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A NEW BASIS FOR THE REPRESENTATION RING

OF A WEYL GROUP

G. LUSZTIG

Abstract. Let W be a Weyl group. In this paper we define a new basis for
the Grothendieck group of representations of W . This basis contains on the
one hand the special representations of W and on the other hand the represen-
tations of W carried by the left cells of W . We show that the representations
in the new basis have a certain bipositivity property.

Introduction and statement of results

0.1. LetW be an irreducible Weyl group. LetRW be the (abelian) category of finite
dimensional representations of W over Q and let KW be the Grothendieck group of
RW . Now KW has a Z-basis IrrW consisting of the irreducible representations of W
up to isomorphism. (We often identify a representation of W with its isomorphism
class.)

Recall that IrrW is partitioned into subsets called families, see [L2, §8], [L5, 4.2];
these are in 1-1 correspondence with the two-sided cells of W . For each family
c of W we denote by Rc the (abelian) category of all E ∈ RW which are direct
sums of irreducible representations in c. Let Kc be the Grothendieck group of Rc.
It has a Z-basis consisting of the irreducible representations in c. Thus we have
KW =

⊕
c Kc where c runs over the families of W . We now fix a family c of W .

In [L1] we introduced a class of irreducible objects of RW denoted by SW (later
called special representations); exactly one of these irreducible objects, denoted by
Ec, is contained in c.

In [L4] we introduced a class of (not necessarily irreducible) objects of Rc called
“cells” (later these objects were called the constructible representations). In [L6] we
showed that the constructible representations inRc are precisely the representations
of W carried by the various left cells of W contained in c.

In this paper we introduce a class Bc of objects of Rc which includes both Ec

and the constructible representations in Rc and which forms a Z-basis of the group
Kc. The representations in Bc are called new representations. (Taking disjoint
union over all families of W we obtain a new Z-basis of KW .)

0.2. Let Γ be a finite group. As in [L2] we defineM(Γ) to be the set of all pairs (x, ρ)
where x ∈ Γ and ρ ∈ Irr(Z(x)) where Z(x) is the centralizer of x in Γ and Irr(Z(X))
is the set of irreducible representations of Z(x) over C up to isomorphism; these
pairs are taken up to conjugacy by any element of Γ. Let C[M(Γ)] be the C-vector
space with basis {(x, ρ); (x, ρ) ∈ M(Γ)}.
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Let H be a subgroup of Γ. For x ∈ Γ let (Γ/H)x be the fixed point set of the left
translation action of x on Γ/H and let C[(Γ/H)x] be the C-vector space with basis
(Γ/H)x. Now Z(x) acts by left translation on (Γ/H)x and this induces a linear
action of Z(x) on C[(Γ/H)x]. If ρ ∈ Irr(Z(x)), let NH,H,x,ρ be the multiplicity of
ρ in the Z(x)-module C[(Γ/H)x]. Let

(a) SH,H =
⊕

(x,ρ)∈M(Γ)

NH,H,x,ρ(x, ρ) ∈ C[M(Γ)].

More generally, let H ⊂ H ′ be subgroups of Γ with H normal in H ′. Then the
obvious surjective map Γ/H → Γ/H ′ restricts to a map (Γ/H)x → (Γ/H ′)x and
this induces a linear map C[(Γ/H)x] → C[(Γ/H ′)x] (compatible with Z(x) actions)
whose image is denoted by I. Now I is a Z(x)-submodule of C[(Γ/H ′)x]. If
ρ ∈ Irr(Z(x)), let NH,H′,x,ρ be the multiplicity of ρ in the Z(x)-module I. Let

(b) SH,H′ =
⊕

(x,ρ)∈M(Γ)

NH,H′,x,ρ(x, ρ) ∈ C[M(Γ)].

For example,

S{1},{1} =
∑

ρ∈Irr(Γ)

dim ρ(1, ρ),

S{1},Γ = (1, 1),

SΓ,Γ =
∑

x∈Γ up to conjugacy

(x, 1).

0.3. As in [L5, §4] we attach to c a finite group Gc and an imbedding c → M(Gc).
Let M0(Gc) be the image of this imbedding. For (x, ρ) ∈ M0(Gc) let Ex,ρ be
the corresponding (irreducible) representation in c. For any E ∈ Rc we define
E ∈ C[M(Gc)] by E =

∑
(x,ρ)∈M0(Gc)

(Ex,ρ : E)(x, ρ) where (Ex,ρ : E) ∈ N is the

multiplicity of Ex,ρ in E . Note that E �→ E defined an imbedding Kc → C[M(Gc)].
As was pointed out in [L7], to any constructible representation E in Rc one can

attach a subgroup HE of Gc, well defined up to conjugacy, such that E = SHE,HE
;

see 0.2(a). Moreover,
(a) E �→ HE

is an injective map from the set of constructible representations in Rc to the set
of subgroups of Gc (up to conjugacy). Let Fc be the set of subgroups of Gc which
are conjugate to a subgroup in the image of the map (a). We have Gc ∈ Fc. We say
that c is anomalous if {1} /∈ Fc. If W is of classical-type, then c is not anomalous.
If W is of exceptional-type, then c is anomalous in exactly the following cases:

(b) the unique c with |c| = 2 with W of type E7;
(c) the two c with |c| = 2 with W of type E8;
(d) the unique c with |c| = 4 with W of type G2;
(e) the unique c with |c| = 11 with W of type F4;
(f) the unique c with |c| = 17 with W of type E8.

Let F̂c be the set of subgroups of Gc which are either {1} or are in Fc. Let Θ̃c

be the set of all pairs (H,H ′) where H ∈ F̂c, H
′ ∈ F̂c and H is a normal subgroup

of H ′. Now Gc acts on Θ̃c by simultaneous conjugation. We now state our main
result.
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Theorem 0.4. There exists a Gc-stable subset Θc of Θ̃c such that the following
hold:

(i) For any H ∈ Fc we have (H,H) ∈ Θc.
(ii) We have (1,Gc) ∈ Θc.
(iii) For any (H,H ′) ∈ Θc there is a unique object EH,H′ ∈ Rc such that SH,H′ =

EH,H′ , see 0.2(a). Let Bc be the set of isomorphism classes of objects of Rc of the
form EH,H′ for some (H,H ′) ∈ Θc.

(iv) The map (H,H ′) �→ EH,H′ defines a bijection from the set of Gc-orbits on
Θc to Bc. Moreover Bc is a Z-basis of Kc.

The representations in Bc are the new representations mentioned in 0.1. From
(i) we see that any constructible representation of Rc is in Bc. From (ii) we see
that the special representation Ec is in Bc.

In the case where W is of type A the theorem is trivial; we have Gc = {1} and
Bc consists of the unique representation in c. The proof of the theorem for W of
type Bn, Cn, Dn is given in §2. The proof of the theorem for W of exceptional-type
is given in §3.

0.5. In this paper we also define a canonical bijection c
∼→ Bc, E �→ Ê which has

the property that for any E ∈ c, E appears with multiplicity one in Ê. For E,E′

in c let E′ : Ê be the multiplicity of E′ in Ê. Property (i) below will be proved in
a sequel to this paper. (For W of exceptional-type (i) is easily deduced from the
formulas in 3.2-3.8.)

(i) The matrix (E′ : Ê) indexed by c × c is upper triangular unipotent for a
suitable partial order on c.

0.6. In the setup of 0.2 we define (following [L2, §4]) a pairing {, } : M(Γ)×M(Γ) →
C by

{(x, ρ), (x′, ρ′)}

= |Z(x)|−1|Z(x′)|−1
∑

g∈Γ;xgx′g−1=gx′g−1x

tr(g−1xg, ρ′)tr(gx′g−1, ρ),

where ¯ is complex conjugation. We define the non-abelian Fourier transform A :
C[M(Γ)] → C[M(Γ)] as the C-linear map such that

A(x, ρ) =
∑

(x′,ρ′)∈M(Γ)

{(x, ρ), (x′, ρ′)}(x′, ρ′)

for any (x, ρ) ∈ M(Γ). According to [L2], we have A2 = 1. Let M(Γ)≥0 be the set
of elements ∑

(x,ρ)∈M(Γ)

cx,ρ(x, ρ) ∈ C[M(Γ)]

such that cx,ρ ∈ R≥0 for any (x, ρ) ∈ M(Γ).
An element f ∈ C[M(Γ)] is said to be bipositive if f ∈ M(Γ)≥0 and A(f) ∈

M(Γ)≥0. We have the following result.

Theorem 0.7. Let H ⊂ H ′ be subgroups of Γ with H normal in H ′. Then SH,H′ ∈
C[M(Γ)] is bipositive. Hence (by 0.4), if Γ = Gc and E is a new representation in
Rc, then E ∈ C[M(Γ)] is bipositive.

The proof is given in §4.
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0.8. In a sequel to this paper we will extend the results of the paper by constructing
a new basis for C[M(Gc)] consisting of bipositive elements; this provides a new Z-
basis for the Grothendieck group of unipotent representations of a split Chevalley
group over a finite field.

0.9. Notation. For a ≤ b in N we write [a, b] = {z ∈ N; a ≤ z ≤ b}. We set
[1, 0] = ∅. For a finite set Y we write |Y | for the cardinal of Y . For a, b in Z we
write a =2 b if a = b mod 2 and a �=2 b if a �= b mod 2. We write Z/2Z = F2.

1. The set SD

1.1. Let D ∈ N. A subset I of [1, D] is said to be an interval if I = [a, b] for some
a ≤ b in [1, D]. Let ID be the set of intervals of [1, D]. For I = [a, b], I ′ = [a′, b′] in
ID we write I ≺ I ′ whenever a′ < a ≤ b < b′. We say that I, I ′ are non-touching
(and we write I♠I ′) if a′ − b ≥ 2 or a − b′ ≥ 2. Let I1

D = {I ∈ ID; |I| = odd}.
Let R1

D be the set whose elements are the subsets of I1
D. Let ∅ ∈ R1

D be the empty
subset of I1

D.
When D ≥ 2 and i ∈ [1, D] we define an (injective) map ξi : ID−2 → ID as

follows:

ξi([a
′, b′]) = [a′ + 2, b′ + 2] if i ≤ a′, ξi([a

′, b′]) = [a′, b′] if i ≥ b′ + 2,

ξi([a
′, b′]) = [a′, b′ + 2] if a′ < i < b′ + 2.(a)

We have ξi(I1
D−2) ⊂ I1

D. We define ti : R
1
D−2 → R1

D by B′ �→ {ξi(I ′); I ′ ∈ B′}�{i}.
We have |ti(B′)| = |B′|+ 1.

1.2. We define a subset SD of R1
D by induction on D as follows. When D ∈ {0, 1},

SD consists of a single element, namely ∅ ∈ R1
D. When D ≥ 2 we say that B ∈ R1

D

is in SD if either B = ∅ or if
(i) there exists i ∈ [1, D] (if D is even) or i ∈ [1, D − 1] (if D is odd) and

B′ ∈ SD−2 such that B = ti(B
′).

If D is odd, we have SD = SD−1 (use induction on D).
Until the end of 1.8 we assume that D is even.

1.3. The set S′
D. Let B ∈ R1

D. We consider the following properties (P0), (P1)
that B may or may not have.

(P0) If I ∈ B, Ĩ ∈ B, then either I = Ĩ, or I♠Ĩ, or I ≺ Ĩ, or Ĩ ≺ I.
(P1) If [a, b] ∈ B and c ∈ N satisfies a < c < b, a − c =2 1 (hence b − c =2 1),

then there exists [a1, b1] ∈ B such that a < a1 ≤ c ≤ b1 < b.
From the definitions we see that if D ≥ 2, i ∈ [1, D], B′ ∈ R1

D−2 and B =

ti(B
′) ∈ R1

D, the following holds:
(a) B′ satisfies (P0) if and only if B satisfies (P0); B

′ satisfies (P1) if and only
if B satisfies (P1).

Let S′
D be the set of all B ∈ R1

D which satisfy (P0), (P1). In the setup of (a) we
have the following consequence of (a):

(b) We have B′ ∈ S′
D−2 if and only if B ∈ S′

D.
We show:
(c) SD = S′

D.
We argue by induction on D. If D = 0, S′

D consists of the empty set hence (c)
holds in this case. Assume now that D ≥ 2. Let B ∈ SD. We show that B ∈ S′

D.
If B = ∅ this is clear. If B �= ∅, then B = ti(B

′) for some i, B′ ∈ SD−2. By the
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induction hypothesis we have B′ ∈ S′
D−2. By (b) we have B ∈ S′

D. We see that
B ∈ SD =⇒ B ∈ S′

D. Conversely, let B ∈ S′
D. We show that B ∈ SD. If B = ∅

this is obvious. Thus we can assume that B �= ∅. Let [a, b] ∈ B be such that b−a is
minimum. If a < z < b, z =2 a+1, then by (P1) we have z ∈ [a′, b′] with [a′, b′] ∈ B,
b′ − a′ < b − a, contradicting the minimality of b − a. We see that no z as above
exists. Thus, [a, b] = {i} for some i ∈ [1, D]. Using (P0) and {i} ∈ B, we see that
B does not contain any interval of the form [a, i] with a < i, or [i, b] with i < b,
or [a, i − 1] with a < i or [i + 1, b] with i < b; hence any interval of B other than
{i} is of the form ξi[a

′, b′] where [a′, b′] ∈ I1
D−2. Thus we have B = ti(B

′) for some
B′ ∈ SD−2. From (b) we see that B′ ∈ S′

D−2. Using the induction hypothesis we
deduce that B′ ∈ SD−2. By the definition of SD, we have B ∈ SD. This completes
the proof of (c).

The following result has already been proved as a part of the proof of (c).
(d) Assume that D ≥ 2, i ∈ [1, D]. Let B ∈ SD be such that {i} ∈ B. Then

there exists B′ ∈ SD−2 such that B = ti(B
′).

1.4. For B ∈ SD, j ∈ [1, D] we set Bj = {I ∈ B; j ∈ I}. From the definitions we
deduce:

(a) Assume that D ≥ 2, i ∈ [1, D] and that B′ ∈ SD−2, B = ti(B
′) ∈ SD. Then

for r ∈ [1, D − 2] we have:
|B′

r)| = |Br| if r ≤ i− 2, |B′
r| = |Br+2| if r ≥ i,

|Bi−1| = |Bi+1| = |B′
i−1|, |Bi| = |B′

i−1|+ 1 if 1 < i < D,
|Bi−1| = 0 if i = D, |Bi+1| = 0 if i = 1.

1.5. Let B ∈ SD, B �= ∅. In this case we must have {j} ∈ B for some j ∈ [1, D];
we assume that j is as small as possible (then it is uniquely determined). As in the
proof of 1.3(c) we have B = tj(B

′) where B′ ∈ SD−2. Let i be the smallest number
in

⋃
I∈B I. We have i ≤ j. We show:

(a) For any h ∈ [i, j], we have [h, h̃] ∈ B for a unique h̃ ∈ [h,D]; moreover we

have j ≤ h̃.
We argue by induction on D. When D = 0 the result is obvious. We now assume

that D ≥ 2. Assume first that i = j. By (P0), {j} ∈ B implies that we cannot
have [j, b] ∈ B with j < b; thus (a) holds in this case. In particular, (a) holds when
D = 2 (in this case we have i = j). We now assume that D ≥ 4. We can assume
that i < j. We have [i, b] ∈ B for some b > i hence |B| ≥ 2 so that |B′| ≥ 1 and
B′ �= ∅. Then i′, j′ are defined in terms of B′ in the same way as i, j are defined in
terms of B. From (P1) we see that there exists j1 such that i < j1 < b such that
{j1} ∈ B. By the minimality of j we must have j ≤ j1. Thus we have i < j < b.
We have [i, b] = ξj [i, b− 2]] hence [i, b− 2] ∈ B′. This implies that i′ ≤ i. We have
[i′, c] ∈ B′ for some c ∈ [i′, D− 2], c =2 i′; hence [i′, c′] ∈ B for some c′ ≥ i′ so that
i′ ≥ i. Thus we have i′ = i. By the induction hypothesis, the following holds:

(b) For any r ∈ [i, j′], we have [r, r1] ∈ B′ for a unique r1; moreover j′ ≤ r1.
If j′ ≤ j− 2, then {j′} = ξj({j′}) ∈ B. Hence j′ ≥ j by the minimality of j; this

is a contradiction. Thus we have j′ ≥ j − 1.
Let r ∈ [i, j − 1]. Then we have also r ∈ [i, j′] hence r1 is defined as in (b). We

have [r, r1] ∈ B′ hence [r, r1+2] ∈ B (we use that r < j ≤ j′+1 ≤ r1+1 < r1+2);
we have j < r1 + 2. Assume now that [r, r2] ∈ B with r ≤ r2. Then r < r2 (by the
minimality of j). If j = r2 or j = r2 + 1, then applying (P0) to {j}, [r, r2] gives a
contradiction. Thus we must have either r < j < r2 or j > r2 + 1. If j > r2 + 1,
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then [r, r2] ∈ B′ hence by (b), r2 = r1, hence j > r1 + 1 contradicting j < r1 + 2.
Thus we have r < j < r2, so that [r, r2 − 2] ∈ B′ hence by (b), r2 − 2 = r1. Thus
we have r < j < r2 so that [r, r2 − 2] ∈ B′ hence by (b), r2 − 2 = r1.

Next we assume that r = j. In this case we have {r} ∈ B. Moreover, if
[r, r′] ∈ B with r ≤ r′ ≤ D, then we cannot have r < r′ (if r < r′, then applying
(P0) to {r}, [r, r′] gives a contradiction). This proves (a).

We show:
(c) Assume that j < D and that i ≤ h < j. Then h̃ in (a) satisfies h̃ > j.

Assume that h̃ = j, so that [h, j] ∈ B. Since h < j, applying (P0) to {j}, [h, j]
gives a contradiction. This proves (c).

(d) Assume that j < D and that r ∈ [j + 1, D]. We have [j + 1, r] /∈ B.
Assume that [j+1, r] ∈ B. Applying (P0) to {j}, [j+1, r] gives a contradiction.

This proves (d).
We show:
(e) For h ∈ [i, j] we have |Bh| = h− i+ 1. If j < D we have |Bj+1| = j − i.

Let h ∈ [i, j]. Then for any h′ ∈ [i, h], Bh contains [h′, h̃′] (since h ≤ h̃′); see (a).
Conversely, assume that [a, b] ∈ Bh. We have a ≤ h. By the definition of i we have
i ≤ a. By the uniqueness statement in (a) we have b = ã so that [a, b] is one of the

h− i+1 intervals [h′, h̃′] above. This proves the first assertion of (e). Assume now

that j < D. If h′ ∈ [i, j], h′ < j, then [h′, h̃′] ∈ Bj+1, by (c). Conversely, assume
that [a, b] ∈ Bj+1. We have a ≤ j+1 and by (d) we have a �= j+1 so that a ≤ j. If
a = j, then by the uniqueness in (a) we have b = j which contradicts j + 1 ∈ [a, b].

Thus we have a ≤ j − 1. We see that [a, b] is one of the j − i intervals [h′, h̃′] with
h′ ∈ [i, j], h′ < j. This proves (e).

1.6. For B ∈ SD, j ∈ [1, D], we set

εj(B) = |Bj |(|Bj |+ 1)/2 ∈ F2.

We have εj(B) = 1 if |Bj | ∈ (4Z+1)∪ (4Z+2), εj(B) = 0 if |Bj | ∈ (4Z+3)∪ (4Z).
Assume now that B �= ∅. Let i ≤ j in [1, D] be as in 1.5. From 1.5(e) we deduce:
(a) We have (|Bi|, |Bi+1|, . . . , |Bj |) = (1, 2, 3, . . . , j − i, j − i + 1). If j < D, we

have |Bj+1| = j − i.
From (a) we deduce:
(b)

(εi(B), ei+1(B), . . . , εj(B))

= (1× 2)/2, (2× 3)/2, (3× 4)/2, . . . , (j − i)(j − i+ 1)/2, (j − i+ 1)(j − i+ 2)/2);

(c) if j < D, then εj+1(B) = (j − i)(j − i+ 1)/2.
For future reference we note:
(d) If c ∈ Z, then c(c+ 1)/2 �=2 (c+ 2)(c+ 3)/2.
(e) If c ∈ 2Z, then c(c+ 1)/2 �=2 (c+ 1)(c+ 2)/2.

1.7. Let B ∈ SD, B̃ ∈ SD be such that B �= ∅, B̃ �= ∅ and εh(B) = εh(B̃) for any
h ∈ [1, D]. We show:

(a) We can find z ∈ [1, D] such that {z} ∈ B, {z} ∈ B̃.
We associate i ≤ j to B as in 1.5; let ĩ ≤ j̃ be the analogous number for

B̃. Assume first that j < j̃ (so that j < D) and i < ĩ. From 1.6 for B we have

εi(B) = (1×2)/2 = 1. Since i < ĩ we have εi(B̃) = 0. Hence 1 =2 0, a contradiction.
Thus we must have i ≥ ĩ.
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Next we asssume that j < j̃ (so that j < D) and ĩ < i. From 1.6 for B̃ we have

ε̃i(B̃) = (1× 2)/2; moreover ε̃i(B) = 0. Hence 1 =2 0, a contradiction. Thus when

j < j̃ we must have i = ĩ. From 1.6(c) for B we have ej+1(B) = (j− i)(j− i+1)/2

and from 1.6(b) for B̃ we have ej+1(B̃) = (j − i+ 2)(j − i+ 3)/2. It follows that

(j − i)(j − i+ 1)/2) =2 (j − i+ 2)(j − i+ 3)/2,

contradicting 1.6(d). We see that j < j̃ leads to a contradiction. Similarly, j̃ < j
leads to a contradiction. Thus we must have j = j̃, so that (a) holds with z = j = j̃.
This completes the proof of (a).

1.8. Let B ∈ SD, B̃ ∈ SD.
(a) Assume that B̃ = ∅ and that εh(B) = εh(B̃) for any h ∈ [1, D]. Then B̃ = B.
The proof is similar to that of 1.7(a). Assume that B �= ∅. Let i ≤ j be attached

to B as in 1.5.
Using 1.6 we see that ei(B) = (1× 2)/2. On the other hand we have ei(B̃) = 0.

We get 1 =2 0, a contradiction. This proves (a).

1.9. We no longer assume that D is even. Let V be the F2-vector space consisting
of all functions [1, D] → F2. For any subset I of [1, D] let eI ∈ V be the function
whose value at i is 1 if i ∈ I and is 0 if i /∈ I. For i ∈ [1, D] we set ei = e{i}.
Now {ei; i ∈ [1, D]} is a basis of V . We define a symplectic form (, ) : V × V → F2

by (ei, ej) = 1 if i − j = ±1, (ei, ej) = 0 if i − j �= ±1. This symplectic form
is non-degenerate if D is even while if D is odd it has a one dimensional radical
spanned by e1 + e3 + e5 + · · ·+ eD.

For any subset Z of V we set Z⊥ = {x ∈ V ; (x, z) = 0 ∀z ∈ Z}.
When D ≥ 2 we denote by V ′ the F2-vector space consisting of all functions

[1, D − 2] → F2. For any I ′ ⊂ [1, D − 2] let e′I′ ∈ V ′ be the function whose value
at i is 1 if i ∈ I ′ and is 0 if i /∈ I ′. For i ∈ [1, D − 2] we set e′i = e′{i}. Now

{e′i; i ∈ [1, D− 2]} is a basis of V ′. We define a symplectic form (, )′ : V ′×V ′ → F2

by (e′i, e
′
j) = 1 if i− j = ±1, (e′i, e

′
j) = 0 if i− j �= ±1.

When D ≥ 2, for any i ∈ [1, D] there is a unique linear map Ti : V
′ → V such

that the sequence Ti(e
′
1), Ti(e

′
2), . . . , Ti(e

′
D−2) is:

e1, e2, . . . , ei−2, ei−1 + ei + ei+1, ei+2, ei+3, . . . , eD (if 1 < i < D),
e3, e4, . . . , eD (if i = 1),
e1, e2, . . . , eD−2 (if i = D).
Note that Ti is injective and (x, y)′ = (Ti(x), Ti(y)) for any x, y in V ′. For any

I ′ ∈ I1
D−2 we have Ti(e

′
I′) = eξi(I′). Let Vi be the image of Ti : V

′ → V . From the
definitions we deduce:

(a) We have e⊥i = Vi ⊕ F2ei.
We now assume that D is even. For j ∈ [1, D − 2] let ε′j : SD−2 → F2 be the

analogue of εi : SD → F2 when D is replaced by D − 2.
For B ∈ SD, we define ε(B) ∈ V by i �→ εi(B). For B′ ∈ SD−2 we define

ε′(B′) ∈ V ′ by j �→ ε′j(B
′). We show:

(b) Assume that D ≥ 2, i ∈ [1, D]. Let B′ ∈ SD−2, B = ti(B
′) ∈ SD. Then

ε(B) = Ti(ε
′(B′)) + cei for some c ∈ F2.

An equivalent statement is: for any j ∈ [1, D] − {i} we have εj(B) = ε′j′(B
′) if

j′ ∈ [1, D − 2] is such that j ∈ ξi({j′}); and εj(B) = 0 if no such j′ exists. It is
enough to show:

|B′
h| = |Bh| if h ∈ [1, i− 2],
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|B′
h−2| = |Bh| if h ∈ [i+ 2, D],

|Bi−1| = |Bi+1| = |B′
i−1| if 1 < i < D,

|Bi−1| ∈ {0,−1} (hence εi−1(B) = 0) if i = D,
|Bi+1| ∈ {0,−1} (hence εi+1(B) = 0) if i = 1.
This follows from 1.4(a).
For B ∈ SD let 〈B〉 be the subspace of V generated by {eI ; I ∈ B}. For

B′ ∈ SD−2 let 〈B′〉 be the subspace of V ′ generated by {e′I′ ; I ′ ∈ B′}. We show:
(c) Let B ∈ SD. We have ε(B) ∈ 〈B〉. If D ≥ 2, i ∈ [1, D], B′ ∈ SD−2, B =

ti(B
′) ∈ SD, then 〈B〉 = Ti(〈B′〉)⊕ F2ei.

To prove the first assertion of (c) we argue by induction on D. For D = 0 there
is nothing to prove. Assume that D ≥ 2. Let i, B′ be as in (b). By the induction
hypothesis we have ε′(B′) ∈ 〈B′〉 ⊂ V ′. Using (b) we see that it is enough to
show that Ti(〈B′〉) ⊂ 〈B〉. (Since {i} ∈ B, we have ei ∈ 〈B〉.) Using the equality
Ti(e

′
I′) = eξi(I′) for any I ′ ∈ B′ it remains to note that ξi(I

′) ∈ B for I ′ ∈ B′. This
proves the first assertion of (c). The same proof shows the second assertion of (c).

1.10. Let B ∈ SD, B̃ ∈ SD. We show:
(a) If ε(B) = ε(B̃), then B = B̃.
We argue by induction on D. If D = 0, there is nothing to prove. Assume that

D ≥ 2. If B̃ = ∅, (a) follows from 1.8(a). Similarly, (a) holds if B = ∅. Thus, we

can assume that B �= ∅, B̃ �= ∅. By 1.7(a) we can find i ∈ [1, D] such that {i} ∈ B,

{i} ∈ B̃. By 1.3(d) we then have B = ti(B
′), B̃ = ti(B̃

′) with B′ ∈ SD−2, B̃
′ ∈

SD−2. Using our assumption and 1.9(b) we see that Ti(ε
′(B′)) = Ti(ε

′(B̃′)) + cei
for some c ∈ F2. Using 1.9(a) we see that c = 0 so that Ti(ε

′(B′)) = Ti(ε
′(B̃′)).

Since Ti is injective, we deduce ε′(B′) = ε′(B̃′). By the induction hypothesis we

have B′ = B̃′ hence B = B̃. This proves (a).

1.11. Any x ∈ V can be written uniquely in the form

x = e[a1,b1] + e[a2,b2] + · · ·+ e[ar,br ],

where [ar, br] ∈ ID are such that any two of them are non-touching and r ≥ 0,
1 ≤ a1 ≤ b1 < a1 ≤ b2 < · · · < ar ≤ br ≤ D. Following [L3, 3.3] we set

(a) u(v) = |{s ∈ [1, r]; as =2 0, bs =2 1}| − |{s ∈ [1, r]; as =2 1, bs =2 0}| ∈ Z.

This defines a function u : V → Z. When D ≥ 2 we denote by u′ : V ′ → Z the
analogous function with D replaced by D − 2. We show:

(b) Assume that D ≥ 2, i ∈ [1, D]. Let v′ ∈ V ′ and let v = Ti(v
′) + cei ∈ V

where c ∈ F2. We have u(v) = u′(v′).
We write v′ = e′[a′

1,b
′
1]
+ e′[a′

2,b
′
2]
+ · · ·+ e′[a′

r,b
′
r ]

where r ≥ 0, [a′s, b
′
s] ∈ ID−2 for all

s and any two of [a′s, b
′
s] are non-touching. For each s, we have Ti(e

′
[a′

s,b
′
s]
) = e[as,bs]

where [as, bs] = ξi[a
′
s, b

′
s] so that as =2 a′s, bs =2 b′s and the various [as, bs] which

appear are still non-touching with each other. Hence u(Ti(v
′)) = u′(v′). We have

v = Ti(v
′) or v = Ti(v

′) + ei. If v = Ti(v
′), we have u(v) = u′(v′), as desired.

Assume now that v = Ti(v
′) + ei. From the definition of ξi we see that either

(i) [i, i] is non-touching with any [as, bs], or
(ii) [i, i] is not non-touching with some [a, b] = [as, bs] which is uniquely deter-

mined and we have a < i < b.
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If (i) holds, then ei does not contribute to u(v) and u(v) = u(Ti(v
′)) = u′(v′).

We now assume that (ii) holds. Then e[a,b] + ei = e[a,i−1] + e[i+1,b]. We consider
six cases.

(1) a is even b is odd, i is even; then |[i+1, b]| is odd so that the contribution of
e[a,i−1] + e[i+1,b] to u(v) is 1 + 0; this equals the contribution of e[a,b] to u(Ti(v

′))
which is 1.

(2) a is even, b is odd, i is odd; then |[a, i− 1]| is odd so that the contribution of
e[a,i−1] + e[i+1,b] to u(v) is 0 + 1; this equals the contribution of e[a,b] to u(Ti(v

′))
which is 1.

(3) a is odd, b is even, i is even; then |[i + 1, b]| is odd so that the contribution
of e[a,i−1]+ e[i+1,b] to u(v) is 0− 1; this equals the contribution of e[a,b] to u(Ti(v

′))
which is −1.

(4) a is odd, b is even, i is odd; then |[a, i− 1]| is odd so that the contribution of
e[a,i−1] + e[i+1,b] to u(v) is −1 + 0; this equals the contribution of e[a,b] to u(Ti(v

′))
which is −1.

(5) a =2 b =2 i+1; then |[a, i−1]| is odd, |[i+1, b]| is odd so that the contribution
of e[a,i−1]+ e[i+1,b] to u(v) is 0+0; this equals the contribution of e[a,b] to u(Ti(v

′))
which is 0.

(6) a =2 b =2 i; then the contribution of e[a,i−1] + e[i+1,b] to u(v) is 1 − 1 or
−1 + 1; this equals the contribution of e[a,b] to u(Ti(v

′)) which is 0.
This proves (b).

1.12. We view V as the set of vertices of a graph in which x, x′ in V are joined
whenever there exists i ∈ [1, D] such that x+x′ = ei, (x, ei) = (x′, ei) = 0. Similarly
if D ≥ 2, we view V ′ as the set of vertices of a graph in which y, y′ in V ′ are joined
whenever there exists i ∈ [1, D − 2] such that y + y′ = e′i, (y, e

′
i)

′ = (y′, e′i)
′ = 0.

We show:
(a) If y, y′ in V ′ are joined in the graph V ′, then Ti(y), Ti(y

′) are in the same
connected component of the graph V .

We can find j ∈ [1, 2d − 2] such that (y, e′j)
′ = (y′, e′j)

′ = 0, y + y′ = e′j . Hence
(ỹ, Ti(e

′
j)) = (ỹ′, Ti(e

′
j)) = 0, ỹ + ỹ′ = Ti(e

′
j) where ỹ = Ti(y), ỹ

′ = Ti(y
′). If

Ti(e
′
j) = eh for some h ∈ [1, 2d], then ỹ, ỹ′ are joined in V , as required. If this

condition is not satisfied, then 1 < i < D, j = i− 1 and Ti(e
′
j) = ej + ej+1 + ej+2.

We have (ỹ, ej + ej+1 + ej+2) = 0, ỹ+ ỹ′ = ej + ej+1 + ej+2. Since ỹ ∈ Vi, we have
(ỹ, ei) = 0 hence (ỹ, ej+1) = 0 so that (ỹ, ej) = (ỹ, ej+2). We are in one of the two
cases below.

(1) We have (ỹ, ej) = (ỹ, ej+2) = 0.
(2) We have (ỹ, ej) = (ỹ, ej+2) = 1.
In case (1) we consider the four term sequence ỹ, ỹ + ej , ỹ + ej + ej+2, ỹ + ej +

ej+1+ej+2 = ỹ′; any two consecutive terms of this sequence are joined in the graph
V . In case (2) we consider the four term sequence ỹ, ỹ + ej+1, ỹ + ej + ej+1, ỹ +
ej + ej+1 + ej+2 = ỹ′; any two consecutive terms of this sequence are joined in the
graph V . We see that in both cases ỹ, ỹ′ are in the same connected component of
V ; (a) is proved.

Let V0 = {x ∈ V ;u(x) = 0}. Note that 0 ∈ V0. We show:
(b) If x ∈ V0, then x, 0 are in the same component of the graph V .
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We argue by induction on D. If D = 0 there is nothing to prove. Assume now
that D ≥ 2. If (x, ei) = 1 for all i ∈ [1, D], then

x = e[2,3] + e[6,7] + e[10,11] + · · ·+ e[D−2,D−1] if D/2 is even,

x = e[1,2] + e[5,6] + e[9,10] + · · ·+ e[D−1,D] if D/2 is odd.

In both cases we have u(x) �= 0 contradicting our assumption. Thus we have
(x, ei) = 0 for some i ∈ [1, D]. By 1.9(a) we have x = Ti(x

′) + cei for some x′ ∈ V ′

and some c ∈ F2. By 1.11(b) we have u′(x′) = 0. By the induction hypothesis
x′, 0 are in the same connected component of V ′. By (a), Ti(x

′), 0 are in the same
connected component of V . Clearly x, Ti(x

′) are joined in the graph V . Hence x, 0
are joined in the graph V . We see that (b) holds.

We show:
(c) V0 is a connected component of the graph V .
If x, x′ in V are in the same connected component of V , then u(x) = u(x′). (We

can assume that x, x′ are joined in the graph V . Then for some i ∈ [1, D] we have
x = Ti(y) + cei, x

′ = Ti(y) + c′ei where y ∈ V ′, c ∈ F2, c
′ ∈ F2. By 1.11(b) we

have u(x) = u′(y), u(x′) = u′(y), hence u(x) = u(x′), as required.) Thus V0 is a
union of connected components of V . On the other hand, by (b), V0 is contained
in a connected component of the graph V . This proves (c).

1.13. We show:
(a) If B ∈ SD, then 〈B〉 ⊂ V0.
We argue by induction on D. If D = 0 there is nothing to prove. Assume

that D ≥ 2. If B = ∅ there is nothing to prove. Assume that B �= ∅. We
can find i ∈ [1, D] and B′ ∈ SD−2 such that B = ti(B

′). By 1.9(c) we have
〈B〉 = Ti(〈B′〉) ⊕ F2ei. Using 1.11(b), to prove that u = 0 on 〈B〉 it is enough
to prove that u′ = 0 on 〈B′〉 and this follows from the induction hypothesis. This
proves (a).

We show:
(b) If x ∈ V0, then x ∈ 〈B〉 for some B ∈ Sd.
We argue by induction on D. If D = 0 there is nothing to prove. Assume that

D ≥ 2. As in the proof of 1.12(b), from the fact that u(x) = 0 we can deduce that
(x, ei) = 0 for some i ∈ [1, D]. By 1.9(a) we have x = Ti(x

′) + cei for some x′ ∈ V ′

and some c ∈ F2. By 1.11(b) we have u′(x′) = 0. By the induction hypothesis
we have x′ ∈ 〈B′〉 for some B′ ∈ SD−2. Then x ∈ Ti(〈B′〉) ⊕ F2e1 = 〈B〉 (we use
1.9(c)). This proves (b).

From (a),(b) we deduce:
(c) We have

⋃
B∈SD

〈B〉 = V0.

A closely related result is proved in [L3, 3.4].

1.14. The function ε : SD → V has values in
⋃

B∈SD
〈B〉 (see 1.9(c)) hence by

1.13(c) it has values in V0. Thus, it can be viewed as a function ε : SD → V0.
From 1.10(a) we see that:
(a) ε : SD → V0 is injective.

1.15. Let F0 be the Q-vector space consisting of functions V0 → Q. For x ∈ V0

let ψx ∈ F0 be the characteristic function of x. For B ∈ SD let ΨB ∈ F0 be the
characteristic function of 〈B〉. (We use that 〈B〉 ⊂ V0; see 1.13.) Let F̃0 be the
Q-subspace of F0 generated by {ΨB;B ∈ SD}. When D ≥ 2 we define ψ′

x′ for

x′ ∈ V ′ and Ψ′
B′ for B′ ∈ SD−2, F

′
0, F̃

′
0, in terms of SD−2 in the same way as
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ψx,ΨB , F0, F̃0 were defined in terms of SD. For any i ∈ [1, D] we define a linear
map θi : F

′
0 → F0 by f ′ �→ f where f(Ti(x

′) + cei) = f ′(x′) for x′ ∈ V ′, c ∈ F2,
f(x) = 0 for x ∈ V − e⊥i . We have

θi(ψ
′
x′) = ψTi(x′) + ψTi(x′)+ei for any x′ ∈ V ′,

θi(Ψ
′
B′) = Ψti(B′) for any B′ ∈ SD−2.

We show:
(a) For any x ∈ V0, we have ψx ∈ F̃0.
We argue by induction on D. If D = 0 the result is obvious. We now assume

that D ≥ 2. We first show:
(b) If x, x̃ in V0 are joined in the graph V and if (a) holds for x, then (a) holds

for x̃.
We can find j ∈ [1, 2d] such that x+x̃ = ej , (x, ej) = 0. We have x = Tj(x

′)+cej ,
x̃ = Tj(x

′) + c′ej where x′ ∈ V ′ and c ∈ F2, c
′ ∈ F2, c + c′ = 1. By the induction

hypothesis we have ψ′
x′ =

∑
B′∈SD−2

aB′Ψ′
B′ where aB′ ∈ Q. Applying θj we obtain

ψx + ψx̃ =
∑

B′∈SD−2

aB′Ψtj(B′).

We see that ψx+ψx̃ ∈ F̃0. Since ψx ∈ F̃ , by assumption, we see that ψx̃ ∈ F̃ . This
proves (b).

We now prove (a). Since V0 is the connected component of V containing 0, to
prove (a) it is enough (by (b)) to show that (a) holds when x = 0. This follows
from the fact that ψ0 = ΨB where B = ∅. This proves (a).

Since F̃0 ⊂ F0, we see that (a) implies:

(c) F0 = F̃0.
We have the following result.

Theorem 1.16. (a) {ΨB;B ∈ SD} is a Q-basis of F0.
(b) ε : SD → V0 is a bijection.

Proof. From the definition of F̃0 we have dim F̃0 ≤ |SD|. By 1.14(a) we have

|SD| ≤ |V0| = dimF0. Since F0 = F̃0 (see 1.15(c)) it follows that dim F̃0 = |SD| =
|V0| = dimF0. Using again the definition of F̃0 and the equality F0 = F̃0 we see
that (a) holds. Since the map in (b) is injective (see 1.14(a)) and |SD| = |V0| we
see that it is a bijection so that (b) holds. �

1.17. In this subsection we describe the bijection in 1.16(b) assuming that D is 2,
4, or 6. In each case we give a table in which there is one row for each B ∈ SD; the
row corresponding to B is of the form 〈B〉 : (. . . ) where B is represented by the
list of intervals of B (we write an interval such as [4, 6] as 456) and (. . . ) is a list
of the vectors in 〈B〉 (we write 1235 instead of e1 + e2 + e3 + e5, etc.). In each list
(. . . ) we single out the vector corresponding ε(B) in 1.16(b) by putting it in a box.
Any non-boxed entry in (. . . ) appears as a boxed entry in some previous row. We
see that in these cases, 0.5(i) holds.

The table for D = 2.
∅ : ( 0 )

〈1〉 : (0, 1 )

〈2〉 : (0, 2 ).
The table for D = 4.
∅ : ( 0 )
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〈1〉 : (0, 1 )

〈2〉 : (0, 2 )

〈3〉 : (0, 3 )

〈4〉 : (0, 4 )

〈1, 3〉 : (0, 1, 3, 13 )

〈1, 4〉 : (0, 1, 4, 14 )

〈2, 4〉 : (0, 2, 4, 24 )

〈2, 123〉 : (0, 2, 13, 123 )

〈3, 234〉 : (0, 3, 24, 234 ).
The table for D = 6.
∅ : ( 0 )

〈1〉 : (0, 1 )

〈2〉 : (0, 2 )

〈3〉 : (0, 3 )

4〈〉 : (0, 4 )

5〈〉 : (0, 5 )

〈6〉 : (0, 6 )

〈1, 4〉 : (0, 1, 4, 14 )

〈1, 6〉 : (0, 1, 6, 16 )

〈2, 4〉 : (0, 2, 4, 24 )

〈2, 5〉 : (0, 2, 5, 25 )

〈2, 6〉 : (0, 2, 6, 26 )

〈3, 6〉 : (0, 3, 6, 36 )

〈4, 6〉 : (0, 4, 6, 46 )

〈1, 3〉 : (0, 1, 3, 13 )

〈1, 5〉 : (0, 1, 5, 15 )

〈3, 5〉 : (0, 3, 5, 35 )

〈2, 123〉 : (0, 2, 13, 123 )

〈3, 234〉 : (0, 3, 24, 234 )

〈4, 345〉 : (0, 4, 35, 345 )

〈5, 456〉 : (0, 5, 46, 456 )

〈1, 3, 5〉 : (0, 1, 3, 5, 13, 15, 35, 135 )

〈1, 3, 6〉 : (0, 1, 3, 6, 13, 16, 36, 136 )

〈1, 4, 345〉 : (0, 1, 4, 345, 14, 35, 135, 1345 )

〈1, 4, 6〉 : (0, 1, 4, 6, 14, 16, 46, 146 )

〈2, 4, 6〉 : (0, 2, 4, 6, 24, 26, 46, 246 )

〈1, 5, 456〉 : (0, 1, 5, 456, 15, 46, 146, 1456 )

〈2, 5, 456〉 : (0, 2, 5, 456, 25, 46, 246, 2456 )

〈2, 5, 123〉 : (0, 2, 5, 123, 25, 13, 135, 1235 )

〈2, 6, 123〉 : (0, 2, 6, 123, 26, 13, 136, 1236 )

〈2, 4, 12345〉 : (0, 2, 4, 24, 1345, 1235, 135, 12345 )
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〈3, 234, 12345〉 : (0, 3, 234, 12345, 24, 15, 135, 1245 )

〈3, 6, 234〉 : (0, 3, 6, 234, 24, 36, 246, 2346 )

〈3, 5, 23456〉 : (0, 3, 5, 2456, 35, 2346, 246, 23456 )

〈4, 345, 23456〉 : (0, 4, 345, 23456, 35, 26, 246, 2356 ).

2. The sets F∗(V ),F(V )

2.1. We no longer assume that D is even. We define a collection F∗(V ) and a
collection F(V ) of subspaces of V by induction on D as follows. If D ∈ {0, 1},
F∗(V ) and F(V ) consist of {0}. If D ≥ 2, a subspace X of V is said to be in
F∗(V ) if there exists i ∈ [1, D] (if D is even) or i ∈ [1, D − 1] (if D is odd) and
X ′ ∈ F∗(V

′) such that X = Ti(X
′) ⊕ F2ei; a subspace X of V is said to be in

F(V ) if either X = 0 or if there exists i ∈ [1, D] (if D is even) or i ∈ [1, D − 1]
(if D is odd) and X ′ ∈ F(V ′) such that X = Ti(X

′) ⊕ F2ei. By induction on D
we see that for X ∈ F∗(V ) we have X ∈ F(V ) and dim(X) = D/2 if D is even,
dim(X) = (D− 1)/2 if D is odd. When D is odd, let V be the subspace of V with
basis {e1, e2, . . . , eD−1}. This vector space with basis is of the same kind as V in
1.9 (but of even dimension) hence F(V ),F∗(V ) are defined. Using induction on D
we see that for D odd we have F(V ) = F(V ),F∗(V ) = F∗(V ). Thus, the study of
F(V ),F∗(V ) when D is odd is reduced to the similar study when D is even.

We now assume that D is even. If B ∈ SD, then 〈B〉 ∈ F(V ) (this follows from
1.9(c) by induction on D). Conversely, if X ∈ F(V ), then there exists B ∈ SD such
that X = 〈B〉 (this again follows from 1.9(c) by induction on D). Thus we have a
surjective map SD → F(V ), B �→ 〈B〉. We show:

(a) This map is a bijection.

Indeed, if B, B̃ in SD satisfy 〈B〉 = 〈B̃〉, then the functions ΨB ,ΨB̃ in F0 coincide

hence B = B̃ by 1.16(a). This proves (a).
For B ∈ SD we show:
(b) {eI ; I ∈ B} is an F2-basis of 〈B〉.
We argue by induction on D. If D = 0 there is nothing to prove. Assume that

D ≥ 2. If B = ∅, then (b) is obvious. We now assume that B �= ∅. Assume
that

∑
I∈B cIeI = 0 with cI ∈ F2 not all zero. We can find I = [a, b] ∈ B with

cI �= 0 and |I| maximal. If I ′ ∈ B is such that a ∈ I ′, I ′ �= I, cI′ �= 0, then by
(P0) we have I ≺ I ′ (contradicting the maximality of |I|) or I ′ ≺ I (contradicting
a ∈ I ′). Thus no I ′ as above exists. Thus when

∑
I1∈B cI1eI1 is written in the basis

{ej ; j ∈ [1, D]}, the coefficient of ea is cI1 hence cI1 = 0, contradicting cI1 �= 0.
This proves (b).

We show:
(c) If X ∈ F(V ), then X is an isotropic subspace of V .
We argue by induction on D. If D = 0 there is nothing to prove. Assume that

D ≥ 2. If X = 0, then (c) is obvious. We now assume that X �= 0. Then there
exists i ∈ [1, D] and X ′ ∈ F(V ′) such that X = Ti(X

′) ⊕ F2ei. By the induction
hypothesis, X ′ is isotropic in V ′. Since Ti is compatible with the symplectic forms
it follows that Ti(X

′) is an isotropic subspace of V . Since Ti(X
′) is contained in e⊥i ,

Ti(X
′)⊕ F2ei is also isotropic. This proves (c). Alternatively, (c) can be deduced

from property (P0).
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2.2. For δ ∈ {0, 1} let [1, D]δ = {i ∈ [1, D]; i =2 δ}. Let V δ be the subspace of V
with basis {ei; i ∈ [1, D]δ}. We have V = V 0 ⊕ V 1. Similarly, if D ≥ 2, we have
V ′ = V ′0 ⊕ V ′1 where V ′δ has basis {e′i; i ∈ [1, D − 2]δ}.

For any I ∈ I1
D and δ ∈ {0, 1} we set Iδ = I ∩ [1, D]δ, so that I = I0 � I1; we

define κ(I) ∈ {0, 1} by a =2 κ(I) or equivalently b =2 κ(I) where I = [a, b]. We
show:

(a) Let B ∈ SD and let I ∈ B. Let δ = κ(I). We have eIδ =
∑

I′∈B;I′⊂I eI′ .

We argue by induction on |I|. If |I| = 1 the result is obvious. Assume now
that |I| > 1. By (P0), (P1), we can find [a1, b1], [a2, b2], . . . , [ak, bk] in B such that
a1 ≤ b1 < a2 ≤ b2 < a3 ≤ b3 <, . . . , a1, b1, a2, b2, . . . , are all in 1 − δ + 2Z and
[a, b] ∩ (1− δ + 2Z) ⊂ [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [ak, bk]. From the definition we have

eIδ = eI +
∑k

j=1 e[aj ,bj ]1−δ . By the induction hypothesis, for j ∈ [1, k] we have

e[aj ,bj ]1−δ =
∑

I′∈B;I′⊂[aj ,bj ]
eI′ . Thus we have

eIδ = eI +
∑

I′∈B;I′⊂∪j [aj ,bj ]

eI′ =
∑

I′∈B;I′⊂I

eI′ .

This proves (a).
We show:
(b) Let B ∈ SD. Then {eIκ(I) ; I ∈ B} is a basis of the vector space 〈B〉.
From (a) we see that the collection of vectors {eIκ(I) ; I ∈ B} is related to the

collection of vectors {eI ; I ∈ B} by an upper triangular matrix with 1 on the
diagonal. Hence the result follows from 2.1(b).

We deduce that if B ∈ SD and X = 〈B〉 ∈ F(V ), then for δ ∈ {0, 1},
(c) Xδ = X∩V δ has basis {eIκ(I) ; I ∈ B, κ(I) = δ}; in particular, X = X0⊕X1.

2.3. Assume that D ≥ 2. Let i ∈ [1, D] and let δ ∈ {0, 1}. There is a unique linear
map T δ

i : V ′δ → V δ such that
T δ
i (e

′
k) = ek if k ≤ i− 2, k =2 δ;

T δ
i (e

′
k) = ek+2 if k ≥ i, k =2 δ;

T δ
i (e

′
i−1) = ei−1 + ei+1 if i =2 δ + 1, 1 < i < D.

Note that T δ
i is injective and (x, y)′ = (T 0

i (x), T
1
i (y)) for any x ∈ V ′0, y ∈ V ′1.

For any I ′ ∈ I1
D−2 such that κ(I ′) = δ we have T δ

i (e
′
I′δ) = eξi(I′)δ . (Here κ(I ′), I ′δ

are defined in terms of I ′ in the same way as κ(I), Iδ are defined in 2.2.) Let V δ
i

be the image of T δ
i : V ′δ → V δ. From the definitions we deduce:

(a) We have Vi ⊕ F2ei = V 0
i ⊕ V 1

i ⊕ F2ei.
We define a collection C(V δ) of subspaces of V δ by induction on D as follows. If

D = 0, C(V δ) consists of {0}. If D ≥ 2, a subspace L of V δ is said to be in C(V δ) if
either L = 0 or if there exists i ∈ [1, D] and L′ ∈ C(V ′δ) such that L = T δ

i (L′)⊕F2ei
(if i =2 δ) or L = T δ

i (L′) (if i =2 δ + 1).
We show:
(b) If X ∈ F(V ), then Xδ ∈ C(V δ).
We argue by induction on D. If D = 0 the result is obvious. Assume now

that D ≥ 2. If X = 0 there is nothing to prove. Assume that X �= 0. We can
find i ∈ [1, D] and X ′ ∈ F(V ′) such that X = Ti(X

′) ⊕ F2ei. By the induction
hypothesis we have X ′δ ∈ C(V ′δ). Hence T δ

i (X
′δ) ⊕ F2ei ∈ C(V δ) if i =2 δ,

T δ
i (X

′δ) ∈ C(V δ) if i =2 δ + 1. It is enough to prove that T δ
i (X

′δ)⊕ F2ei = Xδ if
i =2 δ, T δ

i (X
′δ) = Xδ if i =2 δ+ 1, or that T δ

i (X
′δ)⊕F2ei = (Ti(X

′)⊕F2ei)∩ V δ
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if i =2 δ, T δ
i (X

′δ) = (Ti(X
′)⊕F2ei) ∩ V δ if i =2 δ + 1. This follows by comparing

the definition of T δ
i with that of Ti.

2.4. Let δ ∈ {0, 1}. If Z is a subspace of V δ we set Z ! = {x ∈ V 1−δ; (x, z) =
0 ∀z ∈ Z}. Similarly, if Z ′ is a subspace of V ′δ we set Z ′! = {x ∈ V ′1−δ; (x, z)′ =
0 ∀z ∈ Z ′}. Let L ∈ C(V δ). We show:

(a) We have L! ∈ C(V 1−δ) and L ⊕ L! ⊂ V is in F(V ).
The first statement of (a) follows from the second statement, using 2.3(b). We

prove the second statement of (a) by induction on D. If D = 0 the result is
immediate. Assume now that D ≥ 2. If L = 0, then L! = V 1−δ = 〈B〉 where B =
{{j}; j ∈ [1, D]1−δ} ∈ SD; thus we have L! ∈ F(V ). Next we assume that L �= 0.
We can find i ∈ [1, D] and L′ ∈ C(V ′δ) such that L = T δ

i (L′) ⊕ F2ei (if i =2 δ) or
L = T δ

i (L′) (if i =2 δ + 1). By the induction hypothesis we have L′ ⊕L′! ∈ F(V ′).
Hence Ti(L′⊕L′!)⊕F2ei ∈ F(V ). From the definition we have Ti(L′⊕L′!)⊕F2ei =

T δ
i (L′) ⊕ T 1−δ

i (L′!) ⊕ F2ei. Thus we have T δ
i (L′) ⊕ T 1−δ

i (L′!) ⊕ F2ei ∈ F(V ) or

equivalently L⊕T 1−δ
i (L′!) ∈ F(V ) (if i =2 δ) and L⊕T 1−δ

i (L′!)⊕F2ei ∈ F(V ) (if

i =2 δ+1). It is enough to show: L! = T 1−δ
i (L′!) if i =2 δ and L! = T 1−δ

i (L′!)⊕F2ei
if i =2 δ + 1. If y ∈ L′!, x ∈ L′, we have (T 1−δ

i (y), T δ
i (x)) = (y, x)′ = 0; if i =2 δ

we have (T 1−δ
i (y), ei) = 0. If i =2 δ + 1 we have (ei, T

δ
i (x)) = 0. We see that

T 1−δ
i (L′!) ⊂ L! if i =2 δ and T 1−δ

i (L′!) ⊕ F2ei ⊂ L! if i =2 δ + 1. The last two
inclusions are between vector spaces of the same dimension; hence they must be
equalities. This completes the proof of (a).

Let SD,∗ = {B ∈ SD; |B| = D/2}. From 2.1(b) we see that the bijection

SD
∼−→ F(V ), B �→ 〈B〉 (see 2.1(a)) restricts to a bijection

(b) SD,∗
∼−→ F∗(V ).

We show:
(c) We have a bijection ι : C(V δ)

∼−→ F∗(V ) given by ι(L) = L ⊕ L!.
The fact that ι is well defined follows from (a). (For L ∈ C(V δ) we have

dim(L ⊕ L!) = D/2.) We define ι′ : F∗(V ) → C(V δ) by X �→ Xδ. This is well
defined by 2.3(b). Clearly, ι′ι = 1. Let X ∈ F∗(V ). Then X1−δ ⊂ (Xδ)! since X is
isotropic so that Xδ ⊕ (Xδ)! ⊂ X; this is an inclusion of vector spaces of the same
dimension, hence is an equality. Thus ιι′ = 1. This proves that ι is a bijection.

2.5. Let δ ∈ {0, 1}. We define a subset Sδ
D of R1

D by induction on D as follows.
When D = 0, Sδ

D consists of ∅ ∈ R1
D. When D ≥ 2 we say that β ∈ R1

D is in Sδ
D if

either β = ∅ or if
(i) there exists i ∈ [1, D] and β′ ∈ Sδ

D−2 such that β = {ξi(I ′); I ′ ∈ β′} � {i} if
i =2 δ and β = {ξi(I ′); I ′ ∈ β′} if i =2 δ + 1.

From the definition we see by induction on D that if β ∈ Sδ
D and I ∈ β, then

κ(I) = δ.
Let S′

D
δ be the set of all β ∈ R1

D such that κ(I) = δ for any I ∈ β and such that
the following holds:

(P δ
0 ) If I ∈ β, Ĩ ∈ β, then either I = Ĩ, or I♠Ĩ, or I ≺ Ĩ, or Ĩ ≺ I.

By arguments similar to those in 1.3 we see that
(a) We have Sδ

D = S′
D

δ.
We show:
(b) If B ∈ SD, then δB := {I ∈ B;κ(I) = δ} is in Sδ

D.
From 2.5(c) we see that δB ∈ S′

D
δ hence (using (a)) δB ∈ Sδ

D.
Using the definitions we can verify:
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(c) Assume that D ≥ 2, that B′ ∈ SD−2, and that B = ti(B
′) ∈ SD. Let

β′ = δB′ ∈ Sδ
D−2, β = δB ∈ Sd

D. Then β is obtained from β′ as in (i) above.

Let ′Sδ
D be the set of all subsets of R1

D of the form δB for some B ∈ SD,∗. We
show:

(d) ′Sδ
D = Sδ

D.
The inclusion ′Sδ

D ⊂ Sδ
D follows from (b). Conversely we show that if β ∈ Sδ

D,
then β ∈ ′Sδ

D. We argue by induction on D. When D = 0 there is nothing to prove.
Assume that D ≥ 2. If β = ∅ there is nothing to prove. Assume that β �= ∅. We
can find i ∈ [1, D] and β′ ∈ Sδ

D−2 such that β is obtained from β′ as in (i) above.

By the induction hypothesis we have β′ = δB′ where B′ ∈ SD−2,∗. Let B = ti(B
′).

We have B ∈ SD,∗. Let β̃ = δB ∈ ′Sδ
D. By (c), β̃ is obtained from β′ as in (i)

above. Since β has the same property, we have β̃ = β. Thus β ∈ ′Sd
D, as required.

This proves (d).
We show:
(e) The map SD,∗ → ′Sδ

D, B �→ δB is a bijection.

It is enough to show that this map is injective. Assume that B ∈ SD,∗, B̃ ∈ SD,∗
satisfy δB = δB̃. We must show that B = B̃. By the proof of 2.4(c) we have a
bijection ι′ : F∗(V ) → C(V δ) given by X �→ Xδ. Now ι′(〈B〉) has basis {eIκ(I) ; I ∈
B, κ(I) = δ} and ι′(〈B̃〉) has basis {eIκ(I) ; I ∈ B̃, κ(I) = δ}. Since δB = δB̃, these

two bases coincide hence ι′(〈B〉) = ι′(〈B̃〉). Since ι′ is a bijection we deduce that

〈B〉 = 〈B̃〉. Using 2.1(a) we see that B = B̃. This proves (e).
Combining (d),(e) we obtain:
(f) The map SD∗ → Sδ

D, B �→ δB is a bijection.
For any β ∈ Sδ

D let 〈β〉 be the F2-subspace of V δ spanned by {eIκ(i) ; I ∈ β}. By
the proof of (e), we have 〈β〉 ∈ C(V δ) and dim〈β〉 = |β|. We show:

(g) The map β �→ 〈β〉 is a bijection ι′′ : Sδ
D

∼−→ C(V δ).
We have a commutative diagram

SD,∗ F∗(V )

Sδ
D C(V δ)

ι′

ι′′

where the top horizontal map is a bijection as in 2.4(b), the left vertical map is a
bijection as in (e) (see also (d)), and ι′ is a bijection as in the proof of (e). It follows
that ι′′ is a bijection. This proves (g).

2.6. Let δ ∈ {0, 1}. We define a bijection Sδ
D

∼−→ S1−δ
D , β → β! as follows. Let

β ∈ Sδ
D. By 2.5(g), we have 〈β〉 ∈ C(V δ) and by 2.4(a) we have 〈β〉! ∈ C(V 1−δ).

Then β! is the unique element of S1−δ
D such that 〈β〉! = 〈β!〉; see 2.5(g). From the

definition we have (β!)! = β and |β!| = (D/2) − |β|. Recall that 〈β〉 ⊕ 〈β!〉 = 〈B〉
where B ∈ SD,∗ satisfies δB = β, 1−δB = β!.

The order reversing involution i �→ i∗ = D+1− i of [1, D] induces an involution
R1

D → R1
D, I �→ I∗ = {i∗; i ∈ I} and an involution SD → SD, B �→ B∗ := {I∗; I ∈

B}. It also induces a bijection γδ : S1−δ
D

∼−→ Sδ
D. Then β �→ γδ(β

!) is a bijection
Sδ
D → Sδ

D which carries any subset with m elements (m ∈ [0, D/2]) to a subset
with (D/2)−m elements.
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2.7. Let δ ∈ {0, 1}. Let Uδ = {(L,L′) ∈ C(V δ)× C(V δ);L ⊂ L′}. We define a map
(a) F(V ) → Uδ by X �→ (Xδ, (X1−δ)!).
(We have Xδ ⊂ (X1−δ)! since X is isotropic.) This map is injective since X can

be reconstructed from Xδ, X1−δ: we have X = Xδ ⊕X1−δ.
We note that the map (a) is not surjective. For example, if D = 2, δ = 0 and

L = 0, L′ = F2e2, then (L,L′) ∈ U0 is not in the image of the map (a). The
following result is a reformulation of 2.4(c).

(b) The map (a) restricts to a bijection F∗(V )
∼−→ {(L,L′) ∈ Uδ;L = L′}.

2.8. In the remainder of this section we prove Theorem 0.4 assuming that W is
a Weyl group of type Bn, Cn, or Dn. If |c| = 1 the theorem is trivial; we have
Gc = {1} and Bc consists of the unique representation in c. Assume now that
|c| ≥ 2. As in [L5, 4.5,4.6], [L4], [L6], we can find D ∈ {2, 4, 6, . . . } and δ ∈ {0, 1}
such that if V is the F2-vector space with basis {ei; i ∈ [1, D]} as in 1.9, then (i)-(iii)
below hold.

(i) The group Gc in 0.3 is V δ; hence M(Gc) = V δ⊕Hom(V δ,C∗) can be identified
with V = V δ ⊕ V 1−δ (an element y ∈ V 1−δ can be identified with the homomor-
phism V δ → C∗ given by x �→ (−1)(x,y)).

(ii) c is naturally in bijection with V0 (see 1.12); hence any object E ∈ Rc can
be viewed as the function fE : V0 → N such that for E ∈ c the multiplicity of E in
E is equal to the value of fE at the point of V0 corresponding to E.

(iii) The constructible representations in Rc viewed as functions V0 → N are
exactly the characteristic functions of the subsets X ⊂ V with X ∈ F∗(V ).

(More accurately, the results in [L4]–[L6] for W of type Dn are formulated in
terms of a V as in 1.9 with odd D, but they can be restated in terms of a V as in
1.9 with D even, by the argument in the first part of 2.1.)

If L is a subspace of V δ, then SL,L ∈ C[M(Gc)] = C[V ] (see (i) and 0.2) can be
identified with the function V → C whose value is 1 at any element of L⊕L! and is
0 at any element of V − (L⊕L!). If L ∈ C(V δ) this is the characteristic function of
some X ∈ F∗(V ) namely, X = L⊕L!; the converse also holds. We see that Fc (see

0.3) consists of the subspaces L ∈ C(V δ). We have 0 ∈ C(V δ) hence F̂c = Fc. Now

Θ̃c becomes the set of pairs (L,L′) ∈ C(V δ)× C(V δ) such that L ⊂ L′. We define
Θc to be the set of pairs (L,L′) ∈ C(V δ) × C(V δ) such that L ⊕ L′! ∈ F(V ). (We
then automatically have L ⊂ L′ since the subspaces in F(V ) are isotropic. Thus

Θc ⊂ Θ̃c.) If (L,L′) ∈ Θ̃c, then SL,L′ ∈ C[M(Gc)] = C[V ] (see (i) and 0.2) can
be identified with the function V → C whose value is 1 at any element of L ⊕ L′!

and is 0 at any element of V − (L ⊕ L′!). If (L,L′) ∈ Θc, this is the characteristic
function of some X ∈ F(V ), namely X = L ⊕ L′!; the converse also holds. We
see that Θc can be identified with F(V ). With these identifications Theorem 0.4
follows from the results in §1 and §2. The representations in Bc corespond as in (ii)
to the functions fX : V0 → N which equal 1 on X and equal 0 on V0 −X (where
X ∈ F(V )). The bijection c → Bc mentioned in 0.5 is x �→ 〈ε−1(x)〉 where ε is as
in 1.16(b).

3. Exceptional Weyl groups

3.1. In this section we will prove Theorem 0.4 assuming that W is of exceptional-
type. In 3.2-3.8 we will give a table of new representations in Rc in the form of a
matrix Mc indexed by c × c. (The table will be justified in 3.10.) The columns of
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Mc are indexed by the representations in c. The rows of Mc are also indexed by the
representations in c (for any k ∈ [1, |c|], the kth row from up to down is indexed by
the same representation in c as the kth column from left to right). Each row of Mc

corresponds to a new representation; the entries of that row give the multiplicities
of the various representations in c in the new representation. The first row in Mc

stands for the special representation in c.

3.2. If |c| = 1, Mc is the 1× 1 matrix with entry 1.

3.3. If |c| = 2 (so that W is of type E7 or E8) we order c using its bijection with
{(1, 1), (1, ε)} in [L5, 4.12, 4.13] (ordered from left to right); then Mc is(

1 0
1 1

)
.

The second row stands for a constructible representation.

3.4. If |c| = 3 we order c using its bijection with {(1, 1), (g2, 1), (1, ε)} in [L5, 4.10,
4.11, 4.12, 4.13] (ordered from left to right); then Mc is⎛

⎝1 0 0
1 1 0
1 0 1

⎞
⎠ .

The last two rows stand for constructible representations.

3.5. If |c| = 4 (so that W is of type G2) we order c using its bijection with
{(1, 1), (1, r), (g2, 1), (g3, 1)} in [L5, 4.8] (ordered from left to right); then Mc is⎛

⎜⎜⎝
1 0 0 0
1 1 0 0
1 1 1 0
1 0 1 1

⎞
⎟⎟⎠ .

The last two rows stand for constructible representations.

3.6. If |c| = 5 (so that W is of type E6, E7, or E8) we order c using its bijection
with {(1, 1), (1, r), (g2, 1), (g3, 1), (1, ε)} in [L5, 4.11, 4.12, 4.13] (ordered from left
to right); then Mc is ⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 1 1 0
1 2 0 0 1

⎞
⎟⎟⎟⎟⎠ .

The last three rows stand for constructible representations.

3.7. If |c| = 11 (so that W is of type F4) we write the elements of c (notation of
[L5, 4.10]) in the order

121, 93, 62, 13, 161, 92, 44, 61, 43, 41, 12
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(from left to right); then Mc is:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0
1 2 1 1 1 0 1 0 0 0 0
1 1 0 0 1 0 1 1 0 0 0
1 0 0 0 1 1 0 1 1 0 0
1 1 1 0 2 1 0 0 0 1 0
1 0 1 0 1 2 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The last five rows stand for constructible representations.

3.8. If |c| = 17 (so that W is of type E8) we write the elements of c (with notation
of [L5, 4.13.2] with subscripts omitted) in the order

4480, 5670, 4536, 1680, 1400, 70, 7168, 5600, 3150, 4200, 2688, 2016,

448, 1134, 1344, 420, 168

(from left to right); then Mc is:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 3 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 2 2 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0
1 2 2 1 1 0 2 2 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 2 1 1 1 1 1 0 0 0 0 0
1 3 3 3 2 1 1 2 0 0 0 0 1 0 0 0 0
1 2 1 1 0 0 1 2 1 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0
1 1 1 0 1 0 1 1 0 2 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The last seven rows stand for constructible representations.

3.9. For N ≥ 1 let SN be the group of all permutations of [1, N ]. If a1 ≥ a2 ≥ . . . is
a partition of N (written as a1a2 . . . ) we say that a subgroup H of SN is in Sa1a2...

if H is conjugate to the subgroup of all permutations of [1, N ] which keep stable
each of the subsets [1, a1], [a1 + 1, a1 + a2], [a1 + a2 + 1, a1 + a2 + a3], . . . . We say

that a subgroup H of SN (with N ≥ 4) is in S̃N if it is conjugate to the subgroup
of all permutations of [1, N ] which act as an identity on [1, N ] − [1, 4] and whose
restriction to [1, 4] commutes with the permutation 1 �→ 4 �→ 1, 2 �→ 3 �→ 2.

The following results come from [L7].

If |c| = 1 we have Gc = {1} and F̂c consists of {1}.
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In the setup of 3.3 or 3.4 we have Gc = S2 and F̂c consists of S2, {1}.
In the setup of 3.5 or 3.6 we have Gc = S3 and F̂c consists of S3, {1} and the

subgroups of S3 in S21.

In the setup of 3.7 we have Gc = S4 and F̂c consists of S4, {1} and the subgroups

of S4 in S31,S22,S211, S̃4.
In the setup of 3.8 we have Gc = S5 and F̂c consists of S5, {1} and the subgroups

of S5 in S41,S32,S311,S221,S2111, S̃5.

3.10. We describe the set Θ̃c in each of the cases 3.2-3.8.
If |c| = 1, Θ̃c consists of (1, 1). (We shall write 1 instead of {1}.)
In the setup of 3.3 or 3.4, Θ̃c consists of (1, S2), (S2, S2), (1, 1).

In the setup of 3.5 or 3.6, Θ̃c consists of (1, S3), (1, H21), (H21, H21), (S3, S3), (1, 1)
where H21 runs through S21.

In the setup of 3.7, Θ̃c consists of

(1, S4), (1, H31), (1, H22), (1, H211), (H̃211, H22), (H̃22, H̃),

(H211, H211), (H31, H31), (S4, S4), (H22, H22), (H̃, H̃), (1, 1), (1, H̃),

where H211 runs through S211, H31 runs through S31, H22 runs through S22, H̃
runs through S̃4; for H22 ∈ S22, H̃211 denotes one of the two subgroups in S211

contained in H22; for H̃ ∈ S̃4, H̃22 denotes the unique subgroup in S22 contained
in H̃ .

In the setup of 3.8, Θ̃c consists of

(1, S5), (1, H41), (1, H32), (1, H311), (1, H221), (1, H2111), (H̃2111, H32),

(H̃2111, H221), (H̃311, H32), (H̃221, H̃), (H221, H221), (H32, H32),

(H2111, H2111), (H311, H311), (H41, H41), (S5, S5), (H̃, H̃), (1, 1), (1, H̃),

where H2111 runs through S2111, H221 runs through S221, H32 runs through S32,
H311 runs through S311, H41 runs through S41, H̃ runs through S̃5; for H221 ∈ S221,
H̃2111 denotes one of the two subgroups in S2111 contained in H221; for H32 ∈ S32,
H̃2111 denotes the unique subgroup in S2111 which is a normal subgroup of H32 and
H̃311 denotes the unique subgroup in S311 which is a normal subgroup of H32; for
H̃ ∈ S̃5, H̃221 denotes the unique subgroup in S221 contained in H̃.

3.11. We define the set Θc in each of the cases 3.2-3.8 by removing from Θ̃c the
pair (1, 1) whenever c is anomalous (see 0.3) and by removing the pairs (1, H̃) with

H̃ in S̃4 or S̃5 whenever S̃4 or S̃5 is defined. This guarantees that for (H,H ′) ∈ Θc,
H ′/H is isomorphic to a product of symmetric groups.

If |c| = 1, Θc consists of (1, 1).
In the setup of 3.3, Θc consists of (1, S2), (S2, S2).

In the setup of 3.4, Θc = Θ̃c consists of (1, S2), (S2, S2), (1, 1).
In the setup of 3.5, Θc consists of (1, S3), (1, H21), (H21, H21), (S3, S3) (notation

of 3.10).
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In the setup of 3.6, Θc = Θ̃c consists of (1, S3), (1, H21), (H21, H21), (S3, S3), (1, 1)
(notation of 3.10).

In the setup of 3.7, Θc consists of

(1, S4), (1, H31), (1, H22), (1, H211), (H̃211, H22), (H̃22, H̃),

(H211, H211), (H31, H31), (S4, S4), (H22, H22), (H̃, H̃),

(notation of 3.10).
In the setup of 3.8, Θc consists of

(1, S5), (1, H41), (1, H32), (1, H311), (1, H221), (1, H2111), (H̃2111, H32),

(H̃2111, H221), (H̃311, H32), (H̃221, H̃), (H221, H221), (H32, H32),

(H2111, H2111), (H311, H311), (H41, H41), (S5, S5), (H̃, H̃),

(notation of 3.10).
In each case, the number of Gc-orbits on Θc is equal to |c|. By computation

we see that SH,H′ with (H,H ′) running through a set of representatives for the
Gc-orbits on Θc are of the form EH,H′ (see 0.3) where EH,H′ ∈ Rc runs through the

objects of Rc described by the rows of the matrix Mc in 3.2-3.8 (in the same order
as the one used in the description of Θc given above). These objects form a basis
of Gc, due to the form of the matrix Mc. Now Theorem 0.4 follows in our case.

4. Proof of Theorem 0.7

4.1. Let H ⊂ H ′ be subgroups of the finite group Γ with H normal in H ′. For
any x ∈ Γ we consider the set S(x) of all μ in Γ/H ′ such that for some γ in
Γ/H contained in μ we have xγ = γ. Now Z(x) acts on S(x) by y : μ �→ yμ.
For any (x, σ) ∈ M(Γ) let Nx,σ ∈ N be the multiplicity of σ in the permutation
representation of Z(x) on S(x). We have

Nx,σ = |Z(x)|−1
∑

y∈Z(x)

(μ ∈ S(x); yμ = μ)tr(y, σ),

where

(μ ∈ S(x); yμ = μ)

= (μ ∈ Γ/H ′; for some u ∈ Γ we have xuH = uH, μ = uH ′, yuH ′ = uH ′).

If the previous three equations hold for some u, then they hold for uh′ for any h′ ∈
H ′. (Indeed, xuh′H = uh′H since h′H = Hh′, and μ = uh′H ′, yuh′H ′ = uh′H ′.)
Thus,

(μ ∈ S(x); yμ = μ) = (u ∈ Γ;xuH = uH, yuH ′ = uH ′)/|H ′|
and

Nx,σ = |Z(x)|−1|H ′|−1
∑

y∈Z(x)

(u ∈ Γ;xuH = uH, yuH ′ = uH ′)tr(y, σ)

= |Z(x)|−1|H ′|−1
∑

y∈Z(x),u∈Γ;xuH=uH,yuH′=uH′

tr(y, σ).
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Let f =
∑

(x,σ)∈M(Γ) Nx,σ(x, σ) ∈ C[M(Γ)]. We have f = SH,H′ . We write

A(f) =
∑

(x′,σ′)∈M(Γ) N
′
x′,σ′(x′, σ′) with N ′

x′,σ′ ∈ C. We have

N ′
x′,σ′ =

∑
(x,σ)∈M(Γ)

Nx,σ(x, σ), (x
′, σ′)

=
∑

(x,σ)∈M(Γ)

|Z(x)|−1|H ′|−1|Z(x)|−1|Z(x′)|−1
∑

y∈Z(x),u∈Γ;xuH=uH,yuH′=uH′∑
z∈Γ;zxz−1x′=x′zxz−1

tr(zxz−1, σ′)tr(z−1x′z, σ)tr(y, σ)

=
∑
x∈Γ

|Γ|−1|H ′|−1|Z(x)|−1|Z(x′)|−1
∑

y∈Z(x),u∈Γ;xuH=uH,yuH′=uH′∑
z∈Γ;zxz−1x′=x′zxz−1

tr(zxz−1, σ′)
∑

σ∈Irr(Z(x)

tr(z−1x′z, σ)tr(y, σ).

The last sum over σ equals |Z(x) ∩ Z(y)| if z−1x′z = ay−1a−1 for some a ∈ Z(x)
and equals 0 otherwise. Hence

N ′
x′,σ′ =

∑
x∈Γ

|Γ|−1|H ′|−1|Z(x)|−1|Z(x′)|−1
∑

y∈Z(x),u∈Γ;xuH=uH,yuH′=uH′∑
z∈Γ;zxz−1x′=x′zxz−1,a−1nZ(x),z−1x′z=ay−1a−1

tr(zxz−1, σ′).

We substitute z1 = za. We get

N ′
x′,σ′ =

∑
x∈Γ

|Γ|−1|H ′|−1|Z(x)|−1|Z(x′)|−1
∑

y∈Z(x),u∈Γ;xuH=uH,yuH′=uH′∑
z1∈Γ;z1xz

−1
1 x′=x′z1xz

−1
1 ,a−1nZ(x),z−1

1 x′z1=y−1

tr(z1xz
−1
1 , σ′).

We can eliminate a and change z1 to z. We get

N ′
x′,σ′ =

∑
x∈Γ

|Γ|−1|H ′|−1|Z(x′)|−1
∑

y∈Z(x),u∈Γ;xuH=uH,yuH′=uH′∑
z∈Γ;zxz−1x′=x′zxz−1,z−1x′z=y−1

tr(zxz−1, σ′).

We substitute x1 = u−1xu, y1 = u−1yu, z1 = zu. We get

N ′
x′,σ′ =

∑
x1∈Γ

|Γ|−1|H ′|−1|Z(x′)|−1
∑

y1∈Z(x1),u∈Γ;x1H=H,y1H′=H′∑
z1∈Γ;z1x1z

−1
1 x′=x′z1x1z

−1
1 ,z−1

1 x′z1=y−1
1

tr(z1x1z
−1
1 , σ′).

We can eliminate u and change x1, y1, z1 to x, y, z. We get

N ′
x′,σ′ = |H ′|−1|Z(x′)|−1

∑
x∈H,y∈Z(x)∩H′∑

z∈Γ;zxz−1x′=x′zxz−1,z−1x′z=y−1

tr(zxz−1, σ′).
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Here the condition zxz−1x′ = x′zxz−1 follows from z−1x′z = y−1, yx = xy. Hence

N ′
x′,σ′ = |H ′|−1|Z(x′)|−1

∑
x∈H,y∈Z(x)∩H′

∑
z∈Γ;z−1x′z=y−1

tr(zxz−1, σ′),

that is,

N ′
x′,σ′ = |H ′|−1|Z(x′)|−1

∑
x∈H

∑
z∈Γ;z−1x′z∈Z(x)∩H′

tr(zxz−1, σ′).

We substitute zxz−1 = x1. We get

N ′
x′,σ′ = |H ′|−1|Z(x′)|−1

∑
x1∈Γ,z∈Γ;x′∈Z(x1)∩zH′z−1,x1∈zHz−1

tr(x1, σ′),

that is,

N ′
x′,σ′ = |H ′|−1|Z(x′)|−1

∑
z∈Γ;z−1x′z∈H′

∑
x1∈Z(x′)∩zHz−1

tr(x1, σ′)

and

N ′
x′,σ′ = |H ′|−1|Z(x′)|−1

∑
z∈Γ;z−1x′z∈H′

(1 : σ′|(Z(x′) ∩ zHz−1))|Z(x′) ∩ zHz−1|,

where : denotes multiplicity. Thus we have

Nx′,σ′ ∈ Q≥0

so that A(f) ∈ M(Γ)≥0. Since f ∈ M(Γ)≥0 is obvious we see that f is bipositive.
This proves Theorem 0.7.
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