U—Cf;}b. We show that iy s(f) = iy,s (f)-
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Suppose that f =, a;ls,c; . We choose an open compact subgroup K such
that there exists n,n' € Nwith G, st @2n+1)e € K C Goysine and G, g4 (20 41y C
K C Gy, s'4nre for all i. By (a), we have that

. ne (G'NK)

Ty, i——————=1 h;G" K mod 9‘(,9{

e Z MG(K) YhiGY, s [ }

We may write f as f =32, car o @ilnga, | € J'ff;}b. Then by (a),
we have

, (G'NK
Zw,s/(f) = Z Z aiL)]lwhig’G’zi,s,K

7 9'€Gy, /G' MG(K)

(G'NK _
= Z %ﬂwhicgmx =is(f) mod [H,H].

. . 4 =G —G',b
It remains to show that the map i, : f}{fs’b — H, factors through 3,

Let f € f]-ff;’b N [J{G', HG'}. Then by definition, the support of f is contained
in the G’-domain G, . By Lemma[[.2Z2 f = >, (fi — 9fi), where f; € U{(G’) with
support in G, and g; € G’. Let s € R with s’ > s and that f; € fJ'Ct o
Then iy 4(f) = iy, (f). It remains to prove that for any f' € thGs/b and g € G,
we have i o (') = iy, (9f").

It suffices to consider the case where f = 1o ,, where x € B(y) and h €
G, NGy, By definition, '

b for all 1.

. . MG’(GI , /)
2%5/(]15;(;1@;15,)) =iy (Igng—1cr ) = ¢ﬂvgh9‘10gz o

g@,s ﬂG(Gg:mS’)
e (G o) .
= 7/},(;((;%8/) ﬂ'Yth,s/ = Z’Y’s/(ﬂhG;,s/) mod [j‘f,g'f]

This finishes the proof. O

Theorem 3.4.3. Let v € G"8 N G* with a good product v = V. Vb, -+ Vor Vot »
where each vy, is G-good of depth b; and by < by < --- < by, < r. Then the map
Lyg | = @y LreehG, for x € B(y<,) and h € H) . N H, induces a
well- deﬁned map

- —H7 b —G

Lyt :j{r,r+ - Hbl,'r* (’Yz)
In particular, the map %77T+ is independent of the good product expression v =
YzVby " Vo Vet -
Proof. Without loss of generality, we may assume v =~<,. Set H'=Cg (775, * - b, )-
Then by Proposition B.4.1] we have well-defined maps

k—1

~gk-1  =—H",b —H
z%k ot g{bk rt j{bk o
- —__H* 1) __gk-2

byt J-Cbk 1J‘+ _>:ku 1t

1
-G —H",b
by et - j_Cbl rt }Cbl rt ('Yz)
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, —H' =H' b -
As b;11 < b; for any i, we have that Hepor v C Hppy ot Set Uy Ao s Yo T

e

k-1 . =H.b =G .
1 o---0iH ++- This is a well-defined map from 3, ,+ to H,, ,+. In particular,

Yoyt Voo s
- —H",b —G
we have i, .+ : 3, = 3 4.
For any z € B(y<,) and h € H), N H,, we have

byoy Abg st og T (ﬂhH:‘ﬁ)

= NHV(HZw)

2 + - . 1 _ k—1
Yoy Vb Vg _q 5T k—1 Yo, hH
pope—y (Hp) e et

. prr (H) 1) g (Hy )

2 + Hk—2
Yoy Yoo Vg ol 2 k—2\ "V _1 Yo, h
NH"'*l(Hz r+)/$Hk 2(Hm T+) kot kT et

158 (Hl ) MR (Hk;i) HH! (H;n”*)

= e 1
pires (HE D) pggea(HE2) pa(Gpe) 7"t
NHV(H’Y +)

=521 mod [H, H].
ﬂG(Gm,r+) TGt [ ]

Thus the map % R only depends on ~. This finishes the proof. O

Yoy Voo

Proof of Theorem 3.1.2. We have shown in Corollary 3.3.3] that

5 = D Mg

[e€

Let 7.7, be a G-good mod center element and chy.r e HC By Propo-

.. = —H'b .
sition B.AT) iy, o+ 0 Hyy v — f}f[%% oot Where H' = Ca(v.m,), is a well

defined surjective map. Write g = 7.y, u1 where wy € Hy, N Hbl+ Then,

[’Yz Yoq ]

ﬂulH;,ﬁ = Zj c;j ﬂ%2a‘“2iH;2j,r for some H'-good elements Yoy, Of depth by; > by,
y2; € B(H*) where H* = Ci (), ¢ € Z[%] and ug; € H Yagb ﬂHbQi Note
2

that there are constants c; € Z[l] such that

25

/ “’b1 o
ch ’ %gjuzJH ZCJ V2Vo1 Voo U2 Gyt = ﬂgGy,r+~
Repeating the process to each summand, ]1u2jH§jr+ =0k %2 gt ; -
for some H?%-good elements Voo : of depth by > baj, yojr € B(H%*) where
25k _ . ) Jk 25k
H" = Cy2i (Yb,;,) and ugjy, € HyQWbQJk HbQJFJk Now

Zj i’Yb et
E E Cjk - 1 woir H1 —2# E C/~]]. wo; HY
Yook U2ik kT J 7 Yo Vg U235 ya ot
kg J

-

Ty _
ZCjH’Yz’Ybl’Yij’)’ijkU2ij2j7T+ = ﬂgGy,TJr mod [J—C,ﬂ{]
J
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Setting b; to be the min of depths appearing in summands in each ith step. One
can repeat the process until b; > r. These are finitely many steps since b; forms an
increasing discrete sequence. Now, we proved that

r1 —C, b —Q@, b Ti,
R N M S Z Hop C S T (G H]L) C TOE.
[v]es, V€S,

Therefore all the inclusions above are in fact equalities. Also

_rlg Z g'CTJr "YH’Y ))

By Lemma [[2Z3] this is a direct sum. Moreover, for any [y] € §,., we have
—H7 b —G,b

z’Y,?"+ (}Cr,ri ) = J-C[ ,

= (< H L)), 0

As shown in the proof, we have the following description of H,+ (“(vH,)).

- . —H'b,  —Gp
Corollary 3.4.4. Let i .+ be as in Theorem 343 Then, i .+ (}CfT; )= J'C[C;] .

4. JORDAN DECOMPOSITION OF ﬁff
4.1. The cosets I* and IZ. Following [8.0], we set
I.(G) = {(F*, X); F* is a generalized r-facet of G, X € Gp-/G}.},

IM(G) = {(F*,X) € I,(G); X = uG}.. for some unipotent element u € G~ }.

By [2, Corollary 3.7.10], I*(G) = {(F*, X) € I,(G); X C G,+}.

By [8, Definition 5.3.4] and [9, §4.4], under Hypotheses (DB), to each pair
(F*, X) € I'(Q), there exists a unique unipotent conjugacy class of minimal dimen-
sion which intersects X. We denote this unipotent conjugacy class by O(F*, X).

Finally, we define the distinguished cosets I¢(G) C I*(G) as in [8, Definition
5.5.1] and the equivalence relation ~ as in [8] Definition 3.6.2]. By [8, Theorem
5.6.1], under Hypotheses (DB), the map (F*, X) — O(F*, X) gives a bijection

between I¢(G)/ ~ and the set CI%(G) of unipotent conjugacy classes of G.
We first prove the following.

Proposition 4.1.1. Suppose Hypotheses (DB) and Bl hold. Then ﬁﬁjb is a free
Z[%]—module with basis 1« x, where (F*, X) runs over representatives in I4(G) /~
and 1 g~ xy is the characteristic function 1 x supported on X.

We adapt the strategy of [0 §2]. While the invariant distributions (with complex
coefficients) are considered in [9], here we consider the cocenter of H and need to
work with coefficients in Z [ﬂ .

Lemma 4.1.2. Let O be a unipotent conjugacy class of G and (F}', X1), (Fy, Xs) €
IM(G) are two pairs associated to O (i.e., O = O(Fy, X1) = O(F5, X2)) such that
Fy C F1 and Xo C X1. Then in J—C we have

1
Ix, eplx, + Z Z{—] Ix +[H,H] for somen € N.
(F*,X)eI*(G) with O(F*,X)>0 p

Here < is the partial order on the set of unipotent conjugacy classes of G given by
the closure relation.
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Proof. We follow the argument in [9, Lemma 2.6.2], almost verbatim. We have that

Ix, = > ly.

YGXI/G;*
2

We write 1x, as

Let Y € Xl/GJr;. Then Y C X; C G,+. By [8 Corollary 5.2.5], we have
O(F5,Y) > O. The case where O(Fy,Y) > O is obvious. It remains to consider
the case where O(Fy5,Y) = O. By [8, Lemma 3.2.17], there exists € F;* so that
G, C Stabg(Fy). By [8, Corollary 5.2.3], we have Y = 9X, for some g € Gf. In
particular, 1y = lx, mod [H,H]. Set I' = {Y € Xl/G;;;O(FQ*,Y) = O}. Then
G acts transitively on I'. Since G} is a pro-p group, the cardinality of T is a power
of p. The statement is proved. ([l

The following results follow easily from Lemma[£.1.2]and the definition of ~ (see
the proof of [0, Lemma 2.6.5]).

Corollary 4.1.3. Let (Fy, X1), (F5, X2) € IH(Q) with (Fy,X1) ~ (Fy, X3). Then

Ly, €'y, + )3 Z [
)>0

] Ix +[H,H] for somen € Z.
(F*,X)eI*(G) with O(F*,X

=

Proof of Proposition 1.1l Note that ﬁﬁ]’b is spanned by 1 p- xy for (F*,X) €
I*(G). By definition, for any (F*, X) € I*(Q), there exists (F}, X;) € I¢(G)
such that F* C F} and X C X;. By Lemma £ T2 given a unipotent conjugacy
class O, for any (%, X) € I}(G) with O(F*, X) = O, the element 1 p- x) in H is
contained in the span of 1 (g« x,), where (Fy, X1) € I4(G) with O(F}, X;) = 0O,
and (F™, X") € I'/(G) where O(F"™, X') > O. Here, we denote 1x by 1(p- x) for
clarity.

By Corollary 1.3 it suffices to use any representative (Fy,X;) € I4(G)/ ~
with O(F}, X;1) = O instead of all the distinguished cosets associated to O.

By Hypotheses (DB), there are only finitely many unipotent conjugacy classes.
Hence by induction, 1(p« x) is spanned by I (g x+y, where (F'*, X') runs over

. . . . =Gb .
representatives in I¢(G)/ ~ with O(F"*, X’) > O. In particular, Hpy is spanned
by 1 (g xry, where (F’*, X') runs over representatives in I4(G)/ ~.

Now we choose a set of representatives (F'*,X’) of I¢(G)/ ~. It remains
to show that the elements Iz x/) are linearly independent over Z[%]. Sup-
pose that Y ape x1pe xy = 0 in H with apre xr) € Z[%] c C. We regard
> acp+ x (= x1) as the zero element in He. Suppose that not all the coeffi-
cients a(pi« xr) are 0. Let O be a minimal unipotent conjugacy class such that
0 = O(F7", X1) for some (Fy*, X{) with a(p;- x;) # 0. By the minimality assump-
tion, for any other representative (F'*, X') in our chosen set, we have a(p/- x) =0
or ON X' =. For u € O, we have

0 = Oularp xp) L xp) + > Oula(rr xnL(pr x1)
(Fr,X")#A(F[*,X1)

= a(rys x)) Ou(L (- x7))-
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This is a contradiction as a(r/« x7) # 0 and Ou(]].(pll*7xi)) is a nonzero number
in C. Hence the image of 1 (g x/) in I for any set of representatives (F’*, X') of
I4(G)/ ~ are linearly independent. O

4.2. Unipotent orbits in the group H”. Now we consider ﬁgjb for arbitrary
[v] € 8. Set H = H”. Note that H is not connected in general. The cosets we
consider in this situation are the distinguished cosets I¢(H) := I¢(H°®), but there
are extra equivalence relations that we need to take into account. The equivalence
relation <~ on I¢(H) is generated by the equivalence relation ~ on I¢(H°) in [8|
Definition 3.6.2] and the relation (F*, X)~("F*,"X) for h € H. In other words,
the group H/H® acts naturally on I¢(H®)/ ~ and the quotient set is I¢(H)/~.

On the other hand, let CI*(H) be the set of unipotent conjugacy classes of H and
let CI*(H*®) be the set of unipotent conjugacy classes of H°. Under Hypothesis [2]
the natural map CI*(H®) — CI"(H) is surjective. The group H/H® acts naturally
on C1*(H®) and the quotient set is Cl“(H).

It is easy to see that the map I¢(H°)/ ~— CI%(H®) given by (F*, X)
O(F*, X) is H/H°-equivariant. Thus it leads to a map I¢(H)/~ — Cl*(H). Com-
bining this with the result in [9 §4.4], under Hypotheses (DB) and 2] this map is
bijective.

Now we come to the main result of this section.

Theorem 4.2.1. Suppose Hypotheses (DB), (A), (C), 2, and Bl hold. Then for

any [y] € 8,
—HY
(1) ﬂ{fﬁ’b is a free Z[%]—module with basis 1(p+ x), where (F'*,X) runs over

representatives in I3(H")/~.
- —HY b
(2) The map iy .+ : 5

. ﬁg]b defined in Theorem B.A3l is a Z]:]-linear
isomorphism.

1
P

Proof. Without loss of generality, we assume vy = y<,.
By definition, if h € H?, then for any (F*,X) € I¢(H"), we have Lipex) =
Lnpenxy mod [FHCHT HHT]. We choose a set A of representatives (F*,X) in

I4(H")/~. By Proposition L] applied to H7, Wﬁl is spanned by 1 (g« x).

By Corollary B.4.4] i, .+ (ﬁf:ib) = ﬁ[(:;’]b'

Now suppose that i, .+ (X (r xyea arx) Lipe x)) = 0 in H; here a(p- x) €
Z[%] C C. We regard E%ﬁ(Z(F*’X)GA acp+ x) 1 (r+ x)) as the zero element in He.
Suppose that not all the coefficients a(p- x) are 0. Let O be a minimal unipotent
conjugacy of H7 such that there exists (F*, X) in the chosen set of representatives
with O(F*, X) = 0 and a(p~ x) # 0.

By Lemma 233l the map g — 7g induces an injective map from the set of
conjugacy classes of H" to the set of conjugacy classes of G. Let O be the conjugacy
class of G that contains vO. Note that the support of E%T+(H(F/*7X/)) is contained
in “X’ by Lemma 232 Let u € 9. For any element (F'*, X’) in our chosen set, if
(F/*, X/) # (F*, X), then Ofyu(g%,Hr (a(F/*7X/) H(F’*,X’))) = 0 Then

0 = Owu@%ﬁ (a/(F*,X) H(F*,X))) —|— Z O’yu(g'y,rJr (a(F’*,X’) H(F’*,X’)))
(F7*, X")#(F*,X)

= a(F*yX)OW(g%r*(H(F*,X)))~
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This is a contradiction as a(p« x)y # 0 and Oy (iy 0+ (1(p+ x))) is a nonzero
number in C. Therefore the set 1z« x) is linearly independent and the map E%T+
is injective. O

Corollary 4.2.2. Suppose all hypotheses in §2.2 hold. Then ﬁiif s a free Z[%]-

module. If moreover G is semisimple, then the rank ofﬁiif isy fCIM(H™).

[v]€Ss-

4.3. Application to invariant distributions. For any compact subset X of G,
we denote by J(X) the space of complex-valued invariant distributions of G with
support in X. Similarly, we write J(X), ﬁ(X)THC for H(CX), ﬁ(GX)TtC, etc.,
for simplicity. Now we discuss some application to the invariant distributions. We
first recall Theorem [B]in the introduction and give a proof of it.

Theorem 4.3.1. Suppose all hypotheses in §22 hold. The restriction J(G"®) |s¢ ,
has a basis given by the restriction of orbital integrals O,_ . to H,+ ¢, where

[v] € 8, and u runs over the representatives of the unipotent conjugacy classes
of HY.

Proof. By Theorem B.1.2] J—(i,lf c =@ es, H,+ c(vH), ) and each subset “(yH, )
is a G-domain. We have

J(G) Jo,, o = T(G) gz, = J(G™) s = €D TE) |z, o,

T hes,

= P FHoectyHL)"

[v]€S

For any [v],[Y'] € 8, with [y'] # [v], by Proposition we have G(vH,) N

G(W’H:jr) = () and hence for any unipotent element u € H7, O,__,,(H,+ ¢ (v ’Hl))
0.

Now we fix an equivalence class [y] € §, and an element y<,. By the proof of
Theorem 2.T](2), the dimension of ﬁrﬂc(fyHZJr) equals the number of unipotent
conjugacy classes of H” and the orbital integrals O,_, ., where u runs over repre-
sentatives of the unipotent conjugacy classes of H”, form a basis of linear functions
on ﬁrﬂc('yH:Jr). The theorem is proved. a

4.4. Finally, we explain how Theorem[£3.Tlmay be applied to Howe’s conjecture. In
[14], Howe conjectured that for any open compact subgroup K and compact subset
X of G, the restriction J(X) |5 (g, k) is finite dimensional. This is proved by Clozel
[7] and by Barbasch and Moy [4]. Another proof is given by the first-named author
n [12].

Following [12], we have the Newton decompositions

G= |_| G(v) and G"& = |_| G(v),

veRr veR; Cq (v)=G

where R is the product of 7;(G) (the Kottwitz factor) and the set of dominant
rational coweights of G (the Newton factor), and G(v) is the corresponding Newton
stratum defined in [12], §2.2].

It follows from the definitions of Newton strata and rt-equivalence that for
semisimple compact-modulo-center elements, if v and ' are r™-equivalent mod
center (for some r), then v and 4/ are contained in the same Newton stratum.



320 XUHUA HE AND JU-LEE KIM

For v € N that is central in G, we let 8, be the set of r*-equivalence classes of
semisimple elements in G(v). Then we have

Ss= || S

VEN; Cqa (V):G

Based on the approach of [12], the study of the restriction J(X) |s¢.(q k) can be
reduced to the study of J(G(v)) |5c.(c,1,), Where v € R that is central in G and I,
is the nth congruent subgroup of an Iwahori subgroup of G. If r = n — €, where € is
a sufficiently small positive number, then there is an x in the base alcove such that
G+ = I and H,+ = H(G, I,). In this case, J(G"8) l9¢,4 o= J(G™8) |sc(aor)-

Let H(G, I,;v) be the Z[%]—submodule of H(G, I,) consisting of functions with
support in G(v) and let (G, I,;v) be the image of (G, I,,;v) in the cocenter K.
The main result of [I2] establishes the Newton decomposition (see [12, Theorem
4.1]):

H(G, I,) = |_| H(G, I;v) and  H(G, I,)"8 = |_| H(G, I,;v).
veN veR; Cq(v)=G

Combining it with Theorem 3.1l we have the following.

Theorem 4.4.1. Suppose all hypotheses in §2.21 hold. Let v € N such that v is
central in G. The restriction J(G(v)) |3.(a,1,) has a basis given by the restriction
of orbital integrals O~_ ., to Hc(G,I,), where [y] € 8, ., and u runs over the
representatives of the unipotent conjugacy classes of H7.

In particular, the dimension of J(G(v)) |s¢.(a,1,,) 5 equal to Z[W]esw gCI*(H").

This result gives an explicit basis of the finite dimensional space J(G(v)) | (c,1.)>
and thus gives a precise estimate on the dimension of J(G(v)) |3¢.(G,1.,)-

5. EXAMPLES

In this section, we give some examples to illustrate relations between the cocenter
and the representations. We will work with the Hecke algebras of complex-valued
functions and complex representations.

5.1. Cocenter and representations. Before we come to some concrete examples,
we would like to give a brief discussion on the relation between the cocenters and
the representations.

Recall that R (G) is the complexified Grothendieck group of smooth admissible
complex representations of G of finite length. Let P be the set of all proper parabolic
subgroups of G. For any Levi subgroup M of G, we denote by U(M )¢ the group
of unramified character of M over C. We define the elliptic quotient and the rigid
quotient as follows:

Re(G)enr = Re(G)/(IndE(a)) | P= MN € P, 0 € Re(M));
Re(G)rig
= Re(G)/(Ind%(6) —IndS(c @ x) | P= MN € P,0 € Re(M), x € U(M)c).

We have discussed the rigid cocenter ng in this paper. There is another impor-

o —ell .
tant subspace of the cocenter, the elliptic cocenter J—Cé , introduced by Bernstein,
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Deligne, and Kazhdan in [5]. By definition,

ﬁ(ecll = {f € He;7a(f) = 0 for any proper standard Levi M},

where 7ps : ﬁg — ﬁ(]cw is the map adjunct to the parabolic induction functor
Re(M) > Re(G).
The trace map Tre : He — Re(G)* induces
—ell % —ri %
(a) Trc: He — Re(G)ly, Tre: Heo = Re(G)f,
Here the first map is studied in [5] and the second map is studied in [6].

Similarly, for any n € N, let R(H¢(G, I,)) be the complexified Grothendieck
group of finite dimensional representations of H¢ (G, I,,). By R(Hc (G, I,,))en and
R(Hc (G, I))rig we denote the elliptic quotient and the rigid quotient of R(Hc (G,
I,,)), respectively. Then we have
(b)

Tre : He(G, 1) = R(H(G, 1n))iy,  Tre : He(G, 1) — R(He (G, 1)) g

If G is semisimple, then all the vector spaces in (b) are finite dimensional and the

maps in (b) are bijective. Here the surjectivity follows from the trace Paley-Wiener
theorem [5] and [6] and the injectivity follows from the density theorem [16].

5.2. The PGLy(F) case. In this subsection, we assume that G = PG Lo (F'), where
Fis a non-archimedean local field with finite residue field IF,. We assume further-
more that ¢ is odd.
Up to conjugation, there is
e a unique split maximal torus of G, which we denote by Ty;
e a unique maximal elliptic torus that splits over the unramified extension of
F', which we denote by Ty;
e two nonconjugate maximal elliptic tori that split over ramified extensions,
which we denote by Ty, and T,

m*

Let n be a positive integer and r = n — ¢, where € is sufficiently small. For any
subgroup H of G, we denote by [H]| the set of subgroups of G that are conjugate
to H. For H € {G,T,Ty, Ty, T;,,} and [y] € 8, fjg) denotes the cardinality of
{[7] € 8 | [Ca(v<r)] = [H]}. Then, from the table below, we have

dim Hc (G, I,,)"8 = 3¢" + 2.

L H [ g [ Ol
PGL, 1
TG qn_l(Q*l)

n

Trm q
T/ q'n

Tm

2
( 1

T, |l
]

]

Note that every rt-equivalence class in G™'® contains some elliptic semisimple
element. However, in general, not every r*-equivalence class in G™& consists only of
elliptic semisimple elements. One may show that for G = PGLs, an r-equivalence
class [y] in G™& consists only of elliptic semisimple elements if and only if H” is
a compact subgroup of G. We define 8¢ C §,. to be the subset of 7*-equivalence
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classes in G*& only consisting of elliptic semisimple elements. Then we have the
following identity:

dim He (G, I,)" = dim He (G, I,,)"& — dim He (TS, Ts )

n—1 1

where T C T is the subgroup consisting of compact elements in T, T}, is the
nth congruent subgroup of Ty, and the number 1 in the third term comes from the
regular unipotent conjugacy class of G.

Note that the discrete series gives a natural basis of R¢(G)ey and the discrete
series of depth at most r gives a natural basis Re(H(G, I,))en. Moreover, the
discrete series consist of supercuspidal representations and four nonsupercuspidal
discrete series representations. By direct calculation, one can check the number

of sgercuspidal representations of depth at most r equals 8! — 3, and we have
dim Hc (G, I,) = dim R(Hc (G, 1,)) eur-

+1,

5.3. Quaternion algebra. Let G = PGLy(F). Let D be a quaternion algebra
over F and G’ = D*/F*. Tt is well known that there is a natural bijection be-
tween the set of elliptic semisimple conjugacy classes in GLo(F') and the regular
semisimple conjugacy classes in D*. Here v <+« if and only if they have the same
characteristic polynomial. Therefore, there is a natural bijection between the set of
elliptic semisimple conjugacy classes in G = PGLy(F) and the regular semisimple
conjugacy classes in G’ and this bijection preserves the depth. We have that

dim Fe (G, 1) = 187 = 187! +1 = dim Fe (G, L) .

Here the number 1 in the third term comes from the 7+ equivalence [1] in 85"

The local Jacquet-Langlands correspondence [15] gives a bijection between the
discrete series of G and the irreducible representations of G’. The natural duality
between the cocenter and representations indicates that there is not only the numer-
ical identity dim Hc (G, IS") = dim Hc (G, I,), but there also should be a natural
bijection between the cocenter (G, IS") and the elliptic cocenter He (G, I,,)¢!.
It would be interesting to study such natural bijections for the (elliptic) cocenters
of PGL,, and its inner forms for arbitrary m.

5.4. The SLy case. For G = SLy, here are two nonconjugate elliptic maximal tori
that split over unramified extensions, which we denote by T, and T),. We have the
following table for SLs (with n = 1):

L[H] ] fa [ O |
SL, | 2 5
T, | &2 | 1

S 2
T. | 5 | 1
—1
T, | %5 |1
Trm q— 1 1
Tr/m q— 1 1

We have

_ . 1 _
dim He (G, I, = 3¢ + 6 + QT dim Fe (G, I,)° = 3¢ + 5.
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We have seen that for G = PG Ly, dim H¢ (G, I;)"® = 3¢+2 and dim H¢ (G, 1) =
2q + #. Thus the elliptic/rigid cocenters for PG Ly and SLg are different.
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