Solutions Manual to MATHEMATICAL STATISTICS: Asymptotic Minimax Theory

Alexander Korostelev
Olga Korosteleva
Wayne State University, Detroit, MI 48202
California State University,
Long Beach, CA 90840

Chapter 1

Exercise 1.1 To verify first that the representation holds, compute the second partial derivative of $\ln p(x, \theta)$ with respect to θ. It is

$$
\begin{aligned}
\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}} & =-\frac{1}{[p(x, \theta)]^{2}}\left(\frac{\partial p(x, \theta)}{\partial \theta}\right)^{2}+\frac{1}{p(x, \theta)} \frac{\partial^{2} p(x, \theta)}{\partial \theta^{2}} \\
= & -\left(\frac{\partial \ln p(x, \theta)}{\partial \theta}\right)^{2}+\frac{1}{p(x, \theta)} \frac{\partial^{2} p(x, \theta)}{\partial \theta^{2}}
\end{aligned}
$$

Multiplying by $p(x, \theta)$ and rearranging the terms produce the result,

$$
\left(\frac{\partial \ln p(x, \theta)}{\partial \theta}\right)^{2} p(x, \theta)=\frac{\partial^{2} p(x, \theta)}{\partial \theta^{2}}-\left(\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}\right) p(x, \theta) .
$$

Now integrating both sides of this equality with respect to x, we obtain

$$
\begin{aligned}
I_{n}(\theta) & =n \mathbb{E}_{\theta}\left[\left(\frac{\partial \ln p(X, \theta)}{\partial \theta}\right)^{2}\right]=n \int_{\mathbb{R}}\left(\frac{\partial \ln p(x, \theta)}{\partial \theta}\right)^{2} p(x, \theta) d x \\
& =n \int_{\mathbb{R}} \frac{\partial^{2} p(x, \theta)}{\partial \theta^{2}} d x-n \int_{\mathbb{R}}\left(\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}\right) p(x, \theta) d x \\
& =n \underbrace{\frac{\partial^{2}}{\partial \theta^{2}} \int_{\mathbb{R}} p(x, \theta) d x}_{0}-n \int_{\mathbb{R}}\left(\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}\right) p(x, \theta) d x \\
= & -n \int_{\mathbb{R}}\left(\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}\right) p(x, \theta) d x=-n \mathbb{E}_{\theta}\left[\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}\right] .
\end{aligned}
$$

Exercise 1.2 The first step is to notice that θ_{n}^{*} is an unbiased estimator of θ. Indeed, $\mathbb{E}_{\theta}\left[\theta_{n}^{*}\right]=\mathbb{E}_{\theta}\left[(1 / n) \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]=\mathbb{E}_{\theta}\left[\left(X_{1}-\mu\right)^{2}\right]=\theta$.
Further, the log-likelihood function for the $\mathcal{N}(\mu, \theta)$ distribution has the form

$$
\ln p(x, \theta)=-\frac{1}{2} \ln (2 \pi \theta)-\frac{(x-\mu)^{2}}{2 \theta} .
$$

Therefore,

$$
\frac{\partial \ln p(x, \theta)}{\partial \theta}=-\frac{1}{2 \theta}+\frac{(x-\mu)^{2}}{2 \theta^{2}}, \text { and } \frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}=\frac{1}{2 \theta^{2}}-\frac{(x-\mu)^{2}}{\theta^{3}}
$$

Applying the result of Exercise 1.1, we get

$$
I_{n}(\theta)=-n \mathbb{E}_{\theta}\left[\frac{\partial^{2} \ln p(X, \theta)}{\partial \theta^{2}}\right]=-n \mathbb{E}_{\theta}\left[\frac{1}{2 \theta^{2}}-\frac{(X-\mu)^{2}}{\theta^{3}}\right]
$$

$$
=-n\left[\frac{1}{2 \theta^{2}}-\frac{\theta}{\theta^{3}}\right]=\frac{n}{2 \theta^{2}}
$$

Next, using the fact that $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} / \theta$ has a chi-squared distribution with n degrees of freedom, and, hence its variance equals to $2 n$, we arrive at

$$
\operatorname{Var}_{\theta}\left[\theta_{n}^{*}\right]=\operatorname{Var}_{\theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]=\frac{2 n \theta^{2}}{n^{2}}=\frac{2 \theta^{2}}{n}=\frac{1}{I_{n}(\theta)}
$$

Thus, we have shown that θ_{n}^{*} is an unbiased estimator of θ and that its variance attains the Cramér-Rao lower bound, that is, θ_{n}^{*} is an efficient estimator of θ.

Exercise 1.3 For the Bernoulli (θ) distribution,

$$
\ln p(x, \theta)=x \ln \theta+(1-x) \ln (1-\theta),
$$

thus,

$$
\frac{\partial \ln p(x, \theta)}{\partial \theta}=\frac{x}{\theta}-\frac{1-x}{1-\theta} \quad \text { and } \quad \frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}=-\frac{x}{\theta^{2}}-\frac{1-x}{(1-\theta)^{2}}
$$

From here,

$$
I_{n}(\theta)=-n \mathbb{E}_{\theta}\left[-\frac{X}{\theta^{2}}-\frac{1-X}{(1-\theta)^{2}}\right]=n\left(\frac{\theta}{\theta^{2}}+\frac{1-\theta}{(1-\theta)^{2}}\right)=\frac{n}{\theta(1-\theta)}
$$

On the other hand, $\mathbb{E}_{\theta}\left[\bar{X}_{n}\right]=\mathbb{E}_{\theta}[X]=\theta$ and $\operatorname{Var}_{\theta}\left[\bar{X}_{n}\right]=\operatorname{Var}_{\theta}[X] / n=$ $\theta(1-\theta) / n=1 / I_{n}(\theta)$. Therefore $\theta_{n}^{*}=\bar{X}_{n}$ is efficient.

Exercise 1.4 In the Poisson (θ) model,

$$
\ln p(x, \theta)=x \ln \theta-\theta-\ln x!
$$

hence,

$$
\frac{\partial \ln p(x, \theta)}{\partial \theta}=\frac{x}{\theta}-1 \quad \text { and } \quad \frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}=-\frac{x}{\theta^{2}}
$$

Thus,

$$
I_{n}(\theta)=-n \mathbb{E}_{\theta}\left[-\frac{X}{\theta^{2}}\right]=\frac{n}{\theta} .
$$

The estimate \bar{X}_{n} is unbiased with the variance $\operatorname{Var}_{\theta}\left[\bar{X}_{n}\right]=\theta / n=1 / I_{n}(\theta)$, and therefore efficient.

Exercise 1.5 For the given exponential density,

$$
\ln p(x, \theta)=-\ln \theta-x / \theta
$$

whence,

$$
\frac{\partial \ln p(x, \theta)}{\partial \theta}=-\frac{1}{\theta}+\frac{x}{\theta^{2}} \quad \text { and } \quad \frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}=\frac{1}{\theta^{2}}-\frac{2 x}{\theta^{3}} .
$$

Therefore,

$$
I_{n}(\theta)=-n \mathbb{E}_{\theta}\left[\frac{1}{\theta^{2}}-\frac{2 X}{\theta^{3}}\right]=-n\left[\frac{1}{\theta^{2}}-\frac{2 \theta}{\theta^{3}}\right]=\frac{n}{\theta^{2}} .
$$

Also, $\mathbb{E}_{\theta}\left[\bar{X}_{n}\right]=\theta$ and $\mathbb{V} a r_{\theta}\left[\bar{X}_{n}\right]=\theta^{2} / n=1 / I_{n}(\theta)$. Hence efficiency holds.

Exercise 1.6 If X_{1}, \ldots, X_{n} are independent exponential random variables with the mean $1 / \theta$, their sum $Y=\sum_{i=1}^{n} X_{i}$ has a gamma distribution with the density

$$
f_{Y}(y)=\frac{y^{n-1} \theta^{n} e^{-y \theta}}{\Gamma(n)}, y>0
$$

Consequently,

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[\frac{1}{\bar{X}_{n}}\right]=\mathbb{E}_{\theta}\left[\frac{n}{Y}\right]=n \int_{0}^{\infty} \frac{1}{y} \frac{y^{n-1} \theta^{n} e^{-y \theta}}{\Gamma(n)} d y \\
=\frac{n \theta}{\Gamma(n)} \int_{0}^{\infty} y^{n-2} \theta^{n-1} e^{-y \theta} d y=\frac{n \theta \Gamma(n-1)}{\Gamma(n)} \\
=\frac{n \theta(n-2)!}{(n-1)!}=\frac{n \theta}{n-1} .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{Var}_{\theta}\left[1 / \bar{X}_{n}\right]=\mathbb{V a r}_{\theta}[n / Y]=n^{2}\left(\mathbb{E}_{\theta}\left[1 / Y^{2}\right]-\left(\mathbb{E}_{\theta}[1 / Y]\right)^{2}\right) \\
=n^{2}\left[\frac{\theta^{2} \Gamma(n-2)}{\Gamma(n)}-\frac{\theta^{2}}{(n-1)^{2}}\right]=n^{2} \theta^{2}\left[\frac{1}{(n-1)(n-2)}-\frac{1}{(n-1)^{2}}\right] \\
=\frac{n^{2} \theta^{2}}{(n-1)^{2}(n-2)} .
\end{gathered}
$$

Exercise 1.7 The trick here is to notice the relation

$$
\frac{\partial \ln p_{0}(x-\theta)}{\partial \theta}=\frac{1}{p_{0}(x-\theta)} \frac{\partial p_{0}(x-\theta)}{\partial \theta}
$$

$$
=-\frac{1}{p_{0}(x-\theta)} \frac{\partial p_{0}(x-\theta)}{\partial x}=-\frac{p_{0}{ }^{\prime}(x-\theta)}{p_{0}(x-\theta)} .
$$

Thus we can write

$$
I_{n}(\theta)=n \mathbb{E}_{\theta}\left[\left(-\frac{p_{0}^{\prime}(X-\theta)}{p_{0}(X-\theta)}\right)^{2}\right]=n \int_{\mathbb{R}} \frac{\left(p_{0}^{\prime}(y)\right)^{2}}{p_{0}(y)} d y
$$

which is a constant independent of θ.

Exercise 1.8 Using the expression for the Fisher information derived in the previous exercise, we write

$$
\begin{gathered}
I_{n}(\theta)=n \int_{\mathbb{R}} \frac{\left(p_{0}{ }^{\prime}(y)\right)^{2}}{p_{0}(y)} d y=n \int_{-\pi / 2}^{\pi / 2} \frac{\left(-C \alpha \cos ^{\alpha-1} y \sin y\right)^{2}}{C \cos ^{\alpha} y} d y \\
=n C \alpha^{2} \int_{-\pi / 2}^{\pi / 2} \sin ^{2} y \cos ^{\alpha-2} y d y=n C \alpha^{2} \int_{-\pi / 2}^{\pi / 2}\left(1-\cos ^{2} y\right) \cos ^{\alpha-2} y d y \\
=n C \alpha^{2} \int_{-\pi / 2}^{\pi / 2}\left(\cos ^{\alpha-2} y-\cos ^{\alpha} y\right) d y .
\end{gathered}
$$

Here the first term is integrable if $\alpha-2>-1$ (equivalently, $\alpha>1$), while the second one is integrable if $\alpha>-1$. Therefore, the Fisher information exists when $\alpha>1$.

Chapter 2

Exercise 2.9 By Exercise 1.4, the Fisher information of the Poisson(θ) sample is $I_{n}(\theta)=n / \theta$. The joint distribution of the sample is

$$
p\left(X_{1}, \ldots X_{n}, \theta\right)=C_{n} \theta^{\sum X_{i}} e^{-n \theta}
$$

where $C_{n}=C_{n}\left(X_{1}, \ldots, X_{n}\right)$ is the normalizing constant independent of θ. As a function of θ, this joint probability has the algebraic form of a gamma distribution. Thus, if we select the prior density to be a gamma density, $\pi(\theta)=C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta}, \theta>0$, for some positive α and β, then the weighted posterior density is also a gamma density,

$$
\begin{gathered}
\tilde{f}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=I_{n}(\theta) C_{n} \theta^{\sum X_{i}} e^{-n \theta} C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta} \\
=\tilde{C}_{n} \theta^{\sum X_{i}+\alpha-2} e^{-(n+\beta) \theta}, \theta>0,
\end{gathered}
$$

where $\tilde{C}_{n}=n C_{n}\left(X_{1}, \ldots, X_{n}\right) C(\alpha, \beta)$ is the normalizing constant. The expected value of the weighted posterior gamma distribution is equal to

$$
\int_{0}^{\infty} \theta \tilde{f}\left(\theta \mid X_{1}, \ldots, X_{n}\right) d \theta=\frac{\sum X_{i}+\alpha-1}{n+\beta}
$$

Exercise 2.10 As shown in Example 1.10, the Fisher information $I_{n}(\theta)=$ n / σ^{2}. Thus, the weighted posterior distribution of θ can be found as follows:

$$
\begin{aligned}
& \tilde{f}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=C I_{n}(\theta) \exp \left\{-\frac{\sum\left(X_{i}-\theta\right)^{2}}{2 \sigma^{2}}-\frac{(\theta-\mu)^{2}}{2 \sigma_{\theta}^{2}}\right\} \\
= & C \frac{n}{\sigma^{2}} \exp \left\{-\left(\frac{\sum X_{i}^{2}}{2 \sigma^{2}}-\frac{2 \theta \sum X_{i}}{2 \sigma^{2}}+\frac{n \theta^{2}}{2 \sigma^{2}}+\frac{\theta^{2}}{2 \sigma_{\theta}^{2}}-\frac{2 \theta \mu}{2 \sigma_{\theta}^{2}}+\frac{\mu^{2}}{2 \sigma_{\theta}^{2}}\right)\right\} \\
= & C_{1} \exp \left\{-\frac{1}{2}\left[\theta^{2}\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{\theta}^{2}}\right)-2 \theta\left(\frac{n \bar{X}_{n}}{\sigma^{2}}+\frac{\mu}{\sigma_{\theta}^{2}}\right)\right]\right\} \\
= & C_{2} \exp \left\{-\frac{1}{2}\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{\theta}^{2}}\right)\left(\theta-\left(n \sigma_{\theta}^{2} \bar{X}_{n}+\mu \sigma^{2}\right) /\left(n \sigma_{\theta}^{2}+\sigma^{2}\right)\right)^{2}\right\} .
\end{aligned}
$$

Here C, C_{1}, and C_{2} are the appropriate normalizing constants. Thus, the weighted posterior mean is $\left(n \sigma_{\theta}^{2} \bar{X}_{n}+\mu \sigma^{2}\right) /\left(n \sigma_{\theta}^{2}+\sigma^{2}\right)$ and the variance is $\left(n / \sigma^{2}+1 / \sigma_{\theta}^{2}\right)^{-1}=\sigma^{2} \sigma_{\theta}^{2} /\left(n \sigma_{\theta}^{2}+\sigma^{2}\right)$.

Exercise 2.11 First, we derive the Fisher information for the exponential model. We have

$$
\ln p(x, \theta)=\ln \theta-\theta x, \frac{\partial \ln p(x, \theta)}{\partial \theta}=\frac{1}{\theta}-x,
$$

and

$$
\frac{\partial^{2} \ln p(x, \theta)}{\partial \theta^{2}}=-\frac{1}{\theta^{2}} .
$$

Consequently,

$$
I_{n}(\theta)=-n \mathbb{E}_{\theta}\left[-\frac{1}{\theta^{2}}\right]=\frac{n}{\theta^{2}} .
$$

Further, the joint distribution of the sample is

$$
p\left(X_{1}, \ldots X_{n}, \theta\right)=C_{n} \theta^{\sum X_{i}} e^{-\theta \sum X_{i}}
$$

with the normalizing constant $C_{n}=C_{n}\left(X_{1}, \ldots, X_{n}\right)$ independent of θ. As a function of θ, this joint probability belongs to the family of gamma distributions, hence, if we choose the conjugate prior to be a gamma distribution, $\pi(\theta)=C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta}, \theta>0$, with some $\alpha>0$ and $\beta>0$, then the weighted posterior is also a gamma,

$$
\begin{gathered}
\tilde{f}=\left(\theta \mid X_{1}, \ldots, X_{n}\right)=I_{n}(\theta) C_{n} \theta^{\sum X_{i}} e^{-\theta \sum X_{i}} C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta} \\
=\tilde{C}_{n} \theta^{\sum X_{i}+\alpha-3} e^{-\left(\sum X_{i}+\beta\right) \theta}
\end{gathered}
$$

where $\tilde{C}_{n}=n C_{n}\left(X_{1}, \ldots, X_{n}\right) C(\alpha, \beta)$ is the normalizing constant. The corresponding weighted posterior mean of the gamma distribution is equal to

$$
\int_{0}^{\infty} \theta \tilde{f}\left(\theta \mid X_{1}, \ldots, X_{n}\right) d \theta=\frac{\sum X_{i}+\alpha-2}{\sum X_{i}+\beta}
$$

Exercise 2.12 (i) The joint density of n independent $\operatorname{Bernoulli}(\theta)$ observations X_{1}, \ldots, X_{n} is

$$
p\left(X_{1}, \ldots X_{n}, \theta\right)=\theta^{\sum X_{i}}(1-\theta)^{n-\sum X_{i}} .
$$

Using the conjugate prior $\pi(\theta)=C[\theta(1-\theta)]^{\sqrt{n} / 2-1}$, we obtain the nonweighted posterior density $f\left(\theta \mid X_{1}, \ldots, X_{n}\right)=C \theta^{\sum X_{i}+\sqrt{n} / 2-1}(1-\theta)^{n-\sum X_{i}+\sqrt{n} / 2-1}$, which is a beta density with the mean

$$
\theta_{n}^{*}=\frac{\sum X_{i}+\sqrt{n} / 2}{\sum X_{i}+\sqrt{n} / 2+n-\sum X_{i}+\sqrt{n} / 2}=\frac{\sum X_{i}+\sqrt{n} / 2}{n+\sqrt{n}} .
$$

(ii) The variance of θ_{n}^{*} is

$$
\mathbb{V a r}_{\theta}\left[\theta_{n}^{*}\right]=\frac{n \operatorname{Var}_{\theta}\left(X_{1}\right)}{(n+\sqrt{n})^{2}}=\frac{n \theta(1-\theta)}{(n+\sqrt{n})^{2}},
$$

and the bias equals to

$$
b_{n}\left(\theta, \theta_{n}^{*}\right)=\mathbb{E}_{\theta}\left[\theta_{n}^{*}\right]-\theta=\frac{n \theta+\sqrt{n} / 2}{n+\sqrt{n}}-\theta=\frac{\sqrt{n} / 2-\sqrt{n} \theta}{n+\sqrt{n}} .
$$

Consequently, the non-normalized quadratic risk of θ_{n}^{*} is

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[\left(\theta_{n}^{*}-\theta\right)^{2}\right]=\mathbb{V} a r_{\theta}\left[\theta_{n}^{*}\right]+b_{n}^{2}\left(\theta, \theta_{n}^{*}\right) \\
=\frac{n \theta(1-\theta)+(\sqrt{n} / 2-\sqrt{n} \theta)^{2}}{(n+\sqrt{n})^{2}}=\frac{n / 4}{(n+\sqrt{n})^{2}}=\frac{1}{4(1+\sqrt{n})^{2}} .
\end{gathered}
$$

(iii) Let $t_{n}=t_{n}\left(X_{1}, \ldots, X_{n}\right)$ be the Bayes estimator with respect to a nonnormalized risk function

$$
R_{n}\left(\theta, \hat{\theta}_{n}, w\right)=\mathbb{E}_{\theta}\left[w\left(\hat{\theta}_{n}-\theta\right)\right] .
$$

The statement and the proof of Theorem 2.5 remain exactly the same if the non-normalized risk and the corresponding Bayes estimator are used. Since θ_{n}^{*} is the Bayes estimator for a constant non-normalized risk, it is minimax.

Exercise 2.13 In Example 2.4, let $\alpha=\beta=1+1 / b$. Then the Bayes estimator assumes the form

$$
t_{n}(b)=\frac{\sum X_{i}+1 / b}{n+2 / b}
$$

where X_{i} 's are independent $\operatorname{Bernoulli}(\theta)$ random variables. The normalized quadratic risk of $t_{n}(b)$ is equal to

$$
\begin{gathered}
R_{n}\left(\theta, t_{n}(b), w\right)=\mathbb{E}_{\theta}\left[\left(\sqrt{I_{n}(\theta)}\left(t_{n}(b)-\theta\right)\right)^{2}\right] \\
=I_{n}(\theta)\left[{\left.\mathbb{V} a r_{\theta}\left[t_{n}(b)\right]+b_{n}^{2}\left(\theta, t_{n}(b)\right)\right]}_{=} I_{n}(\theta)\left[\frac{n \mathbb{V} a r_{\theta}\left[X_{1}\right]}{(n+2 / b)^{2}}+\left(\frac{n \mathbb{E}_{\theta}\left[X_{1}\right]+1 / b}{n+2 / b}-\theta\right)^{2}\right]\right. \\
= \\
\frac{n}{\theta(1-\theta)}\left[\frac{n \theta(1-\theta)}{(n+2 / b)^{2}}+\left(\frac{n \theta+1 / b}{n+2 / b}-\theta\right)^{2}\right] \\
= \\
\frac{n}{\theta(1-\theta)}[\frac{n \theta(1-\theta)}{(n+2 / b)^{2}}+\underbrace{\frac{(1-2 \theta)^{2}}{b^{2}(n+2 / b)^{2}}}_{\rightarrow 0}] \\
\quad \rightarrow \frac{n}{\theta(1-\theta)} \frac{n \theta(1-\theta)}{n^{2}}=1 \text { as } b \rightarrow \infty .
\end{gathered}
$$

Thus, by Theorem 2.8, the minimax lower bound is equal to 1 . The normalized quadratic risk of $\bar{X}_{n}=\lim _{b \rightarrow \infty} t_{n}(b)$ is derived as

$$
\begin{aligned}
& R_{n}\left(\theta, \bar{X}_{n}, w\right)=\mathbb{E}_{\theta}\left[\left(\sqrt{I_{n}(\theta)}\left(\bar{X}_{n}-\theta\right)\right)^{2}\right] \\
= & I_{n}(\theta) \mathbb{V a r}_{\theta}\left[\bar{X}_{n}\right]=\frac{n}{\theta(1-\theta)} \frac{\theta(1-\theta)}{n}=1 .
\end{aligned}
$$

That is, it attains the minimax lower bound, and hence \bar{X}_{n} is minimax.

Chapter 3

Exercise 3.14 Let $X \sim \operatorname{Binomial}\left(n, \theta^{2}\right)$. Then

$$
\begin{aligned}
\mathbb{E}_{\theta}[|\sqrt{X / n}-\theta|] & =\mathbb{E}_{\theta}\left[\frac{\left|X / n-\theta^{2}\right|}{|\sqrt{X / n}+\theta|}\right] \\
\leq & \frac{1}{\theta} \mathbb{E}_{\theta}\left[\left|X / n-\theta^{2}\right|\right] \leq \frac{1}{\theta} \sqrt{\mathbb{E}_{\theta}\left[\left(X / n-\theta^{2}\right)^{2}\right]}
\end{aligned}
$$

(by the Cauchy-Schwarz inequality)

$$
=\frac{1}{\theta} \sqrt{\frac{\theta^{2}\left(1-\theta^{2}\right)}{n}}=\sqrt{\frac{1-\theta^{2}}{n}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

ExERcise 3.15 First we show that the Hodges estimator $\hat{\theta}_{n}$ is asymptotically unbiased. To this end write

$$
\begin{aligned}
& \mathbb{E}_{\theta}\left[\hat{\theta}_{n}-\theta\right]=\mathbb{E}_{\theta}\left[\hat{\theta}_{n}-\bar{X}_{n}+\bar{X}_{n}-\theta\right]=\mathbb{E}_{\theta}\left[\hat{\theta}_{n}-\bar{X}_{n}\right] \\
& =\mathbb{E}_{\theta}\left[-\bar{X}_{n} \mathbb{I}\left(\left|\bar{X}_{n}\right|<n^{-1 / 4}\right)\right]<n^{-1 / 4} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Next consider the case $\theta \neq 0$. We will check that

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\theta\right)^{2}\right]=1
$$

Firstly, we show that

$$
\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}\right)^{2}\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

Indeed,

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}\right)^{2}\right]=n \mathbb{E}_{\theta}\left[\left(-\bar{X}_{n}\right)^{2} \mathbb{I}\left(\left|\bar{X}_{n}\right|<n^{-1 / 4}\right)\right] \\
\leq n^{1 / 2} \mathbb{P}_{\theta}\left(\left|\bar{X}_{n}\right|<n^{-1 / 4}\right)=n^{1 / 2} \int_{-n^{1 / 4}-\theta n^{1 / 2}}^{n^{1 / 4}-\theta n^{1 / 2}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
=n^{1 / 2} \int_{-n^{1 / 4}}^{n^{1 / 4}} \frac{1}{\sqrt{2 \pi}} e^{-\left(u-\theta n^{1 / 2}\right)^{2} / 2} d u .
\end{gathered}
$$

Here we made a substitution $u=z+\theta n^{1 / 2}$. Now, since $|u| \leq n^{1 / 4}$, the exponent can be bounded from above as follows
$-\left(u-\theta n^{1 / 2}\right)^{2} / 2=-u^{2} / 2+u \theta n^{1 / 2}-\theta^{2} n / 2 \leq-u^{2} / 2+\theta n^{3 / 4}-\theta^{2} n / 2$,
and, thus, for all sufficiently large n, the above integral admits the upper bound

$$
\begin{gathered}
n^{1 / 2} \int_{-n^{1 / 4}}^{n^{1 / 4}} \frac{1}{\sqrt{2 \pi}} e^{-\left(u-\theta n^{1 / 2}\right)^{2} / 2} d u \\
\leq n^{1 / 2} \int_{-n^{1 / 4}}^{n^{1 / 4}} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2+\theta n^{3 / 4}-\theta^{2} n / 2} d u \\
\leq e^{-\theta^{2} n / 4} \int_{-n^{1 / 4}}^{n^{1 / 4}} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u \rightarrow 0 \text { as } n \rightarrow \infty .
\end{gathered}
$$

Further, we use the Cauchy-Schwarz inequality to write

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\theta\right)^{2}\right]=\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}+\bar{X}_{n}-\theta\right)^{2}\right] \\
=\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}\right)^{2}\right]+2 \mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}\right)\left(\bar{X}_{n}-\theta\right)\right]+\mathbb{E}_{\theta}\left[n\left(\bar{X}_{n}-\theta\right)^{2}\right] \\
\leq \underbrace{\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}\right)^{2}\right]}_{\rightarrow 0}+2 \underbrace{\left\{\mathbb{E}_{\theta}\left[n\left(\hat{\theta}_{n}-\bar{X}_{n}\right)^{2}\right]\right\}^{1 / 2}}_{\rightarrow 0} \times \\
\times \underbrace{\left\{\mathbb{E}_{\theta}\left[n\left(\bar{X}_{n}-\theta\right)^{2}\right]\right\}^{1 / 2}}_{=1}+\underbrace{\mathbb{E}_{\theta}\left[n\left(\bar{X}_{n}-\theta\right)^{2}\right]}_{=1} \rightarrow 1 \text { as } n \rightarrow \infty
\end{gathered}
$$

Consider now the case $\theta=0$. We will verify that

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[n \hat{\theta}_{n}^{2}\right]=0
$$

We have

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[n \hat{\theta}_{n}^{2}\right]=\mathbb{E}_{\theta}\left[n \bar{X}_{n}^{2} \mathbb{I}\left(\left|\bar{X}_{n}\right| \geq n^{-1 / 4}\right)\right] \\
=\mathbb{E}_{\theta}\left[\left(\sqrt{n} \bar{X}_{n}\right)^{2} \mathbb{I}\left(\left|\sqrt{n} \bar{X}_{n}\right| \geq n^{1 / 4}\right)\right]=2 \int_{n^{1 / 4}}^{\infty} \frac{z^{2}}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
\leq 2 \int_{n^{1 / 4}}^{\infty} e^{-z} d z=2 e^{-n^{1 / 4}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{gathered}
$$

Exercise 3.16 The following lower bound holds:

$$
\begin{gather*}
\sup _{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[I_{n}(\theta)\left(\hat{\theta}_{n}-\theta\right)^{2}\right] \geq n I_{*} \max _{\theta \in\left\{\theta_{0}, \theta_{1}\right\}} \mathbb{E}_{\theta}\left[\left(\hat{\theta}_{n}-\theta\right)^{2}\right] \\
\geq \frac{n I_{*}}{2}\left\{\mathbb{E}_{\theta_{0}}\left[\left(\hat{\theta}_{n}-\theta_{0}\right)^{2}\right]+\mathbb{E}_{\theta_{1}}\left[\left(\hat{\theta}_{n}-\theta_{1}\right)^{2}\right]\right\} \\
=\frac{n I_{*}}{2} \mathbb{E}_{\theta_{0}}\left[\left(\hat{\theta}_{n}-\theta_{0}\right)^{2}+\left(\hat{\theta}_{n}-\theta_{1}\right)^{2} \exp \left\{\Delta L_{n}\left(\theta_{0}, \theta_{1}\right)\right\}\right] \tag{3.8}
\end{gather*}
$$

$$
\begin{aligned}
& \geq \frac{n I_{*}}{2} \mathbb{E}_{\theta_{0}}\left[\left(\left(\hat{\theta}_{n}-\theta_{0}\right)^{2}+\left(\hat{\theta}_{n}-\theta_{1}\right)^{2} \exp \left\{z_{0}\right\}\right) \mathbb{I}\left(\Delta L_{n}\left(\theta_{0}, \theta_{1}\right) \geq z_{0}\right)\right] \\
\geq & \frac{n I_{*} \exp \left\{z_{0}\right\}}{2} \mathbb{E}_{\theta_{0}}\left[\left(\left(\hat{\theta}_{n}-\theta_{0}\right)^{2} \exp \left\{-z_{0}\right\}+\left(\hat{\theta}_{n}-\theta_{1}\right)^{2}\right) \mathbb{I}\left(\Delta L_{n}\left(\theta_{0}, \theta_{1}\right) \geq z_{0}\right)\right] \\
& \geq \frac{n I_{*} \exp \left\{z_{0}\right\}}{2} \mathbb{E}_{\theta_{0}}\left[\left(\left(\hat{\theta}_{n}-\theta_{0}\right)^{2}+\left(\hat{\theta}_{n}-\theta_{1}\right)^{2}\right) \mathbb{I}\left(\Delta L_{n}\left(\theta_{0}, \theta_{1}\right) \geq z_{0}\right)\right]
\end{aligned}
$$

since $\exp \left\{-z_{0}\right\} \geq 1$ for z_{0} is assumed negative,

$$
\begin{aligned}
\geq & \frac{n I_{*} \exp \left\{z_{0}\right\}}{2} \frac{\left(\theta_{1}-\theta_{0}\right)^{2}}{2} \mathbb{P}_{\theta_{0}}\left(\Delta L_{n}\left(\theta_{0}, \theta_{1}\right) \geq z_{0}\right) \\
& \geq \frac{n I_{*} p_{0} \exp \left\{z_{0}\right\}}{4}\left(\frac{1}{\sqrt{n}}\right)^{2}=\frac{1}{4} I_{*} p_{0} \exp \left\{z_{0}\right\}
\end{aligned}
$$

Exercise 3.17 First we show that the inequality stated in the hint is valid. For any x it is necessarily true that either $|x| \geq 1 / 2$ or $|x-1| \geq 1 / 2$, because if the contrary holds, then $-1 / 2<x<1 / 2$ and $-1 / 2<1-x<1 / 2$ imply that $1=x+(1-x)<1 / 2+1 / 2=1$, which is false.
Further, since $w(x)=w(-x)$ we may assume that $x>0$. And suppose that $x \geq 1 / 2$ (as opposed to the case $x-1 \geq 1 / 2$). In view of the facts that the loss function w is everywhere nonnegative and is increasing on the positive half-axis, we have

$$
w(x)+w(x-1) \geq w(x) \geq w(1 / 2)
$$

Next, using the argument identical to that in Exercise 3.16, we obtain

$$
\begin{gathered}
\sup _{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[w\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\right)\right] \geq \frac{1}{2} \exp \left\{z_{0}\right\} \mathbb{E}_{\theta_{0}}\left[\left(w\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)\right)+\right.\right. \\
\left.\left.+w\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta_{1}\right)\right)\right) \mathbb{I}\left(\Delta L_{n}\left(\theta_{0}, \theta_{1}\right) \geq z_{0}\right)\right]
\end{gathered}
$$

Now recall that $\theta_{1}=\theta_{0}+1 / \sqrt{n}$ and use the inequality proved earlier to continue

$$
\geq \frac{1}{2} w(1 / 2) \exp \left\{z_{0}\right\} \mathbb{P}_{\theta_{0}}\left(\Delta L_{n}\left(\theta_{0}, \theta_{1}\right) \geq z_{0}\right) \geq \frac{1}{2} w(1 / 2) p_{0} \exp \left\{z_{0}\right\}
$$

ExERCISE 3.18 It suffices to prove the assertion (3.14) for an indicator function, that is, for the bounded loss function $w(u)=\mathbb{I}(|u|>\gamma)$, where γ is a fixed constant. We write

$$
\int_{-(b-a)}^{b-a} w(c-u) e^{-u^{2} / 2} d u=\int_{-(b-a)}^{b-a} \mathbb{I}(|c-u|>\gamma) e^{-u^{2} / 2} d u
$$

$$
=\int_{-(b-a)}^{c-\gamma} e^{-u^{2} / 2} d u+\int_{c+\gamma}^{b-a} e^{-u^{2} / 2} d u
$$

To minimize this expression over values of c, take the derivative with respect to c and set it equal to zero to obtain

$$
e^{-(c-\gamma)^{2}}-e^{-(c+\gamma)^{2}}=0, \text { or, equivalently, }(c-\gamma)^{2}=(c+\gamma)^{2}
$$

The solution is $c=0$.
Finally, the result holds for any loss function w since it can be written as a limit of linear combinations of indicator functions,

$$
\int_{-(b-a)}^{b-a} w(c-u) e^{-u^{2} / 2} d u=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta w_{i} \int_{-(b-a)}^{b-a} \mathbb{I}\left(|c-u|>\gamma_{i}\right) e^{-u^{2} / 2} d u
$$

where

$$
\gamma_{i}=\frac{b-a}{n} i, \quad \Delta w_{i}=w\left(\gamma_{i}\right)-w\left(\gamma_{i-1}\right) .
$$

Exercise 3.19 We will show that for both distributions the representation (3.15) takes place.
(i) For the exponential model, as shown in Exercise 2.11, the Fisher information $I_{n}(\theta)=n / \theta^{2}$, hence,

$$
\begin{gathered}
L_{n}\left(\theta_{0}+t / \sqrt{I_{n}\left(\theta_{0}\right)}\right)-L_{n}\left(\theta_{0}\right)=L_{n}\left(\theta_{0}+\frac{\theta_{0} t}{\sqrt{n}}\right)-L_{n}\left(\theta_{0}\right) \\
=n \ln \left(\theta_{0}+\frac{\theta_{0} t}{\sqrt{n}}\right)-\left(\theta_{0}+\frac{\theta_{0} t}{\sqrt{n}}\right) n \bar{X}_{n}-n \ln \left(\theta_{0}\right)+\theta_{0} n \bar{X}_{n} \\
=\underline{n} \ln \left(\theta_{0}\right)+n \ln \left(1+\frac{t}{\sqrt{n}}\right)-\theta_{0} n \bar{X}_{n}-t \theta_{0} \sqrt{n} \bar{X}_{n}-\underline{n} \ln \left(\theta_{0}\right)+\theta_{0} n \bar{X}_{n} .
\end{gathered}
$$

Using the Taylor expansion, we get that for large n,

$$
n \ln \left(1+\frac{t}{\sqrt{n}}\right)=n\left(\frac{t}{\sqrt{n}}-\frac{t^{2}}{2 n}+o_{n}\left(\frac{1}{n}\right)\right)=t \sqrt{n}-t^{2} / 2+o_{n}(1)
$$

Also, by the Central Limit Theorem, for all sufficiently large n, \bar{X}_{n} is approximately $\mathcal{N}\left(1 / \theta_{0}, 1 /\left(n \theta_{0}^{2}\right)\right)$, that is, $\left(\bar{X}_{n}-1 / \theta_{0}\right) \theta_{0} \sqrt{n}=\left(\theta_{0} \bar{X}_{n}-1\right) \sqrt{n}$ is approximately $\mathcal{N}(0,1)$. Consequently, $Z=-\left(\theta_{0} \bar{X}_{n}-1\right) \sqrt{n}$ is approximately standard normal as well. Thus, $n \ln (1+t / \sqrt{n})-t \theta_{0} \sqrt{n} \bar{X}_{n}=$ $t \sqrt{n}-t^{2} / 2+o_{n}(1)-t \theta_{0} \sqrt{n} \bar{X}_{n}=-t\left(\theta_{0} \bar{X}_{n}-1\right) \sqrt{n}-t^{2} / 2+o_{n}(1)=$ $t Z-t^{2} / 2+o_{n}(1)$.
(ii) For the Poisson model, by Exercise 1.4, $I_{n}(\theta)=n / \theta$, thus,

$$
\begin{gathered}
L_{n}\left(\theta_{0}+t / \sqrt{I_{n}\left(\theta_{0}\right)}\right)-L_{n}\left(\theta_{0}\right)=L_{n}\left(\theta_{0}+t \sqrt{\frac{\theta_{0}}{n}}\right)-L_{n}\left(\theta_{0}\right) \\
=n \bar{X}_{n} \ln \left(\theta_{0}+t \sqrt{\frac{\theta_{0}}{n}}\right)-n\left(\theta_{0}+t \sqrt{\frac{\theta_{0}}{n}}\right)-n \bar{X}_{n} \ln \left(\theta_{0}\right)+n \theta_{0} \\
=n \bar{X}_{n} \ln \left(1+\frac{t}{\sqrt{\theta_{0} n}}\right)-t \sqrt{\theta_{0} n}=n \bar{X}_{n}\left(\frac{t}{\sqrt{\theta_{0} n}}-\frac{t^{2}}{2 \theta_{0} n}+o_{n}\left(\frac{1}{n}\right)\right)-t \sqrt{\theta_{0} n} \\
=t \bar{X}_{n} \sqrt{\frac{n}{\theta_{0}}}-t \sqrt{\theta_{0} n}-\frac{\bar{X}_{n}}{\theta_{0}} \frac{t^{2}}{2}+o_{n}(1) \\
=t Z-\left(1+\frac{Z}{\sqrt{\theta_{0} n}}\right) \frac{t^{2}}{2}+o_{n}(1)=t Z-\frac{t^{2}}{2}+o_{n}(1) .
\end{gathered}
$$

Here we used the fact that by the CLT, for all large enough n, \bar{X}_{n} is approximately $\mathcal{N}\left(\theta_{0}, \theta_{0} / n\right)$, and hence,

$$
Z=\frac{\bar{X}_{n}-\theta_{0}}{\sqrt{\theta_{0} / n}}=\bar{X}_{n} \sqrt{\frac{n}{\theta_{0}}}-\sqrt{\theta_{0} n}
$$

is approximately $\mathcal{N}(0,1)$ random variable. Also,

$$
\frac{\bar{X}_{n}}{\theta_{0}}=\frac{\left(\sqrt{\theta_{0} n}+Z\right) \sqrt{\theta_{0} / n}}{\theta_{0}}=1+\frac{Z}{\sqrt{\theta_{0} n}}=1+o_{n}(1)
$$

Exercise 3.20 Consider a truncated loss function $w_{C}(u)=\min (w(u), C)$ for some $C>0$. As in the proof of Theorem 3.8, we write

$$
\begin{gathered}
\sup _{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[w_{C}\left(\sqrt{n I(\theta)}\left(\hat{\theta}_{n}-\theta\right)\right)\right] \\
\geq \frac{\sqrt{n I(\theta)}}{2 b} \int_{-b / \sqrt{n I(\theta)}}^{b / \sqrt{n I(\theta)}} \mathbb{E}_{\theta}\left[w_{C}\left(\sqrt{n I(\theta)}\left(\hat{\theta}_{n}-\theta\right)\right)\right] d \theta \\
=\frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{t / \sqrt{n I(\theta)}}\left[w_{C}\left(\sqrt{n I(\theta)} \hat{\theta}_{n}-t\right)\right] d t
\end{gathered}
$$

where we used a change of variables $t=\sqrt{n I(\theta)}$. Let $a_{n}=n I(t / \sqrt{n I(0)})$. We continue

$$
=\frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{0}\left[w_{C}\left(\sqrt{a_{n}} \hat{\theta}_{n}-t\right) \exp \left\{\Delta L_{n}(0, t / \sqrt{n I(0)})\right\}\right] d t
$$

Applying the LAN condition (3.16), we get

$$
=\frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{0}\left[w_{C}\left(\sqrt{a_{n}} \hat{\theta}_{n}-t\right) \exp \left\{z_{n}(0) t-t^{2} / 2+\varepsilon_{n}(0, t)\right\}\right] d t
$$

An elementary inequality $|x| \geq|y|-|x-y|$ for any x and $y \in \mathbb{R}$ implies that

$$
\begin{gathered}
\geq \frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{0}\left[w_{C}\left(\sqrt{a_{n}} \hat{\theta}_{n}-t\right) \exp \left\{\tilde{z}_{n}(0) t-t^{2} / 2\right\} d t+\right. \\
+\frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{0}\left[w_{C}\left(\sqrt{a_{n}} \hat{\theta}_{n}-t\right) \mid \exp \left\{z_{n}(0) t-t^{2} / 2+\varepsilon_{n}(0, t)\right\}\right. \\
\left.-\exp \left\{\tilde{z}_{n}(0) t-t^{2} / 2\right\} \mid\right] d t
\end{gathered}
$$

Now, by Theorem 3.11, and the fact that $w_{C} \leq C$, the second term vanishes as n grows, and thus is $o_{n}(1)$ as $n \rightarrow \infty$. Hence, we obtain the following lower bound

$$
\begin{gathered}
\sup _{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[w_{C}\left(\sqrt{n I(\theta)}\left(\hat{\theta}_{n}-\theta\right)\right)\right] \\
\geq \frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{0}\left[w_{C}\left(\sqrt{a_{n}} \hat{\theta}_{n}-t\right) \exp \left\{\tilde{z}_{n}(0) t-t^{2} / 2\right\}\right] d t \\
+o_{n}(1) .
\end{gathered}
$$

Put $\eta_{n}=\sqrt{a_{n}} \hat{\theta}_{n}-\tilde{z}_{n}(0)$. We can rewrite the bound as

$$
\begin{gathered}
\geq \frac{1}{2 b} \int_{-b}^{b} \mathbb{E}_{0}\left[\exp \left\{\frac{1}{2} \tilde{z}_{n}^{2}(0)\right\} w_{C}\left(\eta_{n}-\left(t-\tilde{z}_{n}(0)\right)\right) \exp \left\{-\frac{1}{2}\left(t-\tilde{z}_{n}(0)\right)^{2}\right\}\right] d t \\
+o_{n}(1)
\end{gathered}
$$

which, after the substitution $u=t-\tilde{z}_{n}(0)$ becomes

$$
\begin{gathered}
\geq \frac{1}{2 b} \int_{-(b-a)}^{b-a} \mathbb{E}_{0}\left[\exp \left\{\frac{1}{2} \tilde{z}_{n}^{2}(0)\right\} \mathbb{I}\left(\left|\tilde{z}_{n}(0)\right| \leq a\right) w_{C}\left(\eta_{n}-u\right) \exp \left\{-\frac{1}{2} u^{2}\right\}\right] d u \\
+o_{n}(1)
\end{gathered}
$$

As in the proof of Theorem 3.8, for $n \rightarrow \infty$,

$$
\mathbb{E}_{0}\left[\exp \left\{\tilde{z}_{n}^{2}(0)\right\} \mathbb{I}\left(\left|\tilde{z}_{n}(0)\right| \leq a\right)\right] \rightarrow \frac{2 a}{\sqrt{2 \pi}},
$$

and, by an argument similar to the proof of Theorem 3.9,

$$
\int_{-(b-a)}^{b-a} w_{C}\left(\eta_{n}-u\right) \exp \left\{-\frac{1}{2} u^{2}\right\} d u \geq \int_{-(b-a)}^{b-a} w_{C}(u) \exp \left\{-\frac{1}{2} u^{2}\right\} d u .
$$

Putting $a=b-\sqrt{b}$ and letting b, C and n go to infinity, we arrive at the conclusion that

$$
\sup _{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[w_{C}\left(\sqrt{n I(\theta)}\left(\hat{\theta}_{n}-\theta\right)\right)\right] \geq \int_{-\infty}^{\infty} \frac{w(u)}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

Exercise 3.21 Note that the distorted parabola can be written in the form

$$
z t-t^{2} / 2+\varepsilon(t)=-(1 / 2)(t-z)^{2}+z^{2} / 2+\varepsilon(t)
$$

The parabola $-(1 / 2)(t-z)^{2}+z^{2} / 2$ is maximized at $t=z$. The value of the distorted parabola at $t=z$ is bounded from below by

$$
-(1 / 2)(z-z)^{2}+z^{2} / 2+\varepsilon(z)=z^{2} / 2+\varepsilon(z) \geq z^{2} / 2-\delta
$$

On the other hand, for all t such that $|t-z|>2 \sqrt{\delta}$, this function is strictly less than $z^{2} / 2-\delta$. Indeed,

$$
\begin{gathered}
-(1 / 2)(t-z)^{2}+z^{2} / 2+\varepsilon(t)<-(1 / 2)(2 \sqrt{\delta})^{2}+z^{2} / 2+\varepsilon(t) \\
<-2 \delta+z^{2} / 2+\delta=z^{2} / 2-\delta
\end{gathered}
$$

Thus, the value $t=t^{*}$ at which the function is maximized must satisfy $\left|t^{*}-z\right| \leq 2 \sqrt{\delta}$.

Chapter 4

Exercise 4.22 (i) The likelihood function has the form

$$
\begin{gathered}
\prod_{i=1}^{n} p\left(X_{i}, \theta\right)=\theta^{-n} \prod_{i=1}^{n} \mathbb{I}\left(0 \leq X_{i} \leq \theta\right) \\
=\theta^{-n} \mathbb{I}\left(0 \leq X_{1} \leq \theta, 0 \leq X_{2} \leq \theta, \ldots, 0 \leq X_{n} \leq \theta\right)=\theta^{-n} \mathbb{I}\left(X_{(n)} \leq \theta\right)
\end{gathered}
$$

Here $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$. As depicted in the figure below, function θ^{-n} decreases everywhere, attaining its maximum at the left-most point. Therefore, the MLE of θ is $\hat{\theta}_{n}=X_{(n)}$.

(ii) The c.d.f. of $X_{(n)}$ can be found as follows:

$$
\begin{gathered}
F_{X_{(n)}}(x)=\mathbb{P}_{\theta}\left(X_{(n)} \leq x\right)=\mathbb{P}_{\theta}\left(X_{1} \leq x, X_{2} \leq x, \ldots, X_{n} \leq x\right) \\
=\mathbb{P}_{\theta}\left(X_{1} \leq x\right) \mathbb{P}_{\theta}\left(X_{2} \leq x\right) \ldots \mathbb{P}_{\theta}\left(X_{n} \leq x\right) \text { (by independence) } \\
=\left[\mathbb{P}\left(X_{1} \leq x\right)\right]^{n}=\left(\frac{x}{\theta}\right)^{n}, 0 \leq x \leq \theta .
\end{gathered}
$$

Hence the density of $X_{(n)}$ is

$$
f_{X_{(n)}}(x)=F_{X_{(n)}}^{\prime}(x)=\left(\frac{x^{n}}{\theta^{n}}\right)^{\prime}=\frac{n x^{n-1}}{\theta^{n}}
$$

The expected value of $X_{(n)}$ is computed as

$$
\mathbb{E}_{\theta}\left[X_{(n)}\right]=\int_{0}^{\theta} x \frac{n x^{n-1}}{\theta^{n}} d x=\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n} d x=\frac{n \theta^{n+1}}{(n+1) \theta^{n}}=\frac{n \theta}{n+1},
$$

and therefore,

$$
\mathbb{E}_{\theta}\left[\theta_{n}^{*}\right]=\mathbb{E}_{\theta}\left[\frac{n+1}{n} X_{(n)}\right]=\frac{n+1}{n} \frac{n \theta}{n+1}=\theta .
$$

(iii) The variance of $X_{(n)}$ is

$$
\begin{gathered}
\mathbb{V a r}_{\theta}\left[X_{(n)}\right]=\int_{0}^{\theta} x^{2} \frac{n x^{n-1}}{\theta^{n}} d x-\left(\frac{n \theta}{n+1}\right)^{2} \\
=\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+1} d x-\left(\frac{n \theta}{n+1}\right)^{2}=\frac{n \theta^{n+2}}{(n+2) \theta^{n}}-\left(\frac{n \theta}{n+1}\right)^{2} \\
=\frac{n \theta^{2}}{n+2}-\frac{n^{2} \theta^{2}}{(n+1)^{2}}=\frac{n \theta^{2}}{(n+1)^{2}(n+2)} .
\end{gathered}
$$

Consequently, the variance of θ_{n}^{*} is
$\mathbb{V a r}_{\theta}\left[\theta_{n}^{*}\right]=\operatorname{Var}_{\theta}\left[\frac{n+1}{n} X_{(n)}\right]=\frac{(n+1)^{2}}{n^{2}} \frac{n \theta^{2}}{(n+1)^{2}(n+2)}=\frac{\theta^{2}}{n(n+2)}$.

Exercise 4.23 (i) The likelihood function can be written as

$$
\begin{gathered}
\prod_{i=1}^{n} p\left(X_{i}, \theta\right)=\exp \left\{-\left(\sum_{i=1}^{n} X_{i}-n \theta\right)\right\} \prod_{i=1}^{n} \mathbb{I}\left(X_{i} \geq \theta\right) \\
=\exp \left\{-\sum_{i=1}^{n} X_{i}+n \theta\right\} \mathbb{I}\left(X_{1} \geq \theta, X_{2} \geq \theta, \ldots, X_{n} \geq \theta\right) \\
=\exp \{n \theta\} \mathbb{I}\left(X_{(1)} \geq \theta\right) \exp \left\{-\sum_{i=1}^{n} X_{i}\right\}
\end{gathered}
$$

with $X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right)$. The second exponent is constant with respect to θ and may be disregarded for maximization purposes. The function $\exp \{n \theta\}$ is increasing and therefore reaches its maximum at the right-most point $\hat{\theta}_{n}=X_{(1)}$.
(ii) The c.d.f. of the minimum can be found by the following argument:

$$
\begin{gathered}
1-F_{X_{(1)}}(x)=\mathbb{P}_{\theta}\left(X_{(1)} \geq x\right)=\mathbb{P}_{\theta}\left(X_{1} \geq x, X_{2} \geq x, \ldots, X_{n} \geq x\right) \\
=\mathbb{P}_{\theta}\left(X_{1} \geq x\right) \mathbb{P}_{\theta}\left(X_{2} \geq x\right) \ldots \mathbb{P}_{\theta}\left(X_{n} \geq x\right) \quad \text { (by independence) } \\
=\left[\mathbb{P}_{\theta}\left(X_{1} \geq x\right)\right]^{n}=\left[\int_{x}^{\infty} e^{-(y-\theta)} d y\right]^{n}=\left[e^{-(x-\theta)}\right]^{n}=e^{-n(x-\theta)}
\end{gathered}
$$

whence

$$
F_{X_{(1)}}(x)=1-e^{-n(x-\theta)} .
$$

Therefore, the density of $X_{(1)}$ is derived as

$$
f_{X_{(1)}}(x)=F_{X_{(1)}}^{\prime}(x)=\left[1-e^{-n(x-\theta)}\right]^{\prime}=n e^{-n(x-\theta)}, x \geq \theta
$$

The expected value of $X_{(1)}$ is equal to

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[X_{(1)}\right]=\int_{\theta}^{\infty} x n e^{-n(x-\theta)} d x \\
\left.=\int_{0}^{\infty}\left(\frac{y}{n}+\theta\right) e^{-y} d y \text { (after substitution } y=n(x-\theta)\right) \\
=\frac{1}{n} \underbrace{\int_{0}^{\infty} y e^{-y} d y}_{=1}+\theta \underbrace{\int_{0}^{\infty} e^{-y} d y}_{=1}=\frac{1}{n}+\theta
\end{gathered}
$$

As a result, the estimator $\theta_{n}^{*}=X_{(1)}-1 / n$ is an unbiased estimator of θ.
(iii) The variance of $X_{(1)}$ is computed as

$$
\begin{gathered}
\mathbb{V a r}_{\theta}\left[X_{(1)}\right]=\int_{\theta}^{\infty} x^{2} n e^{-n(x-\theta)} d x-\left(\frac{1}{n}+\theta\right)^{2} \\
=\int_{0}^{\infty}\left(\frac{y}{n}+\theta\right)^{2} e^{-y} d y-\left(\frac{1}{n}+\theta\right)^{2} \\
=\frac{1}{n^{2}} \underbrace{\int_{0}^{\infty} y^{2} e^{-y} d y}_{=2}+\frac{2 \theta}{n} \underbrace{\int_{0}^{\infty} y e^{-y} d y}_{=1}+\theta^{2} \underbrace{\int_{0}^{\infty} e^{-y} d y}_{=1}- \\
-\frac{1}{n^{2}}-\frac{2 \theta}{n}-\theta^{2}=\frac{1}{n^{2}} .
\end{gathered}
$$

Exercise 4.24 We will show that the squared L_{2} - norm of $\sqrt{p(\cdot, \theta+\Delta \theta)}-$ $\sqrt{p(\cdot, \theta)}$ is equal to $\Delta \theta+o(\Delta \theta)$ as $\Delta \theta \rightarrow 0$. Then by Theorem 4.3 and Example 4.4 it will follow that the Fisher information does not exist. By definition, we obtain

$$
\begin{gathered}
\|\sqrt{p(\cdot, \theta+\Delta \theta)}-\sqrt{p(\cdot, \theta)}\|_{2}^{2}= \\
=\int_{\mathbb{R}}\left[e^{-(x-\theta-\Delta \theta) / 2} \mathbb{I}(x \geq \theta+\Delta \theta)-e^{-(x-\theta) / 2} \mathbb{I}(x \geq \theta)\right]^{2} d x \\
=\int_{\theta}^{\theta+\Delta \theta} e^{-(x-\theta)} d x+\int_{\theta+\Delta \theta}^{\infty}\left(e^{-(x-\theta-\Delta \theta) / 2}-e^{-(x-\theta) / 2}\right)^{2} d x \\
=\int_{\theta}^{\theta+\Delta \theta} e^{-(x-\theta)} d x+\left(e^{\Delta \theta / 2}-1\right)^{2} \int_{\theta+\Delta \theta}^{\infty} e^{-(x-\theta)} d x \\
=1-e^{-\Delta \theta}+\left(e^{\Delta \theta / 2}-1\right)^{2} e^{-\Delta \theta}
\end{gathered}
$$

$$
=2-2 e^{-\Delta \theta / 2}=\Delta \theta+o(\Delta \theta) \text { as } \Delta \theta \rightarrow 0
$$

Exercise 4.25 First of all, we find the values of c_{-}and c_{+}as functions of θ. By our assumption, $c_{+}-c_{-}=\theta$. Also, since the density integrates to one, $c_{+}+c_{-}=1$. Hence, $c_{-}=(1-\theta) / 2$ and $c_{+}=(1+\theta) / 2$.

Next, we use the formula proved in Theorem 4.3 to compute the Fisher information. We have

$$
\begin{gathered}
I(\theta)=4\|\partial \sqrt{p(\cdot, \theta)} / \partial \theta\|_{2}^{2}= \\
=4\left[\int_{-1}^{0}\left(\frac{\partial \sqrt{(1-\theta) / 2}}{\partial \theta}\right)^{2} d x+\int_{0}^{1}\left(\frac{\partial \sqrt{(1+\theta) / 2}}{\partial \theta}\right)^{2} d x\right] \\
=4\left[\frac{1}{8(1-\theta)}+\frac{1}{8(1+\theta)}\right]=\frac{1}{1-\theta^{2}} .
\end{gathered}
$$

Exercise 4.26 In the case of the shifted exponential distribution we have

$$
\begin{gathered}
Z_{n}(\theta, \theta+u / n)=\prod_{i=1}^{n} \frac{\exp \left\{-X_{i}+(\theta+u / n)\right\} \mathbb{I}\left(X_{i} \geq \theta+u / n\right)}{\exp \left\{-X_{i}+\theta\right\} \mathbb{I}\left(X_{i} \geq \theta\right)} \\
=\frac{\exp \left\{-\sum_{i=1}^{n} X_{i}+n(\theta+u / n)\right\} \mathbb{I}\left(X_{(1)} \geq \theta+u / n\right)}{\exp \left\{-\sum_{i=1} X_{i}+n \theta\right\} \mathbb{I}\left(X_{(1)} \geq \theta\right)} \\
=e^{u} \frac{\mathbb{I}\left(X_{(1)} \geq \theta+u / n\right)}{\mathbb{I}\left(X_{(1)} \geq \theta\right)}=e^{u} \frac{\mathbb{1}\left(u \leq T_{n}\right)}{\mathbb{I}\left(X_{(1)} \geq \theta\right)} \text { where } T_{n}=n\left(X_{(1)}-\theta\right) .
\end{gathered}
$$

Here $\mathbb{P}_{\theta}\left(X_{(1)} \geq \theta\right)=1$, and

$$
\begin{gathered}
\mathbb{P}_{\theta}\left(T_{n} \geq t\right)=\mathbb{P}_{\theta}\left(n\left(X_{(1)}-\theta\right) \geq t\right) \\
=\mathbb{P}_{\theta}\left(X_{(1)} \geq \theta+t / n\right)=\exp \{-n(\theta+t / n-\theta)\}=\exp \{-t\}
\end{gathered}
$$

Therefore, the likelihood ratio has a representation that satisfies property (ii) in the definition of an asymptotically exponential statistical experiment with $\lambda(\theta)=1$. Note that in this case, T_{n} has an exact exponential distribution for any n, and $o_{n}(1)=0$.

Exercise 4.27 (i) From Exercise 4.22, the estimator θ_{n}^{*} is unbiased and its variance is equal to $\theta^{2} /[n(n+2)]$. Therefore,

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{\theta_{0}}\left[\left(n\left(\theta_{n}^{*}-\theta_{0}\right)\right)^{2}\right]=\lim _{n \rightarrow \infty} n^{2} \mathbb{V}^{2} r_{\theta_{0}}\left[\theta_{n}^{*}\right]=\lim _{n \rightarrow \infty} \frac{n^{2} \theta_{0}^{2}}{n(n+2)}=\theta_{0}^{2}
$$

(ii) From Exercise 4.23, θ_{n}^{*} is unbiased and its variance is equal to $1 / n^{2}$. Hence,

$$
\mathbb{E}_{\theta_{0}}\left[\left(n\left(\theta_{n}^{*}-\theta_{0}\right)\right)^{2}\right]=n^{2} \mathbb{V a r}_{\theta_{0}}\left[\theta_{n}^{*}\right]=\frac{n^{2}}{n^{2}}=1
$$

Exercise 4.28 Consider the case $y \leq 0$. Then

$$
\begin{gathered}
\lambda_{0} \min _{y \leq 0} \int_{0}^{\infty}|u-y| e^{-\lambda_{0} u} d u=\lambda_{0} \min _{y \leq 0} \int_{0}^{\infty}(u-y) e^{-\lambda_{0} u} d u \\
=\min _{y \leq 0}\left(\frac{1}{\lambda_{0}}-y\right)=\frac{1}{\lambda_{0}}, \text { attained at } y=0
\end{gathered}
$$

In the case $y \geq 0$,

$$
\begin{gathered}
\lambda_{0} \min _{y \geq 0} \int_{0}^{\infty}|u-y| e^{-\lambda_{0} u} d u \\
=\lambda_{0} \min _{y \geq 0}\left(\int_{y}^{\infty}(u-y) e^{-\lambda_{0} u} d u+\int_{0}^{y}(y-u) e^{-\lambda_{0} u} d u\right) \\
=\min _{y \geq 0}\left(\frac{2 e^{-\lambda_{0} y}-1}{\lambda_{0}}+y\right)=\frac{\ln 2}{\lambda_{0}},
\end{gathered}
$$

attained at $y=\ln 2 / \lambda_{0}$.
Thus,

$$
\lambda_{0} \min _{y \in \mathbb{R}} \int_{0}^{\infty}|u-y| e^{-\lambda_{0} u} d u=\min \left(\frac{\ln 2}{\lambda_{0}}, \frac{1}{\lambda_{0}}\right)=\frac{\ln 2}{\lambda_{0}} .
$$

ExERCISE 4.29 (i) For a normalizing constant C, we write by definition

$$
\begin{gathered}
f_{b}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=C f\left(X_{1}, \theta\right) \ldots f\left(X_{n}, \theta\right) \pi_{b}(\theta) \\
=C \exp \left\{-\sum_{i=1}^{n}\left(X_{i}-\theta\right)\right\} \mathbb{I}\left(X_{1} \geq \theta\right) \ldots \mathbb{I}\left(X_{n} \geq \theta\right) \frac{1}{b} \mathbb{I}(0 \leq \theta \leq b) \\
=C_{1} e^{n \theta} \mathbb{I}\left(X_{(1)} \geq \theta\right) \mathbb{I}(0 \leq \theta \leq b)=C_{1} e^{n \theta} \mathbb{I}(0 \leq \theta \leq Y)
\end{gathered}
$$

where

$$
C_{1}=\left(\int_{0}^{Y} e^{n \theta} d \theta\right)^{-1}=\frac{n}{\exp \{n Y\}-1}, \quad Y=\min \left(X_{(1)}, b\right)
$$

(ii) The posterior mean follows by direct integration,

$$
\begin{gathered}
\theta_{n}^{*}(b)=\int_{0}^{Y} \frac{n \theta e^{n \theta}}{\exp \{n Y\}-1} d \theta=\frac{1}{n} \frac{1}{\exp \{n Y\}-1} \int_{0}^{n Y} t e^{t} d t \\
=\frac{1}{n} \frac{n Y \exp \{n Y\}-(\exp \{n Y\}-1)}{\exp \{n Y\}-1}=Y-\frac{1}{n}+\frac{Y}{\exp (n Y)-1} .
\end{gathered}
$$

(iii) Consider the last term in the expression for the estimator $\theta_{n}^{*}(b)$. Since by our assumption $\theta \geq \sqrt{b}$, we have that $\sqrt{b} \leq Y \leq b$. Therefore, for all large enough b, the deterministic upper bound holds with \mathbb{P}_{θ} - probability 1:

$$
\frac{Y}{\exp \{n Y\}-1} \leq \frac{b}{\exp \{n \sqrt{b}\}-1} \rightarrow 0 \text { as } b \rightarrow \infty
$$

Hence the last term is negligible. To prove the proposition, it remains to show that

$$
\lim _{b \rightarrow \infty} \mathbb{E}_{\theta}\left[n^{2}\left(Y-\frac{1}{n}-\theta\right)^{2}\right]=1
$$

Using the definition of Y and the explicit formula for the distribution of $X_{(1)}$, we get

$$
\begin{gathered}
\mathbb{E}_{\theta}\left[n^{2}\left(Y-\frac{1}{n}-\theta\right)^{2}\right]= \\
=\mathbb{E}_{\theta}\left[n^{2}\left(X_{(1)}-\frac{1}{n}-\theta\right)^{2} \mathbb{I}\left(X_{(1)} \leq b\right)+n^{2}\left(b-\frac{1}{n}-\theta\right)^{2} \mathbb{I}\left(X_{(1)} \geq b\right)\right] \\
=n^{2} \int_{\theta}^{b}\left(y-\frac{1}{n}-\theta\right)^{2} n e^{-n(y-\theta)} d y+n^{2}\left(b-\frac{1}{n}-\theta\right)^{2} \mathbb{P}_{\theta}\left(X_{(1)} \geq b\right) \\
=\int_{0}^{n(b-\theta)}(t-1)^{2} e^{-t} d t+(n(b-\theta)-1)^{2} e^{-n(b-\theta)} \rightarrow 1 \text { as } b \rightarrow \infty
\end{gathered}
$$

Here the first term tends to 1 , while the second one vanishes as $b \rightarrow \infty$, uniformly in $\theta \in[\sqrt{b}, b-\sqrt{b}]$.
(iv) We write

$$
\begin{gathered}
\sup _{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[\left(n\left(\hat{\theta}_{n}-\theta\right)\right)^{2}\right] \geq \int_{0}^{b} \frac{1}{b} \mathbb{E}_{\theta}\left[\left(n\left(\hat{\theta}_{n}-\theta\right)\right)^{2}\right] d \theta \\
\geq \frac{1}{b} \int_{0}^{b} \mathbb{E}_{\theta}\left[\left(n\left(\theta_{n}^{*}(b)-\theta\right)\right)^{2}\right] d \theta \geq \frac{1}{b} \int_{\sqrt{b}}^{b-\sqrt{b}} \mathbb{E}_{\theta}\left[\left(n\left(\theta_{n}^{*}(b)-\theta\right)\right)^{2}\right] d \theta \\
\geq \frac{b-2 \sqrt{b}}{b} \inf _{\sqrt{b} \leq \theta \leq b-\sqrt{b}} \mathbb{E}_{\theta}\left[\left(n\left(\theta_{n}^{*}(b)-\theta\right)\right)^{2}\right] .
\end{gathered}
$$

The infimum is whatever close to 1 if b is sufficiently large. Thus, the limit as $b \rightarrow \infty$ of the right-hand side equals 1 .

Chapter 5

Exercise 5.30 The Bayes estimator θ_{n}^{*} is the posterior mean,

$$
\theta_{n}^{*}=\frac{(1 / n) \sum_{\theta=1}^{n} \theta \exp \left\{L_{n}(\theta)\right\}}{(1 / n) \sum_{\theta=1}^{n} \exp \left\{L_{n}(\theta)\right\}}=\frac{\sum_{\theta=1}^{n} \theta \exp \left\{L_{n}(\theta)\right\}}{\sum_{\theta=1}^{n} \exp \left\{L_{n}(\theta)\right\}} .
$$

Applying Theorem 5.1 and some transformations, we get

$$
\begin{gathered}
\theta_{n}^{*}=\frac{\sum_{\theta=1}^{n} \theta \exp \left\{L_{n}(\theta)-L_{n}\left(\theta_{0}\right)\right\}}{\sum_{\theta=1}^{n} \exp \left\{L_{n}(\theta)-L_{n}\left(\theta_{0}\right)\right\}} \\
=\frac{\sum_{j: 1 \leq j+\theta_{0} \leq n}\left(j+\theta_{0}\right) \exp \left\{L_{n}\left(j+\theta_{0}\right)-L_{n}\left(\theta_{0}\right)\right\}}{\sum_{j: 1 \leq j+\theta_{0} \leq n} \exp \left\{L_{n}\left(j+\theta_{0}\right)-L_{n}\left(\theta_{0}\right)\right\}} \\
=\frac{\sum_{j: 1 \leq j+\theta_{0} \leq n}\left(j+\theta_{0}\right) \exp \left\{c W(j)-c^{2}|j| / 2\right\}}{\sum_{j: 1 \leq j+\theta_{0} \leq n} \exp \left\{c W(j)-c^{2}|j| / 2\right\}} \\
=\theta_{0}+\frac{\sum_{j: 1 \leq j+\theta_{0} \leq n} j \exp \left\{c W(j)-c^{2}|j| / 2\right\}}{\sum_{j: 1 \leq j+\theta_{0} \leq n} \exp \left\{c W(j)-c^{2}|j| / 2\right\}} .
\end{gathered}
$$

Exercise 5.31 We use the definition of $W(j)$ to notice that $W(j)$ has a $\mathcal{N}(0,|j|)$ distribution. Therefore,

$$
\begin{gathered}
\mathbb{E}_{\theta_{0}}\left[\exp \left\{c W(j)-c^{2}|j| / 2\right\}\right]=\exp \left\{-c^{2}|j| / 2\right\} \mathbb{E}_{\theta_{0}}[\exp \{c W(j)\}] \\
=\exp \left\{-c^{2}|j| / 2+c^{2}|j| / 2\right\}=1
\end{gathered}
$$

The expected value of the numerator in (5.3) is equal to

$$
\mathbb{E}_{\theta_{0}}\left[\sum_{j \in \mathbb{Z}} j \exp \left\{c W(j)-c^{2}|j| / 2\right\}\right]=\sum_{j \in \mathbb{Z}} j=\infty .
$$

Likewise, the expectation of the denominator is infinite,

$$
\mathbb{E}_{\theta_{0}}\left[\sum_{j \in \mathbb{Z}} \exp \left\{c W(j)-c^{2}|j| / 2\right\}\right]=\sum_{j \in \mathbb{Z}} 1=\infty .
$$

Exercise 5.32 Note that

$$
\begin{gathered}
-K_{ \pm}=\int_{-\infty}^{\infty}\left[\ln \frac{p_{0}(x \pm \mu)}{p_{0}(x)}\right] p_{0}(x) d x \\
=\int_{-\infty}^{\infty}\left[\ln \left(1+\frac{p_{0}(x \pm \mu)-p_{0}(x)}{p_{0}(x)}\right)\right] p_{0}(x) d x
\end{gathered}
$$

$$
\begin{gathered}
<\int_{-\infty}^{\infty}\left[\frac{p_{0}(x \pm \mu)-p_{0}(x)}{p_{0}(x)}\right] p_{0}(x) d x \\
\int_{-\infty}^{\infty}\left[p_{0}(x \pm \mu)-p_{0}(x)\right] d x=1-1=0 .
\end{gathered}
$$

Here we have applied the inequality $\ln (1+y)<y$, if $y \neq 0$, and the fact that probability densities $p_{0}(x \pm \mu)$ and $p_{0}(x)$ integrate to 1 .

ExErcise 5.33 Assume for simplicity that $\tilde{\theta}_{n}>\theta_{0}$. By the definition of the $\operatorname{MLE}, \Delta L_{n}\left(\theta_{0}, \tilde{\theta}_{n}\right)=L_{n}\left(\tilde{\theta}_{n}\right)-L_{n}\left(\theta_{0}\right) \geq 0$. Also, by Theorem 5.14,

$$
\Delta L_{n}\left(\theta_{0}, \tilde{\theta}_{n}\right)=W\left(\tilde{\theta}_{n}-\theta_{0}\right)-K_{+}\left(\tilde{\theta}_{n}-\theta_{0}\right)=\sum_{i: \theta_{0}<i \leq \tilde{\theta}_{n}} \varepsilon_{i}-K_{+}\left(\tilde{\theta}_{n}-\theta_{0}\right) .
$$

Therefore, the following inequalities take place

$$
\begin{gathered}
\mathbb{P}_{\theta_{0}}\left(\tilde{\theta}_{n}-\theta_{0}=m\right) \leq \mathbb{P}_{\theta_{0}}\left(\tilde{\theta}_{n}-\theta_{0} \geq m\right) \\
\leq \sum_{l=m}^{\infty} \mathbb{P}_{\theta_{0}}\left(\Delta L_{n}\left(\theta_{0}, \theta_{0}+l\right) \geq 0\right)=\sum_{l=m}^{\infty} \mathbb{P}_{\theta_{0}}\left(\sum_{i=1}^{l} \varepsilon_{i} \geq K_{+} l\right) \\
\leq c_{1} \sum_{l=m}^{\infty} l^{-(4+\delta)} \leq c_{2} m^{-(3+\delta)}
\end{gathered}
$$

A similar argument treats the case $\tilde{\theta}_{n}<\theta_{0}$. Thus, there exists a positive constant c_{3} such that

$$
\mathbb{P}_{\theta_{0}}\left(\left|\tilde{\theta}_{n}-\theta_{0}\right|=m\right) \leq c_{3} m^{-(3+\delta)} .
$$

Consequently,
$\mathbb{E}_{\theta_{0}}\left[\left|\tilde{\theta}_{n}-\theta_{0}\right|^{2}\right]=\sum_{m=0}^{\infty} m^{2} \mathbb{P}_{\theta_{0}}\left(\left|\tilde{\theta}_{n}-\theta_{0}\right|=m\right) \leq c_{3} \sum_{m=0}^{\infty} m^{2} m^{-(3+\delta)}<\infty$.

Exercise 5.34 We estimate the true change point value by the maximum likelihood method. The log-likelihood function has the form
$L(\theta)=\sum_{i=1}^{\theta}\left[X_{i} \ln (0.4)+\left(1-X_{i}\right) \ln (0.6)\right]+\sum_{i=\theta+1}^{30}\left[X_{i} \ln (0.7)+\left(1-X_{i}\right) \ln (0.3)\right]$.

Plugging in the concrete observations, we obtain the values of the log-likelihood function for different values of θ. They are summarized in the table below.

θ	$L(\theta)$	θ	$L(\theta)$	θ	$L(\theta)$
1	-21.87	11	-19.95	21	-20.53
2	-21.18	12	-20.51	22	-21.09
3	-21.74	13	-21.07	33	-21.65
4	-21.04	14	-20.37	24	-20.96
5	-21.60	25	-20.93	25	-21.52
6	-20.91	16	-20.24	26	-20.83
7	-20.22	17	-19.55	27	-21.39
8	-20.78	18	-20.11	28	-21.95
9	-21.36	19	-20.67	29	-22.51
10	-20.64	20	-19.97	30	-21.81

The log-likelihood function reaches its maximum -19.55 when $\theta=17$.

Exercise 5.35 Consider a set $\mathfrak{X} \subseteq \mathbb{R}$ with the property that the probability of a random variable with the c.d.f. F_{1} falling into that set is not equal to the probability of this event for a random variable with the c.d.f. F_{2}. Note that such a set necessarily exists, because otherwise, F_{1} and F_{2} would be identically equal. Ideally we would like the set \mathfrak{X} to be as large as possible. That is, we want \mathfrak{X} to be the largest set such that

$$
\int_{\mathfrak{X}} d F_{1}(x) \neq \int_{\mathfrak{X}} d F_{2}(x) .
$$

Replacing the original observations X_{i} by the indicators $Y_{i}=\mathbb{I}\left(X_{i} \in \mathfrak{X}\right)$, $i=1, \ldots, n$, we get a model of Bernoulli observations with the probability of a success $p_{1}=\int_{\mathfrak{X}} d F_{1}(x)$ before the jump, and $p_{2}=\int_{\mathfrak{X}} d F_{2}(x)$, afterwards. The method of maximum likelihood may be applied to find the MLE of the change point (see Exercise 5.34).

Chapter 6

Exercise 6.36 Take any event A in the σ-algebra \mathcal{F}. Denote by A^{c} its complement. By definition, A^{c} belongs to \mathcal{F}. Since an empty set can be written as the intersection of A and A^{c}, it is also \mathcal{F} - measurable.

ExErcise 6.37 (i) If $\tau=T$ for some positive integer T, then for any $t \geq 1$, the event $\{\tau=t\}$ is the whole probability space if $t=T$ and is empty if $t \neq T$. In either case, the event $\{\tau=t\} \in \mathcal{F}_{t}$. To see this, proceed as in the previous exercise. Take any event $A \in \mathcal{F}_{t}$. Then A^{c} belongs to \mathcal{F}_{t} as well, and so do $A \cup A^{c}$ (the entire set) and $A \cap A^{c}$ (the empty set). Therefore, τ is a stopping time by definition.
(ii) If $\tau=\min \left\{i: X_{i} \in[a, b]\right\}$, then for any $t \geq 1$, we write

$$
\{\tau=t\}=\bigcap_{i=1}^{t-1}\left(\left\{X_{i}<a\right\} \cup\left\{X_{i}>b\right\}\right) \bigcap\left\{a \leq X_{t} \leq b\right\}
$$

Each of these events belongs to \mathcal{F}_{t}, hence $\{\tau=t\}$ is \mathcal{F}_{t} - measurable, and thus, τ is a stopping time.
(iii) Consider $\tau=\min \left(\tau_{1}, \tau_{2}\right)$. Then

$$
\{\tau=t\}=\left(\left\{\tau_{1}>t\right\} \cap\left\{\tau_{2}=t\right\}\right) \bigcup\left(\left\{\tau_{2}>t\right\} \cap\left\{\tau_{1}=t\right\}\right) .
$$

As in the proof of Lemma 6.4, the events $\left\{\tau_{1}>t\right\}=\left\{\tau_{1} \leq t\right\}^{c}=$ $\left(\bigcup_{s=1}^{t}\left\{\tau_{1}=s\right\}\right)^{c}$, and $\left\{\tau_{2}>t\right\}=\left(\bigcup_{s=1}^{t}\left\{\tau_{2}=s\right\}\right)^{c}$ belong to \mathcal{F}_{t}. Events $\left\{\tau_{1}=t\right\}$ and $\left\{\tau_{2}=t\right\}$ are \mathcal{F}_{t} - measurable by definition of a stopping time. Consequently, $\{\tau=t\} \in \mathcal{F}_{t}$, and τ is a stopping time.

As for $\tau=\max \left(\tau_{1}, \tau_{2}\right)$, we write

$$
\{\tau=t\}=\left(\left\{\tau_{1}<t\right\} \cap\left\{\tau_{2}=t\right\}\right) \bigcup\left(\left\{\tau_{2}<t\right\} \cap\left\{\tau_{1}=t\right\}\right)
$$

where each of these events is \mathcal{F}_{t}-measurable. Thus, τ is a stopping time.
(iv) For $\tau=\tau_{1}+s$, where τ_{1} is a stopping time and s is a positive integer, we get

$$
\{\tau=t\}=\left\{\tau_{1}=t-s\right\}
$$

which belongs to \mathcal{F}_{t-s}, and therefore, to \mathcal{F}_{t}. Thus, τ is a stopping time.

EXERCISE 6.38 (i) Let $\tau=\max \left\{i: X_{i} \in[a, b], 1 \leq i \leq n\right\}$. The event

$$
\{\tau=t\}=\bigcap_{i=t+1}^{n}\left(\left\{X_{i}<a\right\} \cup\left\{X_{i}>b\right\}\right) \bigcap\left\{a \leq X_{t} \leq b\right\}
$$

All events for $i \geq t+1$ are not \mathcal{F}_{t} - measurable since they depend on observations obtained after time t. Therefore, τ doesn't satisfy the definition of a stopping time. Intuitively, one has to collect all n observations to decide when was the last time an observation fell in a given interval.
(ii) Take $\tau=\tau_{1}-s$ with a positive integer s and a given stopping time τ_{1}. We have

$$
\{\tau=t\}=\left\{\tau_{1}=t+s\right\} \in \mathcal{F}_{t+s} \nsubseteq \mathcal{F}_{t}
$$

Thus, this event is not \mathcal{F}_{t} - measurable, and τ is not a stopping time. Intuitively, one cannot know s steps in advance when a stopping time τ_{1} occurs.

ExErcise 6.39 (i) Let $\tau=\min \left\{i: X_{1}^{2}+\cdots+X_{i}^{2}>H\right\}$. Then for any $t \geq 1$,

$$
\{\tau=t\}=\left(\bigcap_{i=1}^{t-1}\left\{X_{1}^{2}+\cdots+X_{i}^{2} \leq H\right\}\right) \bigcap\left\{X_{1}^{2}+\cdots+X_{t}^{2}>H\right\}
$$

All of these events are \mathcal{F}_{t} - measurable, hence τ is a stopping time.
(ii) Note that $X_{1}^{2}+\cdots+X_{\tau}^{2}>H$ since we defined τ this way. Therefore, by Wald's identity (see Theorem 6.5),

$$
H<\mathbb{E}\left[X_{1}^{2}+\cdots+X_{\tau}^{2}\right]=\mathbb{E}\left[X_{1}^{2}\right] \mathbb{E}[\tau]=\sigma^{2} \mathbb{E}[\tau]
$$

Thus, $\mathbb{E}[\tau]>H / \sigma^{2}$.

Exercise 6.40 Let $\mu=\mathbb{E}\left[X_{1}\right]$. Using Wald's first identity (see Theorem 6.5), we note that

$$
\mathbb{E}\left[X_{1}+\cdots+X_{\tau}-\mu \tau\right]=0
$$

Therefore, we write

$$
\begin{gathered}
\operatorname{Var}\left[X_{1}+\cdots+X_{\tau}-\mu \tau\right]=\mathbb{E}\left[\left(X_{1}+\cdots+X_{\tau}-\mu \tau\right)^{2}\right] \\
=\mathbb{E}\left[\sum_{t=1}^{\infty}\left(X_{1}+\cdots+X_{t}-\mu t\right)^{2} \mathbb{I}(\tau=t)\right] \\
=\mathbb{E}\left[\left(X_{1}-\mu\right)^{2} \mathbb{I}(\tau \geq 1)+\left(X_{2}-\mu\right)^{2} \mathbb{I}(\tau \geq 2)+\cdots+\left(X_{t}-\mu\right)^{2} \mathbb{I}(\tau \geq t)+\ldots\right]
\end{gathered}
$$

$$
=\sum_{t=1}^{\infty} \mathbb{E}\left[\left(X_{t}-\mu\right)^{2} \mathbb{I}(\tau \geq t)\right]
$$

The random event $\{\tau \geq t\}$ belongs to \mathcal{F}_{t-1}. Hence, $\mathbb{I}(\tau \geq t)$ and X_{t} are independent. Finally, we get

$$
\begin{gathered}
\mathbb{V a r}\left[X_{1}+\cdots+X_{\tau}-\mu \tau\right]=\sum_{t=1}^{\infty} \mathbb{E}\left[\left(X_{t}-\mu\right)^{2}\right] \mathbb{P}(\tau \geq t) \\
\quad=\operatorname{Var}\left[X_{1}\right] \sum_{t=1}^{\infty} \mathbb{P}(\tau \geq t)=\operatorname{Var}\left[X_{1}\right] \mathbb{E}[\tau]
\end{gathered}
$$

Exercise 6.41 (i) Using Wald's first identity, we obtain

$$
\mathbb{E}_{\theta}\left[\hat{\theta}_{\tau}\right]=\frac{1}{h} \mathbb{E}_{\theta}\left[X_{1}+\cdots+X_{\tau}\right]=\frac{1}{h} \mathbb{E}_{\theta}\left[X_{1}\right] \mathbb{E}_{\theta}[\tau]=\frac{1}{h} \theta h=\theta
$$

Thus, $\hat{\theta}_{\tau}$ is an unbiased estimator of θ.
(ii) First note the inequality derived from an elementary inequality $(x+y)^{2} \leq$ $2\left(x^{2}+y^{2}\right)$. For any random variables X and Y such that $\mathbb{E}[X]=\mu_{X}$ and $\mathbb{E}[Y]=\mu_{Y}$,

$$
\begin{gathered}
\operatorname{Var}[X+Y]=\mathbb{E}\left[\left(\left(X-\mu_{X}\right)+\left(Y-\mu_{Y}\right)\right)^{2}\right] \\
\leq 2\left(\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]+\mathbb{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]\right)=2(\mathbb{V a r}[X]+\mathbb{V} \operatorname{ar}[Y])
\end{gathered}
$$

Applying this inequality, we arrive at

$$
\begin{aligned}
& \operatorname{Var}_{\theta}\left[\hat{\theta}_{\tau}\right]=\frac{1}{h^{2}} \mathbb{V a r}_{\theta}\left[X_{1}+\cdots+X_{\tau}-\theta \tau+\theta \tau\right] \\
& \leq \frac{2}{h^{2}}\left(\mathbb{V a r}_{\theta}\left[X_{1}+\cdots+X_{\tau}-\theta \tau\right]+\operatorname{Var}_{\theta}[\theta \tau]\right) .
\end{aligned}
$$

Note that $\mathbb{E}_{\theta}\left[X_{1}\right]=\theta$. Using this notation, we apply Wald's second identity from Exercise 6.40 to conclude that

$$
\mathbb{V a r}_{\theta}\left[\hat{\theta}_{\tau}\right] \leq \frac{2}{h^{2}}\left(\mathbb{V a r}_{\theta}\left[X_{1}\right] \mathbb{E}_{\theta}[\tau]+\theta^{2} \mathbb{V a r}_{\theta}[\tau]\right)=\frac{2 \sigma^{2}}{h}+\frac{2 \theta^{2} \mathbb{V a r}_{\theta}[\tau]}{h^{2}}
$$

ExERCISE 6.42 (i) Applying repeatedly the recursive equation of the autoregressive model (6.7), we obtain

$$
X_{i}=\theta X_{i-1}+\varepsilon_{i}=\theta\left[\theta X_{i-2}+\varepsilon_{i-1}\right]+\varepsilon_{i}=\theta^{2} X_{i-2}+\theta \varepsilon_{i-1}+\varepsilon_{i}
$$

$$
\begin{gathered}
=\theta^{2}\left[\theta X_{i-3}+\varepsilon_{i-2}\right]+\theta \varepsilon_{i-1}+\varepsilon_{i}=\ldots=\theta^{i-1}\left[\theta X_{0}+\varepsilon_{1}\right]+\theta^{i-2} \varepsilon_{2}+\ldots+\theta \varepsilon_{i-1}+\varepsilon_{i} \\
=\theta^{i-1} \varepsilon_{1}+\theta^{i-2} \varepsilon_{2}+\ldots+\theta \varepsilon_{i-1}+\varepsilon_{i}
\end{gathered}
$$

since $X_{0}=0$. Alternatively, we can write out the recursive equations (6.7),

$$
\begin{gathered}
X_{1}=\theta X_{0}+\varepsilon_{1} \\
X_{2}=\theta X_{1}+\varepsilon_{2} \\
\ldots \\
X_{i-1}=\theta X_{i-2}+\varepsilon_{i-1} \\
X_{i}=\theta X_{i-1}+\varepsilon_{i} .
\end{gathered}
$$

Multiplying the first equation by θ^{i-1}, the second one by θ^{i-2}, and so on, and finally the equation number $i-1$ by θ, and adding up all the resulting identities, we get

$$
\begin{gathered}
X_{i}+\theta X_{i-1}+\ldots+\theta^{i-2} X_{2}+\theta^{i-1} X_{1} \\
=\theta X_{i-1}+\ldots+\theta^{i-2} X_{2}+\theta^{i-1} X_{1}+\theta^{i-1} X_{0} \\
+\varepsilon_{i}+\theta \varepsilon_{i-1}+\ldots+\theta^{i-2} \varepsilon_{2}+\theta^{i-1} \varepsilon_{1} .
\end{gathered}
$$

Canceling the like terms and taking into account that $X_{0}=0$, we obtain

$$
X_{i}=\varepsilon_{i}+\theta \varepsilon_{i-1}+\ldots+\theta^{i-2} \varepsilon_{2}+\theta^{i-1} \varepsilon_{1}
$$

(ii) We use the representation of X_{i} from part (i). Since ε_{i} 's are independent $\mathcal{N}\left(0, \sigma^{2}\right)$ random variables, the distribution of X_{i} is also normal with mean zero and variance

$$
\begin{aligned}
& \mathbb{V} \operatorname{ar}\left[X_{i}\right]=\mathbb{V} \operatorname{ar}\left[\varepsilon_{i}+\theta \varepsilon_{i-1}+\ldots+\theta^{i-2} \varepsilon_{2}+\theta^{i-1} \varepsilon_{1}\right] \\
& \quad=\operatorname{Var}\left[\varepsilon_{1}\right]\left(1+\theta^{2}+\cdots+\theta^{2(i-1)}\right)=\sigma^{2} \frac{1-\theta^{2 i}}{1-\theta^{2}} .
\end{aligned}
$$

(iii) Since $|\theta|<1$, the quantity $\theta^{2 i}$ goes to zero as i increases, and therefore,

$$
\lim _{i \rightarrow \infty} \operatorname{Var}\left[X_{i}\right]=\lim _{i \rightarrow \infty} \sigma^{2} \frac{1-\theta^{2 i}}{1-\theta^{2}}=\frac{\sigma^{2}}{1-\theta^{2}}
$$

(iv) The covariance between X_{i} and $X_{i+j}, j \geq 0$, is calculated as

$$
\begin{gathered}
\mathbb{C o v}\left[X_{i}, X_{i+j}\right]=\mathbb{E}\left[\left(\varepsilon_{i}+\theta \varepsilon_{i-1}+\ldots+\theta^{i-2} \varepsilon_{2}+\theta^{i-1} \varepsilon_{1}\right) \times\right. \\
\left.\times\left(\varepsilon_{i+j}+\theta \varepsilon_{i+j-1}+\ldots+\theta^{j} \varepsilon_{i}+\theta^{j+1} \varepsilon_{i-1}+\cdots+\theta^{i+j-2} \varepsilon_{2}+\theta^{i+j-1} \varepsilon_{1}\right)\right] \\
=\theta^{j} \mathbb{E}\left[\left(\varepsilon_{i}+\theta \varepsilon_{i-1}+\ldots+\theta^{i-2} \varepsilon_{2}+\theta^{i-1} \varepsilon_{1}\right)^{2}\right] \\
=\theta^{j} \mathbb{V} \operatorname{ar}\left[\varepsilon_{1}\right]\left(1+\theta^{2}+\ldots+\theta^{2(i-1)}\right)=\sigma^{2} \theta^{j} \frac{1-\theta^{2 i}}{1-\theta^{2}} .
\end{gathered}
$$

Chapter 7

Exercise 7.43 The system of normal equations (7.11) takes the form

$$
\left\{\begin{array}{l}
\hat{\theta}_{0} n+\hat{\theta}_{1} \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i} \\
\hat{\theta}_{0} \sum_{i=1}^{n} x_{i}+\hat{\theta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}
\end{array}\right.
$$

with the solution

$$
\hat{\theta}_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

and $\hat{\theta}_{0}=\bar{y}-\hat{\theta}_{1} \bar{x}$ where $\bar{x}=\sum_{i=1}^{n} x_{i} / n$ and $\bar{y}=\sum_{i=1}^{n} y_{i} / n$.

ExERCISE 7.44 (a) Note that the vector of residuals $\left(r_{1}, \ldots, r_{n}\right)^{\prime}$ is orthogonal to the span-space \mathcal{S}, while $\mathbf{g}_{0}=(1, \ldots, 1)^{\prime}$ belongs to this span-space. Thus, the dot product of these vectors must equal to zero, that is, $r_{1}+\cdots+$ $r_{n}=0$.

Alternatively, as shown in the proof of Exercise 7.43, $\hat{\theta}_{0}=\bar{y}-\hat{\theta}_{1} \bar{x}$, and therefore,

$$
\begin{gathered}
\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{\theta}_{0}-\hat{\theta}_{1} x_{i}\right)=\sum_{i=1}^{n}\left(y_{i}-\bar{y}+\hat{\theta}_{1} \bar{x}-\hat{\theta}_{1} x_{i}\right) \\
=\underbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)}_{0}+\hat{\theta}_{1} \underbrace{\sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)}_{0}=0 .
\end{gathered}
$$

(b) In a simple linear regression through the origin, the system of normal equations (7.11) is reduced to a single equation

$$
\hat{\theta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}
$$

hence, the estimate of the slope is

$$
\hat{\theta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

Consider, for instance, three observations $(0,0),(1,1)$, and $(2,1)$. We get $\hat{\theta}_{1}=\sum_{i=1}^{3} x_{i} y_{i} / \sum_{i=1}^{3} x_{i}^{2}=0.6$ with the residuals $r_{1}=0, r_{2}=0.4$, and $r_{3}=-0.2$. The sum of the residuals is equal to 0.2 .

Exercise 7.45 By definition, the covariance matrix $\mathbf{D}=\sigma^{2}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1}$. For the simple linear regression,

$$
\mathbf{D}=\sigma^{2}\left[\begin{array}{cc}
n & \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right]^{-1}=\frac{\sigma^{2}}{\operatorname{det} \mathbf{D}}\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\
-\sum_{i=1}^{n} x_{i} & n
\end{array}\right] .
$$

By Lemmma 7.6,
$\mathbb{V a r}_{\boldsymbol{\theta}}\left[\hat{f}_{n}(x) \mid \mathcal{X}\right]=\mathbf{D}_{00}+2 \mathbf{D}_{01} x+\mathbf{D}_{11} x^{2}=\frac{\sigma^{2}}{\operatorname{det} \mathbf{D}}\left(\sum_{i=1}^{n} x_{i}^{2}-2\left(\sum_{i=1}^{n} x_{i}\right) x+n x^{2}\right)$.
Differentiating with respect to x, we get

$$
-2 \sum_{i=1}^{n} x_{i}+2 n x=0
$$

Hence the minimum is attained at $x=\sum_{i=1}^{n} x_{i} / n=\bar{x}$.

Exercise 7.46 (i) We write

$$
\mathbf{r}=\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\mathbf{G} \hat{\boldsymbol{\theta}}=\mathbf{y}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime} \mathbf{y}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{y}
$$

where $\mathbf{H}=\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime}$. We see that the residual vector is a linear transformation of a normal vector \mathbf{y}, and therefore has a multivariate normal distribution. Its mean is equal to zero,

$$
\begin{gathered}
\mathbb{E}_{\boldsymbol{\theta}}[\mathbf{r}]=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbb{E}_{\boldsymbol{\theta}}[\mathbf{y}]=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{G} \boldsymbol{\theta} \\
=\mathbf{G} \boldsymbol{\theta}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime} \mathbf{G} \boldsymbol{\theta}=\mathbf{G} \boldsymbol{\theta}-\mathbf{G} \boldsymbol{\theta}=\mathbf{0} .
\end{gathered}
$$

Next, note that the matrix $\mathbf{I}_{n}-\mathbf{H}$ is symmetric and idempotent. Indeed,

$$
\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}=\left(\mathbf{I}_{n}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime}\right)^{\prime}=\mathbf{I}_{n}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime}=\mathbf{I}_{n}-\mathbf{H}
$$

and

$$
\begin{aligned}
\left(\mathbf{I}_{n}-\mathbf{H}\right)^{2} & =\left(\mathbf{I}_{n}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime}\right)\left(\mathbf{I}_{n}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime}\right) \\
& =\mathbf{I}_{n}-\mathbf{G}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{G}^{\prime}=\mathbf{I}_{n}-\mathbf{H}
\end{aligned}
$$

Using these two properties, we conclude that

$$
\left(\mathbf{I}_{n}-\mathbf{H}\right)\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}=\left(\mathbf{I}_{n}-\mathbf{H}\right) .
$$

Therefore, the covariance matrix of the residual vector is derived as follows,

$$
\mathbb{E}_{\boldsymbol{\theta}}\left[\mathbf{r r}^{\prime}\right]=\mathbb{E}_{\boldsymbol{\theta}}\left[\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{y} \mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}\right]=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbb{E}_{\boldsymbol{\theta}}\left[\mathbf{y y}^{\prime}\right]\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}
$$

$$
=\left(\mathbf{I}_{n}-\mathbf{H}\right) \sigma^{2} \mathbf{I}_{n}\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}=\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right) .
$$

(ii) The vectors \mathbf{r} and $\hat{\mathbf{y}}-\mathbf{G} \boldsymbol{\theta}$ are orthogonal since the vector of residuals is orthogonal to any vector that lies in the span-space \mathcal{S}. As shown in part (i), \mathbf{r} has a multivariate normal distribution. By the definition of the linear regression model (7.7), the vector $\hat{\mathbf{y}}-\mathbf{G} \boldsymbol{\theta}$ is normally distributed as well. Therefore, being orthogonal and normal, these two vectors are independent.

Exercise 7.47 Denote by $\varphi(t)$ the moment generating function of the variable Y. Since X and Y are assumed independent, the moment generating functions of X, Y, and Z satisfy the identity

$$
(1-2 t)^{-n / 2}=(1-2 t)^{-m / 2} \varphi(t), \text { for } t<1 / 2 .
$$

Therefore, $\varphi(t)=(1-2 t)^{-(n-m) / 2}$, implying that Y has a chi-squared distribution with $n-m$ degrees of freedom.

Exercise 7.48 By the definition of a regular deterministic design,

$$
\frac{1}{n}=\frac{i}{n}-\frac{i-1}{n}=F_{X}\left(x_{i}\right)-F_{X}\left(x_{i-1}\right)=p\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)
$$

for an intermediate point $x_{i}^{*} \in\left(x_{i-1}, x_{i}\right)$. Therefore, we may write

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) p\left(x_{i}^{*}\right) g\left(x_{i}\right)=\int_{0}^{1} g(x) p(x) d x .
$$

ExErcise 7.49 Consider the matrix \mathbf{D}_{∞}^{-1} with the (l, m)-th entry $\sigma^{2} \int_{0}^{1} x^{l} x^{m} d x$, where $l, m=0, \ldots, k$. To show that it is positive definite, we take a columnvector $\boldsymbol{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{k}\right)^{\prime}$ and write

$$
\boldsymbol{\lambda}^{\prime} \mathbf{D}_{\infty}^{-1} \boldsymbol{\lambda}=\sigma^{2} \sum_{i=0}^{k} \sum_{j=0}^{k} \lambda_{i} \lambda_{j} \int_{0}^{1} x^{i} x^{j} d x=\sigma^{2} \int_{0}^{1}\left(\sum_{i=0}^{k} \lambda_{i} x^{i}\right)^{2} d x
$$

which is equal to zero if and only if $\lambda_{i}=0$ for all $i=0, \ldots, k$. Hence, \mathbf{D}_{∞}^{-1} is positive definite by definition, and thus invertible.

Exercise 7.50 By Lemma 7.6, for any design \mathcal{X}, the conditional expectation is equal to

$$
\mathbb{E}_{\boldsymbol{\theta}}\left[\left(\hat{f}_{n}(x)-f(x)\right)^{2} \mid \mathcal{X}\right]=\sum_{l, m=0}^{k} \mathbf{D}_{l, m} g_{l}(x) g_{m}(x)
$$

The same equality is valid for the unconditional expectation, since \mathcal{X} is a fixed non-random design. Using the fact that $n \mathbf{D} \rightarrow \mathbf{D}_{\infty}$ as $n \rightarrow \infty$, we obtain

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathbb{E}_{\boldsymbol{\theta}}\left[\left(\sqrt{n}\left(\hat{f}_{n}(x)-f(x)\right)\right)^{2}\right]=\lim _{n \rightarrow \infty} \sum_{l, m=0}^{k} n \mathbf{D}_{l, m} g_{l}(x) g_{m}(x) \\
=\sum_{l, m=0}^{k}\left(\mathbf{D}_{\infty}\right)_{l, m} g_{l}(x) g_{m}(x) .
\end{gathered}
$$

Exercise 7.51 If all the design points belong to the interval $(1 / 2,1)$, then the vector $\partial_{0}=(1, \ldots, 1)^{\prime}$ and $\partial_{1}=(1 / 2, \ldots, 1 / 2)^{\prime}$ are co-linear. The probability of this event is $1 / 2^{n}$. If at least one design point belongs to $(0,1 / 2)$, then the system of normal equations has a unique solution.

Exercise 7.52 The Hoeffding inequality claims that if ξ_{i} 's are zero-mean independent random variables and $\left|\xi_{i}\right| \leq C$, then

$$
\mathbb{P}\left(\mid x i_{1}+\cdots+\xi_{\mid}>t\right) \leq 2 \exp \left\{-t^{2} /\left(2 n C^{2}\right)\right\} .
$$

We apply this inequality to $\xi_{i}=g_{l}\left(x_{i}\right) g_{m}\left(x_{i}\right)-\int_{0}^{1} g_{l}(x) g_{m}(x) d x$ with $t=\delta n$ and $C=C_{0}^{2}$. The result of the lemma follows.

ExErcise 7.53 By Theorem 7.5, the distribution of $\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}$ is $(k+1)$-variate normal with mean $\mathbf{0}$ and covariance matrix \mathbf{D}. We know that for regular random designs, $n \mathbf{D}$ goes to a deterministic limit \mathbf{D}_{∞}, independent of the design. Thus, the unconditional covariance matrix (averaged over the distribution of the design points) goes to the same limiting matrix \mathbf{D}_{∞}.

Exercise 7.54 Using the Cauchy-Schwarz inequality and Theorem 7.5, we obtain

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{\theta}}\left[\left\|\hat{f}_{n}-f\right\|_{2}^{2} \mid \mathcal{X}\right]=\mathbb{E}_{\boldsymbol{\theta}}\left[\int_{0}^{1}\left(\sum_{i=0}^{k}\left(\hat{\theta}_{i}-\theta_{i}\right) g_{i}(x)\right)^{2} d x \mid \mathcal{X}\right] \\
\leq & \mathbb{E}_{\boldsymbol{\theta}}\left[\sum_{i=0}^{k}\left(\hat{\theta}_{i}-\theta_{i}\right)^{2} \mid \mathcal{X}\right] \sum_{i=0}^{k} \int_{0}^{1}\left(g_{i}(x)\right)^{2} d x=\sigma^{2} \operatorname{tr}(\mathbf{D})\|\mathbf{g}\|_{2}^{2} .
\end{aligned}
$$

Chapter 8

Exercise 8.55 (i) Consider the quadratic loss at a point

$$
w\left(\hat{f}_{n}-f\right)=\left(\hat{f}_{n}(x)-f(x)\right)^{2}
$$

The risk that corresponds to this loss function (the mean squared error) satisfies

$$
\begin{gathered}
R_{n}\left(\hat{f}_{n}, f\right)=\mathbb{E}_{f}\left[w\left(\hat{f}_{n}-f\right)\right]=\mathbb{E}_{f}\left[\left(\hat{f}_{n}(x)-f(x)\right)^{2}\right] \\
=\mathbb{E}_{f}\left[\left(\hat{f}_{n}(x)-\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]+\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]-f(x)\right)^{2}\right] \\
=\mathbb{E}_{f}\left[\left(\hat{f}_{n}(x)-\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]\right)^{2}\right]+\mathbb{E}_{f}\left[\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]-f(x)\right)^{2}\right] \\
=\mathbb{E}_{f}\left[\xi_{n}^{2}(x)\right]+b_{n}^{2}(x)=\mathbb{E}_{f}\left[w\left(\xi_{n}\right)\right]+w\left(b_{n}\right) .
\end{gathered}
$$

The cross term in the above disappears since

$$
\begin{aligned}
& \mathbb{E}_{f}\left[\left(\hat{f}_{n}(x)-\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]\right)\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]-f(x)\right)\right] \\
& =\mathbb{E}_{f}\left[\hat{f}_{n}(x)-\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]\right]\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]-f(x)\right) \\
& =\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]-\mathbb{E}_{f}\left[\hat{f}_{n}(x)\right]\right) b_{n}(x)=0 .
\end{aligned}
$$

(ii) Take the mean squared difference

$$
w\left(\hat{f}_{n}-f\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{f}_{n}\left(x_{i}\right)-f\left(x_{i}\right)\right)^{2}
$$

The risk function (the discrete MISE) can be partitioned as follows.

$$
\begin{gathered}
R_{n}\left(\hat{f}_{n}, f\right)=\mathbb{E}_{f}\left[w\left(\hat{f}_{n}-f\right)\right]=\mathbb{E}_{f}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\hat{f}_{n}\left(x_{i}\right)-f\left(x_{i}\right)\right)^{2}\right] \\
=\mathbb{E}_{f}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\hat{f}_{n}\left(x_{i}\right)-\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]+\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]-f\left(x_{i}\right)\right)^{2}\right] \\
=\mathbb{E}_{f}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\hat{f}_{n}\left(x_{i}\right)-\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]\right)^{2}\right]+\mathbb{E}_{f}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]-f\left(x_{i}\right)\right)^{2}\right] \\
=\mathbb{E}_{f}\left[\frac{1}{n} \sum_{i=1}^{n} \xi_{n}^{2}\left(x_{i}\right)\right]+\frac{1}{n} \sum_{i=1}^{n} b_{n}^{2}\left(x_{i}\right)=\mathbb{E}_{f}\left[w\left(\xi_{n}\right)\right]+w\left(b_{n}\right) .
\end{gathered}
$$

In the above, the cross term is equal to zero, because for any $i=1, \ldots, n$,

$$
\begin{gathered}
\mathbb{E}_{f}\left[\left(\hat{f}_{n}\left(x_{i}\right)-\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]\right)\left(\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]-f\left(x_{i}\right)\right)\right] \\
=\mathbb{E}_{f}\left[\left(\hat{f}_{n}\left(x_{i}\right)-\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]\right)\right]\left(\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]-f\left(x_{i}\right)\right) \\
\quad=\left(\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]-\mathbb{E}_{f}\left[\hat{f}_{n}\left(x_{i}\right)\right]\right) b_{n}\left(x_{i}\right)=0 .
\end{gathered}
$$

Exercise 8.56 Take a linear estimator of f,

$$
\hat{f}_{n}(x)=\sum_{i=1}^{n} v_{n, i}(x) y_{i}
$$

Its conditional bias, given the design \mathcal{X}, is computed as

$$
\begin{gathered}
b_{n}(x, \mathcal{X})=\mathbb{E}_{f}\left[\hat{f}_{n}(x) \mid \mathcal{X}\right]-f(x)=\mathbb{E}_{f}\left[\sum_{i=1}^{n} v_{n, i}(x) y_{i} \mid \mathcal{X}\right]-f(x) \\
=\sum_{i=1}^{n} v_{n, i}(x) \mathbb{E}_{f}\left[y_{i} \mid \mathcal{X}\right]-f(x)=\sum_{i=1}^{n} v_{n, i}(x) f\left(x_{i}\right)-f(x)
\end{gathered}
$$

The conditional variance satisfies

$$
\begin{aligned}
& \mathbb{E}_{f}\left[\xi_{n}^{2}(x, \mathcal{X}) \mid \mathcal{X}\right]=\mathbb{E}_{f}\left[\left(\hat{f}_{n}(x)-\mathbb{E}_{f}\left[\hat{f}_{n}(x) \mid \mathcal{X}\right]\right)^{2} \mid \mathcal{X}\right] \\
&= \mathbb{E}_{f}\left[\hat{f}_{n}^{2}(x) \mid \mathcal{X}\right]-2\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x) \mid \mathcal{X}\right]\right)^{2}+\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x) \mid \mathcal{X}\right]\right)^{2} \\
&=\mathbb{E}_{f}\left[\hat{f}_{n}^{2}(x) \mid \mathcal{X}\right]-\left(\mathbb{E}_{f}\left[\hat{f}_{n}(x) \mid \mathcal{X}\right]\right)^{2} \\
&= \mathbb{E}_{f}\left[\left(\sum_{i=1}^{n} v_{n, i}(x) y_{i}\right)^{2} \mid \mathcal{X}\right]-\left(\mathbb{E}_{f}\left[\sum_{i=1}^{n} v_{n, i}(x) y_{i} \mid \mathcal{X}\right]\right)^{2} \\
&= \sum_{i=1}^{n} v_{n, i}^{2}(x) \mathbb{E}_{f}\left[y_{i}^{2} \mid \mathcal{X}\right]-\left(\sum_{i=1}^{n} v_{n, i}(x) \mathbb{E}_{f}\left[y_{i} \mid \mathcal{X}\right]\right)^{2}
\end{aligned}
$$

Here the cross terms are negligible since for a given design, the responses are uncorrelated. Now we use the facts that $\mathbb{E}_{f}\left[y_{i}^{2} \mid \mathcal{X}\right]=\sigma^{2}$ and $\mathbb{E}_{f}\left[y_{i} \mid \mathcal{X}\right]=$ 0 to arrive at

$$
\mathbb{E}_{f}\left[\xi_{n}^{2}(x, \mathcal{X}) \mid \mathcal{X}\right]=\sigma^{2} \sum_{i=1}^{n} v_{n, i}^{2}(x)
$$

EXERCISE 8.57 (i) The integral of the uniform kernel is computed as

$$
\int_{-\infty}^{\infty} K(u) d u=\int_{-\infty}^{\infty}(1 / 2) \mathbb{I}(-1 \leq u \leq 1) d u=\int_{-1}^{1}(1 / 2) d u=1
$$

(ii) For the triangular kernel, we compute

$$
\begin{aligned}
& \int_{-\infty}^{\infty} K(u) d u=\int_{-\infty}^{\infty}(1-|u|) \mathbb{I}(-1 \leq u \leq 1) d u \\
& =\int_{-1}^{0}(1+u) d u+\int_{0}^{1}(1-u) d u=1 / 2+1 / 2=1
\end{aligned}
$$

(iii) For the bi-square kernel, we have

$$
\begin{gathered}
\quad \int_{-\infty}^{\infty} K(u) d u=\int_{-\infty}^{\infty}(15 / 16)\left(1-u^{2}\right)^{2} \mathbb{I}(-1 \leq u \leq 1) d u \\
=(15 / 16) \int_{-1}^{1}\left(1-u^{2}\right)^{2} d u=(15 / 16) \int_{-1}^{1}\left(1-2 u^{2}+u^{4}\right) d u \\
=\left.(15 / 16)\left(u-(2 / 3) u^{3}+(1 / 5) u^{5}\right)\right|_{-1} ^{1}=(15 / 16)(2-(2 / 3)(2)+(1 / 5)(2)) \\
=(15 / 16)(2-4 / 3+2 / 5)=(15 / 16)(30 / 15-20 / 15+6 / 15)=(15 / 16)(16 / 15)=1 .
\end{gathered}
$$

(iv) For the Epanechnikov kernel,

$$
\begin{gathered}
\int_{-\infty}^{\infty} K(u) d u=\int_{-\infty}^{\infty}(3 / 4)\left(1-u^{2}\right) \mathbb{I}(-1 \leq u \leq 1)=(3 / 4) \int_{-1}^{1}\left(1-u^{2}\right) d u \\
=\left.(3 / 4)\left(u-(1 / 3) u^{3}\right)\right|_{-1} ^{1}=(3 / 4)(2-(1 / 3)(2))=(3 / 4)(2-2 / 3) \\
=(3 / 4)(6 / 3-2 / 3)=(3 / 4)(4 / 3)=1
\end{gathered}
$$

Exercise 8.58 Fix a design \mathcal{X}. Consider the Nadaraya-Watson estimator

$$
\hat{f}_{n}(x)=\sum_{i=1}^{n} v_{n, i}(x) y_{i} \text { where } v_{n, i}(x)=K\left(\frac{x_{i}-x}{h_{n}}\right) / \sum_{j=1}^{n} K\left(\frac{x_{j}-x}{h_{n}}\right) .
$$

Note that the weights sum up to one, $\sum_{i=1}^{n} v_{n, i}(x)=1$.
(i) By (8.9), for any constant regression function $f(x)=\theta_{0}$, we have

$$
b_{n}(x, \mathcal{X})=\sum_{i=1}^{n} v_{n, i}(x) f\left(x_{i}\right)-f(x)
$$

$$
=\sum_{i=1}^{n} v_{n, i}(x) \theta_{0}-\theta_{0}=\theta_{0}\left(\sum_{i=1}^{n} v_{n, i}(x)-1\right)=0 .
$$

(ii) For any bounded Lipschitz regression function $f \in \Theta\left(1, L, L_{1}\right)$, the absolute value of the conditional bias is limited from above by

$$
\begin{gathered}
\left|b_{n}(x, \mathcal{X})\right|=\left|\sum_{i=1}^{n} v_{n, i}(x) f\left(x_{i}\right)-f(x)\right| \\
\leq \sum_{i=1}^{n} v_{n, i}(x)\left|f\left(x_{i}\right)-f(x)\right| \leq \sum_{i=1}^{n} v_{n, i}(x) L\left|x_{i}-x\right| \\
\leq \sum_{i=1}^{n} v_{n, i}(x) L h_{n}=L h_{n} .
\end{gathered}
$$

Exercise 8.59 Consider a polynomial regression function of the order not exceeding $\beta-1$,

$$
f(x)=\theta_{0}+\theta_{1} x+\cdots+\theta_{m} x^{m}, \quad m=1, \ldots, \beta-1 .
$$

The i-th observed response is $y_{i}=\theta_{0}+\theta_{1} x_{i}+\cdots+\theta_{m} x_{i}^{m}+\varepsilon_{i}$ where the explanatory variable x_{i} has a $\operatorname{Uniform}(0,1)$ distribution, and ε_{i} is a $\mathcal{N}\left(0, \sigma^{2}\right)$ random error independent of $x_{i}, i=1, \ldots, n$.

Take a smoothing kernel estimator (8.16) of degree $\beta-1$, that is, satisfying the normalization and orthogonality conditions (8.17). To show that it is an unbiased estimator of $f(x)$, we need to prove that for any $m=0, \ldots, \beta-1$,

$$
\frac{1}{h_{n}} \mathbb{E}_{f}\left[x_{i}^{m} K\left(\frac{x_{i}-x}{h_{n}}\right)\right]=x^{m}, \quad 0<x<1
$$

Recalling that the smoothing kernel $K(u)$ is non-zero only if $|u| \leq 1$, we write

$$
\begin{aligned}
& \frac{1}{h_{n}} \mathbb{E}_{f}\left[x_{i}^{m} K\left(\frac{x_{i}-x}{h_{n}}\right)\right]=\frac{1}{h_{n}} \int_{0}^{1} x_{i}^{m} K\left(\frac{x_{i}-x}{h_{n}}\right) d x_{i} \\
= & \frac{1}{h_{n}} \int_{x-h_{n}}^{x+h_{n}} x_{i}^{m} K\left(\frac{x_{i}-x}{h_{n}}\right) d x_{i}=\int_{-1}^{1}\left(h_{n} u+x\right)^{m} K(u) d u
\end{aligned}
$$

after a substitution $x_{i}=h_{n} u+x$. If $m=0$,

$$
\int_{-1}^{1}\left(h_{n} u+x\right)^{m} K(u) d u=\int_{-1}^{1} K(u) d u=1,
$$

by the normalization condition. If $m=1, \ldots, \beta-1$,

$$
\begin{aligned}
& \int_{-1}^{1}\left(h_{n} u+x\right)^{m} K(u) d u=x^{m} \underbrace{\int_{-1}^{1} K(u) d u}_{=1}+ \\
& +\sum_{j=1}^{m}\binom{m}{j} h_{n}^{j} x^{m-j} \underbrace{\int_{-1}^{1} u^{m} K(u) d u}_{=0}=x^{m}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\mathbb{E}_{f}\left[\frac{1}{n h_{n}} \sum_{i=1}^{n} y_{i} K\left(\frac{x_{i}-x}{h_{n}}\right)\right] \\
=\mathbb{E}_{f}\left[\frac{1}{n h_{n}} \sum_{i=1}^{n}\left(\theta_{0}+\theta_{1} x_{i}+\cdots+\theta_{m} x_{i}^{m}+\varepsilon_{i}\right) K\left(\frac{x_{i}-x}{h_{n}}\right)\right] \\
=\theta_{0}+\theta_{1} x+\cdots+\theta_{m} x^{m}=f(x) .
\end{gathered}
$$

Here we also used the facts that x_{i} and ε_{i} are independent, and that ε_{i} has mean zero.

ExERCISE 8.60 (i) To find the normalizing constant, integrate the kernel

$$
\begin{aligned}
& \int_{-1}^{1} K(u) d u=\int_{-1}^{1} C\left(1-|u|^{3}\right)^{3} d u=2 C \int_{0}^{1}\left(1-u^{3}\right)^{3} d u \\
= & 2 C \int_{0}^{1}\left(1-3 u^{3}+3 u^{6}-u^{9}\right) d u=\left.2 C\left(u-\frac{3}{4} u^{4}+\frac{3}{7} u^{7}-\frac{1}{10} u^{10}\right)\right|_{0} ^{1} \\
= & 2 C\left(1-\frac{3}{4}+\frac{3}{7}-\frac{1}{10}\right)=2 C \frac{81}{140}=\frac{81}{70} C=1 \Leftrightarrow C=\frac{70}{81} .
\end{aligned}
$$

(ii) Note that the tri-cube kernel is symmetric (an even function). Therefore, it is orthogonal to the monomial x (an odd function), but not the monomial x^{2} (an even function). Indeed,

$$
\begin{gathered}
\int_{-1}^{1} u\left(1-|u|^{3}\right)^{3} d u=\int_{-1}^{0} u\left(1+u^{3}\right)^{3} d u+\int_{0}^{1} u\left(1-u^{3}\right)^{3} d u \\
=-\int_{0}^{1} u\left(1-u^{3}\right)^{3} d u+\int_{0}^{1} u\left(1-u^{3}\right)^{3} d u=0
\end{gathered}
$$

whereas

$$
\int_{-1}^{1} u^{2}\left(1-|u|^{3}\right)^{3} d u=\int_{-1}^{0} u^{2}\left(1+u^{3}\right)^{3} d u+\int_{0}^{1} u^{2}\left(1-u^{3}\right)^{3} d u
$$

$$
=2 \int_{0}^{1} u\left(1-u^{3}\right)^{3} d u \neq 0
$$

Hence, the degree of the kernel is 1 .

Exercise 8.61 (i) To prove that the normalization and orthogonal conditions hold for the kernel $K(u)=4-6 u, 0 \leq u \leq 1$, we write

$$
\int_{0}^{1} K(u) d u=\int_{0}^{1}(4-6 u) d u=\left.\left(4 u-3 u^{2}\right)\right|_{0} ^{1}=4-3=1
$$

and

$$
\int_{0}^{1} u K(u) d u=\int_{0}^{1} u(4-6 u) d u=\left.\left(2 u^{2}-2 u^{3}\right)\right|_{0} ^{1}=2-2=0 .
$$

(ii) Similarly, for the kernel $K(u)=4+6 u,-1 \leq u \leq 0$,

$$
\int_{-1}^{0} K(u) d u=\int_{-1}^{0}(4+6 u) d u=\left.\left(4 u+3 u^{2}\right)\right|_{-1} ^{0}=4-3=1
$$

and

$$
\int_{-1}^{0} u K(u) d u=\int_{-1}^{0} u(4+6 u) d u=\left.\left(2 u^{2}+2 u^{3}\right)\right|_{-1} ^{0}=-2+2=0
$$

Exercise 8.62 (i) We will look for the family of smoothing kernels $K_{\theta}(u)$ in the class of linear functions with support $[-\theta, 1]$. Let

$$
K_{\theta}(u)=A_{\theta} u+B_{\theta}, \quad-\theta \leq u \leq 1 .
$$

The constants A_{θ} and B_{θ} are functions of θ and can be found from the normalization and orthogonality conditions. They satisfy

$$
\left\{\begin{array}{l}
\int_{-\theta}^{1}\left(A_{\theta} u+B_{\theta}\right) d u=1 \\
\int_{-\theta}^{1} u\left(A_{\theta} u+B_{\theta}\right) d u=0 .
\end{array}\right.
$$

The solution of this system is

$$
A_{\theta}=-6 \frac{1-\theta}{(1+\theta)^{3}} \text { and } B_{\theta}=4 \frac{1+\theta^{3}}{(1+\theta)^{4}} .
$$

Therefore, the smoothing kernel has the form

$$
K_{\theta}(u)=4 \frac{1+\theta^{3}}{\theta(1+\theta)^{4}}-6 u \frac{1-\theta}{(1+\theta)^{3}},-\theta \leq u \leq 1
$$

Note that a linear kernel satisfying the above system of constaints is unique. Therefore, for $\theta=0$, the kernel $K_{\theta}(u)=4-6 u, 0 \leq u \leq 1$, as is expected from Exercise 8.61 (i). If $\theta=1$, then $K_{\theta}(u)$ turns into the uniform kernel $K_{\theta}(u)=1 / 2,-1 \leq u \leq 1$.

The smoothing kernel estimator

$$
\hat{f}_{n}(x)=\hat{f}_{n}\left(\theta h_{n}\right)=\frac{1}{n h_{n}} \sum_{i=1}^{n} y_{i} K_{\theta}\left(\frac{x_{i}-\theta h_{n}}{h_{n}}\right)
$$

utilizes all the observations with the design points between 0 and $x+h_{n}$, since

$$
\left\{-\theta \leq \frac{x_{i}-\theta h_{n}}{h_{n}} \leq 1\right\}=\left\{0 \leq x_{i} \leq \theta h_{n}+h_{n}\right\}=\left\{0 \leq x_{i} \leq x+h_{n}\right\}
$$

(ii) Take the smoothing kernel $K_{\theta}(u),-\theta \leq u \leq 1$, from part (i). Then the estimator that corresponds to the kernel $K_{\theta}(-u),-1 \leq u \leq \theta$, at the point $x=1-\theta h_{n}$, uses all the observations with the design points located between $x-h_{n}$ and 1. It is so, because

$$
\begin{aligned}
& \left\{-1 \leq \frac{x_{i}-x}{h_{n}} \leq \theta\right\}=\left\{-1 \leq \frac{x_{i}-1+\theta h_{n}}{h_{n}} \leq \theta\right\} \\
& =\left\{1-\theta h_{n}-h_{n} \leq x_{i} \leq 1\right\}=\left\{x-h_{n} \leq x_{i} \leq 1\right\}
\end{aligned}
$$

Chapter 9

Exercise 9.63 If h_{n} does not vanish as $n \rightarrow \infty$, the bias of the local polynomial estimator stays finite. If $n h_{n}$ is finite, the number of observations N within the interval $\left[x-h_{n}, x+h_{n}\right]$ stays finite, and can be even zero. Then the system of normal equations (9.2) either does not have a solution or the variance of the estimates does not decrease as n grows.

ExErcise 9.64 Using Proposition 9.4 and the Taylor expansion (8.14), we obtain

$$
\begin{aligned}
& \hat{f}_{n}(0)=\sum_{m=0}^{\beta-1}(-1)^{m} \hat{\theta}_{m}=\left(\sum_{m=0}^{\beta-1}(-1)^{m} \frac{f^{(m)}(0)}{m!} h_{n}^{m}+\rho\left(0, h_{n}\right)\right)-\rho\left(0, h_{n}\right)+ \\
& +\sum_{m=0}^{\beta-1}(-1)^{m}\left(b_{m}+\mathcal{N}_{m}\right)=f(0)-\rho\left(0, h_{n}\right)+\sum_{m=0}^{\beta-1}(-1)^{m} b_{m}+\sum_{m=0}^{\beta-1}(-1)^{m} \mathcal{N}_{m}
\end{aligned}
$$

Hence the absolute conditional bias of $\hat{f}_{n}(0)$ for a given design \mathcal{X} admits the upper bound

$$
\left|\mathbb{E}_{f}\left[\hat{f}_{n}(0)-f(0)\right]\right| \leq\left|\rho\left(0, h_{n}\right)\right|+\sum_{m=0}^{\beta-1}\left|b_{m}\right| \leq \frac{L h_{n}^{\beta}}{(\beta-1)!}+\beta C_{b} h_{n}^{\beta}=O\left(h_{n}^{\beta}\right) .
$$

Note that the random variables \mathcal{N}_{m} can be correlated. That is why the conditional variance of $\hat{f}_{n}(0)$, given a design \mathcal{X}, may not be computed explicitly but only estimated from above by

$$
\begin{aligned}
& \mathbb{V a r}_{f}\left[\hat{f}_{n}(0) \mid \mathcal{X}\right]=\mathbb{V a r}_{f}\left[\sum_{m=0}^{\beta-1}(-1)^{m} \mathcal{N}_{m} \mid \mathcal{X}\right] \\
& \leq \beta \sum_{m=0}^{\beta-1} \mathbb{V a r}_{f}\left[\mathcal{N}_{m} \mid \mathcal{X}\right] \leq \beta C_{v} / N=O(1 / N)
\end{aligned}
$$

ExERCISE 9.65 Applying Proposition 9.4, we find that the bias of $m!\hat{\theta}_{m} /\left(h_{n}^{*}\right)^{m}$ has the magnitude $O\left(\left(h_{n}^{*}\right)^{\beta-m}\right)$, while the random term $m!\mathcal{N}_{m} /\left(h_{n}^{*}\right)^{m}$ has the variance $O\left(\left(h_{n}^{*}\right)^{-2 m}\left(n h_{n}^{*}\right)^{-1}\right)$. These formulas guarantee the optimality of $h_{n}^{*}=n^{-1 /(2 \beta+1)}$. Indeed, for any m,

$$
\left(h_{n}^{*}\right)^{2(\beta-m)}=\left(h_{n}^{*}\right)^{-2 m}\left(n h_{n}^{*}\right)^{-1} .
$$

So, the rate $\left(h_{n}^{*}\right)^{2(\beta-m)}=n^{-2(\beta-m) /(2 \beta+1)}$ follows.

Exercise 9.66 We proceed by contradiction. Assume that the matrix \mathbf{D}_{∞}^{-1} is not invertible. Then there exists a set of numbers $\lambda_{0}, \ldots, \lambda_{\beta-1}$, not all of which are zeros, such that the quadratic form defined by this matrix is equal to zero,

$$
\begin{gathered}
0=\sum_{l, m=0}^{\beta-1}\left(\mathbf{D}_{\infty}^{-1}\right)_{l, m} \lambda_{l} \lambda_{m}=\frac{1}{2} \sum_{l, m=0}^{\beta-1} \lambda_{l} \lambda_{m} \int_{-1}^{1} u^{l+m} d u \\
=\frac{1}{2} \int_{-1}^{1}\left(\sum_{l=0}^{\beta-1} \lambda_{l} u^{l}\right)^{2} d u
\end{gathered}
$$

On the other hand, the right-hand side is strictly positive, which is a contradiction, and thus, \mathbf{D}_{∞}^{-1} is invertible.

Exercise 9.67 (i) Let $\mathbb{E}[\cdot]$ and $\operatorname{Var}[\cdot]$ denote the expected value and variance with respect to the distribution of the design points. Using the continuity of the design density $p(x)$, we obtain the explicit formulas

$$
\begin{gathered}
\mathbb{E}\left[\frac{1}{n h_{n}^{*}} \sum_{i=1}^{n} \varphi^{2}\left(\frac{x_{i}-x}{h_{n}^{*}}\right)\right]=\frac{1}{h_{n}^{*}} \int_{0}^{1} \varphi^{2}\left(\frac{t-x}{h_{n}^{*}}\right) p(t) d t \\
\quad=\int_{0}^{1} \varphi^{2}(u) p\left(x+h_{n} u\right) d u \rightarrow p(x)\|\varphi\|_{2}^{2}
\end{gathered}
$$

(ii) Applying the fact that $\left(h_{n}^{*}\right)^{4 \beta}=1 /\left(n h_{n}^{*}\right)^{2}$ and the independence of the design points, we conclude that the variance is equal to

$$
\begin{aligned}
& \operatorname{Var}\left[\sum_{i=1}^{n} f_{1}^{2}\left(x_{i}\right)\right]=\sum_{i=1}^{n} \operatorname{Var}\left[f_{1}^{2}\left(x_{i}\right)\right] \\
\leq & \sum_{i=1}^{n} \mathbb{E}\left[f_{1}^{4}\left(x_{i}\right)\right]=\frac{1}{\left(n h_{n}^{*}\right)^{2}} \sum_{i=1}^{n} \mathbb{E}\left[\varphi^{4}\left(\frac{x_{i}-x}{h_{n}^{*}}\right)\right] \\
= & \frac{1}{n h_{n}^{*}} \int_{-1}^{1} \varphi^{4}(u) p\left(x+u h_{n}^{*}\right) d u \leq \frac{1}{n h_{n}^{*}} \max _{-1 \leq u \leq 1} \varphi^{4}(u) .
\end{aligned}
$$

Since $n h_{n}^{*} \rightarrow \infty$, the variance of the random sum $\sum_{i=1}^{n} f_{1}^{2}\left(x_{i}\right)$ vanishes as $n \rightarrow \infty$.
(iii) From parts (i) and (ii), the random sum converges in probability to the positive constant $p(x)\|\varphi\|_{2}^{2}$. Thus, by the Markov inequality, for all large enough n,

$$
\mathbb{P}\left(\sum_{i=1}^{n} f_{1}^{2}\left(x_{i}\right) \leq 2 p(x)\|\varphi\|_{2}^{2}\right) \geq 1 / 2
$$

Exercise 9.68 The proof for a random design \mathcal{X} follows the lines of that in Theorem 9.16 , conditionally on \mathcal{X}. It brings us directly to the analogue of inequalities (9.11) and (9.14),

$$
\sup _{f \in \Theta(\beta)} \mathbb{E}_{f}\left(\hat{f}_{n}(x)-f(x)\right)^{2} \geq \frac{1}{4}\left(h_{n}^{*}\right)^{2 \beta} \varphi^{2}(0) \mathbb{E}\left[1-\Phi\left(\frac{1}{2 \sigma}\left[\sum_{i=1}^{n} f_{1}^{2}\left(x_{i}\right)\right]^{1 / 2}\right)\right] .
$$

Finally, we apply the result of part (iii) of Exercise 9.67, which claim that the latter expectation is strictly positive.

Chapter 10

Exercise 10.69 Applying Proposition 10.2, we obtain

$$
\begin{gathered}
\frac{d^{m} \hat{f}_{n}(x)}{d x^{m}}=\sum_{i=m}^{\beta-1} \frac{i!}{(i-m)!} \frac{1}{h_{n}^{m}}\left(\frac{f^{(i)}\left(c_{q}\right)}{i!} h_{n}^{i}+b_{i, q}+\mathcal{N}_{i, q}\right)\left(\frac{x-c_{q}}{h_{n}}\right)^{i-m} \\
=\sum_{i=m}^{\beta-1} \frac{f^{(i)}\left(c_{q}\right)}{(i-m)!}\left(x-c_{q}\right)^{i-m}+\frac{1}{h_{n}^{m}} \sum_{i=m}^{\beta-1} \frac{i!}{(i-m)!} b_{i, q}\left(\frac{x-c_{q}}{h_{n}}\right)^{i-m} \\
\quad+\frac{1}{h_{n}^{m}} \sum_{i=m}^{\beta-1} \frac{i!}{(i-m)!} \mathcal{N}_{i, q}\left(\frac{x-c_{q}}{h_{n}}\right)^{i-m}
\end{gathered}
$$

The first term on the right-hand side is the Taylor expansion around c_{q} of the m-th derivative of the regression function, which differs from $f^{(m)}(x)$ by no more than $O\left(h_{n}^{\beta-m}\right)$. As in the proof of Theorem 10.3, the second bias term has the magnitude $O\left(h_{n}^{\beta-m}\right)$, where the reduction in the rate is due to the extra factor h_{n}^{-m} in the front of the sum. Finally, the third term is a normal random variable which variance does not exceed $O\left(h_{n}^{-2 m}\left(n h_{n}\right)^{-1}\right)$. Thus the balance equation takes the form

$$
h_{n}^{2(\beta-m)}=\frac{1}{\left(h_{n}\right)^{2 m}\left(n h_{n}\right)} .
$$

Its solution is $h_{n}^{*}=n^{-1 /(2 \beta+1)}$, and the respective convergence rate is $\left(h_{n}^{*}\right)^{\beta-m}$.

ExERcISE 10.70 For any $y>0$,

$$
\begin{gathered}
\mathbb{P}\left(\mathcal{Z}^{*} \geq y \beta \sqrt{2 \ln n}\right) \leq \mathbb{P}\left(\bigcup_{q=1}^{Q} \bigcup_{m=0}^{\beta-1}\left|Z_{m, q}\right| \geq y \sqrt{2 \ln n}\right) \\
\leq Q \beta \mathbb{P}(|Z| \geq y \sqrt{2 \ln n}) \quad \text { where } Z \sim \mathcal{N}(0,1) \\
\leq Q \beta n^{-y^{2}} \quad \text { since } \mathbb{P}(|Z| \geq x) \leq \exp \left\{-x^{2} / 2\right\}, x \geq 1
\end{gathered}
$$

If $n>2$ and $y>2$, then $Q n^{-y^{2}} \leq 2^{-y}$, and hence

$$
\begin{gathered}
\mathbb{E}\left[\left.\frac{\mathcal{Z}^{*}}{\beta \sqrt{2 \ln n}} \right\rvert\, \mathcal{X}\right]=\int_{0}^{\infty} \mathbb{P}\left(\left.\frac{\mathcal{Z}^{*}}{\beta \sqrt{2 \ln n}} \geq y \right\rvert\, \mathcal{X}\right) d y \\
\quad \leq \int_{0}^{2} d y+\beta \int_{2}^{\infty} 2^{-y} d y=2+\frac{\beta}{4 \ln 2}
\end{gathered}
$$

Thus (10.11) holds with $C_{z}=\left(2+\frac{\beta}{4 \ln 2}\right) \beta \sqrt{2}$.

Exercise 10.71 Note that

$$
\mathbb{P}\left(\mathcal{Z}^{*} \geq y \sqrt{2 \beta^{2} \ln Q}\right) \leq Q \beta Q^{-y^{2}}=\beta Q^{-\left(y^{2}-1\right)} \leq \beta 2^{-y}
$$

if $Q \geq 2$ and $y \geq 2$. The rest of the proof follows as in the solution to Exercise 10.70. Further, if we seek to equate the squared bias and the variance terms, the bandwidth would satisfy

$$
h_{n}^{\beta}=\sqrt{\left(n h_{n}\right)^{-1} \ln Q}, \text { where } Q=1 /\left(2 h_{n}\right) .
$$

Omitting the constants in this identity, we arrive at the balance equation, which the optimal bandwidth solves,

$$
h_{n}^{\beta}=\sqrt{-\left(n h_{n}\right)^{-1} \ln h_{n}},
$$

or, equivalently,

$$
n h_{n}^{2 \beta+1}=-\ln h_{n} .
$$

To solve this equation, put

$$
h_{n}=\left(\frac{b_{n} \ln n}{(2 \beta+1) n}\right)^{1 /(2 \beta+1)} .
$$

Then b_{n} satisfies the equation

$$
b_{n}=1+\frac{\ln (2 \beta+1)-\ln b_{n}-\ln \ln n}{\ln n}
$$

with the asymptotics $b_{n} \rightarrow 1$ as $n \rightarrow \infty$.

Exercise 10.72 Consider the piecewise monomial functions given in (10.12),

$$
\begin{equation*}
\gamma_{m, q}(x)=\mathbb{I}\left(x \in B_{q}\right)\left(\frac{x-c_{q}}{h_{n}}\right)^{m}, q=1, \ldots, Q, m=0, \ldots, \beta-1 \tag{0.1}
\end{equation*}
$$

The design matrix $\boldsymbol{\Gamma}$ in (10.16) has the columns

$$
\begin{equation*}
\boldsymbol{\gamma}_{k}=\left(\gamma_{k}\left(x_{1}\right), \ldots, \gamma_{k}\left(x_{n}\right)\right)^{\prime}, \quad k=m+\beta(q-1), \quad q=1, \ldots, Q, \quad m=0, \ldots, \beta-1 \tag{0.2}
\end{equation*}
$$

The matrix $\boldsymbol{\Gamma}^{\prime} \boldsymbol{\Gamma}$ of the system of normal equations (10.17) is block-diagonal with Q blocks of dimension β each. Under Assumption 10.1, this matrix is invertible. Thus, the dimension of the span-space is $\beta Q=K$.

Exercise 10.73 If β is an even number, then

$$
f^{(\beta)}(x)=\sum_{k=1}^{\infty}(-1)^{\beta / 2}(2 \pi k)^{\beta}\left[a_{k} \sqrt{2} \cos (2 \pi k x)+b_{k} \sqrt{2} \sin (2 \pi k x)\right] .
$$

If β is an odd number, then

$$
f^{(\beta)}(x)=\sum_{k=1}^{\infty}(-1)^{(\beta+1) / 2}(2 \pi k)^{\beta}\left[a_{k} \sqrt{2} \cos (2 \pi k x)-b_{k} \sqrt{2} \sin (2 \pi k x)\right] .
$$

In either case,

$$
\left\|f^{(\beta)}\right\|_{2}^{2}=(2 \pi)^{\beta} \sum_{k=1}^{\infty} k^{2 \beta}\left[a_{k}^{2}+b_{k}^{2}\right] .
$$

Exercise 10.74 We will show only that

$$
\sum_{i=1}^{n} \sin (2 \pi m i / n)=0
$$

To this end, we use the elementary trigonometric identity

$$
2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)
$$

to conclude that

$$
\sin (2 \pi m i / n)=\frac{\cos (2 \pi m(i-1 / 2) / n)-\cos (2 \pi m(i+1 / 2) / n)}{2 \sin (\pi m / n)}
$$

Thus, we get a telescoping sum

$$
\begin{gathered}
\sum_{i=1}^{n} \sin (2 \pi m i / n)=\sum_{i=1}^{n}\left[\frac{\cos (2 \pi m(i-1 / 2) / n)-\cos (2 \pi m(i+1 / 2) / n)}{2 \sin (\pi m / n)}\right] \\
=\frac{1}{2 \sin (\pi m / n)}[\cos (\pi m / n)-\cos (2 \pi m(n+1 / 2) / n)] \\
=\frac{1}{2 \sin (\pi m / n)}[\cos (\pi m / n)-\cos (2 \pi m+\pi m / n)] \\
=\frac{1}{2 \sin (\pi m / n)}[\cos (\pi m / n)-\cos (\pi m / n)]=0
\end{gathered}
$$

Chapter 11

Exercise 11.75 The standard B-spline of order 2 can be computed as $S_{2}(u)=\int_{-\infty}^{\infty} \mathbb{I}_{[0,1)}(z) \mathbb{I}_{[0,1)}(u-z) d z= \begin{cases}\int_{0}^{u} d z=u, & \text { if } 0 \leq u<1, \\ \int_{u-1}^{1} d z=2-u, & \text { if } 1 \leq u<2 .\end{cases}$

The standard B-spline of order 3 has the form

$$
\begin{gathered}
S_{3}(u)=\int_{-\infty}^{\infty} S_{2}(z) \mathbb{I}_{[0,1)}(u-z) d z \\
= \begin{cases}\int_{0}^{u} z d z=\frac{1}{2} u^{2}, & \text { if } 0 \leq u<1, \\
\int_{u-1}^{1} z d z+\int_{1}^{u}(2-z) d z=-u^{2}+3 u-\frac{3}{2}, & \text { if } 1 \leq u<2, \\
\int_{u-1}^{2}(2-z) d z=\frac{1}{2}(3-u)^{2}, & \text { if } 2 \leq u<3 .\end{cases}
\end{gathered}
$$

Both splines $S_{2}(u)$ and $S_{3}(u)$ are depicted in the figure below.

Exercise 11.76 For $k=0$, (11.6) is a tautology. Assume that the statement is true for some $k \geq 0$. Then, applying (11.2), we obtain that

$$
\begin{gathered}
S_{m}^{(k+1)}(u)=\left(S_{m}^{(k)}(u)\right)^{\prime}=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} S_{m-k}^{\prime}(u-j) \\
=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\left[S_{m-k-1}(u-j)-S_{m-k-1}(u-j-1)\right] \\
=\binom{k}{0} S_{m-k-1}(u)+(-1)^{1}\left[\binom{k}{1}+\binom{k}{0}\right] S_{m-k-1}(u-1) \\
+\ldots+(-1)^{k}\left[\binom{k}{k}+\binom{k}{k-1}\right] S_{m-k-1}(u-k)-(-1)^{k}\binom{k}{k} S_{m-k-1}(u-k-1) \\
=\sum_{j=0}^{k+1}(-1)^{j}\binom{k+1}{j} S_{m-(k+1)}(u-j) .
\end{gathered}
$$

Here we used the elementary formulas

$$
\binom{k}{j}+\binom{k}{j-1}=\binom{k+1}{j},\binom{k}{0}=\binom{k+1}{0}=1
$$

and

$$
-(-1)^{k}\binom{k}{k}=(-1)^{k+1}\binom{k+1}{k+1}
$$

Exercise 11.77 Applying Lemma 11.2, we obtain that

$$
L S^{(m-1)}(u)=\sum_{i=0}^{m-2} a_{i} S_{m}^{(m-1)}(u-i)=\sum_{i=0}^{m-2} a_{i} \sum_{l=0}^{m-1}(-1)^{l}\binom{m-1}{l} \mathbb{I}_{[0,1)}(u-i-l)
$$

If $u \in[j, j+1)$, then the only non-trivial contribution into the latter sum comes from i and l such that $i+l=j$. In view of the restriction, $0 \leq j \leq$ $m-2$, the double sum in the last formula turns into

$$
\lambda_{j}=\sum_{i=0}^{j} a_{i}(-1)^{j-i}\binom{m-1}{j-i} .
$$

Exercise 11.78 If we differentiate j times the function

$$
P_{k}(u)=\frac{(u-k)^{m-1}}{(m-1)!}, u \geq k
$$

we find that

$$
P_{k}^{(j)}(u)=(u-k)^{m-1-j} \frac{(m-1)(m-2) \ldots(m-j)}{(m-1)!}=\frac{(u-k)^{m-j-1}}{(m-j-1)!} .
$$

Hence

$$
\nu_{j}=L P^{(j)}(m-1)=\sum_{k=0}^{m-2} b_{k} \frac{(m-k-1)^{m-j-1}}{(m-j-1)!} .
$$

Exercise 11.79 The matrix \mathbf{M} has the explicit form,

$$
\mathbf{M}=\left[\begin{array}{cccc}
\frac{(m-1)^{m-1}}{(m-1)!} & \frac{(m-2)^{m-1}}{(m-1)!} & \cdots & \frac{(1)^{m-1}}{(m-1)!} \\
\frac{(m-1)^{m-2}}{(m-2)!} & \frac{(m-2)^{m-2}}{(m-2)!} & \cdots & \frac{(1)^{m-2}}{(m-2)!} \\
\frac{(m-1)^{1}}{1!} & \frac{(m-2)^{1}}{1!} & \ldots & \frac{(1)^{1}}{1!}
\end{array}\right]
$$

so that its determinant

$$
\operatorname{det} \mathbf{M}=\left(\prod_{k=1}^{m-1} k!\right)^{-1} \operatorname{det} \mathbf{V}_{m-1} \neq 0
$$

where \mathbf{V}_{m-1} is the $(m-1) \times(m-1)$ Vandermonde matrix with the elements $x_{1}=1, \ldots, x_{m-1}=m-1$.

Exercise 11.80 In view of Lemma 11.4, the proof repeats the proof of Lemma 11.8. The polynomial $g(u)=1-u^{2}$ in the interval $[2,3)$ has the representation
$g(u)=b_{0} P_{0}(u)+b_{1} P_{1}(u)+b_{2} P_{2}(u)=(-1) \frac{u^{2}}{2!}+(-2) \frac{(u-1)^{2}}{2!}+\frac{(u-2)^{2}}{2!}$
with $b_{0}=-1, b_{1}=-2$, and $b_{2}=1$.

Exercise 11.81 Note that the derivative of the order $(\beta-j-1)$ of $f^{(j)}$ is $f^{(\beta-1)}$ which is the Lipschitz function with the Lipschitz constant L by the definition of $\Theta\left(\beta, L, L_{1}\right)$. Thus, what is left to show is that all the derivatives $f^{(1)}, \ldots, f^{(\beta-1)}$ are bounded in their absolute values by some constant L_{2}. By Lemma 10.2, any function $f \in \Theta\left(\beta, L, L_{1}\right)$ admits the Taylor approximation

$$
f(x)=\sum_{m=0}^{\beta-1} \frac{f^{(m)}(c)}{m!}(x-c)^{m}+\rho(x, c), \quad 0 \leq x, c \leq 1,
$$

with the remainder term $\rho(x, c)$ such that

$$
|\rho(x, c)| \leq \frac{L|x-c|^{\beta}}{(\beta-1)!} \leq C_{\rho} \text { where } C_{\rho}=\frac{L}{(\beta-1)!}
$$

That is why, if $f \in \Theta\left(\beta, L, L_{1}\right)$, then at any point $x=c$, the inequality holds

$$
\left|\sum_{m=0}^{\beta-1} \frac{f^{(m)}(c)}{m!}(x-c)^{m}\right| \leq|f(x)|+|\rho(x, c)| \leq L_{1}+C_{\rho}=L_{0} .
$$

So, it suffices to show that if a polynomial $g(x)=\sum_{m=0}^{\beta-1} b_{m}(x-c)^{m}$ is bounded, $|g(x)|=\left|\sum_{m=0}^{\beta-1} b_{m}(x-c)^{m}\right| \leq L_{0}$, for all $x, c \in[0,1]$, then

$$
\begin{equation*}
\max \left[b_{0}, \ldots, b_{\beta-1}\right] \leq L_{2} \tag{0.3}
\end{equation*}
$$

with a constant L_{2} independent of $c \in[0,1]$. Assume for definiteness that $0 \leq c \leq 1 / 2$, and choose the points $c<x_{0}<\cdots<x_{\beta-1}$ so that $t_{i}=$ $x_{i}-c=(i+1) \alpha, i=0, \ldots, \beta-1$. A positive constant α is such that $\alpha \beta<1 / 2$, which yields $0 \leq t_{i} \leq 1$. Put $g_{i}=g\left(x_{i}\right)$. The coefficients $b_{0}, \ldots, b_{\beta-1}$ of polynomial $g(x)$ satisfy the system of linear equations

$$
b_{0}+b_{1} t_{i}+b_{2} t_{i}^{2}+\ldots+b_{\beta-1} t_{i}^{\beta-1}=g_{i}, \quad i=0, \ldots, \beta-1
$$

The determinant of the system's matrix is the Vandermonde determinant, that is, it is non-zero and independent of c. The right-hand side elements of this system are bounded by L_{0}. Thus, the upper bound (0.3) follows. Similar considerations are true for $1 / 2 \leq c \leq 1$.

Chapter 12

Exercise 12.82 We have n design points in Q bins. That is why, for any design, there exist at least $Q / 2$ bins with at most $2 n / Q$ design points. Indeed, otherwise we would have strictly more than $(Q / 2)(2 n / Q)=n$ points. Denote the set of the indices of these bins by \mathcal{M}. By definition, $|\mathcal{M}| \geq Q / 2$. In each such bin B_{q}, the respective variance is bounded by

$$
\begin{gathered}
\sigma_{q, n}^{2}=\sum_{x_{i} \in B_{q}} f_{q}^{2}\left(x_{i}\right) \leq \sum_{x_{i} \in B_{q}}\left(h_{n}^{*}\right)^{2 \beta} \varphi^{2}\left(\frac{x_{i}-c_{q}}{h_{n}^{*}}\right) \\
\leq\|\varphi\|_{\infty}^{2}\left(h_{n}^{*}\right)^{2 \beta}(2 n / Q)=4 n\|\varphi\|_{\infty}^{2}\left(h_{n}^{*}\right)^{2 \beta+1}=4\|\varphi\|_{\infty}^{2} \ln n
\end{gathered}
$$

which can be made less than $2 \alpha \ln Q$ if we choose $\|\varphi\|_{\infty}$ sufficiently small.

Exercise 12.83 Select the test function defined by (12.3). Substitute M in the proof of Lemma 12.11 by Q, to obtain

$$
\begin{gathered}
\sup _{f \in \Theta(\beta)} \mathbb{E}_{f}\left[\psi_{n}^{-1}\left\|\hat{f}_{n}-f\right\|_{\infty}\right] \geq d_{0} \psi_{n}^{-1} \max _{1 \leq q \leq Q} \mathbb{E}_{f_{q}}\left[\mathbb{E}_{f_{q}}\left[\mathbb{I}\left(\mathcal{D}_{q}\right) \mid \mathcal{X}\right]\right] \\
\geq d_{0} \psi_{n}^{-1} \mathbb{E}^{(\mathcal{X})}\left[\frac{1}{2} \mathbb{P}_{0}\left(\mathcal{D}_{0} \mid \mathcal{X}\right)+\frac{1}{2 Q} \sum_{q=1}^{Q} \mathbb{P}_{q}\left(\mathcal{D}_{q} \mid \mathcal{X}\right)\right]
\end{gathered}
$$

where $\mathbb{E}^{(\mathcal{X})}[\cdot]$ denotes the expectation taken over the distribution of the random design.

Note that $d_{0} \psi_{n}^{-1}=(1 / 2)\|\varphi\|_{\infty}$. Due to (12.22), with probability 1 , for any random design \mathcal{X}, there exists a set $\mathcal{M}(\mathcal{X})$ such that

$$
\frac{1}{2} \mathbb{P}_{0}\left(\mathcal{D}_{0} \mid \mathcal{X}\right)+\frac{1}{2 Q} \sum_{q=1}^{Q} \mathbb{P}\left(\mathcal{D}_{q} \mid \mathcal{X}\right) \geq \frac{|\mathcal{M}|}{4 Q} \geq \frac{Q / 2}{4 Q}=\frac{1}{8}
$$

Combining these bounds, we get that

$$
\sup _{f \in \Theta(\beta)} \mathbb{E}_{f}\left[\psi_{n}^{-1}\left\|\hat{f}_{n}-f\right\|_{\infty}\right] \geq(1 / 16)\|\varphi\|_{\infty}
$$

Exercise 12.84 The log-likelihood function is equal to

$$
-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)\right)^{2}+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)\right)^{2}
$$

$$
\begin{gathered}
=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)\right)\left(f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)\right) \\
-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)\right)^{2} \\
=\sum_{i=1}^{n}\left(\frac{\varepsilon_{i}}{\sigma}\right)\left(\frac{f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)}{\sigma}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)\right)^{2}
\end{gathered}
$$

so that (12.24) holds with

$$
\sigma_{n}^{2}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)\right)^{2}
$$

and

$$
\mathcal{N}_{n}=\frac{1}{\sigma_{n}} \sum_{i=1}^{n}\left(\frac{\varepsilon_{i}}{\sigma}\right)\left(\frac{f\left(x_{i}, \boldsymbol{\omega}^{\prime}\right)-f\left(x_{i}, \boldsymbol{\omega}^{\prime \prime}\right)}{\sigma}\right) .
$$

Exercise 12.85 By definition,

$$
\begin{gathered}
\mathbb{E}\left[\exp \left\{z \xi_{q}^{\prime}\right\}\right]=\frac{1}{2} e^{z / 2}+\frac{1}{2} e^{-z / 2}=\sum_{k=0}^{\infty} \frac{1}{(2 k)!}\left(\frac{z}{2}\right)^{2 k} \\
=\sum_{k=0}^{\infty} \frac{1}{k!} \frac{1}{(k+1) \ldots(k+k)}\left(\frac{z^{2}}{4}\right)^{k} \leq \sum_{k=0}^{\infty} \frac{1}{k!2^{k}}\left(\frac{z^{2}}{4}\right)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{z^{2}}{8}\right)^{k}=e^{z^{2} / 8} .
\end{gathered}
$$

Exercise 12.86 Consider the case $\beta=1$. The bandwidth $h_{n}^{*}=n^{-1 / 3}$, and the number of the bins $Q=1 /\left(2 h_{n}^{*}\right)=(1 / 2) n^{1 / 3}$. Let $N=n / Q=2 n^{2 / 3}$ denote the number of design points in every bin. We assume that N is an integer. In the bin $B_{q}, 1 \leq q \leq Q$, the estimator has the form

$$
f_{n}^{*}=\bar{y}_{q}=\sum_{i / n \in B_{q}} y_{i} / N=\bar{f}_{q}+\xi_{q} / \sqrt{N}
$$

with $\bar{f}_{q}=\sum_{i / n \in B_{q}} f\left(x_{i}\right) / N$, and independent $\mathcal{N}\left(0, \sigma^{2}\right)$-random variables $\xi_{q}=\sum_{i / n \in B_{q}}\left(y_{i}-f\left(x_{i}\right)\right) / \sqrt{N}=\sum_{i / n \in B_{q}} \varepsilon_{i} / \sqrt{N}$.

Put $\bar{f}_{n}(x)=\bar{f}_{q}$ if $x \in B_{q}$. From the Lipschitz condition on f it follows that $\left\|\bar{f}_{n}-f\right\|_{2}^{2} \leq C n^{-2 / 3}$ with some positive constant C independent of n. Next,

$$
\left\|f_{n}^{*}-f\right\|_{2}^{2} \leq 2\left\|\bar{f}_{n}-f\right\|_{2}^{2}+2\left\|f_{n}^{*}-\bar{f}_{n}\right\|_{2}^{2}
$$

$$
=2\left\|\bar{f}_{n}-f\right\|_{2}^{2}+\frac{2}{Q N} \sum_{q=1}^{Q} \xi_{q}^{2}=2\left\|\bar{f}_{n}-f\right\|_{2}^{2}+\frac{2}{n} \sum_{q=1}^{Q} \xi_{q}^{2},
$$

so that

$$
n^{2 / 3}\left\|f_{n}^{*}-f\right\|_{2}^{2} \leq 2 C+2 \frac{n^{2 / 3}}{n} \sum_{q=1}^{Q} \xi_{q}^{2}=2 C+2 n^{-1 / 3} \sum_{q=1}^{Q} \xi_{q}^{2}
$$

By the Law of Large Numbers,

$$
2 n^{-1 / 3} \sum_{q=1}^{Q} \xi_{q}^{2}=\frac{1}{Q} \sum_{q=1}^{Q} \xi_{q}^{2} \rightarrow \sigma^{2}
$$

almost surely as $n \rightarrow \infty$. Hence for any constant c such that $c^{2}>2 C+\sigma^{2}$, the inequality holds $n^{1 / 3}\left\|f_{n}^{*}-f\right\|_{2} \leq c$ with probability whatever close to 1 as $n \rightarrow \infty$. Thus, there is no p_{0} that satisfies

$$
\mathbb{P}_{f}\left(\left\|\hat{f}_{n}-f\right\|_{2} \geq c n^{-1 / 3} \mid \mathcal{X}\right) \geq p_{0}
$$

Chapter 13

Exercise 13.87 The expected value $\mathbb{E}_{f}\left[\hat{\Psi}_{n}\right]=n^{-1} \sum_{i=1}^{n} w(i / n) f(i / n)$. Since w and f are the Lipschitz functions, their product is also Lipschitz with some constant L_{0} so that

$$
\left|b_{n}\right|=\left|\mathbb{E}_{f}\left[\hat{\Psi}_{n}\right]-\Psi(f)\right|=\left|\mathbb{E}_{f}\left[\hat{\Psi}_{n}\right]-\int_{0}^{1} w(x) f(x) d x\right| \leq L_{0} / n
$$

Next, $\hat{\Psi}_{n}-\mathbb{E}_{f}\left[\hat{\Psi}_{n}\right]=n^{-1} \sum_{i=1}^{n} w(i / n) \varepsilon_{i}$, hence the variance of $\hat{\Psi}_{n}$ equals to

$$
\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} w^{2}(i / n)=\frac{\sigma^{2}}{n}\left(\int_{0}^{1} w^{2}(x) d x+O\left(n^{-1}\right)\right)
$$

Exercise 13.88 Note that $\Psi(1)=e^{-1} \int_{0}^{1} e^{t} f(t) d t$, thus the estimator (13.4) takes the form

$$
\hat{\Psi}_{n}=n^{-1} \sum_{i=1}^{n} \exp \{(i-n) / n\} y_{i} .
$$

By Proposition 13.2, the bias of this estimator has the magnitude $O\left(n^{-1}\right)$, and its variance is
$\mathbb{V} a r\left[\hat{\Psi}_{n}\right]=\frac{\sigma^{2}}{n} \int_{0}^{1} e^{2(t-1)} d t+O\left(n^{-2}\right)=\frac{\sigma^{2}}{2 n}\left(1-e^{-2}\right)+O\left(n^{-2}\right)$, as $n \rightarrow \infty$.

Exercise 13.89 Take any $f_{0} \in \Theta\left(\beta, L, \mathrm{Ł}_{1}\right)$, and put $\Delta f=f-f_{0}$. Note that

$$
f^{4}=f_{0}^{4}+4 f_{0}^{3}(\Delta f)+6 f_{0}^{2}(\Delta f)^{2}+4 f_{0}(\Delta f)^{3}+(\Delta f)^{4}
$$

Hence

$$
\Psi(f)=\Psi\left(f_{0}\right)+\int_{0}^{1} w\left(x, f_{0}\right) f(x) d x+\rho\left(f, f_{0}\right)
$$

with a Lipschitz weight function $w\left(x, f_{0}\right)=4 f_{0}^{3}(x)$, and the remainder term

$$
\rho\left(f_{0}, f\right)=\int_{0}^{1}\left(6 f_{0}^{2}(\Delta f)^{2}+4 f_{0}(\Delta f)^{3}+(\Delta f)^{4}\right) d x
$$

Since f_{0} and f belong to the set $\Theta\left(\beta, L, L_{1}\right)$, they are bounded by L_{1}, and, thus, $|\Delta f| \leq 2 L_{1}$. Consequently, the remainder term satisfies the condition

$$
\begin{aligned}
& \left|\rho\left(f_{0}, f\right)\right| \leq\left(6 L_{1}^{2}+4 L_{1}\left(2 L_{1}\right)+\left(2 L_{1}\right)^{2}\right)\left\|f-f_{0}\right\|_{2}^{2} \\
& =18 L_{1}^{2}\left\|f-f_{0}\right\|_{2}^{2}=C_{\rho}\left\|f-f_{0}\right\|_{2}^{2} \text { with } C_{\rho}=18 L_{1}^{2} .
\end{aligned}
$$

Exercise 13.90 From (13.12), we have to verify is that

$$
\mathbb{E}_{f}\left[\left(\sqrt{n} \rho\left(f, f_{n}^{*}\right)\right)^{2}\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

Under the assumption on the remainder term, this expectation is bounded from above by

$$
\begin{gathered}
\mathbb{E}_{f}\left[\left(\sqrt{n} C_{\rho}\left\|f_{n}^{*}-f\right\|_{2}^{2}\right)^{2}\right]=n C_{\rho}^{2} \mathbb{E}_{f}\left[\left(\int_{0}^{1}\left(f_{n}^{*}(x)-f(x)\right)^{2} d x\right)^{2}\right] \\
\leq n C_{\rho}^{2} \mathbb{E}_{f}\left[\int_{0}^{1}\left(f_{n}^{*}(x)-f(x)\right)^{4} d x\right] \rightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

Exercise 13.91 The expected value of the sample mean is equal to

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)= & \sum_{i=1}^{n} f\left(x_{i}\right) p\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\left(n p\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right)^{-1} \\
& =\int_{0}^{1} f(x) p(x)\left(1+o_{n}(1)\right) d x
\end{aligned}
$$

because, as shown in the proof of Lemma9.8, $n p\left(x_{i}\right)\left(x_{i}-x_{i-1}\right) \rightarrow 1$ uniformly in $i=1, \ldots, n$. Hence

$$
\hat{\Psi}_{n}=\left(y_{1}+\cdots+y_{n}\right) / n \sim \mathcal{N}\left(\int_{0}^{1} f(x) p(x) d x, \sigma^{2} / n\right)
$$

To prove the efficiency, consider the family of the constant regression functions $f_{\theta}(x)=\theta, \theta \in \mathbb{R}$. The corresponding functional is equal to

$$
\Psi\left(f_{\theta}\right)=\int_{0}^{1} f_{\theta}(x) p(x) d x=\theta \int_{0}^{1} p(x) d x=\theta
$$

Thus, we have a parametric model of observations $y_{i}=\theta+\varepsilon_{i}$ with the efficient sample mean.

Chapter 14

Exercise 14.92 The number of monomials equals to the number of nonnegative integer solutions of the equation $z_{1}+\cdots+z_{d}=i$. Indeed, we can interpret z_{j} as the power of the j-th variable in the monomial, $j=1, \ldots, d$. Consider all the strings of the length $d+(i-1)$ filled with i ones and $d-1$ zeros. For example, if $d=4$ and $i=6$, one possible such string is 100110111 . Now count the number of ones between every two consecutive zeros. In our example, they are $z_{1}=1, z_{2}=0, z_{3}=2$, and $z_{4}=3$. Each string corresponds to a solution of the equation $z_{1}+\cdots+z_{d}=i$. Clearly, there are as many solutions of this equation as many strings with the described property. The latter number is the number of combinations of i objects from a set of $i+d-1$ objects.

Exercise 14.93 As defined in (14.9),

$$
\begin{gathered}
\hat{f}_{0}=\frac{1}{n} \sum_{i, j=1}^{m} \tilde{y}_{i j}=\frac{1}{m^{2}} \sum_{i, j=1}^{m}\left[f_{0}+f_{1}(i / m)+f_{2}(j / m)+\tilde{\varepsilon}_{i j}\right] \\
=f_{0}+\frac{1}{m} \sum_{i=1}^{m} f_{1}(i / m)+\frac{1}{m} \sum_{j=1}^{m} f_{2}(j / m)+\frac{1}{m} \tilde{\varepsilon}
\end{gathered}
$$

where

$$
\tilde{\varepsilon}=\frac{1}{m} \sum_{i, j=1}^{m} \tilde{\varepsilon}_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Put
$z_{i}=\frac{1}{m} \sum_{j=1}^{m}\left(y_{i j}-\hat{f}_{0}\right)=\frac{1}{m} \sum_{j=1}^{m}\left[f_{0}+f_{1}(i / m)+f_{2}(j / m)-\hat{f}_{0}\right]+\frac{1}{m} \sum_{j=1}^{m} \varepsilon_{i j}$
$=f_{1}(i / m)+\delta_{n}+\frac{1}{\sqrt{m}} \bar{\varepsilon}_{i}-\frac{1}{m} \tilde{\varepsilon}$ with $\delta_{n}=-\frac{1}{m} \sum_{i=1}^{m} f_{1}(i / m)=O(1 / m)$.
The random error $\bar{\varepsilon}_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of $\tilde{\varepsilon}$. The rest follows as in the proof of Proposition 14.5 with the only difference that in this case the variance of the stochastic term is bounded by $C_{v} N^{-1}\left(\sigma^{2} / m+\sigma^{2} / m^{2}\right)$.

Exercise 14.94 Define an anisotropic bin, a rectangle with the sides h_{1} and h_{2} along the respective coordinates. Choose the sides so that $h_{1}^{\beta_{1}}=h_{2}^{\beta_{2}}$. As our estimator take the local polynomial estimator from the observations in the selected bin. The bias of this estimator has the magnitude $O\left(h_{1}^{\beta_{1}}\right)=$
$O\left(h_{2}^{\beta_{2}}\right)$, while the variance is reciprocal to the number of design points in the bin, that is, $O\left(\left(n h_{1} h_{2}\right)^{-1}\right)$. Under our choice of the bandwidths, we have that $h_{2}=h_{1}^{\beta_{1} / \beta_{2}}$. The balance equation takes the form

$$
h_{1}^{2 \beta_{1}}=\left(n h_{1} h_{2}\right)^{-1} \text { or, equivalently, }\left(h_{1}^{\beta_{1}}\right)^{2+1 / \tilde{\beta}}=n^{-1} .
$$

The magnitude of the bias term defines the rate of convergence which is equal to $h_{1}^{\beta_{1}}=n^{-\tilde{\beta} /(2 \tilde{\beta}+1)}$.

Chapter 15

ExERCISE 15.95 Choose the bandwidths $h_{\beta_{1}}=(n / \ln n)^{-1 /\left(2 \beta_{1}+1\right)}$ and $h_{\beta_{2}}=$ $n^{-1 /\left(2 \beta_{2}+1\right)}$. Let $\hat{f}_{\beta_{1}}$ and $\hat{f}_{\beta_{2}}$ be the local polynomial estimators of $f\left(x_{0}\right)$ with the chosen bandwidths.

Define $\tilde{f}_{n}=\hat{f}_{\beta_{1}}$, if the difference of the estimators $\left|\hat{f}_{\beta_{1}}-\hat{f}_{\beta_{2}}\right| \geq C\left(h_{\beta_{1}}\right)^{\beta_{1}}$, and $\tilde{f}_{n}=\hat{f}_{\beta_{2}}$, otherwise. A sufficiently large constant C is chosen below.

As in Sections 15.2 and 15.3, we care about the risk when the adaptive estimator does not match the true smoothness parameter. If $f \in \Theta\left(\beta_{1}\right)$ and $\tilde{f}_{n}=\hat{f}_{\beta_{2}}$, then the difference $\left|\hat{f}_{\beta_{1}}-\hat{f}_{\beta_{2}}\right|$ does not exceed $C\left(h_{\beta_{1}}\right)^{\beta_{1}}=C \psi_{n}(f)$, and the upper bound follows similarly to (15.11).

If $f \in \Theta\left(\beta_{2}\right)$, while $\tilde{f}_{n}=\hat{f}_{\beta_{1}}$, then the performance of the risk is controlled by the probabilities of large deviations $\mathbb{P}_{f}\left(\left|\hat{f}_{\beta_{1}}-\hat{f}_{\beta_{2}}\right| \geq C\left(h_{\beta_{1}}\right)^{\beta_{1}}\right)$. Note that each estimator has a bias which does not exceed $C_{b}\left(h_{\beta_{1}}\right)^{\beta_{1}}$. If the constant C is chosen so that $C \geq 2 C_{b}+2 C_{0}$ for some large positive C_{0}, then the random event of interest can happen only if the stochastic term of at least one estimator exceeds $C_{0}\left(h_{\beta_{1}}\right)^{\beta_{1}}$. The stochastic terms are zero-mean normal with the variances bounded by $C_{v}\left(h_{\beta_{1}}\right)^{2 \beta_{1}}$ and $C_{v}\left(h_{\beta_{2}}\right)^{2 \beta_{2}}$, respectively. The probabilities of the large deviations decrease faster that any power of n if C_{0} is large enough.

Exercise 15.96 From (15.7), we have

$$
\left\|f_{n, \beta_{1}}^{*}-f\right\|_{\infty}^{2} \leq 2 A_{b}^{2}\left(h_{n, \beta_{1}}^{*}\right)^{2 \beta}+2 A_{v}^{2}\left(n h_{n, \beta_{1}}^{*}\right)^{-1}\left(\mathcal{Z}_{\beta_{1}}^{*}\right)^{2}
$$

Hence

$$
\left(h_{n, \beta_{1}}^{*}\right)^{-2 \beta_{1}} \mathbb{E}_{f}\left[\left\|f_{n, \beta_{1}}^{*}-f\right\|_{\infty}^{2}\right] \leq 2 A_{b}^{2}+2 A_{v}^{2} \mathbb{E}_{f}\left[\left(\mathcal{Z}_{\beta_{1}}^{*}\right)^{2}\right]
$$

In view of (15.8), the latter expectation is finite.

Chapter 16

Exercise 16.97 Note that by our assumption,

$$
\alpha=\mathbb{P}_{0}\left(\Delta_{n}^{*}=1\right) \geq \mathbb{P}_{0}\left(\Delta_{n}=1\right)
$$

It is equivalent to

$$
\begin{gathered}
\mathbb{P}_{0}\left(\Delta_{n}^{*}=1, \Delta_{n}=1\right)+\mathbb{P}_{0}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right) \\
\geq \mathbb{P}_{0}\left(\Delta_{n}^{*}=1, \Delta_{n}=1\right)+\mathbb{P}_{0}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right),
\end{gathered}
$$

which implies that

$$
\mathbb{P}_{0}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right) \leq \mathbb{P}_{0}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right)
$$

Next, the probabilities of type II error for Δ_{n}^{*} and Δ_{n} are respectively equal to

$$
\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0\right)=\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0, \Delta_{n}=0\right)+\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right),
$$

and

$$
\mathbb{P}_{\theta_{1}}\left(\Delta_{n}=0\right)=\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0, \Delta_{n}=0\right)+\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right) .
$$

Hence, to prove that $\mathbb{P}_{\theta_{1}}\left(\Delta_{n}=0\right) \geq \mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0\right)$, it suffices to show that

$$
\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right) \leq \mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right) .
$$

From the definition of the likelihood ratio Λ_{n}, and since $\Delta_{n}^{*}=\mathbb{I}\left(L_{n} \geq c\right)$, we obtain

$$
\begin{aligned}
& \mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right)=\mathbb{E}_{0}\left[e^{L_{n}} \mathbb{I}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right)\right] \\
& \leq e^{c} \mathbb{P}_{0}\left(\Delta_{n}^{*}=0, \Delta_{n}=1\right) \leq e^{c} \mathbb{P}_{0}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right) \\
\leq & \mathbb{E}_{0}\left[e^{L_{n}} \mathbb{I}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right)\right]=\mathbb{P}_{\theta_{1}}\left(\Delta_{n}^{*}=1, \Delta_{n}=0\right) .
\end{aligned}
$$

