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JORDAN DECOMPOSITIONS OF COCENTERS

OF REDUCTIVE p-ADIC GROUPS

XUHUA HE AND JU-LEE KIM

Abstract. Cocenters of Hecke algebras H play an important role in studying
mod � or C harmonic analysis on connected p-adic reductive groups. On the

other hand, the depth r Hecke algebra Hr+ is well suited to study depth
r smooth representations. In this paper, we study depth r rigid cocenters

H
rig

r+ of a connected reductive p-adic group over rings of characteristic zero or
� �= p. More precisely, under some mild hypotheses, we establish a Jordan
decomposition of the depth r rigid cocenter, hence find an explicit basis of

H
rig

r+ .

Introduction

0.1. Let G be a connected reductive p-adic group. Let R be an algebraically closed
field of characteristic not equal to p. Let HR be the Hecke algebra of locally
constant, compactly supported R-valued functions on G. The trace map

TrR : HR → RR(G)∗

relates the cocenter HR = HR/[HR,HR] and the Grothendieck group RR(G) of
smooth admissible representations of G over R.

In most cases, the cocenter is expected to be “dual” to the representations. For
R = C, Bernstein, Deligne, and Kazhdan in [5] and [16] proved that the trace map

TrC : HC

∼=−→ RC(G)∗good is a bijection between the cocenter and the “good linear

forms” on RC(G). For modular representations over R, the surjection TrR : HR →
RR(G)∗good is established in [6] under the assumption that the cardinality of the
relative Weyl group of G is invertible in R. It is conjectured that the injection holds
if the pro-p order of any open compact subgroup of G is invertible in R.

This motivates our study of the structure of the cocenter of the Hecke algebra.
To be precise, we mainly consider the integral form H = H(G), i.e., HR(G) with
R = Z[ 1p ]. This will allow us to apply the results on H to both the ordinary and

the modular representations of G.

0.2. In [12, Theorem B] and [13, Theorems C and 6.5], the first-named author
showed that

H ∼=
⊕
M

H(M)rig,+,

where M runs over all the standard Levi subgroups of G and H(M)rig,+ is the +-
rigid part of the cocenter of the Hecke algebra H(M), i.e., the Z[ 1p ]-submodule
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of H(M) consisting of elements represented by the functions supported in the
compact-modulo-center elements of M whose Newton points are dominant (in G)
and with centralizer equal to M . In other words, the rigid cocenters of the Hecke
algebras of various standard Levi subgroups form the “building block” of the whole
cocenter H. We refer to [12, 13] for the details.

Note that if M = G, then we write H
rig

for H(G)rig,+, the Z[ 1p ]-submodule of

H represented by functions supported in the subset Grig of compact-modulo-center

elements of G. We call H
rig

the rigid cocenter. In this paper, we focus on the depth

r rigid cocenter H
rig

r+ for any real number r > 0, defined as follows.
For any element x in the reduced Bruhat–Tits building B(G) of G, Moy and

Prasad [21] associated a subgroup Gx,r+ of G. Let Hr+ =
∑

x∈B(G) Cc(G/Gx,r+)

and Hr+ be its image in H, the depth r cocenter. The depth r rigid cocenter

H
rig

r+ = H
rig ∩Hr+ . According to Howe’s conjecture (now proved in [4, 7, 12]), this

is a finitely generated Z[ 1p ]-module. Moreover, we have that H
rig

= lim−→r
H

rig

r+ .

The main purpose of this paper is to establish the “Jordan decomposition” of

H
rig

r+ . Note that the “Jordan decomposition” in the paper is compatible with taking

the “+” part and thus apply to H(M)rig,+ as well.

0.3. Before stating the main result, we make a short digression and discuss a “toy
model”, the cocenter of the group algebra Z[H] of a finite reductive group H.

For any element g ∈ H, we have the Jordan decomposition g = gsgu, where gs is
the semisimple part of g and gu is the unipotent part of g. Then we have the Jordan
decomposition of the group algebra Z[H] ∼=

⊕
s∈Hss Z[CH(s)unip], where Hss is the

set of semisimple elements of H, CH(s) is the centralizer of s, and CH(s)unip is the
set of unipotent elements in CH(s). Based on the Jordan decomposition on the
group algebra Z[H], one deduces the Jordan decomposition of the cocenter

Z[H] := Z[H] /[Z[H],Z[H]] ∼=
⊕

[s]∈Clss(H)

Z[CH(s)unip],

where Clss(H) is the set of semisimple conjugacy classes of H and Z[CH(s)unip] is

the image of Z[CH(s)unip] in Z[CH(s)], which is a free Z-module with basis indexed
by the unipotent conjugacy classes of CH(s).

0.4. Now we come back to connected reductive p-adic groups. As any element in
the Hecke algebra H is a locally constant function, there seems no analogous Jordan
decomposition on H. However, under the hypotheses in §2.2, we have the analogous
part of semisimple conjugacy classes and unipotent conjugacy classes in the context
of the cocenter of Hecke algebras.

By the work of Adler and Spice [3], we may write a semisimple compact-modulo-

center element γ as a “good product”. Since we are working with the cocenter H
rig

r+

of depth r, we use the truncated part γ≤r of γ. The equivalence classes Sr of
semisimple compact-modulo-center elements of G, roughly speaking, are generated
by the conjugation action and the truncated operation (see §2 for the precise def-
inition). The set Sr is the analogue of semisimple conjugacy classes and serves as

the index set of the desired Jordan decomposition on H
rig

r+ .
For any [γ] ∈ Sr, we pick up the truncation γ≤r (see Definition 2.4.4 for details)

of a representative γ ∈ [γ] and denote by CG(γ≤r) the centralizer of γ≤r. The
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isomorphism class of CG(γ≤r) is independent of the choice of γ and its truncation
γ≤r.

Now we come to the unipotent part. Let H
G,�

r+ be the Z[ 1p ]-submodule of H
rig

r+ ,

represented by functions in
∑

x∈B(G) Cc(Gx,r/Gx,r+) with support in

Gr+ :=
⋃

x∈B(G)

Gx,r+ .

Based on the work of DeBacker in [8] and [9], H
G,�

r+ is a free module with basis
indexed by the unipotent conjugacy classes of G. This is the analogy of the set
of unipotent conjugacy classes, or in other words, the analogy of Z[Hunip] in the
cocenter of the group algebra Z[H]. Now we state the main results of this paper.

Theorem A (Theorems 3.1.2 and 4.2.1). Fix r ∈ R>0. Suppose the hypotheses in
§2.2 hold. Then

H
rig

r+
∼=

⊕
[γ]∈Sr

H
CG(γ≤r),�

r+ .

Moreover, H
rig

r+ is a free Z[ 1p ]-module.

Theorem B (Theorem 4.3.1). Let J(Grig) denote the space of C-valued invariant
distributions of G with support on Grig. Suppose the hypotheses in §2.2 hold. Then
the restriction J(Grig) |Hr+,C

has a basis given by the restriction of orbital integrals

Oγ≤ru to Hr+,C, where [γ] ∈ Sr, and u runs over the representatives of the unipotent
conjugacy classes of CG(γ≤r).

0.5. In §1, we review some background material on Moy–Prasad filtration subgroups

and the cocenterH of G. Toward the decomposition ofH
rig

r+ in Theorem A, in §2, we
first decompose Grig into a disjoint union of G-domains X[γ] :=

G(γCG(γ≤r)r+) pa-
rameterized by [γ] ∈ Sr. We use good products of semisimple elements ([3]) to prove
that Grig =

⋃
[γ]∈Sr

X[γ]. The Lie algebra version of such decompositions can be

found in [17, §7]. Then, it is easy to see that there is a corresponding decomposition
of Hrig according to this decomposition: Hrig =

⊕
[γ] H(X[γ]) (Lemma 1.2.3) where

H(X[γ]) is the submodule consisting of f ∈ Hr+ with Supp(f) ⊂ X[γ]. However,
since each domain X[γ] is not necessarily Gx,r+ bi-invariant,

⊕
[γ]∈Sr

Hr+(X[γ]) is

in fact a proper submodule of Hrig
r+ (see §3.1).

Now, Theorem A asserts that the desired decomposition holds at the level of
cocenters. In §3, we prove Theorem A via the following strategy: we first represent

elements in H
rig

r+ by elements in H0,r+ :=
∑

x∈B(G) Cc

(
Z(G)StabG(x)/Gx,r+

)
in

the cocenter, and then represent elements in H0,r+ by elements in
⊕

[γ] H(X[γ]).

In these steps, we use the descent arguments developed by Howe, Harish-Chandra,
Waldspurger, and most recently by DeBacker. In particular, DeBacker’s arguments
in [9] are aptly adaptable in our situations in view of recent developments in har-
monic analysis on p-adic groups. As a result, most of our hypotheses are inherited

from [3] and [9]. Lastly, we prove Hr+(X[γ]) � H
CG(γ≤r),�

r+ using inductive descents
(see Proposition 3.4.1). A Lie algebra version of inductive descents can be found
in [19, §6].

In §4, we prove Theorem B. We combine inductive descents and the parame-
terization of unipotent conjugacy classes in [9]. However, since the centralizer of a
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semisimple element is not necessarily connected in this paper, one needs to adapt
DeBacker’s parameterization for our case.

In §5, we present examples to illustrate the duality between cocenters and rep-
resentations.

Notation and conventions. Let F be a non-archimedean local field with finite
residue field Fpn . Let G be a connected reductive group defined over F . For any
finite extension E of F , let G(E) be the group of E-rational points of G. We will
simply write G for G(F ). Denote the Lie algebras of G and G(E) by g and g(E),
respectively.

In general, we use bold characters H, M, and N, etc., to denote algebraic groups.
If they are defined over F , we will use corresponding Roman characters H, M , and
N to denote the groups of F -points, and h, m, and n to denote the Lie algebras of
H, M , and N . Let G := G /Z(G) where Z(G) is the center of G. We also denote
the center of G as Z(G).

We denote by Gss the set of semisimple elements in G, by U the set of unipotent
elements in G, and by Grig the set of compact-modulo-center elements in G.

We let μG denote a fixed Haar measure on G.
For g ∈ G, gX denotes gXg−1 and for S,H ⊂ G, HS := { gX | X ∈ S, g ∈ H}.
We set R̃ = R � {r+; r ∈ R} � {∞} and define the partial order on R̃ as follows:

for r, s ∈ R, r < s+ if r ≤ s, r+ < s+ and r+ < s if r < s, and r, r+ < ∞ for any
r ∈ R.

We denote by H, the Hecke algebra of locally constant, compactly supported
Z[ 1p ]-valued functions on G. The cocenter H = H/[H,H]. Let Hrig be the Z[ 1p ]-

submodule of H consisting of functions supported in Grig. The rigid cocenter H
rig

is the image of Hrig in H.

1. Preliminaries

1.1. Moy-Prasad filtrations.

1.1.1. Apartments and buildings. For a finite extension E of F , let B(G, E)
denote the extended Bruhat-Tits building of G over E. Recall that B(G, E) �
B(G, E)× (X∗(Z(G), E)⊗ R), and X∗(Z(G), E) is the abelian group of E-rational
cocharacters of the center Z(G) of G.

If T is a maximal F -torus in G which splits over E, let A(T, E) be the corre-
sponding apartment over E. It is known that for any tamely ramified finite Galois
extension E′ of E, B(G, E) can be embedded into B(G, E′) and its image is equal
to the set of the Galois fixed points in B(G, E′) (see [25, (5.11)] or [23]).

For a maximal F -torus T in G which splits over a tamely ramified finite Galois
extension E of F , we write A(T, F ) for A(T, E) ∩ B(G, F ). This is well defined
independent of the choice of E. Moreover, A(T, F ) is the set of Galois fixed points
in A(T, E). For simplicity, we write B(G) = B(G, F ), A(T ) = A(T, F ), etc.

1.1.2. Moy-Prasad filtrations. Regarding G as a group defined over E, Moy
and Prasad associate g(E)x,r and G(E)x,|r| (resp., g(E)x,r+ and G(E)x,|r|+) to
(x, r) ∈ B(G, E)×R with respect to the valuation normalized as follows ([22]): let
Eu be the maximal unramified extension of E, and let L be the minimal extension
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of Eu over which G splits. Then the valuation used by Moy and Prasad maps L×

onto Z.
In this paper, we let ν = νF be the valuation on F such that ν(F×) = Z, νE

extends ν. Let F be an algebraic closure of F . For an extension field E of F , let
νE be the valuation on E extending ν. We will just write ν for νE . Then, with
respect to our normalized valuation ν, we can define filtrations in g(E) and G(E).
Then our g(E)x,r and G(E)x,r correspond to g(E)x,elr and G(E)x,elr of Moy and
Prasad, where e = e(E/F ) is the ramification index of E over F and l = [L : Eu].

This normalization is chosen to have the following property [1, (1.4.1)]:

(1) For a tamely ramified Galois extension E′ of E and x∈B(G, E)⊂B(G, E′),

for r ∈ R̃, we have

g(E)x,r = g(E′)x,r ∩ g(E).

If r > 0,
G(E)x,r = G(E′)x,r ∩G(E).

(2) For r ∈ 1
eZ≥0, two points x and y in B(G, E) lie in the same facet if and

only if

G(E)x,r = G(E)y,r and G(E)x,r+ = G(E)y,r+ .

1.1.3. For simplicity, we put Gx,r := G(F )x,r, etc. We will also use the following
notation. For r ∈ R≥0, let

Gr =
⋃

x∈B(G)

Gx,r, Gr+ =
⋃
s>r

Gs.

Let Φ(T,G, E) be the set of E-roots of T in G, and let Ψ(T,G, E) be the cor-

responding set of affine roots in G. If ψ ∈ Ψ(T,G, E), let ψ̇ ∈ Φ(T,G, E) be the

gradient of ψ, and let U(E)ψ̇ ⊂ G(E) be the root group corresponding to ψ̇. We

denote the root subgroup in U(E)ψ̇ corresponding to ψ by U(E)ψ.

Let X∗(T, E) be the set of cocharacters of T, and let X∗(T, E) be the set of
characters of T. Let T0 be the maximal compact subgroup of T . For r ≥ 0, set

Tr : = {t ∈ T0 | ν(χ(t)− 1) ≥ r for all χ ∈ X∗(T, E)},
Zr : = Tr ∩ ZG.

Note that Zr is well defined independent of the choice of T .
In the rest of this paper, E will denote a tamely ramified finite extension of F

unless otherwise stated.

1.2. Cocenters.

1.2.1. For s ∈ R̃≥0, let H(G,Gx,s) be the space of compactly supported, Gx,s ×
Gx,s-invariant Z[

1
p ]-valued functions on G and let Cc(G/Gx,s) be the space of com-

pactly supported, right Gx,s-invariant Z[ 1p ]-valued functions on G. Note that for

any g ∈ G and x ∈ B(G), we have

�gGx,s
≡ μG(Gx,s)

μG(Gx,sgGx,s)
�Gx,sgGx,s

mod [H,H].

Thus H(G,Gx,s) and Cc(G/Gx,s) have the same image in H. We denote by Hs the

image of Hs =
∑

x∈B(G) Cc(G/Gx,s) in H̄. Then H = lim−→s
Hs.

We set H
rig

s = H
rig ∩Hs. Then H

rig
= lim−→s

H
rig

s .
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A G-domain, by definition, is an open and closed subset of G that is stable under
the conjugation action of G. We have the following simple facts about the cocenter
H.

Lemma 1.2.2. Let X be a G-domain and let H(X) be the Z[ 1p ]-submodule of H

consisting of functions supported in X. Then H(X) ∩ [H,H] is spanned by f − gf
for f ∈ H(X) and g ∈ G.

Proof. Let f ∈ H(X) ∩ [H,H]. By [12, Proposition 1.1], f =
∑

i(fi − gifi), where
fi ∈ H and gi ∈ G. Since X is a G-domain, fi |X∈ H(X) and (gifi) |X= gi(fi |X)
for any i. Thus f =

∑
i(fi |X −gifi |X). �

Lemma 1.2.3. Let {Xα}α∈I be a family of G-domains in G such that Xα∩Xα′ = ∅
for any α �= α′. Then

∑
α∈I H(Xα) ⊂ H is a direct sum. Here H(Xα) is the image

of H(Xα) in H.

If moreover G =
⊔

α∈I Xα, then H =
⊕

α H(Xα).

Proof. Let fα ∈ H(Xα), α ∈ I such that Γ := {α; fα �= 0} is a finite set. Suppose
that

∑
α∈Γ fα ∈ [H,H]. Then by [12, Proposition 1.1], there exists finitely many

pairs (fi, xi) ∈ H ×G such that

(a)
∑
α∈Γ

fα =
∑
i

(fi − xifi).

Restricting both sides of (a) to Xα, we have fα =
∑

i(fi |Xα
−(xifi) |Xα

). Since
Xα is a G-domain, we have fi |Xα

∈ H and (xifi) |Xα
= xi(fi |Xα

).
Thus fα =

∑
i(fi |Xα

−xi(fi |Xα
)) ∈ [H,H]. Therefore the image of fα in H is

zero and
∑

α H(Xα) ⊂ H is a direct sum.
If moreover G = �αXα, then for any f ∈ H, f =

∑
α f |Xα

∈
∑

α H(Xα). Hence

H =
∑

H(Xα). By what we proved above, this is a direct sum. �

2. Semisimple elements and decomposition of Grig

From now on, let r be a positive real number.

2.1. Depth functions and good elements. The following definitions in Defini-
tions 2.1.1 and 2.1.2 coincide with those in [3] when N = Z(G).

Definition 2.1.1. Write Z := Z(G). For x ∈ B(G), define the depth-mod-center
function

dG(x, ) : Z StabG(x) → R � {∞},
such that

dG(x, g) =

⎧⎪⎨⎪⎩
0 if g ∈ ZStabG(x) \ ZGx,0+ ,

max{s | zg ∈ Gx,s for some z ∈ Z} if g ∈ ZGx,0+ \ Z,
∞ if g ∈ Z.

Define also

dG(g) = max{dG(x, g) | x ∈ B(G), g ∈ StabG(x)}.
We simply write d for dG if there is no confusion.
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We observe the following:

(1) If g ∈ ZGx,0+ \Z, d(x, g) is the unique value t so that g ∈ ZGx,t \ZGx,t+ .
In most applications, it is possible to assume that g ∈ Gx,t\ZGx,t+ without
loss of generality. In this case, we call g noncentral mod Gx,t+ .

Likewise, when d(g) = 0, one may assume that g ∈ StabG(x) \ ZGx,0+

in most cases. Note that StabG(x) is compact since B(G) is an extended
building. Again, we say g is noncentral mod Gx,0+ if g ∈ StabG(x)\ZGx,0+ .

(2) d(y, g) ≤ d(g) for any y ∈ B(G), g ∈ StabG(y) .
(3) If g ∈ ZG0 \ Z, d(g) is the unique nonnegative real number t such that

g ∈ ZGt \ ZGt+ .
(4) d(x, g) = d(x, g′) for all g′ ∈ gGx,t+ where d(x, g) = t.
(5) d(g) = ∞ if and only if g ∈ Z U ∩G. This follows from [2, Lemma 3.7.13].
(6) Let g ∈ Grig. If g = γu is the Jordan decomposition of g with γ ∈ Gss and

u ∈ U, we have d(g) = d(γ).
This follows from the proof of [2, Lemma 3.7.18]. Although the lemma

assumes the characteristic of F being zero, the proof requires only γ being
rational and the residue field of F being finite. We thank Jeff Adler for
clarification.

Definition 2.1.2 (cf. Definition 6.1 of [3]). For γ ∈ Grig, γ is a G-good mod
center element if there is a maximal F -torus T which splits over a tamely ramified
extension E such that one of the the following holds:

(1) γ ∈ ZT c \ ZT0+ and the image of γ in G is absolutely semisimple (see
[11] or [3, Definition 4.11] for a definition), where T c is the set of compact
elements in T .

(2) There is t > 0 so that γ ∈ ZTt \ZTt+ with ν(α(γ)− 1) = t or α(γ) = 1 for
any α ∈ Φ(T,G, E).

(3) γ ∈ Z.

We will simply say γ is G-good of depth t if γ is G-good mod center and if either
d(γ) = 0 and γ ∈ T c, or d(γ) = t > 0 and γ ∈ Tt.

Remarks 2.1.3. Keeping the situation as in the above definition, we observe the
following:

(1) The depth of a good mod center element γ is given as follows:

d(γ) =

⎧⎪⎨⎪⎩
0 in case (1),

t in case (2),

∞ in case (3).

(2) If γ ∈ T \Z is a good mod center element of depth t > 0 (resp., 0), γ = zγt
for some z ∈ Z and a good element γt ∈ Tt \ Tt+ (resp., γ ∈ T c \ T0+).

(3) Let γ ∈ Gss and G′ = CG(γ). Let dG
′
be the depth function defined on

G′rig as in Definition 2.1.1. In general dG
′ �= dG on G′rig. However, if

g ∈ G′rig \ Z(G′) is G-good, it is also G′-good and dG
′
(g) = dG(g).

2.2. Hypotheses. We collect here some assumptions that we need in this paper.
We will be clear when each hypothesis is used. Many of them are due to results we
use from [3] and [9]. Rather than repeating the statements of the hypotheses, we
refer the reader directly to [3] and [9].
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Hypotheses (A)-(D). These are Hypotheses (A)-(D) in [3, §2].

Hypotheses (DB). These are the hypotheses in §§2.1 and 4.3 in [9].

Hypothesis 1. The Jordan decomposition is defined over F , i.e., for any g ∈ G =
G(F ) and Jordan decomposition g = su of g with s, u ∈ G(F ), we have s, u ∈ G.

Hypothesis 2. For any γ ∈ Gss, all the unipotent elements in CG(γ) are contained
in CG(γ)

◦.

Hypothesis 3. Any torus in G splits over a finite tamely ramified extension of F .

Hypothesis 4 (Definition 6.3 of [3]). For any torus S ⊂ G which splits over a
tamely ramified extension E, and r > 0, every nontrivial coset in Sr/Sr+ contains
a good element.

Hypothesis 5. For any g ∈ Grig, the orbital integral Og converges over C.

Hypothesis 1 holds if F is of characteristic zero, or if p > rankss(G) + 1. But
it fails when F is of positive characteristic and p is small. See [20, Proposition 48
and Remark 49]. Hypothesis 2 automatically holds if F is of characteristic zero. If
F is of characteristic p, then it holds when p is large but fails for some small p. For
example, when p = 2 and CG(γ) has two connected components, then any elements
in CG(γ) \CG(γ)

◦ of order 2 is unipotent. Hypotheses 3 and 4 hold when G splits
over a tamely ramified extension and p does not divide the order of the Weyl group
of G (see [10]). Hypothesis 5 holds if F is of characteristic zero (see [24]), and holds
under some mild assumptions on G and on p if F is of positive characteristic (see
[20, Theorem 61] for the precise statement).

2.3. Good elements and B(G). Many results here can be found in [3]. For the
Lie algebra versions, we refer to [17–19].

In the following four lemmas and a corollary, we let γ ∈ T be a G-good mod
center element of depth t ≥ 0. We also let G′ := CG(γ).

Lemma 2.3.1. Suppose Hypotheses (A) and (B) hold. Define B(γ) as follows:

B(γ) :=

{
{x ∈ B(G) | γ ∈ Z StabG(x)} if t = 0,∞,

{x ∈ B(G) | d(x, γ) = d(γ)} if t > 0.

Then, we have B(γ) = B(G′, F ).

Proof. If γ ∈ Z, clearly B(γ) = B(G). Otherwise, without loss of generality, we
may assume that γ is G-good of depth t. Then, the lemma follows from [3, Lemma
7.6]. �

Lemma 2.3.2. Suppose Hypothesis (A) holds. Let x ∈ B(G′). Then, for 0 ≤ t < s
and u ∈ G′

x,t ∩G′
t+ , we have Gx,s−t(γuG′

x,s) = γuGx,s.

Proof. One may assume that u is semisimple since G′ss ∩ uG′
x,s ∩G′

t+ �= ∅. Then,
this follows from [3, Corollary 7.5]. �

Lemma 2.3.3. Suppose Hypothesis (C) holds. If g ∈ G is such that g(γG′
t+) ∩

(γG′
t+) �= ∅, then g ∈ G′ = G′(F ).

Proof. Without loss of generality, we may assume γ is G-good. Then, this is [3,
Lemma 7.1]. �
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Lemma 2.3.4. Suppose Hypotheses (A) and (B) hold. Let x ∈ B(G) \ B(G′) and
u′ ∈ G′

d(γ)+ .

(1) If t = 0, γu′ �∈ Z StabG(x).
(2) If t > 0, then either γu′ �∈ Z StabG(x) or d(x, γu′) < d(γ).

In particular, {x ∈ B(G) | d(x, γu′) = d(γu′)} ⊂ B(G′).

Proof. When u′ = 1, this is [3, Lemma 7.6].
If γ ∈ Z, the statement is empty. We may assume that γ is a G-good element.
(1) Suppose γu′ ∈ StabG(x). Then, we have γ−1x = u′x and B := {γ−pn

x |
n ∈ Z≥0} = {u′pn

x | n ∈ Z≥0} ⊂ B(G). Since u′pn → 1 as n → ∞, the set B

is finite and x = u′pn

x = γ−pn

x for sufficiently large n. On the other hand, since
γ is absolutely semisimple and the order of γ is relatively prime to p, there is an

n◦ ∈ Z>0 such that γ−pn◦�

= γ−1 for any � ∈ Z>0.
Hence γx = x, that is, γ ∈ StabG(x), which is a contradiction to Lemma 2.3.1.
(2) As in [3, Lemma 7.6], we may assume that γ is split. Write t = d(γ). Write

γ′ for γu′, and define

B(γ′) := {x ∈ B(G, F ) | d(x, γ′) ≥ t}.

Note that B(γ′) is convex and is a union of closures of chambers.
It is enough to show that B(γ′) ⊂ B(G′, F ).
Suppose first that γ is split and G′ is an F -Levi subgroup of G. Then, t ∈ N.

Let P be a k-parabolic subgroup of G having Levi decomposition P = G′N. Let P
be the parabolic subgroup opposite to P with respect to this Levi decomposition
P = G′N. Let N be the unipotent radical of P. Now, assume B(γ′) \B(G′, F ) �= ∅,
and let D be a chamber in B(γ′) \B(G′, F ). From the convexity of B(γ′), we may
assume that D shares a facet F of codimension one with B(γ′)∩B(G′, F ). Choose
y ∈ F . From [2, (2.4.1)], there is u ∈ Gy,0 ∩N such that uD ⊂ B(G′, F ). Then for
x ∈ D, ux ∈ uD ⊂ B(G′, F ). Since ux ∈ B(G′, F ) [22] and uD is maximal, Gux,t

has an Iwahori decomposition with respect to (P,N), that is,

(†) Gux,t = Nux,t ·G′
ux,t ·Nux,t,

where Nux,t = Gux,t ∩ N and Nux,t = Gux,t ∩ N . From this and the fact that
u ∈ N , we can decompose uγ′ as

(‡) uγ′ ≡ γ′−1(uγ′)γ′ ∈ Gy,t/Gy,t+ ,

where γ′ ∈ G′ ∩ Gy,t = G′
y,t and γ′−1uγ′ ∈ Ny,t. Since Gy,t+ ⊂ Gux,t+ ⊂ Gux,t ⊂

Gy,t, comparing (†) and (‡), we have γ′ ∈ G′ ∩Gux,t = G′
ux,t and γ′−1uγ′ ∈ Nux,t.

Moreover,
(i) u′ ∈ Gux,t+ , (ii) uγ′ ∈ γ′Gux,t+ = γGux,t+ .

(i) follows from the fact that uD is a chamber and u′ ∈ Gux,t∩G′
t+ (recall t ∈ N).

(ii) follows from (i) and the fact that uD is a chamber and thus Nux,t = Nux,t+ .
Then from Lemma 2.3.2, there is a k ∈ Gux,0+ and a u′′ ∈ G′

ux,t+ = G′∩Gux,t+ such

that uγ′ = k(γu′′). By Lemma 2.3.3, u ∈ k ·G′ ⊂ Gux,0+G
′. Since ux ∈ B(G′, F ),

we have Gux,0+ = (N ∩ Gux,0+) · (G′ ∩ Gux,0+) · (N ∩ Gux,0+) [22, (4.2)]. So, we
can conclude that u ∈ Gux,0+ and u(ux) = ux = x. Then x ∈ B(G′, F ), which is a
contradiction. �

The following is a corollary of the above lemmas.
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Corollary 2.3.5. Suppose Hypotheses (A) and (B) hold. Let u′ ∈ G′
d(γ)+ . Let

x ∈ B(G).

(1) If t = 0 and γu′ ∈ Z StabG(x), both γ and u′ are also in Z StabG(x).
(2) If t > 0 and γu′ ∈ Gx,t, both γ and u′ are also in ZGx,t.

Proof. This follows from Lemmas 2.3.1 and 2.3.4. �

2.4. Good products.

Lemma 2.4.1. Suppose Hypothesis (C) holds. Let T be a maximal F -torus in
G which splits over a tamely ramified Galois extension E. Let γ1, · · · , γn ∈ T be
G-good elements of depth b = b1, · · · , bn, respectively. Let γ = γzγ1 with γz ∈ Z.
Let H0 := G and Hi := CHi−1(γi).

(1) Let γ′ ∈ γH1
b+ . Then, CG(γ

′) ⊂ H1. If γ′ is also G-good mod center of
depth b, then CG(γ

′) = H1.
(2) Suppose b1 < b2 < · · · < bn. Fix i ∈ {0, 1, · · · , n} and γi = γzγ1 · · · γi. Let

γ′, γ′′ ∈ γiHi
b+i
. If gγ′ = γ′′ for some g ∈ G, then g ∈ Hi.

(3) Hi = CHi−1(γi) = CG(γ
i). In particular, CG(γ

n) ⊂ Hi, i = 1, · · · , n.

Proof. (1) If γz = 1, the first statement is Lemma 2.3.3. Since γz ∈ Z, the statement
remains valid for this case. For the second statement, since γ′ is also good of depth
b, H1 ⊂ CG(γ

′). Combining this with the first statement, the second statement
follows.

(2) We use induction on i. Since Φ(T,Hi, E) ⊂ Φ(T,G, E) and γi ∈ Tbi , each
γi, i = 1, · · · , k is also Hi−1-good. When i = 1, it is (1). Assume the statement
is true for i − 1 ≥ 1. Note that γ′, γ′′ ∈ γiHi

b+i
. Suppose gγ′ = γ′′ for some

g ∈ G. Since γ′, γ′′ ∈ γi−1Hi−1

b+i−1

, we have g ∈ Hi−1 by the induction hypothesis

and g(γ′(γi−1)−1) = γ′′(γi−1)−1. Since γ′(γi−1)−1, γ′′(γi−1)−1 ∈ γiH
i
b+i

and γi is

Hi−1-good and γi−1 ∈ Z(Hi−1), g ∈ Hi = CHi−1(γi) = CHi−1(γi) by (1).
(3) The first equality follows since γi−1 ∈ Z(Hi−1) and γi = γi−1γi. To prove

the second equality, we use an induction. If i = 1, it is trivial. Suppose i − 1 ≥ 1.
The inclusion CHi−1(γi) ⊂ CG(γ

i) is obvious. If g ∈ CG(γ
i), we have gγi, γi ∈

γiHi
b+i

⊂ γi−1Hi−1

b+i−1

. Then, g ∈ Hi−1 by (2). Hence, CG(γ
i) ⊂ CHi−1(γi). �

Lemma 2.4.2. Let T be a maximal F -torus in G which splits over a tamely ramified
Galois extension E. Let γ1, γ2 ∈ T be G-good mod center elements of depth b1, b2,
respectively. Let Hi = CG(γi), i = 1, 2. Suppose b1 < b2 and γ2 ∈ Z(H1). Then,
γ1γ2 is also a G-good element of depth b1.

Proof. Write γ = γ1γ2. Let Φ := Φ(T,G, E) be the set of E-rational T-roots in G.
Let α ∈ Φ. Since H1 ⊂ CG(γ2), α(γ1) = 1 implies α(γ2) = 1, thus α(γ1γ2) = 1.
If α(γ1) �= 1, since α(γ1γ2) − 1 = α(γ1)α(γ2) − α(γ2) + α(γ2) − 1, ν(α(γ2)) = 0
and b1 = ν(α(γ1)− 1) < b2 ≤ ν(α(γ2)− 1), we have ν(α(γ)− 1) = min(ν(α(γ1)−
1), ν(α(γ2)− 1)) = b1. Hence, γ is G-good mod center of depth b1. �

Proposition 2.4.3. Suppose Hypotheses (C) and 4 hold. Let T be an E-split
torus and γ ∈ ZT c. Then γ is a product of good elements mod r+ with decreasing
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centralizers in the following sense:

(1) γ = γzγ1 · · · γkγr+ where γz ∈ Z and each γi is G-good of depth bi with
b1 < b2 < · · · < bk ≤ r and γr+ ⊂ Tr+ , that is, d(γr+) > r.

(2) H1 � H2 � · · · � Hk where Hi = CG(γ1 · · · γi).

Proof. If d(γ) > r, γ = γz · γr+ for some γz ∈ Z and γr+ ∈ Tr+ . Now, we assume
that d(γ) = a1 ≤ r.

We first assume that γ ∈ Ta1
, that is, γ is noncentral mod Ta+

1
. Then, γTa+

1

contains a good element, say, γ̃a1
of depth a1 by Hypothesis 4 if a1 > 0 and by

Corollary 2.35 of [26] if a1 = 0. Write γ = γ̃a1
(γγ̃−1

a1
) with a2 = d(γγ̃−1

a1
) > d(γ).

We can choose γ̃a1
so that γγ̃−1

a1
∈ Ta2

by multiplying γ̃a1
with a central element

if necessary (note that a2 = d(γγ̃−1
a1

) implies only γγ̃−1
a1

∈ ZTa2
). Applying the

above process for γγ̃−1
a1

, we find a G-good element γ̃a2
∈ γγ̃−1

a1
Ta+

2
such that γ =

γ̃a1
γ̃a2

(γ(γ̃a1
γ̃a2

)−1) and a3 = d(γ(γ̃a1
γ̃a2

)−1) < d(γγ̃−1
a1

). Repeatedly, we have

γ = γ̃a1
γ̃a2

· · · γ̃am
γ̃r+ ,

where γ̃ai
is a G-good element of depth ai with a1 < a2 < · · · < am ≤ r and

d(γ̃r+) > r. This procedure is finite because d(T0) ⊂ 1
e(E/F )Z. Put am+1 := r+

and γ̃am+1
= γ̃r+ .

Set S := {a1, a2, · · · , am+1}, and for a, b ∈ R̃, set γ̃a,b :=
∏

a≤aj<b γ̃aj
. We

find a subsequence b1 < b2 < · · · < bn < bn+1 of S as follows: let b1 := a1 and
H1 := CG(γ̃a1

). Let b2 be the maximal element in {a2, · · · , am+1} with the property
that if aj < b2, then γ̃aj

∈ Z(H1). Note that H1 = CG(γ̃b1,b2). Let H
2 := CH1(γ̃b2).

Then H1 � H2. Let γ1 := γ̃b1,b2 . Inductively, suppose bi, H
i and γi−1 are defined

for i ≥ 2. Let bi+1 be the maximal element in {aj ∈ S | aj > bi} with the property
that for any aj < bi+1, γ̃aj

∈ Z(Hi). Let Hi+1 := CHi(γ̃bi+1
) and γi = γ̃bi,bi+1

. We
repeat the process until bn+1 = am+1 = r+.

Then each γi is also aG-good element of depth bi, and we haveHi = CHi−1(γ̃bi) =
CHi−1(γi), i = 1, · · · , n by Lemma 2.4.1(1) . Now, one can easily check

(∗) γ = γ1γ2 · · · γnγr+
satisfies the required properties.

Now suppose γ ∈ ZTa1
. Then one can write γ = γzγ

′ with γz ∈ Z and γ′ ∈ Ta1

noncentral mod Ta+
1
. Write γ′ = γ1 · · · γnγr+ as in (∗). Then, γ = γzγ1γ2 · · · γnγr+

satisfying the required properties. �
Definition 2.4.4.

(1) We call the expression γz · γ1 · · · γkγr+ of γ in Proposition 2.4.3 a good
product of γ mod r+. That is, γ = γz · γ1 · · · γkγr+ , where γz ∈ Z, γi is
G-good of depth bi with b1 < · · · < bk ≤ r and the sequence of centralizers
Hi(γ) = CG(γzγ1 · · · γi) is strictly decreasing. In this case, we also write
γ≤r := γz · γ1 · · · γk

(2) Let γ = γzγ1 · · · γkγr+ be a good product as in (1). Define Hγ,r := Hk(γ).
We will often write Hγ for Hγ,r for simplicity.

In [3], (γz, γ1, · · · , γk) is called an r+-normal approximation to γ. The following
is similar to [3, Proposition 8.4].

Lemma 2.4.5. Suppose Hypothesis (C) holds. Suppose γ = γzγ1 · · · γk and γ =
γ′
zγ

′
1 · · · γ′

k′ are two good products of γ mod r+ with d(γi) = bi and d(γ′
i) = b′i. Write
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Hi = CG(γzγ1 · · · γi) and H′i = CG(γ
′
zγ

′
1 · · · γ′

i). Then, we have k = k′, bi = b′i and
Hi = H′i.

Proof. We have γi, γ
′
j ∈ CG(γ) ⊂ (∩iH

i)∩(∩jH
′j) = Hk∩H ′k′

for i ∈ {z, 1, · · · , k}
and j ∈ {z, 1, · · · , k′}.

Note that d(γ) = b1 = b′1. Since γ′
zγ

′
1 ∈ γzγ1H

1
b+1
, γzγ1 ∈ γ′

zγ
′
1H

′1
b+1

and γzγ1 and

γ′
zγ

′
1 are G-good mod center, H1 = H ′1 by Lemma 2.4.1. By induction, suppose

that bj = b′j and Hj = H′j for 1 ≤ j ≤ i. Write γi = γ1 · · · γi and γ′i = γ′
1 · · · γ′

i.

Suppose bi+1 < b′i+1. Then, (γi)−1γ′i ∈ γi+1H
i+1

b+i+1

. Since G-good element γi+1 is

also Hi-good, we have Hi ⊂ CG((γ
i)−1γ′i) ⊂ Hi+1 by Lemma 2.4.1(2). This is a

contradiction to Hi � Hi+1. Hence, bi+1 = b′i+1. Now we have

(i) d(γi+1) = d(γ′
i+1γ

′i(γi)−1) = bi+1;

(ii) γ′i(γi)−1 ∈ Z(Hi);
(iii) γi+1, γ

′
i+1γ

′i(γi)−1 are Hi-good.

Combining (i)-(iii), it follows that CG(γ
i+1) = CHi(γi+1) = CHi(γ′

i+1) = CG(γ
′i+1).

Hence, Hi+1 = H′i+1. Similarly, one can show k = k′. �

2.5. Decomposition of Grig. We first observe thatGrig=Z ·
(⋃

x∈B(G) StabG(x)
)
,

and ZG0 ⊂ Grig where G0 =
⋃

x∈B(G) Gx,0.

Definition 2.5.1. Let γ, γ′ ∈ Grig.

(1) Suppose that γ and γ′ are G-good mod center. We say that they are G-good

r+-equivalent and write γ
g∼ γ′ if there are g ∈ G and a maximal torus T

such that gγ′ ∈ γTt+ ⊂ T where t = min{d(γ), r}. We write a G-good
r+-equivalence class of γ as [γ]g. Let

[Z]gr := {[z]g | z̄ ∈ Z/Zr+},
Sgr := [Z]gr ∪ {[γ]g | γ is G-good mod center of depth d(γ) ≤ r}.

(2) For γ, γ′ ∈ Grig, we say γ and γ′ are r+-equivalent and write γ ∼ γ′ if
there are g ∈ G, a maximal torus T , and good products of γ and γ′ so that
gγ′

≤r ∈ γ≤rTr+ ⊂ T .

We write an r+-equivalence class of γ as [γ], and let Sr be the set of
r+-equivalence classes of semisimple compact-modulo-center elements.

Lemma 2.4.5 and the following proposition shows that the definition in (2) does
not depend on the choice of truncation γ≤r and γ′

≤r.

Proposition 2.5.2. Suppose Hypotheses (A)–(D) and 1-4 hold. Then, we have
the following:

(1) For γ, γ′ ∈ Grig, G(γHγ
r+) ∩ G(γ′Hγ′

r+) �= ∅ if and only if γ and γ′ are
r+-equivalent.

(2) If γ ∼ γ′, G(γHγ
r+) =

G(γ′Hγ′

r+).
(3) ⊔

[γ]∈Sr

G
(
γHγ

r+

)
= Grig.

(4) Each G
(
γHγ

r+

)
is open and closed.
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Proof. (1) For ⇐, by Lemma 2.4.5, we have γHγ
r+ = γ≤rH

γ
r+ and γ′Hγ′

r+ = γ′
≤rH

γ′

r+

independent of the choices of γ≤r and γ′
≤r. Since γ≤rTr+ ⊂ Hγ , hence γ′

≤r ∈
G(γHγ

r+) ∩ G(γ′Hγ′

r+).

For⇒ and (2), without loss of generality, one may assume that γHγ
r+∩γ′Hγ′

r+ �= ∅.
One may also assume that γ = γ1 · · · γk and γ′ = γ′

1 · · · γ′
k′ with bk, b

′
k′ ≤ r, that is,

γr+ = γ′
r+ = 1. Let δ ∈ γHγ

r+ ∩ γ′Hγ′

r+ . Then, δ = γ · h = γ′ · h′ with h ∈ Hγ
r+ and

h′ ∈ Hγ′

r+ . Let h = hshu (resp., h′ = h′
sh

′
u) be the Jordan decomposition of h in

Hγ (resp., h′ in Hγ′
). Then, γhshu and γ′h′

sh
′
u are two expressions of the Jordan

decomposition of δ. By the uniqueness of Jordan decomposition, γhs = γ′h′
s. Note

d(hs) = d(h) > r and d(h′
s) = d(h′) > r. By applying Lemma 2.4.5 to γhs, we have

Hγhs = Hγ = Hγ′
. Hence, γHγ

r+ = γhsH
γ
r+ = γ′Hγ′

r+ and γ ∼ γ′.

For (3), write GSr
for

⊔
[γ]∈Sr

G
(
γHγ

r+

)
. Clearly, GSr

⊂ Grig, and GSr
is a

disjoint union by (1). Conversely, for any g ∈ Grig, there is x ∈ B(G) and z ∈ Z
so that gz ∈ StabG(x). By [26, Theorem 2.38], we have the topological Jordan
decomposition of gz = gag0+ with ga absolutely semisimple and g0+ ∈ G′

0+ where
G′ = CG(ga). By Lemma 2.3.4, x ∈ B(G′). By Corollary 2.3.5, we have ga ∈
StabG(x). Let g0+ = gsgu be the Jordan decomposition of g0+ in G′. Let gs =
g1 · · · gkgr+ be a good product of gs mod r+ with d(gi) = bi. Then, since gu
commutes with gs, gu ∈ CG′(g1 · · · gk) = Hgags by Lemma 2.4.1(2) and thus gz =
gagsgu ∈ gagsH

gags
r+ . Hence, g ∈ GSr

and Grig ⊂ GSr
.

For (4), let γ = γzγ1 · · · γkγr+ and let Hi be as in Proposition 2.4.3. We may
assume γr+ = 1. Let g ∈ G and h ∈ Hγ

r+ so that g(γh) ∈ G
(
γHγ

r+

)
. We may

assume that g = 1. Let y ∈ B(Hγ) with γh ∈ γHγ
y,r+ ⊂ γHγ

r+ . By Lemma 2.3.2,

we have
Hk−1

y,(r−bk)+(γkH
γ
y,r+) = γkH

k−1
y,r+ and thus

Hk−1

y,(r−bk)+(γHγ
y,r+) = γHk−1

y,r+ since

γ1 · · · γk−1 ∈ Z(Hk−1). Inductively, setting H0 = G, we have
Hi−1

y,(r−bi)
+(γHγ

y,r+) =

γHi−1
y,r+ for i = 1, · · · , k. Hence, γh ∈ γGy,r+ ⊂ G

(
γHγ

r+

)
and hence G

(
γHγ

r+

)
is

open. It is also closed since its complement is open. �

Corollary 2.5.3. Suppose Hypotheses (A)–(D) and 1–4 hold.

(1) For g ∈ Grig with d(g) < ∞, we have g = γ · u for a G-good mod center
element γ of depth d(g) and u ∈ Gγ

d(γ)+ where Gγ = CG(γ).

(2) We have

Grig =

⎛⎝ ⊔
[γ]g∈S

g
r\[Z]gr

G
(
γGγ

d(γ)+

)⎞⎠ �

⎛⎝ ⊔
[z]g∈[Z]gr

zGr+

⎞⎠ .

Proof. (1) Applying the above proposition when r := d(g), we have g ∈ γGγ
r+ for a

G-good mod center element γ of depth d(g).

(2) By (1) Grig =
(⋃

[γ]g∈S
g
r\[Z]gr

G
(
γGγ

d(γ)+

))
∪
(⋃

[z]g∈[Z]gr
zGr+

)
.

To prove the disjointness, suppose [γ]g, [γ
′]g �∈ [Z]g. If

G
(
γGγ

d(γ)+

)
∩G

(
γ′Gγ′

d(γ′)+

)
�= ∅, d(γ) = d(γ′) and G

(
γGγ

d(γ)+

)
= G

(
γ′Gγ′

d(γ′)+

)
follows from the above lemma

by setting r = d(γ). The other cases are easier. �
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3. Descents

3.1. Theorem A. From now on, we fix r ∈ R>0. For any [γ] ∈ Sr, let H(G(γHγ
r+))

be the Z[ 1p ]-submodule of H consisting of functions supported in G(γHγ
r+) and let

H(G(γHγ
r+)) be its image in H. By Lemma 1.2.3 and Proposition 2.5.2, we have

Hrig =
⊕

[γ]∈Sr

H(G(γHγ
r+)), H

rig
=

⊕
[γ]∈Sr

H(G(γHγ
r+)).

Let Hr+(
G(γHγ

r+)) := Hr+ ∩H(G(γHγ
r+)). Then we have

H
rig
r+ ⊃

⊕
[γ]∈Sr

Hr+(
G(γHγ

r+)).

Note that the intersection of a double coset of Gx,r+ with a given G-domain
G(γHγ

r+), in general, is not closed under the left (or equivalently, right) multi-
plication of Gx,r+ . Thus we have

H
rig
r+ �=

⊕
[γ]∈Sr

Hr+(
G(γHγ

r+)).

Let Hr+(
G(γHγ

r+)) be the image of Hr+(
G(γHγ

r+)) in Hr+ . In other words,

Hr+(
G(γHγ

r+)) is the Z[ 1p ]-submodule of H consisting of elements represented by

functions in Hr+(
G(γHγ

r+)).
The main purpose of this section is to show that we still have the desired direct

sum decomposition of H
rig

r+ =
⊕

[γ]∈Sr
Hr+(

G(γHγ
r+)).

Definition 3.1.1.

(1) For any s ∈ R̃≥0, we define

HG
s =

∑
x∈B(G)

Cc(G/Gx,s).

For s, t ∈ R̃, with 0 < t < s, and γz ∈ Z (mod Zr+), define

HG
t,s(γz) =

∑
x∈B(G)

Cc ((γz ·Gx,t) /Gx,s) ,

H
G,�
t,s (γz) =

∑
x∈B(G)

Cc ((γz · (Gx,t ∩Gt+)) /Gx,s) .

We note that HG,�
s,s+(γz) is spanned by �X , where

X = γzgGx,s+ ∈ γzGx,s/Gx,s+

for some g ∈ Gx,s and x ∈ B(G) with gGx,s+ ⊂ Gs+ by [2, Corollary 3.7.8
and Corollary 3.7.10]. For simplicity, we will also write

HG
t,s := HG

t,s(1), H
G,�
t,s (1) = H

G,�
t,s .

(2) Let γ = γzγ1 · · · γkγr+ ∈ T be a good product of γ with d(γi) = bi.
(i) Let Hγ = CG(γ≤r). Define

H
G,�
[γ] :=

∑
x∈B(Hγ)

Cc

((
γ≤r · (Hγ

x,r ∩Hγ
r+)Gx,r+

)
/Gx,r+

)
.
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In particular, for any γz ∈ Z(G), we have

H
G,�
[γz]

:=
∑

x∈B(G)

Cc

((
γz · (Gx,r ∩Gr+)Gx,r+

)
/Gx,r+

)
.

(ii) If [γ]g := [γzγ1]g ∈ Sgr with γ1 G-good of depth b1 ≤ r, define

H
G,�
[γ]g

:=
∑

x∈B(H1)

Cc

((
γzγ1 · (H1

x,b1 ∩H1
b+1
)Gx,r+

)
/Gx,r+

)
,

where H1 = CG(γ1). If [γ]g = [γz]g, let

H
G,�
[γz]g

:= H
G,�
[γz]

.

Note that we have H
G,�
[1]g

= H
G,�
[1] = H

G,�
r,r+(1).

In all cases, we denote the image of each Z[ 1p ]-submodule in the cocenter H using

, e.g., H
G

s , H
G,�

t,s,, etc.

Theorem 3.1.2. Suppose Hypotheses (A)–(D) and 1-4 hold.

(1) H
rig

r+ =
⊕

[γ]∈Sr
Hr+(

G(γHγ
r+)).

(2) For any [γ] ∈ Sr, Hr+(
G(γHγ

r+)) = H
G,�

[γ] .

We will prove the above theorem in the rest of this section. We first need some
lemmas.

3.2. Some lemmas. The following is [9, Lemma 4.5.1].

Lemma 3.2.1. Suppose Hypotheses (DB) and 2 hold. Let x ∈ B(G, F ) and suppose
s < r. Let S ⊂ G be a maximal k-split torus of G such that x ∈ A(S, F ). If
u ∈ (UGx,s+ ∩ (Gx,s \ Gx,s+)), then there exist v ∈ Gx(uGx,s+) and λ ∈ X∗(S, F )
such that for sufficiently small ε > 0, we have

(1) vGx,s+ ⊂ Gx+ελ,s+ and

(2) vv′Gx+ελ,r+ ⊂ Gx,(r−s)(vv′Gx,r+) for any v′ ∈ Gx,s+ .

Definition 3.2.2 ([4]). For any g ∈ G, the displacement function dg : B(G) → R

is defined as dg(x) = dist(x̄, gx̄) where dist(x̄, gx̄) is a geodesic distance in the

reduced building B(G) between x̄ and gx̄ where x̄ is the image of x in B(G). Define
d(g) := min{dg(x) | x ∈ B(G)}. For any subset S ⊂ B(G) with compact image in

B(G), define dS(g) := min{dg(x) | x ∈ S}. Note that dS is well defined since S has

a compact image in B(G).

We would also need the notion of generalized r-facets. In [8], they are defined as
certain subsets of the reduced building B(G). One can define generalized r-facets
on the extended building B(G) in a similar way.

Definition 3.2.3 ([8]). For x ∈ B(G), define

F ∗(x) : = {y ∈ B(G) | gx,r = gy,r and gx,r+ = gy,r+}
= {y ∈ B(G) | Gx,r = Gy,r and Gx,r+ = Gy,r+},

F(r) : = {F ∗(x) | x ∈ B(G)}.
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An element in F(r) is called a generalized r-facet in B(G). We will often write F ∗

for F ∗(x) when there is no confusion. Note that the closure F
∗
of F ∗ ∈ F ∗(r) has

a compact image in B(G). For F ∗ = F ∗(x) ∈ F(r), define

gF∗ := gx,r, g
+
F∗ := gx,r+ ,

GF∗ := Gx,r, G+
F∗ := Gx,r+ .

Remarks 3.2.4. Let y ∈ B(G) and let S be a maximal F -split torus of G with
y ∈ A(S). Let C be an alcove (0-facet of maximal dimension) with y ∈ C ⊂ A(S).
For g ∈ G, there are n ∈ NG(S) and bi ∈ GC with g = b1nb2 where GC = Gx,0 for

x ∈ C. Define g′ = b−1
1 g = nb2b1. Then, we have the following:

(1) For r ≥ 0, since b1 ∈ NG(Gy,r)∩NG(Gy,r+), we have b1 ∈ StabG(F
∗) where

F ∗ is the r-facet containing y.
(2) We have �gG+

F∗
≡ �g′G+

F∗
mod [H,H]. Here for X ⊂ G, �X denotes the

characteristic function with support X.
(3) Since y ∈ C, we have g′y = nb2b1y = ny ∈ A(S).
(4) dg′(y) = dg(y).

The proof of the following lemma is adapted from that of [9, Corollary 4.2.9].
We include the proof for completeness.

Lemma 3.2.5. Let F ∗ ∈ F(r) and g ∈ G. Suppose d(g) = 0 and m := dF∗(g) > 0.
Then, there is a finite set {gi} and constants ci ∈ Z[ 1p ] and F ∗

i ∈ F(r) such that

(1) dF∗(g) > dF∗
i
(gi) for each i, and

(2) �gG+
F∗

≡
∑

i ci�giG
+
F∗
i

mod [H,H].

Proof. We divide the proof into two cases.

Case 1. There is y ∈ F ∗ with dg(y) = dF∗(g).

Choose S and C as in Remarks 3.2.4, and keep the notation from there. Write

[y, ny] for the geodesic in A(S) between y and ny. Observe that [y, ny]∩F
∗
= {y}

(see the proof of [9, Lemma 4.2.6] for details). Let F ∗
1 ∈ F(r) be the first generalized

r-facet that (y, g′y] = (y, ny] passes through when traveling from y to ny. Note

that F
∗
1 ∩ A �= ∅. Since F ∗ ⊂ F

∗
1 thus F ∗ ∩ A ⊂ F

∗
1 ∩ A. Note that G+

F∗ ⊂ G+

F
∗
1

.

Let

Q := {ψ ∈ Ψ(S,G, F ) | ψ|(F ∗
1 ∩A) > r and ψ|(F ∗ ∩A) = r}.

Then,

G+
F∗

1
= G+

F∗ ·
∏
ψ∈Q

Uψ,

where the product overQmay be taken in any order. Fix ψ ∈ Q. Since (n−1ψ)(y) =

ψ(ny) > r, we have n−1

Uψ = Un−1ψ ⊂ G+
F∗ . We also have U+

ψ ⊂ G+
F∗ . By (2) of
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the above remarks, we have

�g·G+
F∗

≡ �g′·G+
F∗

≡ c ·
∑

h∈(
∏

ψ∈Q Uψ)/(
∏

ψ∈Q U+
ψ )

�h−1nb2b1G
+
F∗h

≡ c ·
∑

h∈(
∏

ψ∈Q Uψ)/(
∏

ψ∈Q U+
ψ )

�g′G+
F∗h

≡ c · �g′G+

F∗
1

mod [H,H],

where the constant c = �
(
(
∏

ψ∈Q Uψ)/(
∏

ψ∈Q U+
ψ )

)−1

∈ Z[ 1p ]. Note that for all z ∈
F ∗
1 ∩ (y, g′y) �= ∅, we have from [9, Lemma 4.2.1] that dg′(z) < dg′(y). Combining

with (4) of the above remarks, we have

min
x∈F∗

1

dg′(x) < dg′(y) = dg(y) = min
x∈F∗

dg(x).

Case 2. For all x ∈ F ∗, dg(x) > dF∗(g).

Choose y ∈ F
∗ \F ∗ such that dF∗(g) = dg(y). There exists F

∗
1 ∈ F(r) such that

y ∈ F ∗
1 and F ∗

1 ⊂ F
∗
. Then,

�gG+
F∗

=
∑

α∈G+
F∗/G

+

F∗
1

�gαG+

F∗
1

.

Note that for all α ∈ G+
F∗ , we have dg(x) = dgα(x) for all x ∈ F

∗
and dgα(y) =

dF∗
1
(gα) for all α ∈ G+

F∗ . Now, one can apply Case 1 to each summand �gαG+

F∗
1

,

α ∈ G+
F∗/G

+
F∗

1
, and F

∗
1. �

3.3. Descents.

Proposition 3.3.1. Let gGy,r+ ⊂ Grig. Write s := d(y, g) and t := d(g). There

exists a finite indexing set {i}, {gi} ⊂ G, and ci ∈ Z[ 1p ] such that �gGy,r+
≡∑

i ci�giGyi,r
+ (mod [H,H]) with d(gi) = d(gi, yi) ≤ r or gi ∈ Z · (Gr+ ∩Gyi,r).

Note that s ≤ t. Note also that if s < r, we have d(y, g) = d(y, g′) for all
g′ ∈ gGy,r+ .

Proof. We prove the statement in three cases below. Without loss of generality, we
may assume that g is compact.

Case 1. s = t = 0 or s > r.
Done since �gGy,r+

already satisfies the required condition. In particular, when

s > r, gGy,r+ = zGy,r+ for some z ∈ Z.

Case 2. d(g) = 0 and g ∈ Z StabG(x) \ Z StabG(y).

In this case, dg(y) > 0. Let F ∗ ∈ F(r) with y ∈ F
∗
.

If dF∗(g) = 0, from Case 1 in Lemma 3.2.5, we may assume that there is z ∈ F
∗

such that dg(z) = 0. Then, gGy,r+ = gGz,r+ ⊂ StabG(z), which reduces to Case 3
below.
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Now, let dF∗(g) > 0. By applying Lemma 3.2.5 repeatedly, we can write

�gGy,r+
= �gG+

F∗
=

∑
i

ci�giG
+
F∗
i

with {i} a finite set, F ∗
i ∈ F(r), and dF∗

i
(gi) = 0 for all i. More precisely, applying

Lemma 3.2.5 repeatedly, we find a sequence of triples (gj , F
∗
j , yj) ∈ G×F(r)×B(G),

j ∈ N such that yj ∈ F ∗
j and

dgj (yj) = dF∗
j
(gj) > dF∗

j+1
(gj+1) = dgj+1

(yj+1) > 0.

Since dgj (yj) is a discrete decreasing sequence in R≥0, for sufficiently large j,
dgj (yj) = 0 (see the proof of [9, Theorem 4.1.4-(1)]).

Case 3. 0 ≤ s ≤ t.

If t = s, it is done.
Now, suppose that t > s. Then, g ∈ Gy,s ∩ UGy,s+ . We claim that there is a

finite set {i} such that

�gGy,r+
≡

∑
ci�giGxi,r

+ mod [H,H](1)

with ci ∈ Z[ 1p ] and d(xi, gi) > s.

Let F ∗ ⊂ B(G) be the generalized r-facet with y ∈ F ∗. Let S be a maximal,
maximally F -split torus in G so that F ∗ ⊂ A(S, F ). Since d( , g) is continuous on

B(G), for fixed g ∈ G, d( , g) restricted to F
∗
attains its maximum since the image

of F
∗
in the reduced building is compact. That is, there is s′ ∈ R≥0 with s′ ≥ s

and x ∈ F
∗
such that

s′ = d(x, g) ≥ d(w, g)

for all w ∈ F
∗
.

Since x ∈ F
∗
, we have gx,r+ ⊂ g

+
F∗ ⊂ gF∗ ⊂ gx,r. Therefore,

�gGy,r+
=

∑
α∈Gy,r+/Gx,r+

�g·αGx,r+
.

Note that each α ∈ Gx,r and d(x, g) = d(x, gα) = s.
Now, for each gα, we will show that there is a zα ∈ B(G) such that �gαGx,r+

is a linear combination of characteristic functions of the form �gαGzα,r+
with gα ∈

Gzα,s+ (see (2) below).
Since we are treating each gα, for simplicity of notation, we may write u for gα.

Note that u ∈ Gx,s′ ∩Gs′+ ⊂ UGx,s′+ . Then, we can find v ∈ Gx(uGx,s′+) and λ as
in Lemma 3.2.1 so that for sufficiently small ε > 0, we have (i) vGx,s′+ ⊂ Gx+ελ,s′+

and (ii) vv′Gx+ελ,r+ ⊂ Gx,(r−s)(vv′Gx,r+) for any v′ ∈ Gx,s′+ . Fix ε satisfying (i)
and (ii). Write z = x+ ελ. Let

a := {v−1hvh−1 | h ∈ Gx,(r−s′)/Gx,(r−s′)+}Gx,r+ .

We have a ⊂ Gx,r ⊂ Gx,s′+ and Gz,r+ ⊂ a. Then,

�uGx,r+
≡ �vGx,r+

≡ c ·
∑

h∈Gx,(r−s′)/Gx,(r−s′)+

�hvh−1Gx,r+
(2)

≡ c · �v·a ≡ c ·
∑

β∈a/Gz,r+

�vβGz,r+
mod [H,H],
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where c =
(
�(Gx,(r−s′)/Gx,(r−s′)+)

)−1 ∈ Z[ 1p ]. For all β ∈ a, we have �vβGz,r+
∈

C(Gz,s′+/Gz,r+), and the claim is now proved.
Now one can repeat the process for �giGxi,r

+ in (1) until each coset satisfies

d(gi) = d(xi, gi) or d(xi, gi) ≥ r. This is a finite process as in the proof of [9,
Theorem 4.1.4-(1)]. We omit the details. �

Remarks 3.3.2. Suppose Hypotheses (A)–(D) and 1–4 hold. We observe the fol-
lowing: Suppose gGy,t+ satisfies t := d(g) = d(y, g). Write g = γ · u such that γ
is a G-good mod center element and u ∈ G′

d(γ)+ where G′ = CG(γ) (see Corollary

2.5.3). Then,

(1) d(g) = d(γ) = d(y, g) = d(y, γ),
(2) y ∈ B(G′, F ),
(3) γ ∈ ZG′

y,t, u ∈ G′
y,t ∩G′

t+ ,

(4) �gGy,r+
∈ Cc

((
γ · (G′

y,t ∩G′
t+)Gy,r+

)
/Gy,r+

)
.

The first equality d(g) = d(γ) follows from Lemma 2.3.4. (2) is Lemma 2.3.1 and
(3) is Corollary 2.3.5.

The following is a corollary of Proposition 3.3.1.

Corollary 3.3.3. Suppose Hypotheses (A)–(D), (DB), and 1–4 hold. Then, we
have

H
rig

r+ =
⊕

[γ]g∈S
g
r

H
G,�

[γ]g .

Proof. It follows from Corollary 2.5.3, Proposition 3.3.1, Lemma 1.2.3, and Remarks
3.3.2(4). �

3.4. Descent via induction.

Proposition 3.4.1. Let γ = γzγ1 be a G-good mod center element of depth t ≥ 0,
where γz ∈ Z(G) and γ1 is G-good of depth t. Let s ∈ R̃ with s > t. We set G′ =

CG(γ). Then the map �hG′
x,s

�→ μG′ (G′
x,s)

μG(Gx,s)
�γhGx,s

for x ∈ B(G′) and h ∈ G′
x,t∩G′

t+

induces a well-defined map

īγ,s : H
G′, �

t,s → H
G

t,s(γz).

Moreover, for any s′ ∈ R̃ with s′ ≥ s, we have the following commutative diagram:

H
G′, �

t,s

īγ,s ��
� �

��

H
G

s� �

��

H
G′, �

t,s′
īγ,s′ �� H

G

s′ .

Remark 3.4.2. Note that the elements �hG′
x,s

for x ∈ B(γ) and h ∈ G′
x,t ∩G′

t+ are

not linearly independent in H. Thus the map �hG′
x,s

�→ μG′ (G′
x,s)

μG(Gx,s)
�γhGx,s

may not

give a well-defined map from H
G′, �
t,s to HG

s . However, we will see that it induces a
well-defined map on the cocenter.
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Proof of Proposition 3.4.1. Let x ∈ B(γ) and h ∈ G′
x,t ∩ G′

t+ . Let ε = s − t.
By Lemma 2.3.2, for any k ∈ Gx,s, there exists g ∈ Gx,ε such that g(γhk) ∈
γhG′

x,s. Note that (Gx,ε, G
′
x,s) ⊂ Gx,s+ε. Then G′

x,sGx,s+ε is a subgroup of G and
g(G′

x,sGx,s+ε) = G′
x,sGx,s+ε. We have g(γhkG′

x,sGx,s+ε) = γhG′
x,sGx,s+ε and

�γhkG′
x,sGx,s+ε

≡ �γhG′
x,sGx,s+ε

mod [H,H].

Similarly, for any n ∈ N and k ∈ Gx,s+nε, we may write G′
x,s =

⊔
l hlG

′
x,s+nε for

hl ∈ G′
x,s/G

′
x,s+nε. Since G

′
x,s+nε ⊂ Gx,s+nε, we have hkG

′
x,s =

⊔
l hhlklG

′
x,s+nε for

kl = h−1
l khl ∈ Gx,s+nε. Note that hhl ∈ G′

x,t ∩G′
t+ . By Lemma 2.3.2, there exists

gl ∈ Gx,(n+1)ε such that gl(γhhlkl) ∈ γhhlG
′
x,s+nε. Note that (Gx,(n+1)ε, G

′
x,s+nε) ⊂

Gx,s+(2n+1)ε. Then G′
x,s+nεGx,s+(2n+1)ε is a subgroup of G and

gl(G′
x,s+nεGx,s+2(n+1)ε) = G′

x,s+nεGx,s+(2n+1)ε.

We have gl(γhhlklG
′
x,s+nεGx,s+(2n+1)ε) = γhhlG

′
x,s+nεGx,s+(2n+1)ε and

�γhkG′
x,sGx,s+(2n+1)ε

=
∑
l

�γhlklG′
x,s+nεGx,s+(2n+1)ε

≡
∑
l

�γhhlG′
x,s+nεGx,s+(2n+1)ε

≡ �γhG′
x,sGx,s+(2n+1)ε

mod [H,H].

In particular, we have

�γhGx,s
≡ μG(Gx,s)

μG(G′
x,sGx,s+ε)

�γhG′
x,sGx,s+ε

≡ · · ·

≡ μG(Gx,s)

μG(G′
x,sGx,s+(2n+1)ε)

�γhG′
x,sGx,s+(2n+1)ε

mod [H,H].

Moreover, for any open compact subgroup K with Gx,s+(2n+1)ε ⊂ K ⊂ Gx,s+nε,

we have �γhG′
x,sK ≡ μG(G′

x,sK)

μG(G′
x,sGx,s+(2n+1)ε)

�γhG′
x,sGx,s+(2n+1)ε

mod [H,H] and hence

(a) �γhGx,s
≡ μG(Gx,s)

μG(G′
x,sK)

�γhG′
x,sK mod [H,H].

Now suppose that
∑

i ai�hiG′
xi,s

= 0 ∈ H
G′, �
t,s . We may choose a sufficiently large

n ∈ N such that the subgroup generated by Gxi,s+(2n+1)ε for all i is contained in
K := ∩jGxj ,s+nε. Then, Gxi,s+(2n+1)ε ⊂ K ⊂ Gxi,s+nε for all i. By definition,∑

i ai�hiG′
xi,s

is mapped to
∑

i ai
μG′ (G′

xi,s
)

μG(Gxi,s
) �γhiGxi,s

. By (a),

∑
i

ai
μG′(G′

xi,s)

μG(Gxi,s)
�γhiGxi,s

≡
∑
i

ai
μG′(G′

xi,s)

μG(G′
xi,sK)

�γhiG′
xi,s

K mod [H,H].

Note that
μG′ (G′

xi,s
)

μG(G′
xi,s

K) =
μG′ (G′∩K)

μG(K) for all i. Moreover, we have
∑

i ai�γhiG′
xi,s

K =

0 as
∑

i ai�hiG′
xi,s

= 0. Therefore, under the map in the proposition, the image of∑
i ai�hiG′

xi,s
equals 0. Hence it gives a well-defined map from iγ,s : H

G′, �
t,s → H

G

s .

Now let ε′ = s′ − t. Let f ∈ H
G′, �
t,s ⊂ H

G′, �
t,s′ . We show that iγ,s(f) = iγ,s′(f).
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Suppose that f =
∑

i ai�hiG′
xi,s

. We choose an open compact subgroup K such

that there exists n, n′ ∈ N withGxi,s+(2n+1)ε ⊂ K ⊂ Gxi,s+nε andGxi,s′+(2n′+1)ε′ ⊂
K ⊂ Gxi,s′+n′ε′ for all i. By (a), we have that

iγ,s(f) ≡
∑
i

ai
μG′(G′ ∩K)

μG(K)
�γhiG′

xi,s
K mod [H,H].

We may write f as f =
∑

i

∑
g′∈G′

xi,s
/G′

xi,s
′
ai�hig′G′

xi,s
∈ H

G′, �
t,s′ . Then by (a),

we have

iγ,s′(f) ≡
∑
i

∑
g′∈G′

xi,s
/G′

xi,s
′

ai
μG′(G′ ∩K)

μG(K)
�γhig′G′

xi,s
′K

≡
∑
i

ai
μG′(G′ ∩K)

μG(K)
�γhiG′

xi,s
K ≡ iγ,s(f) mod [H,H].

It remains to show that the map iγ,s : H
G′, �
t,s → H

G

s factors through H
G′, �

t,s .

Let f ∈ H
G′, �
t,s ∩ [HG′

,HG′
]. Then by definition, the support of f is contained

in the G′-domain G′
t+ . By Lemma 1.2.2, f =

∑
i(fi − gifi), where fi ∈ H(G′) with

support in G′
t+ and gi ∈ G′. Let s′ ∈ R̃ with s′ ≥ s and that fi ∈ H

G′, �
t,s′ for all i.

Then iγ,s(f) = iγ,s′(f). It remains to prove that for any f ′ ∈ H
G′, �
t,s′ and g ∈ G′,

we have iγ,s′(f
′) = iγ,s′(

gf ′).
It suffices to consider the case where f = �hG′

x,s′
, where x ∈ B(γ) and h ∈

G′
x,t ∩G′

t+ . By definition,

iγ,s′(�g(hG′
x,s′ )

) ≡ iγ,s′(�ghg−1G′
gx,s′

) ≡
μG′(G′

gx,s′)

μG(Ggx,s′)
�γghg−1Ggx,s′

≡
μG′(G′

x,s′)

μG(Gx,s′)
�γhGx,s′ ≡ iγ,s′(�hG′

x,s′
) mod [H,H].

This finishes the proof. �
Theorem 3.4.3. Let γ ∈ Grig ∩ Gss with a good product γ = γzγb1 · · · γbkγr+ ,
where each γbi is G-good of depth bi and b1 < b2 < · · · < bk ≤ r. Then the map

�hHγ

x,r+
�→

μHγ (Hγ

x,r+
)

μG(Gx,r+ ) �γ≤rhGx,r+
for x ∈ B(γ≤r) and h ∈ Hγ

x,r ∩ Hγ
r+ induces a

well-defined map

īγ,r+ : H
Hγ , �

r,r+ → H
G

b1,r+(γz).

In particular, the map īγ,r+ is independent of the good product expression γ =
γzγb1 · · · γbkγr+ .

Proof. Without loss of generality, we may assume γ=γ≤r. SetH
i=CG(γzγb1 · · · γbi).

Then by Proposition 3.4.1, we have well-defined maps

īH
k−1

γbk
,r+ : H

Hγ , �

bk,r+
→ H

Hk−1

bk,r+
,

īH
k−2

γbk−1
,r+ : H

Hk−1, �

bk−1,r+
→ H

Hk−2

bk−1,r+
,

· · ·

īGγb1
,r+ : H

H1, �

b1,r+ → H
G

b1,r+(γz).
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As bi+1 < bi for any i, we have that H
Hi

bi+1,r+ ⊂ H
Hi, �

bi,r+ . Set īγb1
,γb2

,··· ,γbk
,r+ =

īGγb1
,r+ ◦· · ·◦ īH

k−1

γbk
,r+ . This is a well-defined map from H

Hγ , �

bk,r+
toH

G

b1,r+ . In particular,

we have īγ,r+ : H
Hγ , �

r,r+ → H
G

b1,r+ .

For any x ∈ B(γ≤r) and h ∈ Hγ
x,r ∩Hγ

r+ , we have

īγb1
,γb2

,··· ,γbk
,r+

(
�hHγ

x,r+

)
≡ īγb1

,γb2
,··· ,γbk−1

,r+

(
μHγ (Hγ

x,r+)

μHk−1(Hk−1
x,r+)

�γbk
hHk−1

x,r+

)

≡ īγb1
,γb2

,··· ,γbk−2
,r+

(
μHγ (Hγ

x,r+)

μHk−1(Hk−1
x,r+)

μHk−1(Hk−1
x,r+)

μHk−2(Hk−2
x,r+)

�γbk−1
γbk

hHk−2

x,r+

)
≡ · · ·

≡
μHγ (Hγ

x,r+)

μHk−1(Hk−1
x,r+)

μHk−1(Hk−1
x,r+)

μHk−2(Hk−2
x,r+)

· · ·
μH1(H1

x,r+)

μG(Gx,r+)
�γhGx,r+

≡
μHγ (Hγ

x,r+)

μG(Gx,r+)
�γhGx,r+

mod [H,H].

Thus the map īγb1
,γb2

,··· ,γbk
,r+ only depends on γ. This finishes the proof. �

Proof of Theorem 3.1.2. We have shown in Corollary 3.3.3 that

H
rig

r+ =
⊕

[γ]g∈S
g
r

H
G,�

[γ]g .

Let γzγb1 be a G-good mod center element and �gGy,r+
∈ H

G,�
[γzγb1

]g
. By Propo-

sition 3.4.1, īγb1
,r+ : H

H1, �

b1,r+ → H
G

[γzγb1
]g,r+ , where H1 = CG(γzγb1), is a well

defined surjective map. Write g = γzγb1u1 where u1 ∈ H1
y,b1

∩ H1
b+1
. Then,

�u1H1
y,r+

≡
∑

j cj�γb2j
u2jH1

y2j,r
+
for some H1-good elements γb2j of depth b2j > b1,

y2j ∈ B(H2j) where H2j = CH1(γb2j ), cj ∈ Z[ 1p ] and u2j ∈ H2j
y2j ,b2j

∩ H2j

b+2j
. Note

that there are constants c′j ∈ Z[ 1p ] such that

∑
j

c′j · �γb2j
u2jH1

y2j,r
+

īγb1 ,r+

−→
∑
j

cj · �γzγb1
γb2j

u2jGy2j ,r
+ ≡ �gGy,r+

.

Repeating the process to each summand, �u2jH
2j

y,r+
≡

∑
k ck · �γb2jk

u2jkH
2j

y2jk,r+

for some H2j-good elements γb2jk of depth b2jk > b2j , y2jk ∈ B(H2jk) where

H2jk = CH2j (γb2jk) and u2jk ∈ H2jk
y2jk,b2jk

∩H2jk

b+2jk
. Now

∑
k

∑
j

cjk · �γb2jk
u2jkH1

y2jk,r+

∑
j īγb2j ,r+

−→
∑
j

c′j�γb2j
γb2jk

u2jH1
y2j,r

+

īγb1 ,r+

−→
∑
j

cj�γzγb1
γb2j

γb2jk
u2jGy2j ,r

+ ≡ �gGy,r+
mod [H,H].
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Setting bi to be the min of depths appearing in summands in each ith step. One
can repeat the process until bi > r. These are finitely many steps since bi forms an
increasing discrete sequence. Now, we proved that

H
rig

r+ ⊂
∑

[γ]∈Sr

īγ,r+(H
CG(γ), �

r,r+ ) ⊂
∑

[γ]∈Sr

H
G,�

[γ] ⊂
∑

[γ]∈Sr

Hr+(
G(γHγ

r+)) ⊂ H
rig

r+ .

Therefore all the inclusions above are in fact equalities. Also

H
rig

=
∑

[γ]∈Sr

Hr+(
G(γHγ

r+)).

By Lemma 1.2.3, this is a direct sum. Moreover, for any [γ] ∈ Sr, we have

īγ,r+(H
Hγ , �

r,r+ ) = H
G,�

[γ] = Hr+(
G(γ≤rH

γ
r+)). �

As shown in the proof, we have the following description of Hr+(
G(γHγ

r+)).

Corollary 3.4.4. Let īγ,r+ be as in Theorem 3.4.3. Then, īγ,r+(H
Hγ , �

r,r+ ) = H
G,�

[γ] .

4. Jordan decomposition of H
rig

r+

4.1. The cosets Iur and Idr . Following [8, 9], we set

Ir(G) = {(F ∗, X);F ∗ is a generalized r-facet of G,X ∈ GF∗/G+
F∗},

Iur (G) = {(F ∗, X) ∈ Ir(G);X = uG+
F∗ for some unipotent element u ∈ GF∗}.

By [2, Corollary 3.7.10], Iur (G) = {(F ∗, X) ∈ Ir(G);X ⊂ Gr+}.
By [8, Definition 5.3.4] and [9, §4.4], under Hypotheses (DB), to each pair

(F ∗, X) ∈ Iur (G), there exists a unique unipotent conjugacy class of minimal dimen-
sion which intersects X. We denote this unipotent conjugacy class by O(F ∗, X).

Finally, we define the distinguished cosets Idr (G) ⊂ Iur (G) as in [8, Definition
5.5.1] and the equivalence relation ∼ as in [8, Definition 3.6.2]. By [8, Theorem
5.6.1], under Hypotheses (DB), the map (F ∗, X) �→ O(F ∗, X) gives a bijection
between Idr (G)/ ∼ and the set Clu(G) of unipotent conjugacy classes of G.

We first prove the following.

Proposition 4.1.1. Suppose Hypotheses (DB) and 5 hold. Then H
G,�

[1] is a free

Z[ 1p ]-module with basis �(F∗,X), where (F
∗, X) runs over representatives in Idr (G)/∼

and �(F∗,X) is the characteristic function �X supported on X.

We adapt the strategy of [9, §2]. While the invariant distributions (with complex
coefficients) are considered in [9], here we consider the cocenter of H and need to

work with coefficients in Z
[
1
p

]
.

Lemma 4.1.2. Let O be a unipotent conjugacy class of G and (F ∗
1 , X1), (F

∗
2 , X2) ∈

Iur (G) are two pairs associated to O (i.e., O = O(F ∗
1 , X1) = O(F ∗

2 , X2)) such that

F ∗
2 ⊂ F ∗

1 and X2 ⊂ X1. Then in H, we have

�X1
∈ pn�X2

+
∑

(F∗,X)∈Iu
r (G) with O(F∗,X)>O

Z

[
1

p

]
�X + [H,H] for some n ∈ N.

Here ≤ is the partial order on the set of unipotent conjugacy classes of G given by
the closure relation.
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Proof. We follow the argument in [9, Lemma 2.6.2], almost verbatim. We have that

G+
F∗

2
⊂ G+

F∗
1
⊂ GF∗

1
⊂ GF∗

2
.

We write �X1
as

�X1
=

∑
Y ∈X1/G

+

F∗
2

�Y .

Let Y ∈ X1/G
+
F∗

2
. Then Y ⊂ X1 ⊂ Gr+ . By [8, Corollary 5.2.5], we have

O(F ∗
2 , Y ) ≥ O. The case where O(F ∗

2 , Y ) > O is obvious. It remains to consider
the case where O(F ∗

2 , Y ) = O. By [8, Lemma 3.2.17], there exists x ∈ F ∗
1 so that

Gx ⊂ StabG(F
∗
2 ). By [8, Corollary 5.2.3], we have Y = gX2 for some g ∈ G+

x . In
particular, �Y ≡ �X2

mod [H,H]. Set Γ = {Y ∈ X1/G
+
F∗

2
;O(F ∗

2 , Y ) = O}. Then

G+
x acts transitively on Γ. Since G+

x is a pro-p group, the cardinality of Γ is a power
of p. The statement is proved. �

The following results follow easily from Lemma 4.1.2 and the definition of ∼ (see
the proof of [9, Lemma 2.6.5]).

Corollary 4.1.3. Let (F ∗
1 , X1), (F

∗
2 , X2) ∈ Idr (G) with (F ∗

1 , X1) ∼ (F ∗
2 , X2). Then

�X1
∈ pn�X2

+
∑

(F∗,X)∈Iu
r (G) with O(F∗,X)>O

Z

[
1

p

]
�X + [H,H] for some n ∈ Z.

Proof of Proposition 4.1.1. Note that H
G,�

[1] is spanned by �(F∗,X) for (F ∗, X) ∈
Iur (G). By definition, for any (F ∗, X) ∈ Iur (G), there exists (F ∗

1 , X1) ∈ Idr (G)
such that F ∗ ⊂ F ∗

1 and X ⊂ X1. By Lemma 4.1.2, given a unipotent conjugacy

class O, for any (F ∗, X) ∈ Iur (G) with O(F ∗, X) = O, the element �(F∗,X) in H is

contained in the span of �(F∗
1 ,X1), where (F ∗

1 , X1) ∈ Idr (G) with O(F ∗
1 , X1) = O,

and (F ′∗, X ′) ∈ Iur (G) where O(F ′∗, X ′) > O. Here, we denote �X by �(F∗,X) for
clarity.

By Corollary 4.1.3, it suffices to use any representative (F ∗
1 , X1) ∈ Idr (G)/ ∼

with O(F ∗
1 , X1) = O instead of all the distinguished cosets associated to O.

By Hypotheses (DB), there are only finitely many unipotent conjugacy classes.
Hence by induction, �(F∗,X) is spanned by �(F ′∗,X′), where (F ′∗, X ′) runs over

representatives in Idr (G)/ ∼ with O(F ′∗, X ′) ≥ O. In particular, H
G,�

[1] is spanned

by �(F ′∗,X′), where (F ′∗, X ′) runs over representatives in Idr (G)/ ∼.

Now we choose a set of representatives (F ′∗, X ′) of Idr (G)/ ∼. It remains
to show that the elements �(F ′∗,X′) are linearly independent over Z[ 1p ]. Sup-

pose that
∑

a(F ′∗,X′)�(F ′∗,X′) ≡ 0 in H with a(F ′∗,X′) ∈ Z[ 1p ] ⊂ C. We regard∑
a(F ′∗,X′)�(F ′∗,X′) as the zero element in HC. Suppose that not all the coeffi-

cients a(F ′∗,X′) are 0. Let O be a minimal unipotent conjugacy class such that
O = O(F ′∗

1 , X ′
1) for some (F ′∗

1 , X ′
1) with a(F ′∗

1 ,X′
1)

�= 0. By the minimality assump-

tion, for any other representative (F ′∗, X ′) in our chosen set, we have a(F ′∗,X′) = 0
or O ∩X ′ = ∅. For u ∈ O, we have

0 = Ou(a(F ′∗
1 ,X′

1)
�(F ′∗

1 ,X′
1)
) +

∑
(F ′∗,X′) 
=(F ′∗

1 ,X′
1)

Ou(a(F ′∗,X′)�(F ′∗,X′))

= a(F ′∗
1 ,X′

1)
Ou(�(F ′∗

1 ,X′
1)
).
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This is a contradiction as a(F ′∗
1 ,X′

1)
�= 0 and Ou(�(F ′∗

1 ,X′
1)
) is a nonzero number

in C. Hence the image of �(F ′∗,X′) in H for any set of representatives (F ′∗, X ′) of

Idr (G)/ ∼ are linearly independent. �

4.2. Unipotent orbits in the group Hγ . Now we consider H
G,�

[γ] for arbitrary

[γ] ∈ Sr. Set H = Hγ . Note that H is not connected in general. The cosets we
consider in this situation are the distinguished cosets Idr (H) := Idr (H

◦), but there
are extra equivalence relations that we need to take into account. The equivalence
relation ∼̃ on Idr (H) is generated by the equivalence relation ∼ on Id(H◦) in [8,
Definition 3.6.2] and the relation (F ∗, X)∼̃(hF ∗, hX) for h ∈ H. In other words,
the group H/H◦ acts naturally on Idr (H

◦)/ ∼ and the quotient set is Idr (H)/∼̃.
On the other hand, let Clu(H) be the set of unipotent conjugacy classes of H and

let Clu(H◦) be the set of unipotent conjugacy classes of H◦. Under Hypothesis 2,
the natural map Clu(H◦) → Clu(H) is surjective. The group H/H◦ acts naturally
on Clu(H◦) and the quotient set is Clu(H).

It is easy to see that the map Idr (H
◦)/ ∼→ Clu(H◦) given by (F ∗, X) �→

O(F ∗, X) is H/H◦-equivariant. Thus it leads to a map Idr (H)/∼̃ → Clu(H). Com-
bining this with the result in [9, §4.4], under Hypotheses (DB) and 2, this map is
bijective.

Now we come to the main result of this section.

Theorem 4.2.1. Suppose Hypotheses (DB), (A), (C), 2, and 5 hold. Then for
any [γ] ∈ Sr,

(1) H
Hγ ,�

r,r+ is a free Z[ 1p ]-module with basis �(F∗,X), where (F ∗, X) runs over

representatives in Idr (H
γ)/∼̃.

(2) The map iγ,r+ : H
Hγ ,�

r,r+ → H
G,�

[γ] defined in Theorem 3.4.3 is a Z[ 1p ]-linear

isomorphism.

Proof. Without loss of generality, we assume γ = γ≤r.
By definition, if h ∈ Hγ , then for any (F ∗, X) ∈ Idr (H

γ), we have �(F∗,X) ≡
�(hF∗,hX) mod [HHγ

,HHγ

]. We choose a set A of representatives (F ∗, X) in

Idr (H
γ)/∼̃. By Proposition 4.1.1 applied to Hγ , H

Hγ

r,r+ is spanned by �(F∗,X).

By Corollary 3.4.4, īγ,r+(H
Hγ , �

r,r+ ) = H
G,�

[γ] .

Now suppose that iγ,r+(
∑

(F∗,X)∈A a(F∗,X)�(F∗,X)) ≡ 0 in H; here a(F∗,X) ∈
Z[ 1p ] ⊂ C. We regard iγ,r+(

∑
(F∗,X)∈A a(F∗,X)�(F∗,X)) as the zero element in HC.

Suppose that not all the coefficients a(F∗,X) are 0. Let O be a minimal unipotent
conjugacy of Hγ such that there exists (F ∗, X) in the chosen set of representatives
with O(F ∗, X) = O and a(F∗,X) �= 0.

By Lemma 2.3.3, the map g �→ γg induces an injective map from the set of
conjugacy classes ofHγ to the set of conjugacy classes of G. Let O′ be the conjugacy
class of G that contains γO. Note that the support of iγ,r+(�(F ′∗,X′)) is contained

in GX ′ by Lemma 2.3.2. Let u ∈ O. For any element (F ′∗, X ′) in our chosen set, if
(F ′∗, X ′) �= (F ∗, X), then Oγu(iγ,r+(a(F ′∗,X′)�(F ′∗,X′))) = 0. Then

0 = Oγu(iγ,r+(a(F∗,X)�(F∗,X))) +
∑

(F ′∗,X′) 
=(F∗,X)

Oγu(iγ,r+(a(F ′∗,X′)�(F ′∗,X′)))

= a(F∗,X)Oγu(iγ,r+(�(F∗,X))).
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This is a contradiction as a(F∗,X) �= 0 and Oγu(iγ,r+(�(F∗,X))) is a nonzero

number in C. Therefore the set �(F∗,X) is linearly independent and the map iγ,r+
is injective. �

Corollary 4.2.2. Suppose all hypotheses in §2.2 hold. Then H
rig

r+ is a free Z[ 1p ]-

module. If moreover G is semisimple, then the rank of H
rig

r+ is
∑

[γ]∈Sr
�Clu(Hγ).

4.3. Application to invariant distributions. For any compact subset X of G,
we denote by J(X) the space of complex-valued invariant distributions of G with

support in GX. Similarly, we write H(X), H(X)r+,C for H(GX), H(GX)r+,C, etc.,
for simplicity. Now we discuss some application to the invariant distributions. We
first recall Theorem B in the introduction and give a proof of it.

Theorem 4.3.1. Suppose all hypotheses in §2.2 hold. The restriction J(Grig) |Hr+,C

has a basis given by the restriction of orbital integrals Oγ≤ru to Hr+,C, where
[γ] ∈ Sr, and u runs over the representatives of the unipotent conjugacy classes
of Hγ .

Proof. By Theorem 3.1.2, H
rig

r+,C =
⊕

[γ]∈Sr
Hr+,C(γH

γ
r+) and each subset G(γHγ

r+)

is a G-domain. We have

J(Grig) |Hr+,C
= J(Grig) |Hr+,C

= J(Grig) |
H

rig

r+,C

=
⊕

[γ]∈Sr

J(Grig) |Hr+,C(γH
γ

r+
)

=
⊕

[γ]∈Sr

Hr+,C(γH
γ
r+)

∗.

For any [γ], [γ′] ∈ Sr with [γ′] �= [γ], by Proposition 2.5.2 we have G(γHγ
r+) ∩

G(γ′Hγ′

r+) = ∅ and hence for any unipotent element u ∈ Hγ , Oγ≤ru(Hr+,C(γ
′Hγ′

r+)) =
0.

Now we fix an equivalence class [γ] ∈ Sr and an element γ≤r. By the proof of

Theorem 4.2.1(2), the dimension of Hr+,C(γH
γ
r+) equals the number of unipotent

conjugacy classes of Hγ and the orbital integrals Oγ≤ru, where u runs over repre-
sentatives of the unipotent conjugacy classes of Hγ , form a basis of linear functions
on Hr+,C(γH

γ
r+). The theorem is proved. �

4.4. Finally, we explain how Theorem 4.3.1 may be applied to Howe’s conjecture. In
[14], Howe conjectured that for any open compact subgroup K and compact subset
X of G, the restriction J(X) |HC(G,K) is finite dimensional. This is proved by Clozel
[7] and by Barbasch and Moy [4]. Another proof is given by the first-named author
in [12].

Following [12], we have the Newton decompositions

G =
⊔
ν∈ℵ

G(ν) and Grig =
⊔

ν∈ℵ;CG(ν)=G

G(ν),

where ℵ is the product of π1(G) (the Kottwitz factor) and the set of dominant
rational coweights of G (the Newton factor), and G(ν) is the corresponding Newton
stratum defined in [12, §2.2].

It follows from the definitions of Newton strata and r+-equivalence that for
semisimple compact-modulo-center elements, if γ and γ′ are r+-equivalent mod
center (for some r), then γ and γ′ are contained in the same Newton stratum.
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For ν ∈ ℵ that is central in G, we let Sν,r be the set of r+-equivalence classes of
semisimple elements in G(ν). Then we have

Sr =
⊔

ν∈ℵ; CG(ν)=G

Sν,r.

Based on the approach of [12], the study of the restriction J(X) |HC(G,K) can be
reduced to the study of J(G(ν)) |HC(G,In), where ν ∈ ℵ that is central in G and In
is the nth congruent subgroup of an Iwahori subgroup of G. If r = n− ε, where ε is
a sufficiently small positive number, then there is an x in the base alcove such that
Gx,r+ = In and Hr+ = H(G, In). In this case, J(Grig) |Hr+,C

= J(Grig) |HC(G,In).

Let H(G, In; ν) be the Z[ 1p ]-submodule of H(G, In) consisting of functions with

support in G(ν) and let H(G, In; ν) be the image of H(G, In; ν) in the cocenter H.
The main result of [12] establishes the Newton decomposition (see [12, Theorem
4.1]):

H(G, In) =
⊔
ν∈ℵ

H(G, In; ν) and H(G, In)
rig =

⊔
ν∈ℵ;CG(ν)=G

H(G, In; ν).

Combining it with Theorem 4.3.1, we have the following.

Theorem 4.4.1. Suppose all hypotheses in §2.2 hold. Let ν ∈ ℵ such that ν is
central in G. The restriction J(G(ν)) |HC(G,In) has a basis given by the restriction
of orbital integrals Oγ≤ru to HC(G, In), where [γ] ∈ Sν,r, and u runs over the
representatives of the unipotent conjugacy classes of Hγ .

In particular, the dimension of J(G(ν)) |HC(G,In) is equal to
∑

[γ]∈Sν,r
�Clu(Hγ).

This result gives an explicit basis of the finite dimensional space J(G(ν)) |HC(G,In),
and thus gives a precise estimate on the dimension of J(G(ν)) |HC(G,In).

5. Examples

In this section, we give some examples to illustrate relations between the cocenter
and the representations. We will work with the Hecke algebras of complex-valued
functions and complex representations.

5.1. Cocenter and representations. Before we come to some concrete examples,
we would like to give a brief discussion on the relation between the cocenters and
the representations.

Recall that RC(G) is the complexified Grothendieck group of smooth admissible
complex representations ofG of finite length. Let P be the set of all proper parabolic
subgroups of G. For any Levi subgroup M of G, we denote by Ψ(M)C the group
of unramified character of M over C. We define the elliptic quotient and the rigid
quotient as follows:

RC(G)ell = RC(G)/〈IndGP (σ)) | P = MN ∈ P, σ ∈ RC(M)〉;

RC(G)rig

= RC(G)/〈IndGP (σ)− IndGP (σ ⊗ χ) | P = MN ∈ P, σ ∈ RC(M), χ ∈ Ψ(M)C〉.

We have discussed the rigid cocenter H
rig

C in this paper. There is another impor-

tant subspace of the cocenter, the elliptic cocenter H
ell

C , introduced by Bernstein,
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Deligne, and Kazhdan in [5]. By definition,

H
ell

C = {f ∈ HC; r̄M (f) = 0 for any proper standard Levi M},

where r̄M : H
G

C → H
M

C is the map adjunct to the parabolic induction functor
RC(M) → RC(G).

The trace map TrC : HC → RC(G)∗ induces

(a) TrC : H
ell

C → RC(G)∗ell, TrC : H
rig

C → RC(G)∗rig.

Here the first map is studied in [5] and the second map is studied in [6].
Similarly, for any n ∈ N, let R(HC(G, In)) be the complexified Grothendieck

group of finite dimensional representations of HC(G, In). By R(HC(G, In))ell and
R(HC(G, In))rig we denote the elliptic quotient and the rigid quotient of R(HC(G,
In)), respectively. Then we have
(b)

TrC : HC(G, In)
ell → R(HC(G, In))

∗
ell, TrC : HC(G, In)

rig → R(HC(G, In))
∗
rig.

If G is semisimple, then all the vector spaces in (b) are finite dimensional and the
maps in (b) are bijective. Here the surjectivity follows from the trace Paley-Wiener
theorem [5] and [6] and the injectivity follows from the density theorem [16].

5.2. The PGL2(F ) case. In this subsection, we assume thatG = PGL2(F ), where
F is a non-archimedean local field with finite residue field Fq. We assume further-
more that q is odd.

Up to conjugation, there is

• a unique split maximal torus of G, which we denote by Ts;
• a unique maximal elliptic torus that splits over the unramified extension of
F , which we denote by Tu;

• two nonconjugate maximal elliptic tori that split over ramified extensions,
which we denote by Trm and T ′

rm.

Let n be a positive integer and r = n− ε, where ε is sufficiently small. For any
subgroup H of G, we denote by [H] the set of subgroups of G that are conjugate
to H. For H ∈ {G, TsTu, Trm, T ′

rm} and [γ] ∈ Sr, �[H] denotes the cardinality of
{[γ] ∈ Sr | [CG(γ≤r)] = [H]}. Then, from the table below, we have

dimHC(G, In)
rig = 3qn + 2.

[H] �[H] CluH
PGL2 1 2

Ts
qn−1(q−1)

2 1

Tu
qn−1(q+1)

2 1
Trm qn 1
T ′
rm qn 1

Note that every r+-equivalence class in Grig contains some elliptic semisimple
element. However, in general, not every r+-equivalence class in Grig consists only of
elliptic semisimple elements. One may show that for G = PGL2, an r+-equivalence
class [γ] in Grig consists only of elliptic semisimple elements if and only if Hγ is
a compact subgroup of G. We define Sellr ⊂ Sr to be the subset of r+-equivalence
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classes in Grig only consisting of elliptic semisimple elements. Then we have the
following identity:

dimHC(G, In)
ell = dimHC(G, In)

rig − dimHC(T
c
s , Ts,n)

= �Sellr + 1 = 2qn +
qn−1(q + 1)

2
+ 1,

where T c
s ⊂ Ts is the subgroup consisting of compact elements in Ts, Ts,n is the

nth congruent subgroup of Ts, and the number 1 in the third term comes from the
regular unipotent conjugacy class of G.

Note that the discrete series gives a natural basis of RC(G)ell and the discrete
series of depth at most r gives a natural basis RC(H(G, In))ell. Moreover, the
discrete series consist of supercuspidal representations and four nonsupercuspidal
discrete series representations. By direct calculation, one can check the number
of supercuspidal representations of depth at most r equals �Sellr − 3, and we have
dimHC(G, In)

ell = dimR(HC(G, In))ell.

5.3. Quaternion algebra. Let G = PGL2(F ). Let D be a quaternion algebra
over F and G′ = D×/F×. It is well known that there is a natural bijection be-
tween the set of elliptic semisimple conjugacy classes in GL2(F ) and the regular
semisimple conjugacy classes in D×. Here γ ↔ γ′ if and only if they have the same
characteristic polynomial. Therefore, there is a natural bijection between the set of
elliptic semisimple conjugacy classes in G = PGL2(F ) and the regular semisimple
conjugacy classes in G′ and this bijection preserves the depth. We have that

dimHC(G
′, IG

′

n ) = �SG
′

r = �SG,ell
r + 1 = dimHC(G, In)

ell.

Here the number 1 in the third term comes from the r+ equivalence [1] in SG
′

r .
The local Jacquet-Langlands correspondence [15] gives a bijection between the

discrete series of G and the irreducible representations of G′. The natural duality
between the cocenter and representations indicates that there is not only the numer-
ical identity dimHC(G

′, IG
′

n ) = dimHC(G, In)
ell, but there also should be a natural

bijection between the cocenter HC(G
′, IG

′

n ) and the elliptic cocenter HC(G, In)
ell.

It would be interesting to study such natural bijections for the (elliptic) cocenters
of PGLm and its inner forms for arbitrary m.

5.4. The SL2 case. For G = SL2, here are two nonconjugate elliptic maximal tori
that split over unramified extensions, which we denote by Tu and T ′

u. We have the
following table for SL2 (with n = 1):

[H] �[H] CluH
SL2 2 5

Ts
q−3
2 1

Tu
q−1
2 1

T ′
u

q−1
2 1

Trm q − 1 1
T ′
rm q − 1 1

We have

dimHC(G, In)
rig = 3q + 6 +

q − 1

2
, dimHC(G, In)

ell = 3q + 5.
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We have seen that for G = PGL2, dimHC(G, I1)
rig = 3q+2 and dimHC(G, In)

ell =
2q + q+3

2 . Thus the elliptic/rigid cocenters for PGL2 and SL2 are different.
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