
Solutions Manual to
MATHEMATICAL STATISTICS:

Asymptotic Minimax Theory

Alexander Korostelev Olga Korosteleva
Wayne State University, California State University,

Detroit, MI 48202 Long Beach, CA 90840



Chapter 1
Exercise 1.1 To verify first that the representation holds, compute the
second partial derivative of ln p(x, θ) with respect to θ. It is

∂2 ln p(x, θ)

∂θ2
= − 1[

p(x, θ)
]2

(∂ p(x, θ)

∂ θ

)2

+
1

p(x, θ)

∂2 p(x, θ)

∂ θ2

= −
(∂ ln p(x, θ)

∂θ

)2

+
1

p(x, θ)

∂2 p(x, θ)

∂ θ2
.

Multiplying by p(x, θ) and rearranging the terms produce the result,

(∂ ln p (x, θ)

∂ θ

)2

p (x, θ) =
∂2 p (x, θ)

∂θ2
−

(∂2 ln p (x, θ)

∂θ2

)
p (x, θ).

Now integrating both sides of this equality with respect to x, we obtain

In(θ) = nEθ

[(∂ ln p (X, θ)

∂ θ

)2 ]
= n

∫

R

(∂ ln p (x, θ)

∂ θ

)2

p (x, θ) dx

= n

∫

R

∂2 p (x, θ)

∂θ2
dx − n

∫

R

(∂2 ln p (x, θ)

∂θ2

)
p (x, θ) dx

= n
∂2

∂θ2

∫

R
p(x, θ) dx

︸ ︷︷ ︸
0

−n

∫

R

(∂2 ln p (x, θ)

∂θ2

)
p (x, θ) dx

= −n

∫

R

(∂2 ln p (x, θ)

∂θ2

)
p (x, θ) dx = −nEθ

[∂2 ln p (x, θ)

∂θ2

]
.

Exercise 1.2 The first step is to notice that θ ∗n is an unbiased estimator of
θ. Indeed, Eθ[ θ

∗
n ] = Eθ

[
(1/n)

∑n
i=1 (Xi − µ)2

]
= Eθ[(X1 − µ)2] = θ.

Further, the log-likelihood function for the N (µ, θ) distribution has the form

ln p(x, θ) = − 1

2
ln(2 π θ) − (x− µ)2

2 θ
.

Therefore,

∂ ln p(x, θ)

∂θ
= − 1

2θ
+

(x− µ)2

2θ2
, and

∂2 ln p(x, θ)

∂θ2
=

1

2θ2
− (x− µ)2

θ3
.

Applying the result of Exercise 1.1, we get

In(θ) = −nEθ

[∂2 ln p(X, θ)

∂θ2

]
= −nEθ

[ 1

2θ2
− (X − µ)2

θ3

]
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= −n
[ 1

2θ2
− θ

θ3

]
=

n

2θ2
.

Next, using the fact that
∑n

i =1 (Xi − µ)2/θ has a chi-squared distribution
with n degrees of freedom, and, hence its variance equals to 2n, we arrive at

Varθ

[
θ ∗n

]
= Varθ

[ 1

n

n∑
i =1

(Xi − µ)2
]

=
2nθ2

n2
=

2θ2

n
=

1

In(θ)
.

Thus, we have shown that θ ∗n is an unbiased estimator of θ and that its vari-
ance attains the Cramér-Rao lower bound, that is, θ ∗n is an efficient estimator
of θ.

Exercise 1.3 For the Bernoulli(θ) distribution,

ln p (x, θ) = x ln θ + (1− x) ln(1− θ),

thus,

∂ ln p(x, θ)

∂θ
=

x

θ
− 1− x

1− θ
and

∂2 ln p(x, θ)

∂θ2
= − x

θ2
− 1− x

(1− θ)2
.

From here,

In(θ) = −nEθ

[
− X

θ2
− 1−X

(1− θ)2

]
= n

( θ

θ2
+

1− θ

(1− θ)2

)
=

n

θ(1− θ)
.

On the other hand, Eθ

[
X̄n

]
= Eθ

[
X

]
= θ and Varθ

[
X̄n

]
= Varθ

[
X

]
/n =

θ(1− θ)/n = 1/In(θ). Therefore θ ∗n = X̄n is efficient.

Exercise 1.4 In the Poisson(θ) model,

ln p (x, θ) = x ln θ − θ − ln x! ,

hence,
∂ ln p(x, θ)

∂θ
=

x

θ
− 1 and

∂2 ln p(x, θ)

∂θ2
= − x

θ2
.

Thus,

In(θ) = −nEθ

[
− X

θ2

]
=

n

θ
.

The estimate X̄n is unbiased with the variance Varθ

[
X̄n

]
= θ/n = 1/In(θ),

and therefore efficient.
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Exercise 1.5 For the given exponential density,

ln p (x, θ) = − ln θ − x/θ ,

whence,

∂ ln p(x, θ)

∂θ
= − 1

θ
+

x

θ2
and

∂2 ln p(x, θ)

∂θ2
=

1

θ2
− 2x

θ3
.

Therefore,

In(θ) = −nEθ

[ 1

θ2
− 2X

θ3

]
= −n

[ 1

θ2
− 2θ

θ3

]
=

n

θ2
.

Also, Eθ

[
X̄n

]
= θ and Varθ

[
X̄n

]
= θ2/n = 1/In(θ). Hence efficiency holds.

Exercise 1.6 If X1, . . . , Xn are independent exponential random variables
with the mean 1/θ, their sum Y =

∑n
i =1 Xi has a gamma distribution with

the density

fY (y) =
y n−1 θ n e−y θ

Γ(n)
, y > 0 .

Consequently,

Eθ

[ 1

X̄n

]
= Eθ

[ n

Y

]
= n

∫ ∞

0

1

y

y n−1θ n e−y θ

Γ(n)
dy

=
n θ

Γ(n)

∫ ∞

0

y n−2 θ n−1 e−y θ dy =
n θ Γ(n− 1)

Γ(n)

=
n θ (n− 2)!

(n− 1)!
=

n θ

n− 1
.

Also,

Varθ

[
1/X̄n

]
= Varθ

[
n/Y

]
= n2

(
Eθ

[
1/Y 2

] − (
Eθ

[
1/Y

])2
)

= n2
[θ2Γ(n− 2)

Γ(n)
− θ2

(n− 1)2

]
= n2 θ2

[ 1

(n− 1)(n− 2)
− 1

(n− 1)2

]

=
n2 θ2

(n− 1)2(n− 2)
.

Exercise 1.7 The trick here is to notice the relation

∂ ln p 0(x− θ)

∂θ
=

1

p 0(x− θ)

∂p 0(x− θ)

∂θ
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= − 1

p 0(x− θ)

∂p 0(x− θ)

∂x
= − p 0

′(x− θ)

p 0(x− θ)
.

Thus we can write

In(θ) = nEθ

[ (
− p 0

′(X − θ)

p 0(X − θ)

)2 ]
= n

∫

R

(
p 0

′(y)
)2

p 0(y)
dy ,

which is a constant independent of θ.

Exercise 1.8 Using the expression for the Fisher information derived in the
previous exercise, we write

In(θ) = n

∫

R

(
p 0

′(y)
)2

p 0(y)
dy = n

∫ π/2

−π/2

( − Cα cosα−1 y sin y
)2

C cosα y
dy

= nC α2

∫ π/2

−π/2

sin2 y cosα−2 y dy = n C α2

∫ π/2

−π/2

(1− cos2 y) cosα−2 y dy

= nC α2

∫ π/2

−π/2

(
cosα−2 y − cosα y

)
dy .

Here the first term is integrable if α − 2 > −1 (equivalently, α > 1), while
the second one is integrable if α > −1. Therefore, the Fisher information
exists when α > 1.

5



Chapter 2

Exercise 2.9 By Exercise 1.4, the Fisher information of the Poisson(θ)
sample is In(θ) = n/θ. The joint distribution of the sample is

p(X1 , . . . Xn , θ) = Cn θ
∑

Xi e−n θ

where Cn = Cn(X1, . . . , Xn) is the normalizing constant independent of θ .
As a function of θ, this joint probability has the algebraic form of a gamma
distribution. Thus, if we select the prior density to be a gamma density,
π(θ) = C(α, β) θ α−1 e−β θ, θ > 0, for some positive α and β, then the
weighted posterior density is also a gamma density,

f̃(θ |X1, . . . , Xn) = In(θ) Cn θ
∑

Xi e−n θC(α, β) θ α−1 e−β θ

= C̃n θ
∑

Xi+α−2 e−(n+β) θ , θ > 0,

where C̃n = nCn(X1, . . . , Xn) C(α, β) is the normalizing constant. The
expected value of the weighted posterior gamma distribution is equal to

∫ ∞

0

θ f̃(θ |X1, . . . , Xn) dθ =

∑
Xi + α− 1

n + β
.

Exercise 2.10 As shown in Example 1.10, the Fisher information In(θ) =
n/σ2. Thus, the weighted posterior distribution of θ can be found as follows:

f̃
(
θ |X1, . . . , Xn

)
= C In(θ) exp

{
−

∑(
Xi − θ

)2

2σ2
−

(
θ − µ)2

2σ2
θ

}

= C
n

σ2
exp

{
−

( ∑
X2

i

2σ2
− 2θ

∑
Xi

2σ2
+

nθ2

2σ2
+

θ2

2σ2
θ

− 2θµ

2σ2
θ

+
µ2

2σ2
θ

)}

= C1 exp
{
− 1

2

[
θ2

( n

σ2
+

1

σ2
θ

) − 2 θ
(nX̄n

σ2
+

µ

σ2
θ

)]}

= C2 exp
{
− 1

2

( n

σ2
+

1

σ2
θ

) (
θ − (

nσ2
θ X̄n + µσ2

)
/
(
nσ2

θ + σ2
))2}

.

Here C, C1, and C2 are the appropriate normalizing constants. Thus, the
weighted posterior mean is

(
nσ2

θ X̄n + µσ2
)
/
(
nσ2

θ + σ2
)

and the variance is(
n/σ2 + 1/σ2

θ

)−1
= σ2σ2

θ/
(
nσ2

θ + σ2
)
.

Exercise 2.11 First, we derive the Fisher information for the exponential
model. We have

ln p(x, θ) = ln θ − θ x,
∂ ln p(x, θ)

∂θ
=

1

θ
− x ,
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and
∂2 ln p(x, θ)

∂θ2
= − 1

θ2
.

Consequently,

In(θ) = −nEθ

[
− 1

θ2

]
=

n

θ2
.

Further, the joint distribution of the sample is

p(X1 , . . . Xn , θ) = Cn θ
∑

Xi e− θ
∑

Xi

with the normalizing constant Cn = Cn(X1, . . . , Xn) independent of θ . As a
function of θ, this joint probability belongs to the family of gamma distri-
butions, hence, if we choose the conjugate prior to be a gamma distribution,
π(θ) = C(α, β) θ α−1 e−β θ, θ > 0, with some α > 0 and β > 0, then the
weighted posterior is also a gamma,

f̃ = (θ |X1, . . . , Xn) = In(θ) Cn θ
∑

Xi e− θ
∑

Xi C(α, β) θ α−1 e−β θ

= C̃n θ
∑

Xi+α−3 e−(
∑

Xi+β) θ

where C̃n = nCn(X1, . . . , Xn) C(α, β) is the normalizing constant. The
corresponding weighted posterior mean of the gamma distribution is equal
to ∫ ∞

0

θ f̃(θ |X1, . . . , Xn) dθ =

∑
Xi + α− 2∑

Xi + β
.

Exercise 2.12 (i) The joint density of n independent Bernoulli(θ) obser-
vations X1 , . . . , Xn is

p(X1 , . . . Xn , θ) = θ
∑

Xi (1− θ)n−∑
Xi .

Using the conjugate prior π(θ) = C
[
θ (1 − θ)

]√n/2− 1
, we obtain the non-

weighted posterior density f(θ |X1, . . . , Xn) = C θ
∑

Xi+
√

n/2−1 (1−θ)n−∑
Xi+

√
n/2−1,

which is a beta density with the mean

θ ∗n =

∑
Xi +

√
n/2∑

Xi +
√

n/2 + n−∑
Xi +

√
n/2

=

∑
Xi +

√
n/2

n +
√

n
.

(ii) The variance of θ ∗n is

Varθ [ θ ∗n ] =
nVarθ(X1)

(n +
√

n)2
=

nθ(1− θ)

(n +
√

n)2
,

and the bias equals to

bn(θ, θ ∗n) = Eθ[ θ
∗
n ]− θ =

nθ +
√

n/2

n +
√

n
− θ =

√
n/2−√n θ

n +
√

n
.
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Consequently, the non-normalized quadratic risk of θ ∗n is

Eθ

[
(θ ∗n − θ)2] = Varθ[ θ

∗
n ] + b2

n(θ, θ ∗n)

=
nθ(1− θ) +

(√
n/2−√n θ

)2

(n +
√

n)2
=

n/4

(n +
√

n)2
=

1

4(1 +
√

n)2
.

(iii) Let tn = tn(X1, . . . , Xn) be the Bayes estimator with respect to a non-
normalized risk function

Rn(θ, θ̂n, w) = Eθ

[
w(θ̂n − θ)

]
.

The statement and the proof of Theorem 2.5 remain exactly the same if the
non-normalized risk and the corresponding Bayes estimator are used. Since
θ ∗n is the Bayes estimator for a constant non-normalized risk, it is minimax.

Exercise 2.13 In Example 2.4, let α = β = 1 + 1/b. Then the Bayes
estimator assumes the form

tn(b) =

∑
Xi + 1/b

n + 2/b

where Xi’s are independent Bernoulli(θ) random variables. The normalized
quadratic risk of tn(b) is equal to

Rn

(
θ, tn(b), w

)
= Eθ

[ (√
In(θ) (tn(b)− θ)

)2
]

= In(θ)
[
Varθ

[
tn(b)

]
+ b2

n

(
θ, tn(b)

)]

= In(θ)
[ nVarθ[X1]

(n + 2/b)2
+

(nEθ[X1] + 1/b

n + 2/b
− θ

)2 ]

=
n

θ(1− θ)

[ nθ(1− θ)

(n + 2/b)2
+

( nθ + 1/b

n + 2/b
− θ

)2 ]

=
n

θ(1− θ)

[ nθ(1− θ)

(n + 2/b)2
+

(1− 2θ)2

b 2 (n + 2/b)2

︸ ︷︷ ︸
→0

]

→ n

θ(1− θ)

nθ(1− θ)

n2
= 1 as b →∞.

Thus, by Theorem 2.8, the minimax lower bound is equal to 1. The normal-
ized quadratic risk of X̄n = limb→∞ tn(b) is derived as

Rn

(
θ, X̄n, w

)
= Eθ

[(√
In(θ) (X̄n − θ)

)2
]

= In(θ)Varθ

[
X̄n

]
=

n

θ(1− θ)

θ(1− θ)

n
= 1.

That is, it attains the minimax lower bound, and hence X̄n is minimax.
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Chapter 3

Exercise 3.14 Let X ∼Binomial(n , θ2). Then

Eθ

[ ∣∣ √
X/n − θ

∣∣
]

= Eθ

[ ∣∣ X/n − θ2
∣∣

∣∣√
X/n + θ

∣∣
]

≤ 1

θ
Eθ

[ ∣∣X/n − θ2
∣∣
]
≤ 1

θ

√
Eθ

[ (
X/n − θ2

)2
]

(by the Cauchy-Schwarz inequality)

=
1

θ

√
θ2(1− θ2)

n
=

√
1− θ2

n
→ 0 as n →∞ .

Exercise 3.15 First we show that the Hodges estimator θ̂n is asymptotically
unbiased. To this end write

Eθ

[
θ̂n − θ

]
= Eθ

[
θ̂n − X̄n + X̄n − θ

]
= Eθ

[
θ̂n − X̄n

]

= Eθ

[
− X̄n I

(|X̄n| < n−1/4
) ]

< n−1/4 → 0 as n →∞.

Next consider the case θ 6= 0. We will check that

lim
n→∞

Eθ

[
n

(
θ̂n − θ

)2
]

= 1 .

Firstly, we show that

Eθ

[
n

(
θ̂n − X̄n

)2
]
→ 0 as n →∞.

Indeed,

Eθ

[
n

(
θ̂n − X̄n

)2
]

= nEθ

[
(−X̄n)2 I

(|X̄n| < n−1/4
) ]

≤ n1/2 Pθ

(|X̄n| < n−1/4
)

= n1/2

∫ n1/4−θ n1/2

−n1/4−θ n1/2

1√
2π

e−z2/2 dz

= n1/2

∫ n1/4

−n1/4

1√
2π

e− (u− θ n1/2)2/2 du.

Here we made a substitution u = z + θ n1/2. Now, since |u| ≤ n1/4, the
exponent can be bounded from above as follows

− (
u − θ n1/2

)2
/2 = −u2/2 + u θ n1/2 − θ2 n/2 ≤ − u2/2 + θ n3/4 − θ2 n/2,
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and, thus, for all sufficiently large n, the above integral admits the upper
bound

n1/2

∫ n1/4

−n1/4

1√
2π

e− (u− θ n1/2)2/2 du

≤ n1/2

∫ n1/4

−n1/4

1√
2π

e−u2/2+ θ n3/4− θ2 n/2 du

≤ e−θ2 n/4

∫ n1/4

−n1/4

1√
2π

e−u2/2 du → 0 as n →∞.

Further, we use the Cauchy-Schwarz inequality to write

Eθ

[
n

(
θ̂n − θ

)2
]

= Eθ

[
n

(
θ̂n − X̄n + X̄n − θ

)2
]

= Eθ

[
n

(
θ̂n − X̄n

)2
]

+ 2Eθ

[
n

(
θ̂n − X̄n

)(
X̄n − θ

) ]
+ Eθ

[
n

(
X̄n − θ

)2
]

≤ Eθ

[
n

(
θ̂n − X̄n

)2
]

︸ ︷︷ ︸
→0

+ 2
{
Eθ

[
n

(
θ̂n − X̄n

)2
]}1/2

︸ ︷︷ ︸
→0

×

×
{
Eθ

[
n

(
X̄n − θ

)2
] }1/2

︸ ︷︷ ︸
=1

+ Eθ

[
n

(
X̄n − θ

)2
]

︸ ︷︷ ︸
=1

→ 1 as n →∞ .

Consider now the case θ = 0. We will verify that

lim
n→∞

Eθ

[
n θ̂2

n

]
= 0 .

We have
Eθ

[
n θ̂2

n

]
= Eθ

[
n X̄2

n I
(|X̄n| ≥ n−1/4

) ]

= Eθ

[ (√
nX̄n

)2 I
(|√nX̄n| ≥ n1/4

) ]
= 2

∫ ∞

n1/4

z2

√
2π

e−z2/2 dz

≤ 2

∫ ∞

n1/4

e−z dz = 2 e−n1/4 → 0 as n →∞.

Exercise 3.16 The following lower bound holds:

sup
θ∈R

Eθ

[
In(θ) (θ̂n − θ)2

]
≥ n I∗ max

θ∈{θ0, θ1}
Eθ

[
(θ̂n − θ)2

]

≥ n I∗
2

{
Eθ0

[
(θ̂n − θ0)

2
]

+ Eθ1

[
(θ̂n − θ1)

2
]}

=
n I∗
2
Eθ0

[
(θ̂n − θ0)

2 + (θ̂n − θ1)
2 exp

{
∆Ln(θ0 , θ1)

} ]
(by (3.8))
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≥ n I∗
2
Eθ0

[ (
(θ̂n − θ0)

2 + (θ̂n − θ1)
2 exp{z0}

)
I
(
∆Ln(θ0 , θ1) ≥ z0

) ]

≥ n I∗ exp{z0}
2

Eθ0

[ (
(θ̂n−θ0)

2 exp{−z0}+ (θ̂n−θ1)
2
)
I
(
∆Ln(θ0 , θ1) ≥ z0

) ]

≥ n I∗ exp{z0}
2

Eθ0

[ (
(θ̂n − θ0)

2 + (θ̂n − θ1)
2
)
I
(
∆Ln(θ0 , θ1) ≥ z0

) ]
,

since exp{−z0} ≥ 1 for z0 is assumed negative,

≥ n I∗ exp{z0}
2

(θ1 − θ0)
2

2
Pθ0

(
∆Ln(θ0 , θ1) ≥ z0

)

≥ n I∗ p0 exp{z0}
4

( 1√
n

)2

=
1

4
I∗ p0 exp{z0} .

Exercise 3.17 First we show that the inequality stated in the hint is valid.
For any x it is necessarily true that either |x| ≥ 1/2 or |x−1| ≥ 1/2, because
if the contrary holds, then −1/2 < x < 1/2 and −1/2 < 1−x < 1/2 imply
that 1 = x + (1− x) < 1/2 + 1/2 = 1, which is false.
Further, since w(x) = w(−x) we may assume that x > 0. And suppose that
x ≥ 1/2 (as opposed to the case x− 1 ≥ 1/2). In view of the facts that the
loss function w is everywhere nonnegative and is increasing on the positive
half-axis, we have

w(x) + w(x− 1) ≥ w(x) ≥ w(1/2).

Next, using the argument identical to that in Exercise 3.16, we obtain

sup
θ∈R

Eθ

[
w

(√
n (θ̂n − θ)

) ]
≥ 1

2
exp{z0}Eθ0

[ (
w

(√
n (θ̂n − θ0)

)
+

+ w
(√

n (θ̂n − θ1)
) )
I
(
∆Ln(θ0 , θ1) ≥ z0

) ]
.

Now recall that θ1 = θ0 + 1/
√

n and use the inequality proved earlier to
continue

≥ 1

2
w(1/2) exp{z0}Pθ0

(
∆Ln(θ0 , θ1) ≥ z0

)
≥ 1

2
w(1/2) p0 exp{z0} .

Exercise 3.18 It suffices to prove the assertion (3.14) for an indicator func-
tion, that is, for the bounded loss function w(u) = I

( |u| > γ
)
, where γ is

a fixed constant. We write
∫ b−a

−(b−a)

w
(
c− u

)
e−u2/2 du =

∫ b−a

−(b−a)

I
( |c− u| > γ

)
e−u2/2 du

11



=

∫ c−γ

−(b−a)

e−u2/2 du +

∫ b−a

c+γ

e−u2/2 du .

To minimize this expression over values of c, take the derivative with respect
to c and set it equal to zero to obtain

e−(c−γ)2 − e−(c+γ)2 = 0, or, equivalently, (c− γ)2 = (c + γ)2 .

The solution is c = 0.

Finally, the result holds for any loss function w since it can be written as a
limit of linear combinations of indicator functions,

∫ b−a

−(b−a)

w(c− u) e−u2/2 du = lim
n→∞

n∑
i =1

∆wi

∫ b−a

−(b−a)

I
( |c− u| > γi

)
e−u2/2 du

where

γi =
b− a

n
i, ∆wi = w(γi)− w(γi−1) .

Exercise 3.19 We will show that for both distributions the representation
(3.15) takes place.
(i) For the exponential model, as shown in Exercise 2.11, the Fisher infor-
mation In(θ) = n/θ 2, hence,

Ln

(
θ0 + t/

√
In(θ0)

) − Ln(θ0) = Ln

(
θ0 +

θ0 t√
n

) − Ln(θ0)

= n ln
(
θ0 +

θ0 t√
n

) − (
θ0 +

θ0 t√
n

)
nX̄n − n ln(θ0) + θ0 n X̄n

= n ln(θ0) + n ln
(
1 +

t√
n

) − θ0 n X̄n − t θ0

√
n X̄n − n ln(θ0) + θ0 n X̄n.

Using the Taylor expansion, we get that for large n,

n ln
(
1 +

t√
n

)
= n

( t√
n
− t2

2 n
+ on

( 1

n

) )
= t

√
n − t2/2 + on(1).

Also, by the Central Limit Theorem, for all sufficiently large n, X̄n is ap-
proximately N (

1/θ0, 1/(nθ2
0)

)
, that is, (X̄n − 1/θ0)θ0

√
n = (θ0 X̄n − 1)

√
n

is approximately N (0, 1). Consequently, Z = − (θ0 X̄n − 1)
√

n is approx-
imately standard normal as well. Thus, n ln

(
1 + t/

√
n

) − t θ0

√
n X̄n =

t
√

n − t2/2 + on(1) − t θ0

√
n X̄n = − t (θ0 X̄n − 1)

√
n − t2/2 + on(1) =

t Z − t2/2 + on(1) .

12



(ii) For the Poisson model, by Exercise 1.4, In(θ) = n/θ, thus,

Ln

(
θ0 + t/

√
In(θ0)

) − Ln(θ0) = Ln

(
θ0 + t

√
θ0

n

) − Ln(θ0)

= n X̄n ln
(
θ0 + t

√
θ0

n

) − n
(
θ0 + t

√
θ0

n

) − n X̄n ln(θ0) + n θ0

= n X̄n ln
(
1+

t√
θ0 n

)− t
√

θ0 n = n X̄n

( t√
θ0 n

− t 2

2 θ0 n
+ on

( 1

n

) )
− t

√
θ0 n

= t X̄n

√
n

θ0

− t
√

θ0 n − X̄n

θ0

t 2

2
+ on(1)

= t Z − (
1 +

Z√
θ0 n

) t 2

2
+ on(1) = t Z − t 2

2
+ on(1).

Here we used the fact that by the CLT, for all large enough n, X̄n is approx-
imately N (θ0, θ0/n), and hence,

Z =
X̄n − θ0√

θ0/n
= X̄n

√
n

θ0

−
√

θ0 n

is approximately N (0, 1) random variable. Also,

X̄n

θ0

=

(√
θ0 n + Z

)√
θ0/n

θ0

= 1 +
Z√
θ0 n

= 1 + on(1).

Exercise 3.20 Consider a truncated loss function wC(u) = min(w(u), C)
for some C > 0. As in the proof of Theorem 3.8, we write

sup
θ∈R

Eθ

[
wC

( √
nI(θ) (θ̂n − θ)

) ]

≥
√

nI(θ)

2b

∫ b/
√

nI(θ)

−b/
√

nI(θ)

Eθ

[
wC

( √
nI(θ) (θ̂n − θ)

) ]
dθ

=
1

2b

∫ b

−b

E
t/
√

nI(θ)

[
wC

( √
nI(θ) θ̂n − t

) ]
dt

where we used a change of variables t =
√

nI(θ). Let an = nI(t/
√

nI(0)).
We continue

=
1

2b

∫ b

−b

E0

[
wC

(√
an θ̂n − t

)
exp

{
∆Ln

(
0, t/

√
nI(0)

)} ]
dt .

13



Applying the LAN condition (3.16), we get

=
1

2b

∫ b

−b

E0

[
wC

(√
an θ̂n − t

)
exp

{
zn(0) t − t2/2 + εn(0, t)

} ]
dt .

An elementary inequality |x| ≥ |y|− |x− y| for any x and y ∈ R implies that

≥ 1

2b

∫ b

−b

E0

[
wC

(√
an θ̂n − t

)
exp

{
z̃n(0) t − t2/2

}
dt +

+
1

2b

∫ b

−b

E0

[
wC

(√
an θ̂n − t

) ∣∣∣ exp
{

zn(0) t − t2/2 + εn(0, t)
}

− exp
{

z̃n(0) t − t2/2
} ∣∣∣

]
dt .

Now, by Theorem 3.11, and the fact that wC ≤ C, the second term vanishes
as n grows, and thus is on(1) as n → ∞. Hence, we obtain the following
lower bound

sup
θ∈R

Eθ

[
wC

(√
nI(θ) (θ̂n − θ)

) ]

≥ 1

2b

∫ b

−b

E0

[
wC

(√
an θ̂n − t

)
exp

{
z̃n(0) t− t2/2

} ]
dt

+ on(1) .

Put ηn =
√

an θ̂n − z̃n(0). We can rewrite the bound as

≥ 1

2b

∫ b

−b

E0

[
exp

{1

2
z̃2

n(0)
}

wC

(
ηn− (t−z̃n(0))

)
exp

{− 1

2

(
t− z̃n(0)

)2 } ]
dt

+ on(1)

which, after the substitution u = t− z̃n(0) becomes

≥ 1

2b

∫ b−a

−(b−a)

E0

[
exp

{1

2
z̃2

n(0)
}
I(|z̃n(0)| ≤ a) wC(ηn − u) exp

{ − 1

2
u2

} ]
du

+ on(1) .

As in the proof of Theorem 3.8, for n →∞,

E0

[
exp

{
z̃2

n(0)
}
I(|z̃n(0)| ≤ a)

]
→ 2a√

2π
,

and, by an argument similar to the proof of Theorem 3.9,

∫ b−a

−(b−a)

wC(ηn − u) exp
{ − 1

2
u2

}
du ≥

∫ b−a

−(b−a)

wC(u) exp
{ − 1

2
u2

}
du .
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Putting a = b −
√

b and letting b, C and n go to infinity, we arrive at the
conclusion that

sup
θ∈R

Eθ

[
wC

( √
nI(θ) (θ̂n − θ)

) ]
≥

∫ ∞

−∞

w(u)√
2π

e−u2/2 du .

Exercise 3.21 Note that the distorted parabola can be written in the form

zt− t2/2 + ε(t) = − (1/2)(t− z)2 + z2/2 + ε(t) .

The parabola − (1/2)(t− z)2 + z2/2 is maximized at t = z. The value of the
distorted parabola at t = z is bounded from below by

− (1/2)(z − z)2 + z2/2 + ε(z) = z2/2 + ε(z) ≥ z2/2− δ .

On the other hand, for all t such that | t−z | > 2
√

δ, this function is strictly
less than z2/2− δ. Indeed,

− (1/2)(t− z)2 + z2/2 + ε(t) < − (1/2)(2
√

δ)2 + z2/2 + ε(t)

< − 2δ + z2/2 + δ = z2/2− δ .

Thus, the value t = t∗ at which the function is maximized must satisfy
| t∗ − z | ≤ 2

√
δ .
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Chapter 4

Exercise 4.22 (i) The likelihood function has the form

n∏
i =1

p(Xi, θ) = θ−n

n∏
i =1

I
(
0 ≤ Xi ≤ θ

)

= θ−n I
(
0 ≤ X1 ≤ θ , 0 ≤ X2 ≤ θ , . . . , 0 ≤ Xn ≤ θ

)
= θ−n I

(
X(n) ≤ θ

)
.

Here X(n) = max(X1, . . . , Xn). As depicted in the figure below, function
θ−n decreases everywhere, attaining its maximum at the left-most point.
Therefore, the MLE of θ is θ̂n = X(n).

-

6

θX(n)0

θ−n I
(
X(n) ≤ θ

)

(ii) The c.d.f. of X(n) can be found as follows:

FX(n)
(x) = Pθ

(
X(n) ≤ x

)
= Pθ

(
X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x

)

= Pθ

(
X1 ≤ x

)
Pθ

(
X2 ≤ x

)
. . . Pθ

(
Xn ≤ x

)
(by independence)

=
[
P(X1 ≤ x

)]n

=
( x

θ

)n

, 0 ≤ x ≤ θ .

Hence the density of X(n) is

fX(n)
(x) = F ′

X(n)
(x) =

( xn

θ n

)′
=

nxn−1

θ n
.

The expected value of X(n) is computed as

Eθ[ X(n) ] =

∫ θ

0

x
nxn−1

θ n
dx =

n

θ n

∫ θ

0

xn dx =
n θ n+1

(n + 1)θ n
=

n θ

n + 1
,

and therefore,

Eθ

[
θ ∗n

]
= Eθ

[ n + 1

n
X(n)

]
=

n + 1

n

n θ

n + 1
= θ .

16



(iii) The variance of X(n) is

Varθ

[
X(n)

]
=

∫ θ

0

x2 nxn−1

θ n
dx −

( n θ

n + 1

) 2

=
n

θ n

∫ θ

0

xn+1 dx −
( n θ

n + 1

) 2

=
n θ n+2

(n + 2) θ n
−

( n θ

n + 1

) 2

=
n θ 2

n + 2
− n 2 θ 2

(n + 1) 2
=

n θ 2

(n + 1) 2 (n + 2)
.

Consequently, the variance of θ ∗n is

Varθ

[
θ ∗n

]
= Varθ

[ n + 1

n
X(n)

]
=

(n + 1) 2

n 2

n θ 2

(n + 1) 2 (n + 2)
=

θ 2

n (n + 2)
.

Exercise 4.23 ( i) The likelihood function can be written as

n∏
i =1

p(Xi, θ) = exp
{
− ( n∑

i =1

Xi − n θ
)} n∏

i =1

I
(
Xi ≥ θ

)

= exp
{
−

n∑
i =1

Xi + n θ
}
I
(
X1 ≥ θ, X2 ≥ θ, . . . , Xn ≥ θ

)

= exp
{
n θ

}
I
(
X(1) ≥ θ

)
exp

{
−

n∑
i =1

Xi

}

with X(1) = min(X1, . . . , Xn). The second exponent is constant with re-
spect to θ and may be disregarded for maximization purposes. The function
exp{n θ} is increasing and therefore reaches its maximum at the right-most
point θ̂n = X(1) .

(ii) The c.d.f. of the minimum can be found by the following argument:

1 − FX(1)
(x) = Pθ

(
X(1) ≥ x

)
= Pθ

(
X1 ≥ x, X2 ≥ x, . . . , Xn ≥ x

)

= Pθ

(
X1 ≥ x

)
Pθ

(
X2 ≥ x

)
. . . Pθ

(
Xn ≥ x

)
(by independence)

=
[
Pθ

(
X1 ≥ x

)]n

=
[ ∫ ∞

x

e−(y−θ) dy
]n

=
[
e−(x−θ)

]n

= e−n(x−θ) ,

whence
FX(1)

(x) = 1 − e−n(x−θ) .

Therefore, the density of X(1) is derived as

fX(1)
(x) = F ′

X(1)
(x) =

[
1 − e−n(x−θ)

]′
= n e−n(x−θ) , x ≥ θ .

17



The expected value of X(1) is equal to

Eθ

[
X(1)

]
=

∫ ∞

θ

xn e−n (x−θ) dx

=

∫ ∞

0

( y

n
+ θ

)
e−y dy

(
after substitution y = n(x− θ)

)

=
1

n

∫ ∞

0

y e−y dy

︸ ︷︷ ︸
=1

+ θ

∫ ∞

0

e−y dy

︸ ︷︷ ︸
=1

=
1

n
+ θ .

As a result, the estimator θ ∗n = X(1) − 1/n is an unbiased estimator of θ.

(iii) The variance of X(1) is computed as

Varθ

[
X(1)

]
=

∫ ∞

θ

x2 n e−n (x−θ) dx −
( 1

n
+ θ

)2

=

∫ ∞

0

( y

n
+ θ

)2
e−y dy −

( 1

n
+ θ

)2

=
1

n2

∫ ∞

0

y 2 e−y dy

︸ ︷︷ ︸
=2

+
2 θ

n

∫ ∞

0

y e−y dy

︸ ︷︷ ︸
=1

+ θ2

∫ ∞

0

e−y dy

︸ ︷︷ ︸
=1

−

− 1

n2
− 2 θ

n
− θ2 =

1

n2
.

Exercise 4.24 We will show that the squared L2 - norm of
√

p( · , θ + ∆θ)−√
p( · , θ) is equal to ∆θ + o(∆θ) as ∆θ → 0 . Then by Theorem 4.3 and

Example 4.4 it will follow that the Fisher information does not exist. By
definition, we obtain

∥∥ √
p( · , θ + ∆θ) −

√
p( · , θ)

∥∥2

2
=

=

∫

R

[
e− (x−θ−∆θ)/2 I

(
x ≥ θ + ∆θ

) − e− (x−θ)/2 I
(
x ≥ θ

) ]2

dx

=

∫ θ+∆θ

θ

e− (x−θ) dx +

∫ ∞

θ+∆θ

(
e− (x−θ−∆θ)/2 − e− (x−θ)/2

)2

dx

=

∫ θ+∆θ

θ

e− (x−θ) dx +
(

e∆θ/2 − 1
)2

∫ ∞

θ+∆θ

e− (x−θ) dx

= 1 − e−∆θ +
(

e∆θ/2 − 1
)2

e−∆θ

18



= 2 − 2 e−∆θ/2 = ∆θ + o(∆θ) as ∆θ → 0 .

Exercise 4.25 First of all, we find the values of c− and c+ as functions of
θ. By our assumption, c+ − c− = θ. Also, since the density integrates to
one, c+ + c− = 1. Hence, c− = (1− θ)/2 and c+ = (1 + θ)/2 .

Next, we use the formula proved in Theorem 4.3 to compute the Fisher
information. We have

I(θ) = 4
∥∥ ∂

√
p( · , θ)/∂θ

∥∥2

2
=

= 4
[ ∫ 0

−1

( ∂
√

(1− θ)/2

∂θ

) 2

dx +

∫ 1

0

( ∂
√

(1 + θ)/2

∂θ

) 2

dx
]

= 4
[ 1

8(1− θ)
+

1

8(1 + θ)

]
=

1

1− θ2
.

Exercise 4.26 In the case of the shifted exponential distribution we have

Zn

(
θ, θ + u/n

)
=

n∏
i =1

exp
{ −Xi + (θ + u/n)

}
I
(
Xi ≥ θ + u/n

)

exp
{ −Xi + θ

}
I
(
Xi ≥ θ

)

=
exp

{ −∑n
i =1 Xi + n (θ + u/n)

}
I
(
X(1) ≥ θ + u/n

)

exp
{ −∑

i = 1 Xi + n θ
}
I
(
X(1) ≥ θ

)

= eu I
(
X(1) ≥ θ + u/n

)

I
(
X(1) ≥ θ

) = eu I
(
u ≤ Tn

)

I
(
X(1) ≥ θ

) where Tn = n (X(1) − θ) .

Here Pθ

(
X(1) ≥ θ

)
= 1, and

Pθ

(
Tn ≥ t

)
= Pθ

(
n (X(1) − θ) ≥ t

)

= Pθ

(
X(1) ≥ θ + t/n

)
= exp

{ − n (θ + t/n − θ)
}

= exp
{− t

}
.

Therefore, the likelihood ratio has a representation that satisfies property (ii)
in the definition of an asymptotically exponential statistical experiment with
λ(θ) = 1. Note that in this case, Tn has an exact exponential distribution
for any n, and on(1) = 0.

Exercise 4.27 (i) From Exercise 4.22, the estimator θ∗n is unbiased and its
variance is equal to θ2/[n(n + 2)]. Therefore,

lim
n→∞

Eθ0

[ (
n(θ ∗n − θ0)

)2
]

= lim
n→∞

n2Varθ0

[
θ ∗n

]
= lim

n→∞
n2 θ2

0

n(n + 2)
= θ2

0.
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(ii) From Exercise 4.23, θ∗n is unbiased and its variance is equal to 1/n2.
Hence,

Eθ0

[ (
n(θ ∗n − θ0)

)2
]

= n2Varθ0

[
θ ∗n

]
=

n2

n2
= 1.

Exercise 4.28 Consider the case y ≤ 0. Then

λ0 min
y≤ 0

∫ ∞

0

|u − y| e−λ0 u du = λ0 min
y≤ 0

∫ ∞

0

(u − y) e−λ0 u du

= min
y≤ 0

( 1

λ0

− y
)

=
1

λ0

, attained at y = 0.

In the case y ≥ 0 ,

λ0 min
y≥ 0

∫ ∞

0

|u − y| e−λ0 u du

= λ0 min
y≥ 0

( ∫ ∞

y

(u − y) e−λ0 u du +

∫ y

0

(y − u) e−λ0 u du
)

= min
y≥ 0

( 2 e−λ0 y − 1

λ0

+ y
)

=
ln 2

λ0

,

attained at y = ln 2/λ0.

Thus,

λ0 min
y∈R

∫ ∞

0

|u − y| e−λ0 u du = min
( ln 2

λ0

,
1

λ0

)
=

ln 2

λ0

.

Exercise 4.29 (i) For a normalizing constant C, we write by definition

fb(θ |X1 , . . . , Xn) = C f(X1, θ) . . . f(Xn, θ) πb(θ)

= C exp
{ −

n∑
i =1

(Xi − θ)
}
I(X1 ≥ θ) . . . I(Xn ≥ θ)

1

b
I(0 ≤ θ ≤ b)

= C1 en θ I( X(1) ≥ θ ) I(0 ≤ θ ≤ b) = C1 en θ I(0 ≤ θ ≤ Y )

where

C1 =
( ∫ Y

0

en θ dθ
)−1

=
n

exp{nY } − 1
, Y = min(X(1), b).
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(ii) The posterior mean follows by direct integration,

θ ∗n(b) =

∫ Y

0

n θ en θ

exp{nY } − 1
dθ =

1

n

1

exp{nY } − 1

∫ n Y

0

t et dt

=
1

n

nY exp{nY } − (
exp{n Y } − 1

)

exp{nY } − 1
= Y − 1

n
+

Y

exp( n Y ) − 1
. 2

(iii) Consider the last term in the expression for the estimator θ ∗n(b). Since
by our assumption θ ≥

√
b, we have that

√
b ≤ Y ≤ b . Therefore, for all

large enough b, the deterministic upper bound holds with Pθ - probability 1:

Y

exp{nY } − 1
≤ b

exp{n
√

b } − 1
→ 0 as b →∞ .

Hence the last term is negligible. To prove the proposition, it remains to
show that

lim
b→∞

Eθ

[
n2

(
Y − 1

n
− θ

)2 ]
= 1 .

Using the definition of Y and the explicit formula for the distribution of X(1),
we get

Eθ

[
n2

(
Y − 1

n
− θ

)2 ]
=

= Eθ

[
n2

(
X(1) − 1

n
− θ

)2

I
(
X(1) ≤ b

)
+ n2

(
b − 1

n
− θ

)2

I
(
X(1) ≥ b

)]

= n2

∫ b

θ

(
y − 1

n
− θ

)2

n e−n (y−θ) dy + n2
(

b − 1

n
− θ

)2

Pθ

(
X(1) ≥ b

)

=

∫ n(b−θ)

0

(t− 1)2 e−t dt +
(

n(b− θ) − 1
)2

e−n(b−θ) → 1 as b →∞ .

Here the first term tends to 1, while the second one vanishes as b → ∞,
uniformly in θ ∈ [

√
b , b−

√
b ] .

(iv) We write

sup
θ∈R

Eθ

[ (
n (θ̂n − θ)

)2
]
≥

∫ b

0

1

b
Eθ

[ (
n (θ̂n − θ)

)2
]
dθ

≥ 1

b

∫ b

0

Eθ

[ (
n (θ ∗n(b) − θ)

)2
]
dθ ≥ 1

b

∫ b−
√

b

√
b

Eθ

[ (
n (θ ∗n(b) − θ)

)2
]
dθ

≥ b− 2
√

b

b
inf√

b≤ θ≤ b−
√

b
Eθ

[ (
n (θ ∗n(b) − θ)

)2
]
.

The infimum is whatever close to 1 if b is sufficiently large. Thus, the limit
as b →∞ of the right-hand side equals 1.
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Chapter 5

Exercise 5.30 The Bayes estimator θ ∗n is the posterior mean,

θ ∗n =
(1/n)

∑n
θ =1 θ exp{Ln(θ) }

(1/n)
∑n

θ =1 exp{Ln(θ) } =

∑n
θ =1 θ exp{Ln(θ) }∑n
θ =1 exp{Ln(θ) } .

Applying Theorem 5.1 and some transformations, we get

θ ∗n =

∑n
θ =1 θ exp{Ln(θ) − Ln(θ0) }∑n
θ =1 exp{Ln(θ) − Ln(θ0) }

=

∑
j : 1≤ j + θ0≤n (j + θ0) exp{Ln(j + θ0) − Ln(θ0)}∑

j : 1≤ j + θ0≤n exp{Ln(j + θ0) − Ln(θ0)}

=

∑
j : 1≤j + θ0≤n (j + θ0) exp{ cW (j) − c2 | j | / 2}∑

j : 1≤ j + θ0≤n exp{ cW (j) − c2 | j | / 2}

= θ0 +

∑
j : 1≤ j + θ0≤n j exp{ cW (j) − c2 | j | / 2}∑
j : 1≤ j + θ0≤n exp{ cW (j) − c2 | j | / 2} .

Exercise 5.31 We use the definition of W (j) to notice that W (j) has a
N (

0, | j |) distribution. Therefore,

Eθ0

[
exp

{
cW (j) − c2 | j | / 2

} ]
= exp{− c2 | j | / 2

}
Eθ0

[
exp

{
cW (j)

} ]

= exp
{− c2 | j | / 2 + c2 | j | / 2

}
= 1.

The expected value of the numerator in (5.3) is equal to

Eθ0

[ ∑

j∈Z
j exp

{
c W (j) − c2 | j | / 2

} ]
=

∑

j∈Z
j = ∞.

Likewise, the expectation of the denominator is infinite,

Eθ0

[ ∑

j∈Z
exp

{
cW (j) − c2 | j | / 2

} ]
=

∑

j∈Z
1 = ∞.

Exercise 5.32 Note that

−K± =

∫ ∞

−∞

[
ln

p 0(x ± µ)

p 0(x)

]
p 0(x) dx

=

∫ ∞

−∞

[
ln

(
1 +

p 0(x ± µ) − p 0(x)

p 0(x)

) ]
p 0(x) dx
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<

∫ ∞

−∞

[ p 0(x ± µ) − p 0(x)

p 0(x)

]
p 0(x) dx

∫ ∞

−∞

[
p 0(x ± µ) − p 0(x)

]
dx = 1 − 1 = 0 .

Here we have applied the inequality ln(1 + y) < y , if y 6= 0 , and the fact
that probability densities p 0(x± µ) and p 0(x) integrate to 1.

Exercise 5.33 Assume for simplicity that θ̃n > θ0. By the definition of the
MLE, ∆Ln(θ0 , θ̃n) = Ln(θ̃n) − Ln(θ0) ≥ 0. Also, by Theorem 5.14,

∆Ln(θ0 , θ̃n) = W (θ̃n − θ0) − K+ (θ̃n − θ0) =
∑

i : θ0<i≤θ̃n

εi − K+ (θ̃n − θ0) .

Therefore, the following inequalities take place

Pθ0

(
θ̃n − θ0 = m

) ≤ Pθ0

(
θ̃n − θ0 ≥ m

)

≤
∞∑

l = m

Pθ0

(
∆Ln(θ0, θ0 + l) ≥ 0

)
=

∞∑

l = m

Pθ0

( l∑
i =1

εi ≥ K+ l
)

≤ c1

∞∑

l = m

l−(4+δ) ≤ c2 m−(3+δ) .

A similar argument treats the case θ̃n < θ0. Thus, there exists a positive
constant c3 such that

Pθ0

( |θ̃n − θ0| = m
) ≤ c3 m−(3+δ) .

Consequently,

Eθ0

[
|θ̃n− θ0|2

]
=

∞∑
m =0

m 2 Pθ0

( |θ̃n− θ0| = m
) ≤ c3

∞∑
m =0

m 2 m−(3+δ) < ∞.

Exercise 5.34 We estimate the true change point value by the maximum
likelihood method. The log-likelihood function has the form

L(θ) =
θ∑

i =1

[
Xi ln(0.4) + (1−Xi) ln(0.6)

]
+

30∑

i = θ +1

[
Xi ln(0.7) + (1−Xi) ln(0.3)

]
.
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Plugging in the concrete observations, we obtain the values of the log-likelihood
function for different values of θ. They are summarized in the table below.

θ L(θ) θ L(θ) θ L(θ)
1 -21.87 11 -19.95 21 -20.53
2 -21.18 12 -20.51 22 -21.09
3 -21.74 13 -21.07 33 -21.65
4 -21.04 14 -20.37 24 -20.96
5 -21.60 25 -20.93 25 -21.52
6 -20.91 16 -20.24 26 -20.83
7 -20.22 17 -19.55 27 -21.39
8 -20.78 18 -20.11 28 -21.95
9 -21.36 19 -20.67 29 -22.51
10 -20.64 20 -19.97 30 -21.81

The log-likelihood function reaches its maximum -19.55 when θ = 17.

Exercise 5.35 Consider a set X ⊆ R with the property that the probability
of a random variable with the c.d.f. F1 falling into that set is not equal to
the probability of this event for a random variable with the c.d.f. F2. Note
that such a set necessarily exists, because otherwise, F1 and F2 would be
identically equal. Ideally we would like the set X to be as large as possible.
That is, we want X to be the largest set such that

∫

X

dF1(x) 6=
∫

X

dF2(x) .

Replacing the original observations Xi by the indicators Yi = I
(
Xi ∈ X

)
,

i = 1, . . . , n, we get a model of Bernoulli observations with the probability of
a success p1 =

∫
X

dF1(x) before the jump, and p2 =
∫

X
dF2(x), afterwards.

The method of maximum likelihood may be applied to find the MLE of the
change point (see Exercise 5.34).
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Chapter 6

Exercise 6.36 Take any event A in the σ-algebra F . Denote by Ac its
complement. By definition, Ac belongs to F . Since an empty set can be
written as the intersection of A and Ac, it is also F - measurable.

Exercise 6.37 (i) If τ = T for some positive integer T , then for any t ≥ 1,
the event {τ = t} is the whole probability space if t = T and is empty if
t 6= T . In either case, the event {τ = t} ∈ Ft. To see this, proceed as in the
previous exercise. Take any event A ∈ Ft. Then Ac belongs to Ft as well,
and so do A ∪ Ac (the entire set) and A ∩ Ac (the empty set). Therefore, τ
is a stopping time by definition.

(ii) If τ = min
{

i : Xi ∈ [a, b]
}
, then for any t ≥ 1, we write

{
τ = t

}
=

t−1⋂
i =1

( {
Xi < a

} ∪ {
Xi > b

} ) ⋂ {
a ≤ Xt ≤ b

}
.

Each of these events belongs to Ft, hence {τ = t} is Ft - measurable, and
thus, τ is a stopping time.

(iii) Consider τ = min(τ1, τ2). Then

{
τ = t

}
=

( {
τ1 > t

} ∩ {
τ2 = t

}) ⋃ ( {
τ2 > t

} ∩ {
τ1 = t

})
.

As in the proof of Lemma 6.4, the events
{
τ1 > t

}
=

{
τ1 ≤ t

}c
=( ⋃t

s =1

{
τ1 = s

})c

, and
{
τ2 > t

}
=

( ⋃t
s =1

{
τ2 = s

} )c

belong to Ft.

Events
{
τ1 = t

}
and

{
τ2 = t

}
are Ft - measurable by definition of a stopping

time. Consequently,
{
τ = t

} ∈ Ft, and τ is a stopping time.

As for τ = max(τ1, τ2), we write

{
τ = t

}
=

( {
τ1 < t

} ∩ {
τ2 = t

} ) ⋃ ( {
τ2 < t

} ∩ {
τ1 = t

})

where each of these events is Ft - measurable. Thus, τ is a stopping time.

(iv) For τ = τ1 + s, where τ1 is a stopping time and s is a positive integer,
we get {

τ = t
}

=
{
τ1 = t− s

}

which belongs to Ft−s, and therefore, to Ft. Thus, τ is a stopping time.

25



Exercise 6.38 (i) Let τ = max{ i : Xi ∈ [a, b], 1 ≤ i ≤ n}. The event

{
τ = t

}
=

n⋂
i = t+1

( {
Xi < a

} ∪ {
Xi > b

} ) ⋂ {
a ≤ Xt ≤ b

}
.

All events for i ≥ t + 1 are not Ft - measurable since they depend on obser-
vations obtained after time t. Therefore, τ doesn’t satisfy the definition of
a stopping time. Intuitively, one has to collect all n observations to decide
when was the last time an observation fell in a given interval.
(ii) Take τ = τ1 − s with a positive integer s and a given stopping time τ1.
We have {

τ = t
}

=
{
τ1 = t + s

} ∈ Ft+s 6⊆ Ft .

Thus, this event is not Ft - measurable, and τ is not a stopping time. Intu-
itively, one cannot know s steps in advance when a stopping time τ1 occurs.

Exercise 6.39 (i) Let τ = min{ i : X2
1 + · · · + X2

i > H }. Then for any
t ≥ 1,

{
τ = t

}
=

( t−1⋂
i =1

{
X2

1 + · · ·+ X2
i ≤ H

}) ⋂ {
X2

1 + · · ·+ X2
t > H

}
.

All of these events are Ft - measurable, hence τ is a stopping time.

(ii) Note that X2
1 + · · ·+X2

τ > H since we defined τ this way. Therefore, by
Wald’s identity (see Theorem 6.5),

H < E
[
X2

1 + · · ·+ X2
τ

]
= E[ X2

1 ] E[ τ ] = σ2 E[ τ ].

Thus, E[ τ ] > H/σ2.

Exercise 6.40 Let µ = E[ X1 ]. Using Wald’s first identity (see Theorem
6.5), we note that

E[ X1 + · · ·+ Xτ − µτ ] = 0 .

Therefore, we write

Var[ X1 + · · ·+ Xτ − µτ ] = E
[ (

X1 + · · ·+ Xτ − µτ
)2

]

= E
[ ∞∑

t = 1

(
X1 + · · ·+ Xt − µt

)2 I(τ = t)
]

= E
[
(X1−µ)2 I(τ ≥ 1)+(X2−µ)2 I(τ ≥ 2)+ · · ·+(Xt−µ)2 I(τ ≥ t)+ . . .

]
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=
∞∑

t =1

E
[
(Xt − µ)2 I(τ ≥ t)

]
.

The random event {τ ≥ t} belongs to Ft−1. Hence, I(τ ≥ t) and Xt are
independent. Finally, we get

Var[ X1 + · · ·+ Xτ − µτ ] =
∞∑

t = 1

E
[
(Xt − µ)2

]
P
(
τ ≥ t

)

= Var[ X1 ]
∞∑

t =1

P
(
τ ≥ t

)
= Var[ X1 ]E[ τ ] .

Exercise 6.41 (i) Using Wald’s first identity, we obtain

Eθ[ θ̂τ ] =
1

h
Eθ

[
X1 + · · ·+ Xτ ] =

1

h
Eθ[ X1 ] Eθ[ τ ] =

1

h
θ h = θ .

Thus, θ̂τ is an unbiased estimator of θ.

(ii) First note the inequality derived from an elementary inequality (x+y)2 ≤
2(x2 + y2). For any random variables X and Y such that E[X] = µX and
E[Y ] = µY ,

Var[X + Y ] = E
[ (

(X − µX) + (Y − µY )
)2

]

≤ 2
(
E

[
(X − µX)2

]
+ E

[
(Y − µY )2

] )
= 2

(
Var[ X ] + Var[ Y ]

)
.

Applying this inequality, we arrive at

Varθ[ θ̂τ ] =
1

h2
Varθ

[
X1 + · · ·+ Xτ − θ τ + θ τ

]

≤ 2

h2

(
Varθ

[
X1 + · · ·+ Xτ − θ τ

]
+ Varθ[ θ τ ]

)
.

Note that Eθ[ X1 ] = θ. Using this notation, we apply Wald’s second identity
from Exercise 6.40 to conclude that

Varθ[ θ̂τ ] ≤ 2

h2

(
Varθ[ X1 ]Eθ[ τ ] + θ2Varθ[ τ ]

)
=

2σ2

h
+

2θ2Varθ[ τ ]

h2
.

Exercise 6.42 (i) Applying repeatedly the recursive equation of the au-
toregressive model (6.7), we obtain

Xi = θ Xi−1 + εi = θ
[
θ Xi−2 + εi−1

]
+ εi = θ2 Xi−2 + θ εi−1 + εi
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= θ2
[
θ Xi−3+εi−2

]
+θ εi−1+εi = . . . = θi−1[ θ X0+ε1] + θi−2 ε2 + . . . + θ εi−1 + εi

= θi−1 ε1 + θi−2 ε2 + . . . + θ εi−1 + εi

since X0 = 0. Alternatively, we can write out the recursive equations (6.7),

X1 = θ X0 + ε1

X2 = θ X1 + ε2

. . .
Xi−1 = θ Xi−2 + εi−1

Xi = θ Xi−1 + εi .

Multiplying the first equation by θi−1 , the second one by θi−2 , and so on,
and finally the equation number i − 1 by θ, and adding up all the resulting
identities, we get

Xi + θ Xi−1 + . . . + θi−2 X2 + θi−1 X1

= θ Xi−1 + . . . + θi−2 X2 + θi−1 X1 + θi−1 X0

+ εi + θ εi−1 + . . . + θi−2 ε2 + θi−1 ε1 .

Canceling the like terms and taking into account that X0 = 0, we obtain

Xi = εi + θ εi−1 + . . . + θi−2 ε2 + θi−1 ε1 .

(ii) We use the representation of Xi from part (i). Since εi’s are independent
N (0, σ2) random variables, the distribution of Xi is also normal with mean
zero and variance

Var[ Xi ] = Var
[
εi + θ εi−1 + . . . + θi−2 ε2 + θi−1 ε1

]

= Var[ ε1 ]
(
1 + θ2 + · · ·+ θ2(i−1)

)
= σ2 1− θ2i

1− θ2
.

(iii) Since | θ | < 1, the quantity θ2i goes to zero as i increases, and therefore,

lim
i→∞

Var[ Xi ] = lim
i→∞

σ2 1− θ2i

1− θ2
=

σ2

1− θ2
.

(iv) The covariance between Xi and Xi+j, j ≥ 0, is calculated as

Cov[ Xi, Xi+j ] = E
[ (

εi + θ εi−1 + . . . + θi−2 ε2 + θi−1 ε1

)×

× (
εi+j + θ εi+j−1 + . . . + θj εi + θj+1 εi−1 + · · ·+ θi+j−2 ε2 + θi+j−1 ε1

) ]

= θj E
[ (

εi + θ εi−1 + . . . + θi−2 ε2 + θi−1 ε1

)2
]

= θj Var[ ε1 ]
(
1 + θ2 + . . . + θ2(i−1)

)
= σ2 θj 1− θ2i

1− θ2
.
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Chapter 7

Exercise 7.43 The system of normal equations (7.11) takes the form
{

θ̂0 n + θ̂1

∑n
i=1 xi =

∑n
i=1 yi

θ̂0

∑n
i=1 xi + θ̂1

∑n
i=1 x2

i =
∑n

i=1 xi yi

with the solution

θ̂1 =
n

∑n
i=1 xi yi − (

∑n
i=1 xi) (

∑n
i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

=

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2
,

and θ̂0 = ȳ − θ̂1x̄ where x̄ =
∑n

i=1 xi/n and ȳ =
∑n

i=1 yi/n .

Exercise 7.44 (a) Note that the vector of residuals (r1, . . . , rn)′ is orthog-
onal to the span-space S, while g0 = (1, . . . , 1)′ belongs to this span-space.
Thus, the dot product of these vectors must equal to zero, that is, r1 + · · ·+
rn = 0 .

Alternatively, as shown in the proof of Exercise 7.43, θ̂0 = ȳ − θ̂1x̄, and
therefore,

n∑
i=1

ri =
n∑

i=1

(yi − ŷi) =
n∑

i=1

(yi − θ̂0 − θ̂1 xi) =
n∑

i=1

(yi − ȳ + θ̂1x̄− θ̂1 xi)

=
n∑

i=1

(yi − ȳ)

︸ ︷︷ ︸
0

+ θ̂1

n∑
i=1

(x̄− xi)

︸ ︷︷ ︸
0

= 0.

(b) In a simple linear regression through the origin, the system of normal
equations (7.11) is reduced to a single equation

θ̂1

n∑
i=1

x2
i =

n∑
i=1

xi yi,

hence, the estimate of the slope is

θ̂1 =

∑n
i=1 xi yi∑n
i=1 x2

i

.

Consider, for instance, three observations (0, 0), (1, 1), and (2, 1) . We get
θ̂1 =

∑3
i=1 xi yi/

∑3
i=1 x2

i = 0.6 with the residuals r1 = 0, r2 = 0.4, and
r3 = −0.2. The sum of the residuals is equal to 0.2 .
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Exercise 7.45 By definition, the covariance matrix D = σ2 (G′G)−1. For
the simple linear regression,

D = σ2

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

]−1

=
σ2

detD

[ ∑n
i=1 x2

i −∑n
i=1 xi

−∑n
i=1 xi n

]
.

By Lemmma 7.6,

Varθ

[
f̂n(x) | X ]

= D00+2D01 x+D11 x2 =
σ2

detD

( n∑
i=1

x2
i−2

( n∑
i=1

xi

)
x+nx2

)
.

Differentiating with respect to x, we get

−2
n∑

i=1

xi + 2nx = 0 .

Hence the minimum is attained at x =
∑n

i=1 xi/n = x̄.

Exercise 7.46 (i) We write

r = y − ŷ = y −Gθ̂ = y −G(G′G)−1 G′y = (In −H)y

where H = G(G′G)−1 G′. We see that the residual vector is a linear trans-
formation of a normal vector y, and therefore has a multivariate normal
distribution. Its mean is equal to zero,

Eθ[ r ] = (In −H)Eθ[y ] = (In −H)Gθ

= Gθ −G(G′G)−1 G′Gθ = Gθ −Gθ = 0 .

Next, note that the matrix In −H is symmetric and idempotent. Indeed,

(In −H)′ =
(
In −G(G′G)−1 G′ )′ = In −G(G′G)−1 G′ = In −H ,

and
(In −H)2 =

(
In −G(G′G)−1 G′ ) (

In −G(G′G)−1 G′ )

= In −G(G′G)−1 G′ = In −H .

Using these two properties, we conclude that

(In −H)(In −H)′ = (In −H) .

Therefore, the covariance matrix of the residual vector is derived as follows,

Eθ

[
rr′

]
= Eθ

[
(In −H)yy′(In −H)′

]
= (In −H)Eθ

[
yy′

]
(In −H)′
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= (In −H) σ2 In (In −H)′ = σ2 (In −H) .

(ii) The vectors r and ŷ −Gθ are orthogonal since the vector of residuals
is orthogonal to any vector that lies in the span-space S. As shown in part
(i), r has a multivariate normal distribution. By the definition of the linear
regression model (7.7), the vector ŷ − Gθ is normally distributed as well.
Therefore, being orthogonal and normal, these two vectors are independent.

Exercise 7.47 Denote by ϕ(t) the moment generating function of the vari-
able Y . Since X and Y are assumed independent, the moment generating
functions of X, Y , and Z satisfy the identity

(1− 2t)−n/2 = (1− 2t)−m/2 ϕ(t) , for t < 1/2 .

Therefore, ϕ(t) = (1 − 2t)−(n−m)/2, implying that Y has a chi-squared dis-
tribution with n−m degrees of freedom.

Exercise 7.48 By the definition of a regular deterministic design,

1

n
=

i

n
− i− 1

n
= FX(xi) − FX(xi−1) = p (x∗i ) (xi − xi−1 )

for an intermediate point x∗i ∈ (xi−1, xi). Therefore, we may write

lim
n→∞

1

n

n∑
i =1

g(xi) = lim
n→∞

1

n

n∑
i =1

(xi − xi−1)p(x∗i )g(xi) =

∫ 1

0

g(x)p(x) dx .

Exercise 7.49 Consider the matrix D−1
∞ with the (l,m)-th entry σ2

∫ 1

0
xlxm dx,

where l,m = 0, . . . , k. To show that it is positive definite, we take a column-
vector λ = (λ0, . . . , λk)

′ and write

λ′D−1
∞ λ = σ2

k∑
i =0

k∑
j =0

λi λj

∫ 1

0

xi xj dx = σ2

∫ 1

0

( k∑
i =0

λi x
i
)2

dx ,

which is equal to zero if and only if λi = 0 for all i = 0, . . . , k. Hence, D−1
∞

is positive definite by definition, and thus invertible.

Exercise 7.50 By Lemma 7.6, for any design X , the conditional expecta-
tion is equal to

Eθ

[ (
f̂n(x)− f(x)

)2 | X
]

=
k∑

l, m =0

Dl, m gl(x) gm(x) .
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The same equality is valid for the unconditional expectation, since X is a
fixed non-random design. Using the fact that nD → D∞ as n → ∞, we
obtain

lim
n→∞

Eθ

[ (√
n ( f̂n(x)− f(x) )

)2
]

= lim
n→∞

k∑

l, m =0

nDl, m gl(x) gm(x)

=
k∑

l, m =0

(D∞)l, m gl(x) gm(x) .

Exercise 7.51 If all the design points belong to the interval (1/2, 1), then
the vector ð0 = (1, . . . , 1)′ and ð1 = (1/2, . . . , 1/2)′ are co-linear. The prob-
ability of this event is 1/2n. If at least one design point belongs to (0, 1/2),
then the system of normal equations has a unique solution.

Exercise 7.52 The Hoeffding inequality claims that if ξi’s are zero-mean
independent random variables and |ξi| ≤ C, then

P
(|xi1 + · · ·+ ξ| > t

) ≤ 2 exp
{− t2/(2nC2)

}
.

We apply this inequality to ξi = gl(xi)gm(xi)−
∫ 1

0
gl(x)gm(x) dx with t = δn

and C = C2
0 . The result of the lemma follows.

Exercise 7.53 By Theorem 7.5, the distribution of θ̂− θ is (k + 1)-variate
normal with mean 0 and covariance matrix D. We know that for regular
random designs, nD goes to a deterministic limit D∞, independent of the
design. Thus, the unconditional covariance matrix (averaged over the distri-
bution of the design points) goes to the same limiting matrix D∞.

Exercise 7.54 Using the Cauchy-Schwarz inequality and Theorem 7.5, we
obtain

Eθ

[
‖ f̂n − f ‖2

2 | X
]

= Eθ

[ ∫ 1

0

( k∑
i =0

(θ̂i − θi) gi(x)
)2

dx | X
]

≤ Eθ

[ k∑
i =0

(θ̂i − θi)
2 | X

] k∑
i =0

∫ 1

0

(
gi(x)

)2
dx = σ2 tr(D) ‖g ‖2

2 .
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Chapter 8

Exercise 8.55 (i) Consider the quadratic loss at a point

w
(
f̂n − f

)
=

(
f̂n(x)− f(x)

)2
.

The risk that corresponds to this loss function (the mean squared error)
satisfies

Rn(f̂n, f) = Ef

[
w(f̂n − f)

]
= Ef

[ (
f̂n(x)− f(x)

)2
]

= Ef

[ (
f̂n(x) − Ef

[
f̂n(x)

]
+ Ef

[
f̂n(x)

] − f(x)
)2

]

= Ef

[ (
f̂n(x) − Ef

[
f̂n(x)

] )2
]

+ Ef

[ (
Ef

[
f̂n(x)

] − f(x)
)2

]

= Ef

[
ξ2
n(x)

]
+ b2

n(x) = Ef

[
w(ξn)

]
+ w(bn) .

The cross term in the above disappears since

Ef

[ (
f̂n(x) − Ef

[
f̂n(x)

] ) (
Ef

[
f̂n(x)

] − f(x)
) ]

= Ef

[
f̂n(x) − Ef

[
f̂n(x)

] ] (
Ef

[
f̂n(x)

] − f(x)
)

=
(
Ef

[
f̂n(x)

] − Ef

[
f̂n(x)

] )
bn(x) = 0 .

(ii) Take the mean squared difference

w
(
f̂n − f

)
=

1

n

n∑
i =1

(
f̂n(xi) − f(xi)

)2
.

The risk function (the discrete MISE) can be partitioned as follows.

Rn(f̂n, f) = Ef

[
w(f̂n − f)

]
= Ef

[ 1

n

n∑
i =1

(
f̂n(xi)− f(xi)

)2
]

= Ef

[ 1

n

n∑
i =1

(
f̂n(xi) − Ef

[
f̂n(xi)

]
+ Ef

[
f̂n(xi)

] − f(xi)
)2

]

= Ef

[ 1

n

n∑
i =1

(
f̂n(xi)−Ef

[
f̂n(xi)

] )2
]
+Ef

[ 1

n

n∑
i =1

(
Ef

[
f̂n(xi)

]− f(xi)
)2

]

= Ef

[ 1

n

n∑
i =1

ξ2
n(xi)

]
+

1

n

n∑
i = 1

b2
n(xi) = Ef

[
w(ξn)

]
+ w(bn) .
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In the above, the cross term is equal to zero, because for any i = 1, . . . , n,

Ef

[ (
f̂n(xi) − Ef

[
f̂n(xi)

] ) (
Ef

[
f̂n(xi)

] − f(xi)
) ]

= Ef

[ (
f̂n(xi) − Ef

[
f̂n(xi)

] ) ] (
Ef

[
f̂n(xi)

] − f(xi)
)

=
(
Ef

[
f̂n(xi)

] − Ef

[
f̂n(xi)

] )
bn(xi) = 0 .

Exercise 8.56 Take a linear estimator of f ,

f̂n(x) =
n∑

i =1

υn, i(x) yi .

Its conditional bias, given the design X , is computed as

bn(x,X ) = Ef

[
f̂n(x) | X ] − f(x) = Ef

[ n∑
i =1

υn, i(x) yi | X ] − f(x)

=
n∑

i =1

υn, i(x)Ef

[
yi | X ] − f(x) =

n∑
i =1

υn, i(x) f(xi) − f(x) .

The conditional variance satisfies

Ef

[
ξ2
n(x,X ) | X ]

= Ef

[ (
f̂n(x) − Ef

[
f̂n(x) | X ] )2 | X

]

= Ef

[
f̂ 2

n(x) | X
]
− 2

(
Ef

[
f̂n(x) | X ] )2

+
(
Ef

[
f̂n(x) | X ] )2

= Ef

[
f̂ 2

n(x) | X
]
− (

Ef

[
f̂n(x) | X ] )2

= Ef

[ ( n∑
i =1

υn, i(x) yi

)2

| X
]
−

(
Ef

[ n∑
i =1

υn, i(x) yi | X
] )2

=
n∑

i =1

υ2
n, i(x)Ef

[
y2

i | X
] −

( n∑
i =1

υn, i(x)Ef

[
yi | X

] )2

Here the cross terms are negligible since for a given design, the responses are
uncorrelated. Now we use the facts that Ef

[
y2

i | X
]

= σ2 and Ef

[
yi | X

]
=

0 to arrive at

Ef

[
ξ2
n(x,X ) | X ]

= σ2

n∑
i =1

υ2
n, i(x) .
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Exercise 8.57 (i) The integral of the uniform kernel is computed as

∫ ∞

−∞
K(u) du =

∫ ∞

−∞
(1/2) I

( − 1 ≤ u ≤ 1
)
du =

∫ 1

−1

(1/2) du = 1 .

(ii) For the triangular kernel, we compute
∫ ∞

−∞
K(u) du =

∫ ∞

−∞
( 1− |u| ) I( − 1 ≤ u ≤ 1

)
du

=

∫ 0

−1

(1 + u) du +

∫ 1

0

(1− u) du = 1/2 + 1/2 = 1 .

(iii) For the bi-square kernel, we have
∫ ∞

−∞
K(u) du =

∫ ∞

−∞
(15/16) (1− u2)2 I

( − 1 ≤ u ≤ 1
)
du

= (15/16)

∫ 1

−1

(1− u2)2 du = (15/16)

∫ 1

−1

(1− 2u2 + u4) du

= (15/16)
(
u− (2/3)u3 + (1/5)u5

) ∣∣∣
1

−1
= (15/16)

(
2− (2/3)(2) + (1/5)(2)

)

= (15/16)(2−4/3+2/5) = (15/16)(30/15−20/15+6/15) = (15/16)(16/15) = 1 .

(iv) For the Epanechnikov kernel,

∫ ∞

−∞
K(u) du =

∫ ∞

−∞
(3/4) (1−u2) I

( −1 ≤ u ≤ 1
)

= (3/4)

∫ 1

−1

(1−u2) du

= (3/4)
(
u− (1/3)u3

)∣∣∣
1

−1
= (3/4)

(
2− (1/3)(2)

)
= (3/4)(2− 2/3)

= (3/4)(6/3− 2/3) = (3/4)(4/3) = 1 .

Exercise 8.58 Fix a design X . Consider the Nadaraya-Watson estimator

f̂n(x) =
n∑

i =1

υn,i(x) yi where υn,i(x) = K
( xi − x

hn

)
/

n∑
j =1

K
( xj − x

hn

)
.

Note that the weights sum up to one,
∑n

i =1 υn,i(x) = 1.

(i) By (8.9), for any constant regression function f(x) = θ0, we have

bn(x,X ) =
n∑

i =1

υn,i(x)f(xi)− f(x)
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=
n∑

i =1

υn, i(x) θ0 − θ0 = θ0

( n∑
i =1

υn, i(x) − 1
)

= 0 .

(ii) For any bounded Lipschitz regression function f ∈ Θ(1, L, L1), the abso-
lute value of the conditional bias is limited from above by

∣∣ bn(x,X )
∣∣ =

∣∣∣
n∑

i =1

υn,i(x)f(xi)− f(x)
∣∣∣

≤
n∑

i =1

υn, i(x)
∣∣ f(xi)− f(x)

∣∣ ≤
n∑

i =1

υn, i(x) L
∣∣xi − x

∣∣

≤
n∑

i =1

υn, i(x) Lhn = Lhn .

Exercise 8.59 Consider a polynomial regression function of the order not
exceeding β − 1,

f(x) = θ0 + θ1 x + · · ·+ θm xm , m = 1, . . . , β − 1 .

The i-th observed response is yi = θ0 + θ1 xi + · · ·+ θm xm
i + εi where the ex-

planatory variable xi has a Uniform(0, 1) distribution, and εi is a N (0, σ2)
random error independent of xi, i = 1, . . . , n.

Take a smoothing kernel estimator (8.16) of degree β−1, that is, satisfying
the normalization and orthogonality conditions (8.17). To show that it is an
unbiased estimator of f(x), we need to prove that for any m = 0, . . . , β − 1,

1

hn

Ef

[
xm

i K
( xi − x

hn

) ]
= xm , 0 < x < 1 .

Recalling that the smoothing kernel K(u) is non-zero only if |u| ≤ 1, we
write

1

hn

Ef

[
xm

i K
( xi − x

hn

) ]
=

1

hn

∫ 1

0

xm
i K

( xi − x

hn

)
dxi

=
1

hn

∫ x+hn

x−hn

xm
i K

( xi − x

hn

)
dxi =

∫ 1

−1

(hn u + x)m K(u) du

after a substitution xi = hn u + x. If m = 0,

∫ 1

−1

(hn u + x)m K(u) du =

∫ 1

−1

K(u) du = 1 ,

36



by the normalization condition. If m = 1, . . . , β − 1,

∫ 1

−1

(hn u + x)m K(u) du = xm

∫ 1

−1

K(u) du

︸ ︷︷ ︸
=1

+

+
m∑

j =1

(
m

j

)
hj

n xm−j

∫ 1

−1

um K(u) du

︸ ︷︷ ︸
=0

= xm .

Therefore,

Ef

[ 1

nhn

n∑
i =1

yi K
( xi − x

hn

) ]

= Ef

[ 1

nhn

n∑
i =1

(
θ0 + θ1 xi + · · ·+ θm xm

i + εi

)
K

( xi − x

hn

) ]

= θ0 + θ1 x + · · ·+ θm xm = f(x) .

Here we also used the facts that xi and εi are independent, and that εi has
mean zero.

Exercise 8.60 (i) To find the normalizing constant, integrate the kernel

∫ 1

−1

K(u) du =

∫ 1

−1

C( 1− |u|3 )3 du = 2 C

∫ 1

0

(1− u3)3 du

= 2 C

∫ 1

0

(1− 3u3 + 3u6 − u9) du = 2 C
(
u− 3

4
u4 +

3

7
u7 − 1

10
u10

) ∣∣1
0

= 2 C
(
1− 3

4
+

3

7
− 1

10

)
= 2 C

81

140
=

81

70
C = 1 ⇔ C =

70

81
.

(ii) Note that the tri-cube kernel is symmetric (an even function). Therefore,
it is orthogonal to the monomial x (an odd function), but not the monomial
x2 (an even function). Indeed,

∫ 1

−1

u( 1− |u|3 )3 du =

∫ 0

−1

u(1 + u3)3 du +

∫ 1

0

u(1− u3)3 du

= −
∫ 1

0

u(1− u3)3 du +

∫ 1

0

u(1− u3)3 du = 0 ,

whereas
∫ 1

−1

u2( 1− |u|3 )3 du =

∫ 0

−1

u2(1 + u3)3 du +

∫ 1

0

u2(1− u3)3 du
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= 2

∫ 1

0

u(1− u3)3 du 6= 0 .

Hence, the degree of the kernel is 1.

Exercise 8.61 (i) To prove that the normalization and orthogonal condi-
tions hold for the kernel K(u) = 4− 6u, 0 ≤ u ≤ 1, we write

∫ 1

0

K(u) du =

∫ 1

0

(4− 6u) du = (4u− 3u2)
∣∣1
0

= 4− 3 = 1

and
∫ 1

0

uK(u) du =

∫ 1

0

u(4− 6u) du = (2u2 − 2u3)
∣∣1
0

= 2− 2 = 0.

(ii) Similarly, for the kernel K(u) = 4 + 6u, −1 ≤ u ≤ 0,

∫ 0

−1

K(u) du =

∫ 0

−1

(4 + 6u) du = (4u + 3u2)
∣∣0
−1

= 4− 3 = 1

and
∫ 0

−1

uK(u) du =

∫ 0

−1

u(4 + 6u) du = (2u2 + 2u3)
∣∣0
−1

= −2 + 2 = 0.

Exercise 8.62 (i) We will look for the family of smoothing kernels Kθ(u)
in the class of linear functions with support [−θ, 1]. Let

Kθ(u) = Aθ u + Bθ , −θ ≤ u ≤ 1.

The constants Aθ and Bθ are functions of θ and can be found from the
normalization and orthogonality conditions. They satisfy





∫ 1

−θ

(
Aθ u + Bθ

)
du = 1

∫ 1

−θ

u
(
Aθ u + Bθ

)
du = 0 .

The solution of this system is

Aθ = −6
1− θ

(1 + θ)3
and Bθ = 4

1 + θ3

(1 + θ)4
.

Therefore, the smoothing kernel has the form

Kθ(u) = 4
1 + θ3

θ(1 + θ)4
− 6u

1− θ

(1 + θ)3
,−θ ≤ u ≤ 1 .
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Note that a linear kernel satisfying the above system of constaints is unique.
Therefore, for θ = 0, the kernel Kθ(u) = 4 − 6u, 0 ≤ u ≤ 1, as is expected
from Exercise 8.61 (i). If θ = 1, then Kθ(u) turns into the uniform kernel
Kθ(u) = 1/2, −1 ≤ u ≤ 1.

The smoothing kernel estimator

f̂n(x) = f̂n(θhn) =
1

nhn

n∑
i =1

yi Kθ

( xi − θhn

hn

)

utilizes all the observations with the design points between 0 and x + hn,
since

{
− θ ≤ xi − θhn

hn

≤ 1
}

=
{

0 ≤ xi ≤ θhn + hn

}
=

{
0 ≤ xi ≤ x + hn

}
.

(ii) Take the smoothing kernel Kθ(u), −θ ≤ u ≤ 1, from part (i). Then the
estimator that corresponds to the kernel Kθ(−u), −1 ≤ u ≤ θ, at the point
x = 1−θhn, uses all the observations with the design points located between
x− hn and 1. It is so, because

{
− 1 ≤ xi − x

hn

≤ θ
}

=
{
− 1 ≤ xi − 1 + θhn

hn

≤ θ
}

=
{

1− θhn − hn ≤ xi ≤ 1
}

=
{

x− hn ≤ xi ≤ 1
}

.
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Chapter 9

Exercise 9.63 If hn does not vanish as n → ∞, the bias of the local
polynomial estimator stays finite. If nhn is finite, the number of observations
N within the interval [x−hn, x+hn] stays finite, and can be even zero. Then
the system of normal equations (9.2) either does not have a solution or the
variance of the estimates does not decrease as n grows.

Exercise 9.64 Using Proposition 9.4 and the Taylor expansion (8.14), we
obtain

f̂n(0) =

β−1∑
m =0

(−1)m θ̂m =
( β−1∑

m = 0

(−1)m f (m)(0)

m!
hm

n + ρ(0, hn)
) − ρ(0, hn) +

+

β−1∑
m =0

(−1)m
(
bm +Nm

)
= f(0)− ρ (0, hn) +

β−1∑
m =0

(−1)m bm +

β−1∑
m =0

(−1)mNm .

Hence the absolute conditional bias of f̂n(0) for a given design X admits the
upper bound

∣∣∣Ef

[
f̂n(0)− f(0)

] ∣∣∣ ≤
∣∣ ρ (0, hn)

∣∣ +

β−1∑
m =0

∣∣ bm

∣∣ ≤ Lhβ
n

(β − 1)!
+ β Cb hβ

n = O(hβ
n) .

Note that the random variables Nm can be correlated. That is why the con-
ditional variance of f̂n(0), given a design X , may not be computed explicitly
but only estimated from above by

Varf

[
f̂n(0)

∣∣∣X
]

= Varf

[ β−1∑
m =0

(−1)mNm

∣∣∣X
]

≤ β

β−1∑
m =0

Varf

[Nm

∣∣∣X
] ≤ β Cv/N = O(1/N) .

Exercise 9.65 Applying Proposition 9.4, we find that the bias of m! θ̂m/(h∗n)m

has the magnitude O
(
(h∗n)β−m

)
, while the random term m!Nm/(h∗n)m has

the variance O
(
(h∗n)−2m (nh∗n)−1

)
. These formulas guarantee the optimality

of h∗n = n−1/(2β+1) . Indeed, for any m ,

(h∗n)2(β−m) = (h∗n)−2m (nh∗n)−1 .

So, the rate (h∗n)2(β−m) = n−2(β−m)/(2β+1) follows.
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Exercise 9.66 We proceed by contradiction. Assume that the matrix D−1
∞

is not invertible. Then there exists a set of numbers λ0, . . . , λβ−1 , not all of
which are zeros, such that the quadratic form defined by this matrix is equal
to zero,

0 =

β−1∑

l, m =0

(
D−1
∞

)
l, m

λlλm =
1

2

β−1∑

l, m = 0

λlλm

∫ 1

−1

ul+m du

=
1

2

∫ 1

−1

( β−1∑

l =0

λlu
l
)2

du .

On the other hand, the right-hand side is strictly positive, which is a contra-
diction, and thus, D−1

∞ is invertible.

Exercise 9.67 (i) Let E[ · ] and Var[ · ] denote the expected value and vari-
ance with respect to the distribution of the design points. Using the conti-
nuity of the design density p(x), we obtain the explicit formulas

E
[ 1

nh∗n

n∑
i =1

ϕ2
( xi − x

h∗n

) ]
=

1

h∗n

∫ 1

0

ϕ2
( t− x

h∗n

)
p(t) dt

=

∫ 1

0

ϕ2(u)p(x + hnu) du → p(x)‖ϕ ‖2
2 .

(ii) Applying the fact that (h∗n)4β = 1/(nh∗n)2 and the independence of the
design points, we conclude that the variance is equal to

Var
[ n∑

i =1

f 2
1 (xi)

]
=

n∑
i =1

Var
[
f 2

1 (xi)
]

≤
n∑

i = 1

E
[
f 4

1 (xi)
]

=
1

(nh∗n)2

n∑
i = 1

E
[
ϕ4

( xi − x

h∗n

) ]

=
1

nh∗n

∫ 1

−1

ϕ4(u)p(x + uh∗n) du ≤ 1

nh∗n
max

−1≤u≤1
ϕ4(u) .

Since nh∗n → ∞ , the variance of the random sum
∑n

i =1 f 2
1 (xi) vanishes as

n →∞.
(iii) From parts (i) and (ii), the random sum converges in probability to the
positive constant p(x)‖ϕ ‖2

2 . Thus, by the Markov inequality, for all large
enough n,

P
( n∑

i =1

f 2
1 (xi) ≤ 2p(x)‖ϕ ‖2

2

)
≥ 1/2 .
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Exercise 9.68 The proof for a random design X follows the lines of that
in Theorem 9.16, conditionally on X . It brings us directly to the analogue
of inequalities (9.11) and (9.14),

sup
f ∈Θ(β)

Ef

(
f̂n(x)−f(x)

)2 ≥ 1

4
(h∗n)2βϕ2(0)E

[
1 − Φ

( 1

2σ

[ n∑
i =1

f 2
1 (xi)

]1/2
) ]

.

Finally, we apply the result of part (iii) of Exercise 9.67, which claim that
the latter expectation is strictly positive.
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Chapter 10

Exercise 10.69 Applying Proposition 10.2, we obtain

dm f̂n(x)

d xm
=

β−1∑
i = m

i!

(i−m)!

1

hm
n

( f (i)(cq)

i!
hi

n + bi, q + Ni, q

)( x − cq

hn

)i−m

=

β−1∑
i = m

f (i)(cq)

(i−m)!
(x − cq)

i−m +
1

hm
n

β−1∑
i = m

i!

(i−m)!
bi, q

( x − cq

hn

)i−m

+
1

hm
n

β−1∑
i = m

i!

(i−m)!
Ni, q

( x − cq

hn

)i−m

.

The first term on the right-hand side is the Taylor expansion around cq

of the m-th derivative of the regression function, which differs from f (m)(x)
by no more than O(hβ−m

n ) . As in the proof of Theorem 10.3, the second bias
term has the magnitude O(hβ−m

n ), where the reduction in the rate is due to
the extra factor h−m

n in the front of the sum. Finally, the third term is a
normal random variable which variance does not exceed O

(
h−2m

n (nhn)−1
)
.

Thus the balance equation takes the form

h2(β−m)
n =

1

(hn)2m(nhn)
.

Its solution is h∗n = n−1/(2β+1) , and the respective convergence rate is (h∗n)β−m .

Exercise 10.70 For any y > 0,

P
(
Z∗ ≥ yβ

√
2 ln n

)
≤ P

( Q⋃
q = 1

β−1⋃
m =,0

∣∣Zm, q

∣∣ ≥ y
√

2 ln n
)

≤ QβP
( |Z | ≥ y

√
2 ln n

)
where Z ∼ N (0, 1)

≤ Qβn−y2

since P(|Z| ≥ x) ≤ exp{−x2/2} , x ≥ 1 .

If n > 2 and y > 2 , then Qn−y2 ≤ 2−y , and hence

E
[ Z∗

β
√

2 ln n

∣∣X
]

=

∫ ∞

0

P
( Z∗

β
√

2 ln n
≥ y

∣∣X
)

dy

≤
∫ 2

0

dy + β

∫ ∞

2

2−y dy = 2 +
β

4 ln 2
.

Thus (10.11) holds with Cz =
(
2 + β

4 ln 2

)
β
√

2 .
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Exercise 10.71 Note that

P
(
Z∗ ≥ y

√
2β2 ln Q

)
≤ QβQ−y2

= βQ−(y2−1) ≤ β2−y ,

if Q ≥ 2 and y ≥ 2 . The rest of the proof follows as in the solution to Exercise
10.70. Further, if we seek to equate the squared bias and the variance terms,
the bandwidth would satisfy

hβ
n =

√
(nhn)−1 ln Q , where Q = 1/(2 hn) .

Omitting the constants in this identity, we arrive at the balance equation,
which the optimal bandwidth solves,

hβ
n =

√
−(nhn)−1 ln hn ,

or, equivalently,
nh2β+1

n = − ln hn .

To solve this equation, put

hn =
( bn ln n

(2β + 1)n

)1/(2β+1)

.

Then bn satisfies the equation

bn = 1 +
ln(2β + 1) − ln bn − ln ln n

ln n

with the asymptotics bn → 1 as n →∞ .

Exercise 10.72 Consider the piecewise monomial functions given in (10.12),

γm, q(x) = I( x ∈ Bq)
( x− cq

hn

)m

, q = 1, . . . , Q, m = 0, . . . , β − 1 . (0.1)

The design matrix Γ in (10.16) has the columns

γk =
(
γk(x1), . . . , γk(xn)

)′
, k = m+β(q−1), q = 1, . . . , Q , m = 0, . . . , β−1.

(0.2)
The matrix Γ′Γ of the system of normal equations (10.17) is block-diagonal
with Q blocks of dimension β each. Under Assumption 10.1, this matrix is
invertible. Thus, the dimension of the span-space is β Q = K .

Exercise 10.73 If β is an even number, then

f (β)(x) =
∞∑

k =1

(−1)β/2(2πk)β
[
ak

√
2 cos(2πkx) + bk

√
2 sin(2πkx)

]
.
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If β is an odd number, then

f (β)(x) =
∞∑

k =1

(−1)(β+1)/2(2πk)β
[
ak

√
2 cos(2πkx) − bk

√
2 sin(2πkx)

]
.

In either case,
∥∥ f (β)

∥∥2

2
= (2π)β

∞∑

k =1

k2β
[
a2

k + b2
k

]
.

Exercise 10.74 We will show only that

n∑
i =1

sin
(
2πmi/n

)
= 0 .

To this end, we use the elementary trigonometric identity

2 sin α sin β = cos(α− β) − cos(α + β)

to conclude that

sin
(
2πmi/n

)
=

cos
(
2πm(i− 1/2)/n

) − cos
(
2πm(i + 1/2)/n

)

2 sin
(
πm/n

) .

Thus, we get a telescoping sum

n∑
i =1

sin
(
2πmi/n

)
=

n∑
i =1

[ cos
(
2πm(i− 1/2)/n

) − cos
(
2πm(i + 1/2)/n

)

2 sin
(
πm/n

)
]

=
1

2 sin
(
πm/n

)
[

cos
(
πm/n

) − cos
(
2πm(n + 1/2)/n

) ]

=
1

2 sin
(
πm/n

)
[

cos
(
πm/n

) − cos
(
2πm + πm/n

) ]

=
1

2 sin
(
πm/n

)
[

cos
(
πm/n

) − cos
(
πm/n

) ]
= 0 .
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Chapter 11

Exercise 11.75 The standard B-spline of order 2 can be computed as

S2(u) =

∫ ∞

−∞
I[0, 1)(z) I[0, 1)(u− z) dz =





∫ u

0

dz = u , if 0 ≤ u < 1,
∫ 1

u−1

dz = 2− u , if 1 ≤ u < 2.

The standard B-spline of order 3 has the form

S3(u) =

∫ ∞

−∞
S2(z) I[0, 1)(u − z) dz

=





∫ u

0

z dz =
1

2
u2 , if 0 ≤ u < 1,

∫ 1

u−1

z dz +

∫ u

1

(2− z) dz = −u2 + 3u − 3

2
, if 1 ≤ u < 2,

∫ 2

u−1

(2− z) dz =
1

2
(3− u)2 , if 2 ≤ u < 3.

Both splines S2(u) and S3(u) are depicted in the figure below.

-

6

0 u

S2(u)

1

1 2 3

-

6

0 u

S3(u)

3
4
1
2

1 2 3
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Exercise 11.76 For k = 0 , (11.6) is a tautology. Assume that the statement
is true for some k ≥ 0 . Then, applying (11.2), we obtain that

S(k+1)
m (u) =

(
S(k)

m (u)
)′

=
k∑

j =0

(−1)j

(
k

j

)
S ′m−k(u− j)

=
k∑

j =0

(−1)j

(
k

j

) [
Sm−k−1(u− j) − Sm−k−1(u− j − 1)

]

=

(
k

0

)
Sm−k−1(u) + (−1)1

[(
k

1

)
+

(
k

0

)]
Sm−k−1(u− 1)

+ . . . + (−1)k

[(
k

k

)
+

(
k

k − 1

)]
Sm−k−1(u−k)− (−1)k

(
k

k

)
Sm−k−1(u−k−1)

=
k+1∑
j =0

(−1)j

(
k + 1

j

)
Sm−(k+1)(u− j) .

Here we used the elementary formulas

(
k

j

)
+

(
k

j − 1

)
=

(
k + 1

j

)
,

(
k

0

)
=

(
k + 1

0

)
= 1 ,

and

− (−1)k

(
k

k

)
= (−1)k+1

(
k + 1

k + 1

)
.

Exercise 11.77 Applying Lemma 11.2, we obtain that

LS(m−1)(u) =
m−2∑
i =0

aiS
(m−1)
m (u−i) =

m−2∑
i =0

ai

m−1∑

l =0

(−1)l

(
m− 1

l

)
I[0, 1)(u−i−l) .

If u ∈ [j, j + 1) , then the only non-trivial contribution into the latter sum
comes from i and l such that i + l = j . In view of the restriction, 0 ≤ j ≤
m− 2 , the double sum in the last formula turns into

λj =

j∑
i =0

ai(−1)j−i

(
m− 1

j − i

)
.

Exercise 11.78 If we differentiate j times the function

Pk(u) =
(u− k)m−1

(m− 1)!
, u ≥ k ,
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we find that

P
(j)
k (u) = (u− k)m−1−j (m− 1) (m− 2) . . . (m− j)

(m− 1)!
=

(u− k)m−j−1

(m− j − 1)!
.

Hence

νj = LP (j)(m− 1) =
m−2∑

k =0

bk
(m− k − 1)m−j−1

(m− j − 1)!
.

Exercise 11.79 The matrix M has the explicit form,

M =




(m−1)m−1

(m−1)!
(m−2)m−1

(m−1)!
. . . (1)m−1

(m−1)!
(m−1)m−2

(m−2)!
(m−2)m−2

(m−2)!
. . . (1)m−2

(m−2)!

. . .
(m−1)1

1!
(m−2)1

1!
. . . (1)1

1!




so that its determinant

detM =
( m−1∏

k =1

k!
)−1

detVm−1 6= 0

where Vm−1 is the (m−1)× (m−1) Vandermonde matrix with the elements
x1 = 1, . . . , xm−1 = m− 1 .

Exercise 11.80 In view of Lemma 11.4, the proof repeats the proof of
Lemma 11.8. The polynomial g(u) = 1 − u2 in the interval [2, 3) has the
representation

g(u) = b0 P0(u) + b1 P1(u) + b2 P2(u) = (−1)
u2

2!
+ (−2)

(u− 1)2

2!
+

(u− 2)2

2!

with b0 = −1, b1 = −2, and b2 = 1 .

Exercise 11.81 Note that the derivative of the order (β − j − 1) of f (j) is
f (β−1) which is the Lipschitz function with the Lipschitz constant L by the
definition of Θ(β, L, L1) . Thus, what is left to show is that all the derivatives
f (1), . . . , f (β−1) are bounded in their absolute values by some constant L2 . By
Lemma 10.2, any function f ∈ Θ(β, L, L1) admits the Taylor approximation

f(x) =

β−1∑
m =0

f (m)(c)

m!
(x− c)m + ρ(x, c) , 0 ≤ x, c ≤ 1 ,
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with the remainder term ρ(x, c) such that

| ρ(x, c) | ≤ L |x− c|β
(β − 1)!

≤ Cρ where Cρ =
L

(β − 1)!

That is why, if f ∈ Θ(β, L, L1), then at any point x = c, the inequality holds

∣∣∣
β−1∑
m =0

f (m)(c)

m!
(x− c)m

∣∣∣ ≤
∣∣ f(x)

∣∣ +
∣∣ ρ(x, c)

∣∣ ≤ L1 + Cρ = L0 .

So, it suffices to show that if a polynomial g(x) =
∑β−1

m =0 bm (x − c)m is

bounded, | g(x) | =
∣∣ ∑β−1

m =0 bm (x− c)m
∣∣ ≤ L0 , for all x, c ∈ [0, 1] , then

max
[
b0, . . . , bβ−1

] ≤ L2 (0.3)

with a constant L2 independent of c ∈ [0, 1] . Assume for definiteness that
0 ≤ c ≤ 1/2 , and choose the points c < x0 < · · · < xβ−1 so that ti =
xi − c = (i + 1)α , i = 0, . . . , β − 1 . A positive constant α is such that
α β < 1/2 , which yields 0 ≤ ti ≤ 1 . Put gi = g(xi) . The coefficients
b0, . . . , bβ−1 of polynomial g(x) satisfy the system of linear equations

b0 + b1ti + b2t
2
i + . . . + bβ−1t

β−1
i = gi , i = 0, . . . , β − 1 .

The determinant of the system’s matrix is the Vandermonde determinant,
that is, it is non-zero and independent of c . The right-hand side elements of
this system are bounded by L0 . Thus, the upper bound (0.3) follows. Similar
considerations are true for 1/2 ≤ c ≤ 1 .
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Chapter 12

Exercise 12.82 We have n design points in Q bins. That is why, for any
design, there exist at least Q/2 bins with at most 2n/Q design points. Indeed,
otherwise we would have strictly more than (Q/2)(2n/Q) = n points. Denote
the set of the indices of these bins by M . By definition, |M| ≥ Q/2 . In each
such bin Bq , the respective variance is bounded by

σ2
q, n =

∑
xi ∈Bq

f 2
q (xi) ≤

∑
xi ∈Bq

(
h∗n

)2β
ϕ2

(xi − cq

h∗n

)

≤ ‖ϕ‖2
∞

(
h∗n

)2β
(2n/Q) = 4n‖ϕ‖2

∞
(
h∗n

)2β+1
= 4‖ϕ‖2

∞ ln n

which can be made less than 2α ln Q if we choose ‖ϕ‖∞ sufficiently small.

Exercise 12.83 Select the test function defined by (12.3). Substitute M in
the proof of Lemma 12.11 by Q , to obtain

sup
f ∈Θ(β)

Ef

[
ψ−1

n ‖f̂n − f‖∞
]
≥ d0ψ

−1
n max

1≤ q≤Q
Efq

[
Efq

[
I
(Dq

) ∣∣X ] ]

≥ d0ψ
−1
n E(X )

[ 1

2
P0

(D0 | X
)

+
1

2Q

Q∑
q =1

Pq

(Dq | X
) ]

where E(X )[ · ] denotes the expectation taken over the distribution of the ran-
dom design.

Note that d0ψ
−1
n = (1/2)‖ϕ‖∞ . Due to (12.22), with probability 1, for

any random design X , there exists a set M(X ) such that

1

2
P0

(D0 | X
)

+
1

2Q

Q∑
q =1

P
(Dq | X

) ≥ |M|
4Q

≥ Q/2

4Q
=

1

8
.

Combining these bounds, we get that

sup
f ∈Θ(β)

Ef

[
ψ−1

n ‖f̂n − f‖∞
]
≥ (1/16)‖ϕ‖∞ .

Exercise 12.84 The log-likelihood function is equal to

− 1

2σ2

n∑
i =1

(
yi − f(xi, ω′)

)2
+

1

2σ2

n∑
i =1

(
yi − f(xi, ω′′)

)2
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=
1

σ2

n∑
i =1

(
yi − f(xi, ω′′)

) (
f(xi, ω′)− f(xi, ω′′)

)

− 1

2σ2

n∑
i =1

(
f(xi, ω′)− f(xi, ω′′)

)2

=
n∑

i =1

(εi

σ

) ( f(xi, ω′)− f(xi, ω′′)
σ

)
− 1

2σ2

n∑
i =1

(
f(xi, ω′)− f(xi, ω′′)

)2

so that (12.24) holds with

σ2
n =

1

σ2

n∑
i =1

(
f(xi, ω′) − f(xi, ω′′)

)2

and

Nn =
1

σn

n∑
i =1

( εi

σ

)( f(xi, ω′)− f(xi, ω′′)
σ

)
.

Exercise 12.85 By definition,

E
[

exp
{
zξ′q

} ]
=

1

2
ez/2 +

1

2
e−z/2 =

∞∑

k =0

1

(2k)!

(z

2

)2k

=
∞∑

k =0

1

k!

1

(k + 1) . . . (k + k)

(z2

4

)k

≤
∞∑

k =0

1

k! 2k

(z2

4

)k

=
∞∑

k =0

1

k!

(z2

8

)k

= ez2/8 .

Exercise 12.86 Consider the case β = 1. The bandwidth h∗n = n−1/3 , and
the number of the bins Q = 1/(2h∗n) = (1/2)n1/3. Let N = n/Q = 2n2/3

denote the number of design points in every bin. We assume that N is an
integer. In the bin Bq , 1 ≤ q ≤ Q , the estimator has the form

f ∗n = ȳq =
∑

i/n∈Bq

yi/N = f̄q + ξq/
√

N

with f̄q =
∑

i/n∈Bq
f(xi)/N , and independent N (0, σ2)-random variables

ξq =
∑

i/n∈Bq

(
yi − f(xi)

)
/
√

N =
∑

i/n∈Bq
εi/
√

N .

Put f̄n(x) = f̄q if x ∈ Bq . From the Lipschitz condition on f it follows
that ‖f̄n − f‖2

2 ≤ Cn−2/3 with some positive constant C independent of n .
Next,

‖f ∗n − f‖2
2 ≤ 2‖f̄n − f‖2

2 + 2‖f ∗n − f̄n‖2
2
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= 2‖f̄n − f‖2
2 +

2

QN

Q∑
q=1

ξ2
q = 2‖f̄n − f‖2

2 +
2

n

Q∑
q=1

ξ2
q ,

so that

n2/3‖f ∗n − f‖2
2 ≤ 2C + 2

n2/3

n

Q∑
q =1

ξ2
q = 2 C + 2n−1/3

Q∑
q =1

ξ2
q .

By the Law of Large Numbers,

2n−1/3

Q∑
q =1

ξ2
q =

1

Q

Q∑
q =1

ξ2
q → σ2

almost surely as n →∞. Hence for any constant c such that c2 > 2C + σ2 ,
the inequality holds n1/3‖f ∗n − f‖2 ≤ c with probability whatever close to 1
as n →∞ . Thus, there is no p0 that satisfies

Pf

(‖f̂n − f‖2 ≥ cn−1/3
∣∣X ) ≥ p0 .
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Chapter 13

Exercise 13.87 The expected value Ef [Ψ̂n] = n−1
∑n

i =1 w(i/n)f(i/n) .
Since w and f are the Lipschitz functions, their product is also Lipschitz
with some constant L0 so that

|bn| =
∣∣Ef [Ψ̂n] − Ψ(f)

∣∣ =
∣∣Ef [Ψ̂n] −

∫ 1

0

w(x)f(x) dx
∣∣ ≤ L0/n .

Next, Ψ̂n − Ef [Ψ̂n] = n−1
∑n

i =1 w(i/n)εi , hence the variance of Ψ̂n equals
to

σ2

n2

n∑
i =1

w2(i/n) =
σ2

n

( ∫ 1

0

w2(x) dx + O
(
n−1

) )
.

Exercise 13.88 Note that Ψ(1) = e−1
∫ 1

0
etf(t) dt , thus the estimator

(13.4) takes the form

Ψ̂n = n−1

n∑
i =1

exp
{
(i− n)/n

}
yi .

By Proposition 13.2, the bias of this estimator has the magnitude O(n−1),
and its variance is

Var[Ψ̂n] =
σ2

n

∫ 1

0

e2(t−1) dt + O(n−2) =
σ2

2n

(
1−e−2

)
+ O(n−2) , as n →∞ .

Exercise 13.89 Take any f0 ∈ Θ(β, L, ÃL1) , and put ∆f = f − f0. Note
that

f 4 = f 4
0 + 4f 3

0 (∆f) + 6f 2
0 (∆f)2 + 4f0(∆f)3 + (∆f)4 .

Hence

Ψ(f) = Ψ(f0) +

∫ 1

0

w(x, f0)f(x) dx + ρ(f, f0)

with a Lipschitz weight function w(x, f0) = 4f 3
0 (x) , and the remainder term

ρ(f0, f) =

∫ 1

0

(
6f 2

0 (∆f)2 + 4f0(∆f)3 + (∆f)4
)
dx .

Since f0 and f belong to the set Θ(β, L, L1) , they are bounded by L1, and,
thus, |∆f | ≤ 2L1. Consequently, the remainder term satisfies the condition

|ρ(f0, f)| ≤ (
6L2

1 + 4L1(2L1) + (2L1)
2
) ‖f − f0‖2

2

= 18L2
1‖f − f0‖2

2 = Cρ‖f − f0‖2
2 with Cρ = 18L2

1 .
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Exercise 13.90 From (13.12), we have to verify is that

Ef

[ (√
nρ(f, f ∗n)

)2 ] → 0 as n →∞ .

Under the assumption on the remainder term, this expectation is bounded
from above by

Ef

[ (√
nCρ‖ f ∗n − f‖2

2

)2 ]
= nC2

ρEf

[ ( ∫ 1

0

(f ∗n(x)− f(x))2 dx
)2 ]

≤ nC2
ρEf

[ ∫ 1

0

(f ∗n(x)− f(x))4 dx
]
→ 0 as n →∞ .

Exercise 13.91 The expected value of the sample mean is equal to

1

n

n∑
i =1

f(xi) =
n∑

i =1

f(xi)p(xi)(xi − xi−1)
(
np(xi)(xi − xi−1)

)−1

=

∫ 1

0

f(x)p(x)
(
1 + on(1)

)
dx ,

because, as shown in the proof of Lemma9.8, np(xi)(xi−xi−1) → 1 uniformly
in i = 1, . . . , n. Hence

Ψ̂n = (y1 + · · ·+ yn)/n ∼ N
( ∫ 1

0

f(x) p(x) dx , σ2/n
)

.

To prove the efficiency, consider the family of the constant regression func-
tions fθ(x) = θ , θ ∈ R . The corresponding functional is equal to

Ψ(fθ) =

∫ 1

0

fθ(x)p(x) dx = θ

∫ 1

0

p(x) dx = θ .

Thus, we have a parametric model of observations yi = θ + εi with the
efficient sample mean.

54



Chapter 14

Exercise 14.92 The number of monomials equals to the number of non-
negative integer solutions of the equation z1 + · · ·+ zd = i . Indeed, we can
interpret zj as the power of the j-th variable in the monomial, j = 1, . . . , d .
Consider all the strings of the length d + (i− 1) filled with i ones and d− 1
zeros. For example, if d = 4 and i = 6 , one possible such string is 100110111.
Now count the number of ones between every two consecutive zeros. In our
example, they are z1 = 1, z2 = 0, z3 = 2, and z4 = 3 . Each string corresponds
to a solution of the equation z1 + · · · + zd = i . Clearly, there are as many
solutions of this equation as many strings with the described property. The
latter number is the number of combinations of i objects from a set of i+d−1
objects.

Exercise 14.93 As defined in (14.9),

f̂0 =
1

n

m∑
i,j =1

ỹij =
1

m2

m∑
i,j =1

[
f0 + f1(i/m) + f2(j/m) + ε̃ij

]

= f0 +
1

m

m∑
i =1

f1(i/m) +
1

m

m∑
j =1

f2(j/m) +
1

m
ε̃

where

ε̃ =
1

m

m∑
i,j =1

ε̃ij ∼ N (0, σ2) .

Put

zi =
1

m

m∑
j =1

(
yij − f̂0

)
=

1

m

m∑
j =1

[
f0 + f1(i/m) + f2(j/m)− f̂0

]
+

1

m

m∑
j =1

εij

= f1(i/m) + δn +
1√
m

ε̄i − 1

m
ε̃ with δn = − 1

m

m∑
i =1

f1(i/m) = O(1/m) .

The random error ε̄i ∼ N (0, σ2) is independent of ε̃. The rest follows as in
the proof of Proposition 14.5 with the only difference that in this case the
variance of the stochastic term is bounded by CvN

−1
(
σ2/m + σ2/m2

)
.

Exercise 14.94 Define an anisotropic bin, a rectangle with the sides h1 and
h2 along the respective coordinates. Choose the sides so that hβ1

1 = hβ2

2 . As
our estimator take the local polynomial estimator from the observations in
the selected bin. The bias of this estimator has the magnitude O(hβ1

1 ) =
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O(hβ2

2 ), while the variance is reciprocal to the number of design points in the
bin, that is, O

(
(nh1h2)

−1
)
. Under our choice of the bandwidths, we have

that h2 = h
β1/β2

1 . The balance equation takes the form

h2β1

1 = (nh1h2)
−1 or, equivalently,

(
hβ1

1

)2+1/β̃
= n−1 .

The magnitude of the bias term defines the rate of convergence which is equal
to hβ1

1 = n−β̃/(2β̃+1) .
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Chapter 15

Exercise 15.95 Choose the bandwidths hβ1 = (n/ ln n)−1/(2β1+1) and hβ2 =

n−1/(2β2+1) . Let f̂β1 and f̂β2 be the local polynomial estimators of f(x0) with
the chosen bandwidths.

Define f̃n = f̂β1 , if the difference of the estimators |f̂β1 − f̂β2| ≥ C (hβ1)
β1 ,

and f̃n = f̂β2 , otherwise. A sufficiently large constant C is chosen below.
As in Sections 15.2 and 15.3, we care about the risk when the adaptive

estimator does not match the true smoothness parameter. If f ∈ Θ(β1) and
f̃n = f̂β2 , then the difference |f̂β1− f̂β2| does not exceed C (hβ1)

β1 = C ψn(f) ,
and the upper bound follows similarly to (15.11).

If f ∈ Θ(β2), while f̃n = f̂β1 , then the performance of the risk is controlled

by the probabilities of large deviations Pf

( |f̂β1−f̂β2| ≥ C (hβ1)
β1

)
. Note that

each estimator has a bias which does not exceed Cb (hβ1)
β1 . If the constant

C is chosen so that C ≥ 2Cb + 2C0 for some large positive C0, then the
random event of interest can happen only if the stochastic term of at least
one estimator exceeds C0(hβ1)

β1 . The stochastic terms are zero-mean normal
with the variances bounded by Cv(hβ1)

2β1 and Cv(hβ2)
2β2 , respectively. The

probabilities of the large deviations decrease faster that any power of n if C0

is large enough.

Exercise 15.96 From (15.7), we have

‖f ∗n, β1
− f‖2

∞ ≤ 2 A2
b (h∗n, β1

)2β + 2 A2
v

(
n h∗n, β1

)−1
(Z∗

β1
)2 .

Hence

(h∗n, β1
)−2β1Ef

[ ‖f ∗n, β1
− f‖2

∞
] ≤ 2 A2

b + 2 A2
v Ef

[
(Z∗

β1
)2

]
.

In view of (15.8), the latter expectation is finite.
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Chapter 16

Exercise 16.97 Note that by our assumption,

α = P0

(
∆∗

n = 1
) ≥ P0

(
∆n = 1

)
.

It is equivalent to

P0

(
∆∗

n = 1, ∆n = 1
)

+ P0

(
∆∗

n = 1 , ∆n = 0
)

≥ P0

(
∆∗

n = 1, ∆n = 1
)

+ P0

(
∆∗

n = 0, ∆n = 1
)
,

which implies that

P0

(
∆∗

n = 0, ∆n = 1
) ≤ P0

(
∆∗

n = 1, ∆n = 0
)
.

Next, the probabilities of type II error for ∆∗
n and ∆n are respectively equal

to
Pθ1(∆

∗
n = 0) = Pθ1(∆

∗
n = 0, ∆n = 0) + Pθ1(∆

∗
n = 0, ∆n = 1) ,

and

Pθ1(∆n = 0) = Pθ1(∆
∗
n = 0, ∆n = 0) + Pθ1(∆

∗
n = 1, ∆n = 0) .

Hence, to prove that Pθ1(∆n = 0) ≥ Pθ1(∆
∗
n = 0), it suffices to show that

Pθ1(∆
∗
n = 0, ∆n = 1) ≤ Pθ1(∆

∗
n = 1, ∆n = 0) .

From the definition of the likelihood ratio Λn, and since ∆∗
n = I(Ln ≥ c) , we

obtain
Pθ1(∆

∗
n = 0, ∆n = 1) = E0

[
eLn I

(
∆∗

n = 0, ∆n = 1
) ]

≤ ec P0

(
∆∗

n = 0, ∆n = 1
) ≤ ec P0

(
∆∗

n = 1, ∆n = 0
)

≤ E0

[
eLn I

(
∆∗

n = 1, ∆n = 0
) ]

= Pθ1(∆
∗
n = 1, ∆n = 0) .
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