Hall of Mirrors. Spectacular images result from plotting the action of a Kleinian group in 3-dimensional
space. To a topologist, this image represents the outside, or convex hull, of a 3-dimensional “hall of mir-
rors.” Each individual room in the hall of mirrors corresponds to a 3-dimensional manifold. In a case like
this one, where the walls of the hall of mirrors form visible spheres, the manifold is said to be “geomet-
rically finite,” and its ends are tame. Until recently topologists did not know if “geometrically infinite”
manifolds, where the spheres shrink down to an infinitely fine froth, also had tame ends. (© JosLeys.)
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Classifying

Hyperbolic Manifolds—
All’s Well That Ends Well

DanaMackenzie

topology remained uncertain, topologists conquered

four other major problems in 2004. The four theorems
that went into this unique sundae—the Ending Laminations
Conjecture, the Tame Ends Conjecture, the Ahlfors Measure
Conjecture, and the Density Conjecture—were not household
names, even among mathematicians. Yet to topologists who
study three-dimensional spaces, they were as familiar (and
went together as well) as chocolate, vanilla, hot fudge sauce
and a maraschino cherry.

The Poincaré Conjecture (see “First of Seven Millennium
Problems Nears Completion,” p. 2) can be compared to the
quest for the Loch Ness Monster: Whether you discover it or
prove it doesn’t exist, fame and glory are sure to follow. On
the other hand, if topologists spent all their time hunting Loch
Ness monsters, the subject would never advance. Someone has
to study and classify the spaces that are already known. That
is what the Ending Laminations Conjecture and Tame Ends
Conjecture are all about. They complete the taxonomy of a very
broad category of three-dimensional spaces, called hyperbolic
3-manifolds. Though they may not be quite as glamorous as
deep-sea monsters, they are much more numerous.

“I've been working on the Poincaré Conjecture for most of
my career,” confesses Danny Calegari of Caltech. But when
rumors started circulating in 2003 that Grisha Perelman had
solved it, Calegari decided he had better look for anew problem
to work on. Dave Gabai of Princeton University suggested that
they could team up to work on the Tame Ends Conjecture,
which Gabai had already been thinking about since 1996. It
was a problem that had been bouncing around for thirty years,
since it was first proposed by Al Marden of the University of
Minnesota. At the time he proposed it, Marden says, “It was
pie in the sky. No one had the vaguest idea how to prove it.”
Gabai had already tried to prove the Tame Ends Conjecture
once, with Michael Freedman. Although their program had
not worked—they found a counterexample to their original
idea—Gabai wanted wanted help with a promising variant of
Freedman’s approach, called “shrinkwrapping.”

Meanwhile, Ian Agol of the University of Illinois at Chicago
was going through a very similar process. He, too, was frus-
trated with trying to understand Perelman’s work on the
Poincaré Conjecture, but had an idea how to prove the Tame

WHILE THE STATUS of one famous unsolved problem in

Danny Calegari. (Photo courtesy
of Danny Calegari.)

Dave Gabai.
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Ian Agol. (Photo courtesy of Ian
Agol.)

Jeffrey F. Brock. (Photo cour-
tesy of the University of Texas at
Austin.)

Ends Conjecture. Both groups—Gabai and Calegari together,
and Agol working alone—finished their work at roughly the
same time.

The proof of the Ending Laminations Conjecture, on the
other hand, resulted from an intensive multi-year effort. The
classification of hyperbolic manifolds depends onidentifying a
“feature” that topologists didn’t even know about until William
Thurston, then at Princeton University, discovered it in the
1970s. Thurston sketched out a rough idea for how this part,
called an ending lamination, could be used to identify hyper-
bolic manifolds, but left huge gaps for other mathematicians to
fill. The first step was arigorous proof that ending laminations
even existed—a proof that was provided by Francis Bonahon of
the University of Southern California. The second step, using
the laminations as a scaffolding to piece together a whole
manifold, looked so difficult that only one mathematician
seriously believed he could do it. Yair Minsky of Yale University
began working on the Ending Laminations Conjecture shortly
after receiving his Ph.D. from Princeton in 1989, and turned
it into his career project. Working with a steady stream of
collaborators—most notably Howard Masur, Dick Canary, and
Jeff Brock—he gradually stitched together pieces of the proof
until, by December 2004, he was finally ready to pronounce it
complete. “In my mind,” says Bonahon, “the real achievement
is the work of Brock, Canary and Minsky. Agol, Calegari, and
Gabai put a cherry on top—although a very impressive cherry.”
Minsky is somewhat more modest: “I'm glad that Francis feels
this way, but personally I am happy with the role of one out
of several cherries on a very nice sundae.” Marden, on the
other hand, dismisses all talk of sundaes and emphasizes the
great importance of both theorems. “The most fundamental
[result] is the tameness,” he says. “For without knowing that,
both ending laminations and density would be known only
for ‘tame’ manifolds. There would be no way of knowing how
encompassing a class thisis.” On the other hand, he adds, “The
deepest of the theorems, the one that was hardest and required
the deepest penetration into the hyperbolic geometry is ending
laminations.”

The final two ingredients in the sundae, the Density Conjec-
ture and the Ahlfors Measure Conjecture, stem from an earlier
era in the study of hyperbolic geometry, before Thurston re-
vamped the subject and made it part of topology. In the 1960s,
such mathematicians as Lars Ahlfors and Lipman Bers had
taken a completely different approach to the subject, viewing
it as a branch of complex analysis (the study of functions of
complex numbers). They were interested in certain symmetries
of complex functions known as Mobius transformations. Their
original project was to classify groups of Mobius transfor-
mations, known as Kleinian groups (to be described below).
But as often happens in mathematics, the problem could not
be solved in the framework it was originally conceived in; it
was only after Thurston rephrased the problem in terms of
hyperbolic manifolds that major progress became possible.
“We didn’t even know how little we knew until Thurston,” says
Marden.
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Ahlfors found that there were certain nicely behaved Kleinian
groups that could be classified with the tools of complex analy-
sis, but there were others that could not. The relation between
them was very much like the relation between rational and ir-
rational numbers. The decimal expansion of rational numbers
marches in a precise cadence forever; irrational numbers may
act rational for a long time, but they always break stride and
follow their own drummer eventually. The Density Conjecture
was a sort of formalization of this metaphor. It states that any
hyperbolic manifold (or any group of Mobius transformations)
can be approximated “arbitrarily well” by a well-behaved one.

What are hyperbolic manifolds, what are Mobius trans-
formations, and what do they have to do with one another?
A topologist would answer this question in one sentence: a
hyperbolic manifold is a quotient of hyperbolic space by a
discrete group of Mobius transformations. (He would mumble
a few more words that sound like “orbifold” and “finitely gen-
erated,” but non-topologists are free to ignore the mumbled
part.) As usual in mathematics, quite a bit of explanation is
needed to understand the one-sentence answer.

A three-dimensional manifold is the mathematician’s way of
describing the universe we live in. On a small scale, a manifold
looks exactly like our familiar three-dimensional space, possi-
bly with subtle distortions due to curvature. In places where
the curvature is positive, parallel lines (which you can think
of as light rays) bend toward each other as if they were pass-
ing through a lens; where the curvature is negative, light rays
bend away from each other. The simplest kind of universe is
one where the curvature is the same at every point. Such a man-
ifold is called hyperbolic if the curvature is negative. Thurston
was the first mathematician to realize that the vast majority of
interesting three-dimensional manifolds are hyperbolic, or can
be put together out of hyperbolic pieces.

On a large scale, manifolds can connect up in complicated
ways, with wormholes and handles that may or may not exist
in our universe. They may also have “ends,” which are tubelike
or flaring conelike structures that extend infinitely far into the
distance. The Tame Ends Conjecture, as its name implies, states
that the ends of hyperbolic manifolds cannot get very compli-
cated. The Ending Laminations Conjecture complements this
by stating that the geometry of tame ends completely controls
the rest of the space. If you were the god of a hyperbolic uni-
verse with tame ends, you would find it very compliant. You
would be able to change its shape just by tugging on its ends,
and people living inside the universe would not have any say at
all. (See Figure 1.)

An extreme case is a hyperbolic universe of finite size. Such
a universe has no ends to tug on, and thus the universe can
have only one possible shape. To be more precise, each pos-
sible topology has one unique geometry of constant negative
curvature. That is exactly the content of the Mostow Rigidity
Theorem, proved in 1973 by George Mostow, which Masur calls
“the most influential piece of mathematics in geometry in the
last 35 years.” One of the main motivations behind the Tame
Ends Conjecture and the Ending Laminations Conjecture was
to explain how rigidity translates to hyperbolic universes that
are infinitely large.

Yair Minsky. (Photo courtesy of
Yair Minsky.)

Dick Canary. (Photo courtesy of
The University of Michigan Photo
Services.)
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Figure 1. An “end” of a non-compact manifold can be thought of as a piece of the manifold that stretches out to
infinity. This image shows a famous surface, called the Costa-Hoffmann-Meeks surface, that has three ends—the
three roughly planar pieces that stretch out to infinity. (Figure used with permission of Matthias Weber.)

As implied by the one-line definition of hyperbolic mani-
folds given above, there is a second way of looking at them
that doesn’t involve universes, light rays, or benevolent gods.
It involves Mobius transformations instead.

Most math majors first encounter Mobius transformations
in a course on complex functions. In complex analysis, the
Euclidean plane is represented by complex numbers z = x + iy,
rather than by ordered pairs (x,y). Functions that map the
plane to itself without distorting angles turn out to be particu-
larly important and easy to represent with complex numbers;
such functions are called conformal. The most general kind
of conformal map that doesn’t “miss” any points on the plane
is called a Mobius transformation, and it has a particularly
simple formula: f(z) = (az + b)/(cz + d). (Here the variable
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z and the constants a, b, ¢, d are all complex numbers.) Again,
the purists would mumble words like “orientation-preserving”
and “point at infinity,” but you are free to ignore them unless
you are being tested.

The wonder of Mobius transformations is that there is also
a geometric or pictorial way of looking at them. You can cre-
ate any Mobius transformation by doing a series of reflections
in the complex plane, using either an ordinary flat mirror or a
curved, circular one.

Once you have mirrors, you can put them together to create a
“hall of mirrors” effect. In an ordinary room whose walls are flat
mirrors, you can see copies of yourself in every direction you
look. They form a crowd of clones (half of them mirror-images,
the others exact copies of you) that seem to recede into the in-
finite distance. But what happens if you replace the flat mirrors
with circular ones? Felix Klein, a nineteenth-century German
geometer, discovered an amazing fact. You would still see in-
finitely many clones of yourself. But they would not appear to
recede into the infinite distance. If there were three circular
mirrors, the reflections would accumulate along a circle; and
if there were four or more mirrors, the reflections would accu-
mulate along a limit set, an extraordinarily jagged curve that
Klein tried and failed to sketch. Nowadays we know why he
foundit so hard: It was the first appearance in the mathematical
literature of a fractal.

In the computer age, we are no longer encumbered by the
limitations of human imagination and draftsmanship. Pictures
of fractals have become iconic images of the computer age, and
pictures of Kleinian limit sets are among the most beautiful. A
selection of images corresponding to different mirror sizes and
placements is shown here. (Note that the circular mirrors have
been replaced in some examples by spheres.) Every Kleinian
limit set has its own unique style and beauty. Technically, the
hall of mirrors is called a Fuchsian group (if the mirrors are
circles in the plane) or a Kleinian group (if they are spheres in
space). (See Figure 2.)

You can play around with Fuchsian groups and Kleinian
groups to your heart’s content without ever mentioning a
single word of topology. However, the more you play, the more
you will get the feeling that there is some organizing principle
behind them. To understand that principle, you need topology
and the concept of hyperbolic manifolds. (See Figure “Hall of
Mirrors” on p. 14.)

As the one-line definition of hyperbolic manifolds said, you
get a hyperbolic manifold by taking a quotient of the hyper-
bolic plane (or space) by a Fuchsian (or Kleinian) group. What
does this mean?

Henri Poincaré—yes, the same man who came up with the
Poincaré Conjecture—realized that if you are standing in a hall
of mirrors, you have no way of telling whether you are in an
infinite universe with infinite copies of yourself, or just a single
room with mirrors on the walls. You might argue that there is
one surefire if somewhat painful way to tell the difference: If
you are in a single room, if you keep walking in one direction
you will eventually bump into a wall. However, mathematically
it is easy enough to arrange for the mirrors to be permeable,
so that you can step right through them like Alice through the
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Figure 2. This beautiful fractal
portrays the action of a Kleinian
group (a discrete group of Mobius
transformations) on the complex
plane. Any white disc can be
mapped to any other white disc
by one of the transformations in
the Kleinian group. The group also
maps the shaded region to itself.
The fractal boundary between the
two regions is the limit set of the
group. The shaded region can also
be thought of as the union of an
infinite collection of “rooms” in a
“hall of mirrors.” An observer in-
side the shaded region cannot tell
whether she is in a single room
with mirrors or a gallery with in-
finitely many rooms. Even if she
is in a single room, she will see
infinitely many reflections of her-
self clustered in the distance, and
the apparent shape traced out by
these reflections will be identical to
the Kleinian limit set. (© JosLeys.)
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Figure 3a. “Sea Turtles 1”. For caption, see Figure 3b on next page. (© JosLeys.)

looking glass. If the universe is infinite, you would keep going
into a new room that looks like the one you just left. If the uni-
verse is finite, you would re-emerge somewhere else in your
original room. Either way, you cannot tell the difference. You
areliving in . .. the Quotient Zone. (Cue Twilight Zone music.)
A beautiful two-dimensional example of this phenomenon
can be seen in the graphics of Jos Leys, a Belgian artist who is
strongly inspired by the late M.C. Escher (see Figure 3). In his
picture “Sea Turtles,” we apparently see an entire plane with in-
finitely many turtles. Or do we? We could get exactly the same
picture by placing mirrors along the backbones of four of the
turtles, forming a square. In the Quotient Zone, there are only
four “real” half-turtles, and everything else is a reflection of a
reflection of a reflection. An example in hyperbolic geometry
is provided by Leys’ picture, “Fish.” Now the backbones of six
adjacent fish form a right-angled hexagon (a figure that exists
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Figure 3b. “Fish”. Two tessellations by Jos Leys illustrate the difference between Euclidean and hyper-
bolic geometry. “Sea Turtles 1” is a tessellation of the Euclidean plane. Every turtle has the same size
and shape. “Fish” is a tessellation of the hyperbolic plane. Every fish has the same size and shape, when
measured according to the rules of hyperbolic geometry. In each image, the backbones of the animals
reveal the underlying geometry of the space they live in. The backbones of the turtles form a square grid,
while the backbones of the fish form a pattern of right-angled hexagons. Right-angled hexagons exist
only in hyperbolic geometry, just as squares exist only in Euclidean geometry. (© JosLeys.)

only in hyperbolic geometry). Are there infinitely many fish, or
only six half-fish? I'm not telling. Sometimes it is more conve-
nient to look at it one way, and sometimes it is more convenient
tolook at it the other.

The first way is better if you want to visualize the ends of a
hyperbolic manifold. In this view, identical copies of the man-
ifold fill an entire disk (in two dimensions) or ball (in three di-
mensions), just as Leys’ pictures are filled with turtles and fish.
The disk or ball is called the Poincare disk model of the hyper-
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bolic plane (or hyperbolic space). Ends arise if the hyperbolic
manifold (or, equivalently, any one room of the hall of mirrors)
extends all the way out to the boundary of the Poincaré disk.
This makes the manifold infinitely large because of the way
that distances are measured in hyperbolic geometry. The cen-
ter of the Poincaré disk is infinitely far from its boundary, as
you can see from looking at Leys’ picture. Each of the fishes in
the picture is defined to be the same size in hyperbolic geom-
etry, and you have to pass by infinitely many fishes to reach
the boundary. In other words, you have to travel an infinite dis-
tance.

So far there has not been much of a difference between 2-
and 3-dimensional hyperbolic manifolds, aside from the sub-

Figure 4. The view from “inside” a hyperbolic 3-manifold. The manifold has finite volume and size, but
it appears infinite for the same reason that a rvoom with mirrors does. The adjacent “rooms” in this pic-
ture are really the same room, apparently rotated and translated. In this image the manifold is compact
(i.e., the rooms have finite size), but the same methods can be used to study non-compact 3-manfolds as
well. (Figure courtesy of The Geometry Center, University of Minnesota, © 1990. All rights reserved.)
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stitution of “space” for “plane” and “ball” for “disk.” As in the
2-dimensional case, 3-dimensional manifolds can be pictured
as individual rooms in a hall of mirrors, with the various re-
flections of the room apparently filling out all of hyperbolic
space (see Figure 4). However, when we start talking about ends,
a dramatic difference appears. In 2 dimensions, the ends are
just arcs on the boundary circle, and the limit set of the Fuch-
sian group is the collection of endpoints of those arcs. Butin 3
dimensions, we have a boundary sphere. The hyperbolic man-
ifold corresponds to a “room” inside the sphere, with exotic
matching rules on the walls. (Remember that when you are in
the Quotient Zone, walking through one wall causes you to re-
emerge from a different wall in the same room; the matching
rules say which one.) The ends are polygons on the boundary
sphere, which have matching rules of their own. These rules
glue the edges together in such a way that the polygons become
2-dimensional surfaces (such as doughnuts or pretzels). The
Kleinian limit set is a gorgeous fractal, where infinitely many of
the end-polygons cluster together. The limit set and the ends
are complementary; everything on the boundary sphere that
is not part of an end of the hyperbolic manifold is part of the
Kleinian limit set. (See Hall of Mirrors, p. 14.)

Back in the 1960s, Ahlfors showed that if the number of
walls of any “room” is finite, then the shape of the end poly-
gons translates directly to a unique hyperbolic geometry on
the “rooms” and the hyperbolic manifold they represent. In
fact, according to Marden, Ahlfors initially thought that his
theorem settled the question once and for all. Topologists now
call it the “geometrically finite” case. But it turned out that
in three dimensions (unlike two) the “rooms” of the hall of
mirrors could contain infinitely many sides. In this case the
Kleinian limit set suddenly changes its nature from an elegant
collection of filigrees into a violently jagged, tentacled mon-
ster that gobbles up almost the entire boundary sphere. (This
sudden transformation is the essence of the Ahlfors Measure
Conjecture, the fourth theorem in the “sundae.”) Even with a
computer, itis hard to draw an accurate picture of it. It was this
monster—the case of the “geometrically infinite” ends—that
required the efforts of six people (Agol, Calegari, Gabai, Brock,
Canary and Minsky) to tame and assign its proper taxonomy.

At this point the saga of the hyperbolic manifolds splits, like
the Lord of the Rings saga, into two parties. Agol, Calegari and
Gabai chose to work on the taming of the ends.

In the geometrically infinite case, the ends of the hyperbolic
manifold actually do not make it to the boundary sphere. The
reason is that the Kleinian limit set takes away so much of the
sphere that there is nothing left for the ends. Unfortunately,
this completely negates the usefulness of the first way of look-
ing at Kleinian groups: we can’t very well describe how the ends
control the geometry of the hyperbolic manifold if we can’t
even find the ends. This is, perhaps, why Ahlfors was stymied
by the geometrically infinite case.

However, the ends are still there, and you can still study
them by going to the Quotient Zone point of view. In this inter-
pretation, the hyperbolic manifold (the “room” in the hall of
mirrors) has a long, undulating tunnel that reaches out toward
infinity.

At this point the saga of
the hyperbolic
manifolds splits, like the
Lord of the Rings saga,
into two parties.
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The proof by Calegari
and Gabaiinvolved a
technique they
invented, called
“shrinkwrapping.”

The end of the manifold is tameifitis topologically the same
as a straight tunnel with no undulations. The reason the ends
are hard to tame is that the tunnel may twist infinitely often,
and in the course of this twisting become so knotted that it can
no longer be straightened out. Somehow the constant negative
curvature of the hyperbolic manifold (remember that?) must
prevent this kind of infinite twist. The proof by Calegari and
Gabai involved a technique they invented, called “shrinkwrap-
ping.” They showed that you could take a shortloop that circles
the tunnel and “shrinkwrap” it—thatis, you push a surface out-
ward from the “core” of the manifold until it gets caught on
the loop, then pull it tight. A simple but elegant geometric ar-
gument (which works only because of the manifold’s constant
negative curvature) shows that the area of the shrinkwrap does
notincrease as theloop moves farther and farther out along the
tunnel. But that means that the end cannot be infinitely twisted
and knotted because if it were, the shrinkwrap for the more dis-
tant loops would get tangled up with the closer loops, and the
areas would have gotten bigger and bigger. Therefore, the end
must have been tame to begin with!

Meanwhile, Minsky and his troops were working to under-
stand the structure of ends once they had been tamed. Once
you know the end has the structure of a straight tunnel, you
can take any cross-section of that (three-dimensional) tunnel
and get a two-dimensional surface—for example, a torus with
a puncture in it. Every cross- section will be the same, so it is
possible to pick one cross-section as amodel for all the others.

Next, Minsky (following Thurston’s idea) considered a se-
quence of loops heading out the end of the tube—the same
loops that Calegari and Gabai used in their shrinkwrapping ar-
gument. He slid these loops back to the reference surface. But
when you slide a curve in hyperbolic geometry, it invariably
becomes longer. (This is because of the defining property of
negative curvature: parallel lines diverge. Hence the ends of a
line segment get farther and farther apart when you slide them
in parallel directions.) Thus if your first curve wraps around
the reference surface once, the second one will be longer and it
will have to wrap around it more than once—or perhaps once
longitudinally and once latitudinally, creating a “barber pole”
effect.

As the curves get longer and longer, one of two things could
happen. They could start to retrace the same path (an easy way
to increase distance—just travel the same path over and over),
or they could fail to close up ever, and just create a denser and
denser sequence of barber pole stripes. In the limit, the barber
pole stripes become infinitely long and infinitely dense—and
that limit is called a lamination of the reference surface. It was
this structure, Thurston believed, that contained all the rele-
vant information about the shape of the end, and completely
determined the geometry of the rest of the manifold. This as-
sertion became known as the Ending Laminations Conjecture.

One challenge for Minsky was to figure out how different
ends communicate with each other—because if there is more
than one end, each of them will play a role in shaping the man-
ifold. The simplest, and first, case that he worked on was that
of a manifold with two ends, each with the same reference sur-
face. For example, if the reference surface were a punctured
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torus, the manifold would be a thick rubber inner tube with
a nail hole running from the outside surface to the inside sur-
face. One might call it a punctured tire. The outside of the inner
tube would have one ending lamination and the inside, which
you cannot see, would have another.

In this example, a barber pole stripe that winds around the
reference surface (the punctured torus) p times longitudinally
and g times latitudinally corresponds to a rational number,
p/q. Ending laminations correspond to irrational numbers,
such as the golden ratio (1.618033985...). To move from one
ending lamination to another, one proceeds by a series of hops
from one “nearby” rational number to the next. In the case of
the golden ratio, one might hop along Fibonacci ratios—from
13/8(1.625)to8/5(1.6)to 5/3 (1.666...) to 3/2 (1.5) and so on,
gradually moving away from the golden ratio and towards the
irrational number representing the second ending lamination.
(See Figure 5, next page.)

At each step, hopping from one ratio to the next corre-
sponds to moving from one barbershop spiral to another one
that does not intersect it. (They only intersect at the puncture
point, which has been removed for precisely that reason.) It
is hard for two different spirals not to intersect, and so the
information on which spirals do not intersect turns out to be
crucial in reconstructing the geometry of the manifold. Minsky
showed (in about 1994) that if you go all the way from one
lamination to another (which requires an infinite number of
“hops”) you will get all the information you need to build a
complete model of your manifold. At first it is not a perfect
model, but sort of a stitched-together Frankenstein-like ver-
sion of it. But in their 120-page paper, released as a preprint
in 2004, he showed with Brock and Canary how to smooth
out the stitching so that you end up with an exact copy of
your original manifold, with the desired ending laminations
on both ends. Most impressively, they described how to do
it for all manifolds, not just the punctured-tire manifold de-
scribed here. Thus, he concluded, Thurston was right. The
ending laminations for all geometrically infinite ends, plus the
shape of any geometrically finite ends, completely describe the
geometry of any hyperbolic manifold. (One more time there
are some mumbled words that you can ignore, concerning a
“finitely generated fundamental group.”)

What can you do for an encore after bringing a 15-year re-
search program to a close? “In this field we've been obsessed
with manifolds of infinite volume for a long time,” says Brock.
“One thing that we’re doing now is taking the technology of
these proofs and translating it back to manifolds of finite vol-
ume.”

For example, Brock says that any three-dimensional hyper-
bolic manifold can be sliced into two pieces in a special way
called a Heegaard splitting. The two pieces are topologically
identical, and they look like balls with lots of handles of differ-
ent shapes attached. The trouble with the Heegaard splitting
is that the pieces have open, raw edges—the places where the
original manifold was cut open. Topologists did not have the
tools torelate combinatorial information about the edges to the
geometry of the pieces. But now they do. Manifolds with open
edges are a lot like manifolds with ends (although the edges

What canyou do for an
encore after bringing a
15-yearresearch
programto aclose?
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Figure 5. A lamination on a torus is obtained as a limit of torus
knots, i.e., curves that wind around the torus and close up. Here,
the blue curve circumnavigates the torus 3 times in latitude
while going around 5 times in longitude. Thus it has “slope” 5/3
= 1.666. ... Similarly, the red curve has “slope” 8/5 = 1.6. These
two curves intersect only at the puncture point (black dot). The
multicolored curve has an irrational “slope” of 1.618. . .. It winds
around forever without ever closing up or intersecting itself.
This is called a lamination. (Graphics created by Michael Trott
using Mathematica.)
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do not extend out to infinity). The region around the edges can
be equipped with a curve complex, the very same type of scaf-
folding that Minsky used to generate a blueprint of a manifold
with ends. “This is neat because there are people who under-
stand the topology of Heegaard splittings in a very deep way,”
says Brock. “Our challenge is to relate this topology to the curve
complex.”

Minsky also is optimistic that there is a lot still to do. The
fact that you have a description of a manifold’s shape does not
mean you have a convenient description. An analogous situ-
ation can be found even in high-school Euclidean geometry.
The three side lengths of a triangle “completely describe” its
shape—but that doesn’t necessarily make it easy to answer
concrete questions about the triangle. For example, geometers
still do not know which triangles have periodic billiard-ball
trajectories—even though that information must somehow
be encoded in the side lengths. Minsky says that topologists
are still a long way from understanding how the ending lam-
inations, which “completely describe” a hyperbolic manifold,
relate to other geometric properties of the manifold.

As for Marden, he is thrilled to see his conjecture proved af-
ter thirty years. “So much has happened,” he says. “If you ever
questioned whether there is progress being made in mathemat-
ics, this is a very clear case. These proofs could not have been
done thirty years ago.”

“If you ever questioned
whether thereis
progress being madein
mathematics, thisisa
very clear case. These
proofs could not have
been done thirty years

ago.
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