Trailing Vortices. This photograph shows the vortices created by the water strider’s legs as it moves
across the water. Vortices are made visible by thymol blue. Bush has shown mathematically, and doc-
umented with photographs, that the vortices carry momentum backwards. By conservation of momen-
tum, this makes the water strider move forward. (Photo courtesy of John W. M. Bush.)
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Fluid Dynamics

Explains Mysteries of

Insect Motion

DanaMackenzie

able to hover in midair without going forward. It should

not use a helicopter-like motion, but should instead beat
its wings in an inclined plane, generating four times as much
upward force as conventional aerodynamics predicts.

Vehicle 2 should be able to walk on water. In fact, it should be
able to sprint and jump when conditions demand. It should also
be able to climb a frictionless slope, and do so without moving
any part of its body.

Vehicle 3 should be able to push itselfthrough a highly viscous
fluid and “fly” through a thinner fluid, and, moreover, it should
be able to sense the difference between the two and adjust its
method of locomotion accordingly.

All three vehicles should range in size from a few millime-
ters to a few centimeters. The winning designs should be backed
up by at least 100 million years of field testing. Please submit
proposalsto...

No, thisisn’'t arequest for proposals from areal government
agency, but the three “vehicles” described here do exist. Vehi-
cle 1 is a dragonfly, Vehicle 2 is a water strider, and Vehicle 3
is an Antarctic mollusk known as the “sea butterfly.” Together,
their literally superhuman abilities show the vast differences
between life at the scale of insects and life at a human scale.

“The world of water striders is dominated by surface ten-
sion. We live in a world dominated by gravity, so we have very
poor intuition where surface tension is concerned,” says John
Bush, an applied mathematician at the Massachusetts Institute
of Technology who has studied the motion of water-walking
insects for about five years. Human intuition also fails to un-
derstand the hovering flight of dragonflies, which toss invisible
vortices of air off with their wings as if they were tennis balls.
We struggle also to imagine what life is like for the seabutterfly,
which grows wings and uses them to “fly” through the water.

Bush and other applied mathematicians and physicists,
such as Steve Childress of New York University and Jane Wang
of Cornell University, are using mathematical methods (along
with careful observation) to learn some of the secrets of the
insects. Though his interest is purely fundamental, Bush says
that engineers are beginning to take these lessons very seri-
ously, as they try to design micro-air vehicles and microfluidic
devices that will use the same mechanisms and operate on the
same scales as the insects.

WANTED: Three miniature vehicles. Vehicle 1 should be

John Bush. John Bush (center)
with graduate students David Hu
(left) and Brian Chan (right).
(Photo courtesy of John W. M.
Bush.)
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Hitting Their Stride

As you can see by taking a trip to a pond on a summer day, a
water strider is a six- legged critter with abody about 1 to 4 cen-
timeters in length and gangly legs that can make its total length
closer to 20 centimeters. The legs are bent in such a way that
a long piece, called the “tarsal segment,” rests on the surface
of the water. It acts like a snowshoe that distributes the bug’s
weight over alarger area and prevents it from breaking through
the surface of the water. (See Figure 1.)

There is no great mystery about what holds the water strider
up. As Bush said, itis the curvature force resulting from surface
tension, which makes the surface behave like a trampoline. The
strider’s feet make little dents in the surface of the water, but as
long as the force exerted by any foot does not exceed 140 dynes
per centimeter, it will not and cannot break through. A quick
calculation shows that, with a weight of 10 dynes distributed
over a total tarsal length of about 10 centimeters, the water
strider has a large margin of safety.

Figure 1. An adult water strider, Gerris remidis. It is easy to understand how a water strider stands on
the water: surface tension from the dimples in the water creates an upward force on the animal. How-
ever, until recently scientists have not been able to explain how the strider moves on the water. (Photo
courtesy of John W. M. Bush.)
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But moving on water is another problem entirely. How
can you walk on a surface that is practically frictionless? Why
don’t water striders slip and flail around like humans walking
on a patch of ice? For a while, biologists thought they knew
the answer. The same surface tension forces that hold the
water strider up also provide a little bit of resistance to its
movements. When the strider pushes against the water, it cre-
ates a little packet of “capillary waves” that move backwards
and transport momentum with them. According to Newton’s
Law of conservation of momentum, if the wave momentum is
carried backward, then the insect must move forward.

But there is a problem with this explanation, first pointed
out by Mark Denny of Stanford University in 1994. Capillary
waves in water have a minimum speed of 23.2 centimeters per
second, which can be computed from the density and surface
tension. But infant water striders, as shown in laboratory ex-
periments, cannot move their legs that fast. That means they
cannot generate capillary waves. No capillary waves means no
momentum transfer and no fun for the juvenile water strider.

When he first read about Denny’s paradox, Bush immedi-
ately saw one flaw in the argument: biologists were assuming
the strider’s leg traveled at a steady rate. It’s true that a paddle
traveling through water at less than 23 centimeters per second
will not generate a capillary wave, Bush says. But the leg mo-
tion is not a steady straight-line motion; it is a short impulse
followed by a return stroke. The theory of steady motions does
not apply.

To see what was really happening, Bush’s graduate student
David Hu went out to Walden Pond to collect some water strid-
ers, bring them back and watch them walk. “From the very first
day in the laboratory, it was clear that they were shedding vor-
tices,” says Bush. Vortices are a hallmark of unsteady fluid flow.
Engineers and weather forecasters may hate them, but insects
love them—and water striders wouldn’t be able to go anywhere
without them. The discovery of the vortices did not, of course,
refute Newton’s Law. The water strider still moves by means
of momentum transfer, but it is the vortices, not the capillary
waves, that do the lion’s share of the work.

Eventually, Bush and Hu used a chemical dye called thymol
blue to make gorgeous images of the vortices trailing away be-
hind a moving water strider, just like the footprints of a rabbit
through the snow. (See Figure “Trailing Vortices,” p. 86.) An-
other student, Brian Chan, developed arobotic water strider, an
ingenious contraption that Bush describes as “truly scientific
research on a shoestring.” The strider was powered by a piece
of elastic thread taken from Chan’s sock! Research groups at
Carnegie-Mellon and Columbia University are now working on
more sophisticated versions of Chan’s Robostrider, with more
powerful energy sources such as a solar cell. (See Figure 2, next
page.)

The striders’ ability to walk on water is but one of many
amazing feats performed by water-walking insects. How do

Vortices are a hallmark
of unsteady fluid flow.
Engineers and weather
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Figure 2. Chan created a mechanical water strider, powered by an elastic thread from his shoelace,
that could take a few steps before running out of power. Other scientists have since developed more
sophisticated versions. (Photo courtesy of John W. M. Bush.)

such insects get out of the water? As Figure 3 shows, an insect
perceives the meniscus at water’s edge very differently fromus.
To the insect, it is a frictionless hill that is taller than the insect
itself, sloping up to a daunting angle of 40 degrees. If you imag-
ine trying to climb a 40-degree slope of ice that is several feet
high, you can begin to appreciate the water strider’s problem.

Relatively large water-walking insects cheat by jumping
to the top of the hill. Those that cannot jump apply a far
more ingenious solution, which also relies on surface tension.
For example, an insect called the water treader (Mesovelia) has
miniature claws that are hydrophilic (water-attracting)—unlike
the rest of the leg, which is hydrophobic (water-repelling). The
treader plucks the water’s surface up a little bit with its front
claws, while pressing down with its middle claws. It holds this
fixed posture, and in no more than a tenth of a second (so
fast that it can only be seen with high-speed photography) it
accelerates to the top of the hill!

What makes this trick work? It is the same principle that
makes corn flakes stick together in a bowl of milk, or bubbles
stick together in a glass of champagne. Whenever two menisci
get close enough to each other, they tend to attract. The menis-
cus on one side and the insect’s claws on the other side bend
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Figure 3. A water treader, Mesovelia, faces a seemingly impossible task. How can it climb a perfectly
frictionless surface, slanted at an angle of 40 degrees, in order to get out of the water? Cheating (by
grabbing the wall of the container) is not allowed. (Photo courtesy of John W. M. Bush.)

the surface layer of the water into the shape of a “U”. The water
always tries to minimize its surface energy, and it does this by
reducing its area. Thus a force is generated that pulls the two
sides of the “U” together until they coincide. The force is quite a
strong one—stronger than the gravitational force on the water
strider—and so the whole thing is over in less than the blink of
an eye.

Water-walking insects are not the only animals that use the
meniscus trick. When a waterlily leaf beetle falls into the water,
it curls its tail upward and lifts the surface of the water. It too
glides up the meniscus in a fraction of a second. “They always
go tail first, and I wonder if they do it to avoid concussions,”
Bush says, perhaps only partly in jest. (See Figure 4, next page).

Bush is now studying capillary feeding, which has been ob-
served in birds: How can a bird suck a liquid up into its beak,
when it can’t pucker its lips to create suction? Some birds use
surface tension: they draw a drop into the tip of their beaks;
then, inits quest to minimize surface energy, the drop is drawn
towards the bird’s mouth. Bush believes that some insects may
use similar capillary feeding techniques, but no one has ob-
served them because it’s too hard to see. Where surface tension
is concerned, humans have a lot to learn from animals. “I love
working in this area because you gradually come to the conclu-
sion that any mechanism you can imagine that works is already
out there,” Bush says.

A Sea Change
Steve Childress is another mathematician who doesn’t mind
traveling a small distance to study fluid dynamics. In his case,
the research took him to Antarctica, where he went with biol-
ogist Robert Dudley of the University of California, Berkeley,
to study a small mollusk called Clione antarctica, or the sea
butterfly.

When they got to McMurdo Station in November 2000, Chil-
dress and Dudley seemed to be out of luck. A cold spring had
wiped out the anticipated “spring bloom” of sea butterflies.
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Figure 4. A waterlily leaf beetle, Pyrrhalta, demonstrates the
solution to the meniscus-climbing problem. By arching its back,
it creates curvature in the surface of the water. Surface tension
then creates a strong horizontal force that allows it to reach the
edge of the water even though it has to go “uphill.” The water
treader uses the same solution, except that it plucks the water
surface upward with its forelegs and hind legs, while pushing
down with the middle legs. (Photo courtesy of John W. M. Bush.)

Childress and Dudley could not find a single adult—only juve-
niles. However, this disappointment actually was a stroke of
serendipity because it forced them to pay serious attention to
the juveniles for the first time.

Adult sea butterflies are about 1.5 centimeters long, but the
juveniles are only 3 to 4 millimeters. They have a cigar-shaped
body with stubby “wings,” and, in addition, they have three
bands of cilia roughly circling their head, waist, and tail. The
cilia pose an interesting question. Why does one creature need
two ways to get around?

In laboratory experiments, Dudley changed the viscosity of
the water by adding chemicals to it, and observed how the sea
butterfly larvae responded. When the water was more viscous,
they would use their cilia to swim, and tuck their wings into
their bodies. When the viscosity was reduced, out came the
wings. “Dudley could almost train those creatures to stick out
their wings and flap them,” Childress says. Childress realized
that what he was seeing was an adaptation to moving through
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two different kinds of fluid. Only in the natural setting, itisn’t
the viscosity of the water that changes—it’s the size of the
animal as it grows.

Intuitively, the most important quantity for describing a
fluid’s flow is its viscosity. A viscous or “thick” fluid, such as
molasses, tends to flow along smooth streamlines, with no
vortices or turbulence. An inviscid or “thin” fluid, such as air,
flows in a more complicated way, with lots of turbulence. But
for a body moving through a fluid, the size and velocity of
the body also play an important role. If the body is very small
or moving very slowly, it will not generate eddies even in a
thin fluid. Thus it is a combination of factors—the viscosity
v, the velocity u, and the length of the body L, that governs
the fluid flow. These factors can be summed up in a combined
parameter called the Reynolds number:

Re =ulL/v.

Thus, a 2-millimeter animal, moving through water, will experi-
ence the same Reynolds number as a 2-meter human moving at
the same speed through a fluid that is 1,000 times more viscous
than water—a very thick soup indeed!

In the regime of low Reynolds numbers, a well-known the-
orem of fluid mechanics, called the scallop theorem, says that
you cannot propel yourself forward with any sequence of body
configurations that is reversible in time. (Thus, wing-flapping
or dolphin-kicking are ineffective.) However, it is possible to
make forward progress with an asymmetric motion. For in-
stance, you can row: press against the water with a flat paddle,
then turn the paddle 90 degrees and move it back to its starting
point in a way that minimizes drag. Most sub-millimeter sized
animals use a different method. They have cilia or flagella
that propel them through the water with a corkscrew motion.
This is consistent with the scallop theorem because the time
reversal of a left-hand screw is a right-hand screw, which is
distinguishable from the original motion.

At high Reynolds numbers (say, Re > 1,000), a whole
different set of principles comes into play. This is the realm
of bird flight, and at even higher Reynolds numbers (Re >
1,000, 000), airplane flight. Mathematicians understand high
Reynolds numbers very well. Birds propel themselves in a
manner reminiscent of water striders, by flapping their wings
and generating vortices of air. As they push the vortices back-
wards, they receive an equal amount of forward momentum.
Thus the main purpose of flapping is to provide thrust. In an
airplane the thrustis produced in other ways—for example, by
propellers—and the function of the wings is to provide lift (for
which purpose a fixed wing is sufficient.)

Most animals, though, live in the intermediate zone between
low and high Reynolds numbers, where the equations of fluid
mechanics, called the Navier-Stokes equations (see “Vortices
in the Navier-Stokes Equations,” p. 78) are not as easy to an-
alyze. The sea butterfly juveniles start at a Reynolds number
of 10 and grow to a Reynolds number of 100 or so. Through
Dudley’s experiments, Childress discovered that the sea but-
terflies’ swimming speed while flapping slowed down at the
lower Reynolds number, and (when extrapolated) vanished at
a value of about 12. This indicated a finite, nonzero threshold

Birds propel themselves
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for flapping flight. As the Reynolds number increases, flapping
becomes more and more efficient.

It appears that sea butterflies have discovered a theorem
that mathematicians were not aware of. The scallop theo-
rem (which says that flapping has zero efficiency) has been
proved only at a Reynolds number of 0, but the sea butterfly
data strongly suggests that a bifurcation takes place around
Reynolds number 12. Below this number, a flapper may jiggle
around randomly but it won’t be able to move. It is trying to
create vortices, but the vortices diffuse away before they can
generate thrust. Above this number, a spontaneous symmetry-
breaking occurs. Any little push on the animal will create a
fore-aft asymmetry, and the fluid is now thin enough that the
animal can exploit it. When it flaps its wings, the fore-to-aft
fluid flow will carry the eddies away before they disperse. The
animal can now fly. (See Figure 5.)

Figure 5. (a) Atlow Reynolds number, a flapping wing cannot generate propulsion because it generates
symmetric fore and aft vortices. (b) However, at a certain threshold value of the Reynolds number, the
symmetry breaks spontaneously. (c) Above the threshold value, flapping flight becomes feasible. Note
that the mechanism of propulsion is the same as that of the water strider: flapping creates vortices
that carry momentum backward, allowing the animal to move forward. (Figure courtesy of the Applied
Mathematics Laboratory, Courant Institute of Mathematical Sciences.)

So far, no human mathematician has proved the “sea butter-
fly theorem” yet. Childress verified it for a simplified version of
the Navier-Stokes equations, called the Oseen model (see “Vor-
tices in the Navier-Stokes Equations,” p. 78), which ignores the
feedback between a moving body and the surrounding fluid.
(In the Oseen model the flow of the fluid affects the motion of
the body, but not vice versa.) For a flapper based on the shape
of the sea butterfly, he estimated that the bifurcation occurs
at Reynolds number 36. Due to the simplifying assumptions of
the Oseen model, that number is clearly an overestimate, but it
is a proof of principle that the bifurcation exists. “Nature has
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probably smoothed out the dividing line by being clever, but
what we’ve done is make it very precise,” Childress says.

Dragonflies and Falling Paper

In the late 1990s, when she was a NSF-NATO Postdoctoral Fel-
low in physics at Oxford University, Jane Wang went to the li-
brary to look for a book on random matrices. What she found
instead was a new direction for her career. She happened to
pickup abook by Childress, called Mechanics of Swimming and
Flying. “What a fascinating thing to study!” she thought. Later
she worked on a postdoctoral project with him, and now she
has become one of the leading researchers on the mathemat-
ics of insect flight. Recently she proposed a new theory of how
dragonflies manage to hover in place.

To watch a dragonfly is to be amazed at its ability to stop
and start in midair; even other hovering animals, such as
hummingbirds, don’t seem to have quite the same precision
of movement. Staying airborne without moving forward has
always been a challenging aeronautical problem. Fixed-wing
aircraft and most birds can’t do it because their lift results
directly from the flow of air past the wing. Helicopters make do
with a rotating wing. Hummingbirds, like helicopters, rotate
their wings in a mostly horizontal plane, deriving lift from the
flow of air past the wings.

The conventional “lift coefficient” of a wing reflects the
dependence of a wing’s lift on its airspeed. An ideal two-
dimensional wing develops a lift L that is proportional to the
square of the wing’s speed u, the density of air p, and the
wing’s cross-sectional area S. Specifically, the lift is given by
the formula:

1
L= ECLPUZS

where Cy, the lift coefficient, equals 27rsing, and « is the “angle
of attack” of the wing. Thus a horizontal wing (in theory) gen-
erates no lift. A wing improves its lift by tilting slightly, so that
« > 0. However, if it tilts too much, it stalls (which means that
the flow of air off the trailing edge is no longer smooth). In prac-
tice, this typically occurs around o« = 15°, so the lift coefficient
hits its maximum value somewhere between 1 and 2.

Dragonflies are puzzling to a physicist for two reasons.
First, their wings do not move in a nearly horizontal plane, but
a steeply inclined one. Second, the first estimates of the lift
coefficient of their wings seemed to be about four times too
large to be reasonable—between 3.5 and 6. Of course, there are
several problems with applying the aerodynamic formulas for
aircraft to the wings of a dragonfly. Those formulas assume a
steady state—a fixed wing moving at constant speed through
a fluid. But a steady-state model doesn’t apply to dragonflies,
just as it did not apply to John Bush’s water striders. The
anomalous lift of the dragonfly wings may come in part from
their ability to generate vortices and propel them downward.
This almost certainly seems to be the case for many insects,
from fruit flies to hawkmoths. (See Figure 6, next page, and see
Figure 7,p. 97.)

However, Wang found an even more important mistake in
the conventional analysis of dragonfly flight. Every wing gener-
ates drag as well as lift. Drag is the force parallel to the wing’s
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Hind wing

Figure 6. Hovering flight of a dragonfly posed theoretical problems because the dragonfly wing ap-
pears to generate more lift than any known airfoil. In this sequence of pictures, note the steep slope of
the downstroke (inclined at 60 degrees), which Jane Wang says is optimal for hovering flight. (Reprinted,
with permission, from the Annual Review of Fluid Mechanics, Volume 37, © 2005 by Annual Reviews,
www.annualreviews.org.)
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Figure 7. Like the water strider and the sea butterfly, the dragonfly creates vortices and propels them in
the opposite direction from the way it wants to go. (Reprinted, with permission, from the Annual Review
of Fluid Mechanics, Volume 37, © 2005 by Annual Reviews, www.annualreviews.org.)
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motion, while lift is the force perpendicular to the motion. To
an aeronautical engineer, drag is always bad because it slows
the plane down and contributes nothing to keeping the plane
aloft. Engineers always try to keep the lift-to- drag ratio as high
as possible. Previous researchers had assumed that the drag-
onfly wing must also have a high lift-to-drag ratio.

However, that turned out to be incorrect. In high-frequency
photos, Wang could see that the dragonfly, when hovering,
beats its wings along a steeply inclined path, which makes a
60-degree angle with the horizontal. Because the animal does
not have any forward component of velocity, the 60-degree
inclined plane marks the true direction of motion of the wing.
As the wing is moving downward along this path, aerodynamic
dragresists its motion—and therefore the drag has a very large
upward component. It would be absurd for the dragonfly to
minimize drag, because the drag is helping it out! The dragon-
fly therefore turnsits wing to press against the air like a paddle,
creating an angle of attack around 60 degrees and producing
lots of drag. On the other hand, during the upstroke, the drag
will point downward. On that part of the stroke, the dragonfly
does want to minimize drag, so it turns it wing parallel to the
airflow to reduce the drag force. (See Figure 8.)

Because the angle of attack of the wing is so large, it is very
far into the stalled regime. Any analysis of its motion based on
smooth, steady fluid flowis bound to give incorrect answers. So
Wang went back to the full Navier-Stokes equations and worked
out a model that incorporates both lift and drag. The model
showed that 76 percent of the vertical force on the dragonfly’s
wing comes from drag. In other words, the force is almost ex-
actly 4 times greater than it would be if the wing were using
lift alone. This completely resolves the problem of where the
dragonfly gets its “extra” lift from. Computer simulations also
showed that the wing tosses vortices downward, so that in fact
the way a dragonfly stays aloft is very reminiscent of the way
awater strider moves forward. Finally, the simulations demon-
strated that the vertical force due to drag decreases sharply if
the plane of motion of the dragonfly wing gets steeper than 60
degrees, because of the effects of unsteady flow (the interac-
tion between the wing and the flow generated in the previous
stroke). So it seems to be no accident that dragonflies beat their
wings at that angle.

Wang and her students are currently trying to determine op-
timum wing-motion patterns for several other kinds of flying
animals, including fruit flies, hawkmoths, and bumblebees. So
far they are finding that the optimal beating frequencies and
wing trajectories are close to the ones that the animals actually
use. Once again, nature seems to have figured out the best pos-
sible solution long before mathematicians did. However, with-
out mathematics we certainly would not be able to appreciate
the efficiency of the solutions that nature has evolved.

98

WHAT’S HAPPENING IN THE MATHEMATICAL SCIENCES



Normal Hovering Dragonfly

Lift
Drag

SCNCNCRCNGN i v

Figure 8. Hummingbird hovering and dragonfly hovering may seem similar, but the physical mecha-
nisms are quite different. Hummingbird wings move in an essentially horizontal plane; thus, the hum-
mingbird stays aloft by lift alone. Dragonfly wings operate in a “highly stalled” regime, which is bad for
hummingbirds and airplanes but perfect for dragonflies. They use both lift and drag to stay aloft. Note
also that the horizontal orientation of the wing during the downstroke creates maximal drag. On the up-
stroke, the dragonfly orients its wing vertically to minimize drag. (Reprinted, with permission, from the
Annual Review of Fluid Mechanics, Volume 37, © 2005 by Annual Reviews, www.annualreviews.org.)
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