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THE UNCONDITIONAL BASIC SEQUENCE PROBLEM 

W. T. GOWERS AND B. MAUREY 

o. INTRODUCTION 

A fundamental role in the theory of Banach spaces is played by the notion 
of a Schauder basis. If X is a Banach space then a sequence (Xn ):1 is a 
Schauder basis (or simply a basis) of X if every x E X can be written in a 
unique way as a norm-convergent sum of the form E:1 anxn . This definition 
clearly depends very much on the order of the xn ' and it is certainly possible 
for a permutation of a basis to fail to be a basis. On the other hand, many 
bases that occur naturally, such as the standard basis of lp when 1 ~ P < 00, 

are bases under any permutation. It is therefore natural to give a name to this 
special kind of basis. As it happens there are several equivalent definitions. 

Theorem 1. Let X be a (real or complex) Banach space and let (Xn):1 be a 
basis of X. Then the following are equivalent. 

(i) (x1!'(n)):1 is a basis of X for every permutation n: N -+ N. 
(ii) Sums of the form E:1 anxn converge unconditionally whenever they con-

verge. 
(iii) There exists a constant C such that, for every sequence of scalars (an):1 

and every sequence of scalars (En):1 of modulus at most 1, we have the in-
equality 

A basis satisfying these conditions is called an unconditional basis, and a 
basis satisfying the third condition for some given constant C is called C-
unconditional. An infinite sequence that is a basis of its closed linear span is 
called a basic sequence; if it is an unconditional basis of its closed linear span 
then it is an unconditional basic sequence. The basic facts about such sequences, 
including Theorem 1, can be found in [LT]. 

For a long time a major unsolved problem was whether every separable Ba-
nach space had a basis. This question was answered negatively by Enflo in 1973 
[E]. On the other hand, it is not hard to show that every space contains a basic 
sequence. Spaces with unconditional bases have much more structure than gen-
eral spaces, so examples of spaces without them are easy to find. Indeed, the 
spaces C([O, 1]) and L1 do not have an unconditional basis. This leaves the 
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question of whether every space contains an unconditional basic sequence or, 
equivalently, has an infinite-dimensional subspace with an unconditional basis. 
The earliest reference we know for the problem is [BP] (1958), where it appears 
as problem 5.1 (although Mazur was aware of the question at least ten years 
earlier); actually we solve the more precise problem 5.11, since our example is a 
reflexive Banach space. The easier related problem 5.12, whether every normal-
ized weakly null sequence has an unconditional subsequence, was solved many 
years ago [MR]. 

In the summer of 1991, the first-named author found a counterexample. A 
short time afterward the second-named author independently found a coun-
terexample as well. On comparing our examples, we discovered that they were 
almost identical, as were the proofs that they were indeed counterexamples, so 
we decided to publish jointly and work together on further properties of the 
space. As a result of our collaboration, the proofs of some of the main lemmas 
have been simplified and tightened. 

After reading our original preprints, W. B. Johnson pointed out that our 
proof(s) could be modified to give a much stronger property of the space. Lin-
denstrauss had asked [L] whether every infinite-dimensional Banach space was 
decomposable, that is, could be written as a topological direct sum Y EBZ with Y 
and Z infinite-dimensional. Johnson's observation was that our space, which 
for the remainder of the introduction we shall call X , is not only not decompos-
able but does not even have a decomposable subspace. That is, X is hereditarily 
indecomposable or H.I. Equivalently, if Y and Z are two infinite-dimensional 
subspaces of X and f. > 0 then there exist y E Y and Z E Z such that 
lIyll = IIzll = 1 and lIy - zll < f. • This turned out to be a key property of X in 
that all of the pathological properties that we know about X can be deduced 
from the fact that it is H.I. In particular, it is easy to see that a space with this 
property cannot contain an unconditional basic sequence. 

Another immediate consequence is that either the space is a new prime Ba-
nach space (which means that it is isomorphic to all its complemented sub-
spaces), or it fails to be isomorphic to a subspace of finite codimension. If the 
second statement is true then it must fail to be isomorphic to a subspace of 
codimension one, giving a counterexample to a question of Banach which has 
come to be known as the hyperplane problem. The first author modified the 
construction of X to give such a counterexample, and, in fact, one with an un-
conditional basis [G1]. Soon afterwards, we managed to use the H.1. property 
to show that the complex version of X gives another example. Later, we were 
able to pass to the real case, so X itself is a counterexample to the hyperplane 
problem by virtue of being a H.1. space. 

In fact, the space of operators on X is very small: every bounded linear 
operator on X can be written as AId +S , where S is a strictly singular operator. 
A question we have not answered is whether there exists a space on which every 
bounded linear operator is of the form AId + K for a compact operator K. 
We do not even know whether our space has that property, though it seems 
unlikely. 

The rest of this paper is divided into five sections. The first concerns the 
notion of an asymptotic set, which is a definition of great importance for this 
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problem but which arises most naturally in the context of the distortion problem, 
about which we shall have more to say later. In particular, we give a criterion 
for a space to have an equivalent norm in which it contains no C -unconditional 
basic sequence. 

The second section is about a remarkable space constructed by- Schlumprecht, 
of which our example is a development. We show that, for every C, his space 
satisfies our criterion and therefore can be renormed so as not to contain a 
C -unconditional basic sequence. 

The third section contains the definition of X and a proof that it is H.I. and 
therefore contains no unconditional basic sequence and ends with the (easy) 
proof that X is reflexive. The fourth is about consequences of this property, 
especially the existence of very few operators on a complex space having it. 
This section does not depend on our particular construction and can therefore 
be read independently of the first three. The final section concerns the passage 
to the real case of the results of the previous one and also contains a useful 
strengthening of the statement that every operator on our space is the sum of a 
multiple of the identity and a strictly singular operator. 

We are very grateful to W. B. Johnson for his influence on this paper. As we 
have mentioned, his observation that our space is H.I. lies at the heart of all 
its interesting properties. He also explained to us much simpler arguments for 
some of the consequences of this property. We also thank P. G. Casazza and 
R. G. Haydon for interesting conversations and suggestions about the problems 
solved here. 

For the rest of this paper we shall use the words "space" and "subspace" to 
refer to infinite-dimensional spaces and subspaces. Similarly a basis will always 
be assumed to be infinite. 

1. ASYMPTOTIC SETS 

Let X be a normed space and let SeX) be its unit sphere. We shall say that a 
subset A c SeX) is asymptotic if An S(Y) =1= 0 for every infinite-dimensional 
(not necessarily closed) subspace Y eX. A key observation for this paper 
is that, if a space X contains infinitely many asymptotic sets that are all well 
disjoint from one another, then these can be used to construct an equivalent 
norm on X such that no sequence is C -unconditional in this norm. In this 
section, we shall make that statement precise and prove it. The approach also 
occurred naturally (for the second author in particular,) as a generalization of 
[MR]. It will underlie most of the arguments of this paper. 

Let At ' A2 ' ... be a sequence of subsets of the unit sphere of a normed space 
X , and let A;, A; , . .. be a sequence of subsets of the unit ball of X* . (It is 
slightly more convenient in applications to take the ball rather than the sphere.) 
We shall say that At ' A2 ' ... and A; , A; , . .. are an asymptotic biorthogonal 
system with constant <5 if the following conditions hold. 

(i) For every n EN, the set An is asymptotic. 
(ii) For every n E N and every x E An' there exists x* E A: such that 

x*(x) > 1-<5. 
(iii) For every n, mEN with n =1= In , every x E An ' and every x* E A~ , 

Ix*(x)1 < <5. 
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Under these circumstances, we shall say that X contains an asymptotic 
biorthogonal system. The definition is not interesting if J > 1/2 since one 
may take An = S(X) and A~ = !B(X*) for every n. On the other hand, if 
J < 1/2, it is not at all obvious that any Banach space contains an asymptotic 
biorthogonal system with constant J. We shall see later, however, that this is 
not as rare a phenomenon as it might seem. 

Note that the An are separated in the following sense. If n =I- m, x E An 
and YEArn then there exists x* EA~ such that x*(x) > I-J and Ix*(Y)1 <J. 
Since A~ c B(X*) , it follows that IIx - yll > 1 - U . 

In practice, one usually obtains a stronger property. There is a sequence of 
constants (In):, tending to zero such that one can replace J in conditions 
(ii) and (iii) by I n and Jmin{rn,n} respectively. This we call an asymptotic 
biorthogonal sequence with vanishing constant. 

The main result of this section is the following theorem. 

Theorem 2. Let 0 < J < 1/36, and let X be a separable normed space con-
taining an asymptotic biorthogonal system with constant J. Then there is an 
equivalent norm on X such that no sequence is 1/v'3M-unconditional. 
Proof. Let 11.11 be the original norm on X, and let A, ' A2 , ••• and A; , A;, ... 
be the asymptotic biorthogonal system with constant J . For each n let Z; be 
a countable subset of A~ such that for every x E An there exists x* E Z; with 
x*(x) > 1 - J. Let Z* = U:, Z; . Next, let (J be an injection to the natural 
numbers from the collection of finite sequences of elements of Z* . 

We shall now define a collection of functionals which we call special func-
tionals. A special sequence of functionals of length r is a sequence of the form 

* * * h * Z* d ~ 1· * Z* A Z" Z2' ... , z" were z, E , an , lor :::;; I < r, Zj+, E u(z~, ... ,zn. 
special junctional of length r is simply the sum of a special sequence of length 
r. We shall let r, stand for the collection of special functionals of length r. 

We can now define an equivalent norm on X. Let r = lJ-'j2J, and define 
a norm 111.111 by 

III x 111= IIxll V rmax{lz*(x)1 : z* E r,} . 
Let x" x2 ' ••• be any sequence of linearly independent vectors in X. We 

shall show that it is not (r - 1)/4-unconditional in the norm 111.111. We shall do 
this by constructing a sequence of vectors z" ... , z" generated by x, ' x2 ' ••• 
and disjointly supported with respect to these vectors, with the property that 

(r -1) III i)-l)jZj 111< 4111 tZj III· 
1=' 1=' 

This will obviously prove the theorem, since (r - 1)/4> 1/v'3M. 
Let X, be the algebraic subspace generated by (x):,. Since A, is an 

asymptotic set, we can find z, E A, nx, . This implies that z, has norm 1 and 
is generated by finitely many of the x j • Next we can find Z; E Z; such that 
z;(z,) > 1 - J. Now let X2 be the algebraic subspace generated by all the Xj 
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not used to generate zi . Since AO"(z~) is asymptotic, we can find z2 E AO"(z~PX2 

of norm 1. We can then find z; E Z;(zn such that z;(z2) > 1 - tJ . 
Continuing this process, we obtain sequences ZI' ... ' zr and z~, ... , z; 

with the following properties. First, IIzill = 1 for each i. Second, <+1 E 
z;(z~ , ... ,z;J for each i (Le., z~, ... , z; is a special sequence of length r). 
Third, z;Czi) > 1 - tJ for each i. Fourth, since a is an injection, the < 
belong to different A~'s, so I<Cz)1 < tJ when i::j:. j . 

Let us now estimate III E;=I zi III. Since z;, ... , Z; is a special functional 
of length r, the norm is at least 

r r 

r(L z;) (L Zi) > r((1 - tJ)r - tJrCr - 1)) 
i=1 i=1 

;:;: rCr - 1) . 

On the other hand, if cwn;=1 is any special sequence of length r, let t be 
maximal such that w; = < Cor zero if w~ ::j:. z; ). Then 

r t r 

ILC-l)iw;Czi)l:::; 1~)-I)iw;CzJI + IW;+ICzt+I)1 + L Iw;Czi)1 . 
i=1 i=1 i=t+2 

Since a is an injection, w; and z; are chosen from different sets A~ whenever 
i ::j:. j or i = j > t + 1. By property (iii) this tells us that Iw;Czj)1 < tJ. In 
particular, E;=t+2Iw;Czi)1 < tJr. When i ~ t we know that I-tJ < w;CzJ :::; 1, 
so I E~=I C -1)iw;Czi)1 :::; 1 + tJt/2. It follows that 

r 

ILC-l)iW;CzJI:::; 1 + tJr/2 + 1 + t5Y:::; 2Cl + tJr) . 
i=1 

We also know that Eih Iw;(zj)1 :::; tJrCr-l). Finally, by the triangle inequality, 
II E;=I( _1)i zill :::; r. 

Putting all these estimates together, we find that 

III tC-l/Zi III:::; r(2Cl +tJr) +tJrCr-l)) < 4r, 
1=1 

from which it follows that the basic sequence XI' x2 ', ••• was not Cr - 1)/4-
unconditional in the equivalent norm. 0 

With a little more care one can increase the best unconditional constant from 
roughly tJ-1/2 to roughly tJ-1 , but some of the details of this would obscure the 
main point of the proof. It also does not seem to be necessary in applications. 
Indeed, it is not known whether there exists a space containing an asymptotic 
biorthogonal system for some Cnontrivial) tJ but not with vanishing constant. 
In the next section, we examine a space that does contain one with vanishing 
constant. 

2. SCHLUMPRECHT'S SPACE 

A space CY, 11.11) is said to be A-distortable ifthere exists an equivalent norm 
111.111 on Y such that for every subspace Z c Y the quantity 
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sup{111 y III I III z III: lIyll = Ilzll = I} 

is at least A. A space is distortable if it is A-distortable for some A > 1. It 
was a famous open problem, known as the distortion problem, whether £2 was 
distortable. This is equivalent to asking whether every space isomorphic to £2 
contains a subspace almost isometric to £2. The problem appears as problem 
2.e.2 of [LT] but was well known by then. Some related results were proved in 
[LP]. 

A few months after the results in this paper were obtained, the distortion 
problem was also solved, by Odell and Schlumprecht [OS]. Actually a stronger 
statement is proved in [OS], namely, that £2 contains an asymptotic biorthog-
onal system with any constant 0 > 0 or even with vanishing constant. This 
implies that £2 can be renormed so as not to contain a C-unconditional basic 
sequence. However, we shall consider in this section a space constructed by 
Schlumprecht [SI]. This space was the first known example of a space that is 
A-distortable for every A. The main result of this section is that it contains an 
asymptotic biorthogonal system for any o. In proving this, we shall use very 
little more than what was already proved by Schlumprecht in order to show that 
it is arbitrarily distortable. 

First, let us give the definition of Schlumprecht's space. He defines a class 
of functions f : [1,00) -+ [1,00), which we shall call !T, as follows. The 
function f is a member of !T if it satisfies the following five conditions: 

(i) f(l) = 1 and f(x) < x for every x> 1. 
(ii) f is strictly increasing and tends to infinity. 

(iii) limx -+oo x-q f(x) = 0 for every q > O. 
(iv) The function xl f(x) is concave and nondecreasing. 
(v) f(xy) ~ f(x)f(y) for every, x, y ~ 1 . 

It is easily verified that f(x) = log2(x + 1) satisfies these conditions, as 
does the function J f(x). Note also that some of the conditions above are 
redundant. In particular, one can deduce that f(x) and xl f(x) are strictly 
increasing from the other conditions. 

Schlumprecht's space is a Tsirelson-type construction in that it is defined 
inductively. As with an earlier construction due to Tzafriri, the admissibility 
condition used in Tsirelson's space [T] is not needed (see [CS]). Before giving 
the definition, let us fix some notation. 

Let coo be the space of sequences of scalars all but finitely many of which 
are zero. We shall let e l , e2, ... stand for the unit vector basis of this vector 
space. If E c N then we shall also use the letter E for the projection from 
coo to coo defined by EO:::: I ajej) = E jEE ajej . If E, FeN then we write 
E < F to mean that maxE < minF, and if kEN and E c N then we write 
k < E to mean k < minE. The support of a vector x = E:I xjej E coo is 
the set of i E N for which Xj =f. O. An interval of integers is a subset of N of 
the form {a, a+ 1, ... ,b} for some a, bEN. We shall also define the range 
of a vector, written ran(x) , to be the smallest interval containing its support. 
We shall write x < y to mean ran(x) < ran(y). If XI < ... < xn ' we shall say 
that XI ' .•• ,xn are successive. 
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Now let f(x) be the function 10g2(x + 1) as above. If x E coo' its norm in 
Schlumprecht's space is defined by the equation 

N 

Ilxll = Ilxll(X) V sup f(N)-1 L IIE;xll 
;=1 

where the supremum runs over all integers N ;;:: 2 and all sequences of sets 
EI < ... < EN' Note that this definition, although apparently circular, in fact 
determines a unique norm. Note also that the standard basis of coo is one-
uncol!ditional in this norm, so there is no difference if we assume that all the 
sequences EI < ... < EN are sequences of intervals. Later in the paper it 
will make a great difference, and we now adopt the convention that all such 
sequences mentioned are sequences of intervals. 

We now prove various lemmas about this space. As we have already said, 
they are essentially due to Schlumprecht [S 1, S2] but are stated here in slightly 
greater generality so that they can be applied to our space in the main part of 
this paper. 

Let 2' be the set of normed spaces of the form X = (coo' 11.11) such that 
(eJ:I is a normalized monotone basis of X. If f E g-, X E 2' and every 
x E X satisfies the inequality 

Ilxll ;;:: SUP{f(N)-1 t IIE;xll : N EN, EI < '" < EN} 
1=1 

then we shall say that X satisfies a lower f-estimate. (It is important that, in the 
supremum above, the E; are intervals.) Note that this implies that IIExl1 ~ IIxll 
for every interval E and vector x , so the standard basis of a space with a lower 
f-estimate is automatically bimonotone. 

Given a space X E 2' and a vector x EX, we shall say that x is an 
f;+ -average with constant C if Ilxll = 1 and x = 2::7=1 x; for some sequence 
XI < ... < xn of nonzero elements of X such that Ilx;11 ~ Cn- I for each 
i. An f;+ -vector is any positive multiple of an f;+ -average. In other words, a 
vector x is an f;+ -vector with constant C if it can be written x = XI + ... + xn ' 
where XI < ... < xn ' the x; are nonzero, and Ilx;11 ~ Cn- I Ilxll for every i. 

Finally, by a block basis in a space X E 2' we mean a sequence XI' x2 ' ••. 

of successive nonzero vectors in X (note that such a sequence must be a basic 
sequence), and by a block subspace of a space X E 2' we mean a subspace 
generated by a block basis. 
Lemma 3. Let f E g-, and let X E 2' satisfy a lower f-estimate. Then, for 
every n E N and every C > 1, every block subspace Y of X contains an 
f;+ -average with constant C. 
Proof. Suppose the result is false. Let k be an integer such that k log C > 
logf(nk ) (such an integer exists because of property (iii) in the definition of 
g-), let N = nk, let XI < ... < xN be any sequence of successive norm-1 
vectors in Y, and let X = 2::~1 x;, For every 0 ~ i ~ k and every 1 ~ j ~ 

nk-; , let x(i, j) = 2::~~~j_l)ni+1 Xl' Thus X(O, j) = Xj ' x(k, 1) = x, and, 
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for 1 ~ i ~ k , each xU, j) is a sum of n successive xU - 1 , j) 'So By our 
assumption, no xU, j) is an l~+ -vector with constant C. It follows easily 

. by induction that IIxU, j)1I ~ C-in i and, in particular, that IIxll ~ C-knk = 
C-k N. However, it follows from the fact that X satisfies a lower f-estimate 
that IIxll ~ Nf(N)-l . This is a contradiction, by choice of k. 0 

Lemma 4. Let M, N E Nand C ~ 1, let X E JJe, let x E X be an l{:-vector 
with constant C, and let El < ... < EM be a sequence of intervals. Then 

M 

L IIEjXII ~ C(1 + 2M/N) IIxll . 
j=l 

Proof. For convenience, let us normalize so that IIxll = N and x = L~=l Xi' 
where Xl < ... < xN and IIXili ~ C for each i. Given j, let Aj be the set of 
i such that supp(x;) c Ej and let Bj be the set of i such that Eix) =I O. By 
the triangle inequality and the fact that the basis is bimonotone, 

IIEjXII ~ II L Xiii ~ C(IAjl + 2) . 
IEBj 

Since L~llAjl ~ N, we get 
M 

L IIEjXII ~ C(N + 2M) , 
j=l 

which gives the result, because of our normalization. 0 

In order to state the next lemma, we shall need some more definitions. The 
first is a technicality. If f E !T, let M f : R. -+ R. be defined by Mf(x) = 
f-l(36x2 ) • 

The next definition is of great importance in this paper. We shall say that 
a sequence Xl < ... < xN is a rapidly increasing sequence of ll+ -averages, or 
R.I.S., for f of length N with constant 1 + 10 if xk is an l~~ -average with 
constant 1 + 10 for each k, nl ~ 2(1 + E)Mf (N/E')/E'/(I) , and 

, 
10 1/2 2" f(n k ) ~ IsuPP(Xk_l)1 

for k = 2, ... , N. Here /(1) is the right derivative of f at 1 and 10' is 
a useful notation for min{ E ,I}, which we shall use throughout the section. 
Obviously there is nothing magic about the exact conditions in this definition. 
The important point is that the nk's increase fast enough, the speed depending 
on the sizes of the supports of the earlier xj's. It will sometimes be convenient 
to call a vector a R.I.S.-vector if it is a nonzero multiple of the sum of a R.I.S. 

We make one further definition. A functional x* is an (M, g)-form if 
IIx*1I ~ 1 and x* = L~l x; for some sequence x~ < ... < x~ of successive 
functionals such that IIx;1I ~ g(M)-l for each j. 
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Lemma S. Let f, g E !T, let g ~ fl/2, and let X E !!l" satisfY a lower f-
estimate. Let E > 0, let XI' ... ,xN be a R.I.S. in X for f with constant 
1 + E , and let X = L~I Xi' Let M ~ MI(N/E') , let x* be an (M, g)-form, 
and let E be any interval. Then Ix*(Ex)1 ~ 1 + E + E' . 

Proof. If x* is an (M, g)-form then so is Ex* for any interval E. Since 
x*(Ex) = (Ex*)(x) , we can forget about the interval E in the statement of 
the lemma. For each i, let ni be maximal such that Xi is an l~~ -average with 
constant 1 + E. Let us also write x* = L~I x; in the obvious way, and set 
E j = ran(x;). We first obtain three easy estimates for Ix*(x;)l. Since Ilx*11 ~ 
1, we obviously have IX*(Xi)1 ~ 1. Then, since Ilx;1I ~ g(M)-1 ~ f(M)-1/2 , 
we have IX*(Xi)1 ~ f(M)-1/2 L~I IIEjXili. By our assumption about X, this 
is at most f(M)-1/2 f(lsupp(xi)I) , and by Lemma 4 it is at most (1 + E) x 
(1 + 2Mn;l)f(M)-1/2 . 

Let t be maximal such that nt ~ M. Then, if i < t, we have f(lsupp(x;)l) ~ 
2i-1+1 f(lsupp(xt_,)I) , and also 

( ) ' 1/2' 1/2 f Isupp(xt_I)1 ~ (E /2)f(nt ) ~ (E /2)f(M) . 

Using this and the other two estimates above, we obtain 

N 
Ix*(x)1 ~ E IX*(xi)1 ~ E' + 1 + 3(1 + E)(N - t)f(M)-1/2 

i=1 

~ 1 + E' + 3(1 + E)N(E' /6N) 

= 1 + E' + (E' /2)(1 + E) ~ 1 + E + E' 

as stated. 0 

Corollary 6. Let f, X, E, M, XI' ... , x N ' and X be as in Lemma 5, and let 
EI < ... < EM' Then 

M 

f(M)-' E IIEiXl1 ~ 1 + E + t:' . 
;=1 

Proof. Let x; be a support functional of Ejx, and let x* = f(M)-' L~I x; . 
Then IIx*1I ~ 1 because X satisfies a lower f-estimate. It follows that x* is 
an (M, f)-form, so we can apply Lemma 5 with g = f. 0 

We now introduce a further convenient definition. Let XI < ... < x N be a 
R.I.S. for f with constant 1 +E for some f E!T and some E > O. For each i, 
let ni be maximal such that Xi is an l~~ -average with constant 1 +E , and let us 
write it out as Xi = Xii + .. ,+xin;' where IIxijll ~ (1 +E)n;1 for each j. Given 
an interval E eN, let i = i E and j = j E be respectively minimal and maximal 
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such that EXj and EXj are nonzero, and let r = rE and s = SE be respectively 
minimal and maximal such that EXjr and ExjS are nonzero. Define the length 
A(E) of the interval E to be jE - iE + (sE/n). ) - (rE/nj ). Thus the length 

E E 
of E is the number of x/s contained in E, allowing for fractional parts. It 
is easy to check that, if EI < ... < EM and E = UEj' then EA(Ej) ~ A(E). 
Obviously this definition depends completely on the R.I.S., but it will always be 
clear from the context which R.I.S. is being considered. 

The next lemma is the most important for our purposes. 

Lemma 7. Let f, g E!T with g ~ VI, let X E fl? satisfy a lower f-estimate, 
let E > 0, let XI < ... < x N be a R.I.S. in X for f with constant 1 + E , and let 
X = E!I Xj . Suppose that 

IIExl1 ~ suP{IX*(Ex)l: M ~ 2, x* is an (M, g)-form} 

for every interval E of length at least 1. Then Ilxll ~ (1 +E + E')Ng(N)-1 . 

Proof. It follows from the triangle inequality that IIExll ~ (1 + E )(A(E) + n~ I) . 
If A(E) ~ (1 +E)/E'n l then we get IIExl1 ~ (1 +E +E')A(E). Let G be defined 
by G(x) = X when 0 ~ x ~ 1 and by G(x) = xg(X)-1 when x ~ 1. Recall 
that, because of the properties of the set !T, G is concave and increasing on 
[1, 00) and satisfies G(xy) ~ G(x)G(y) for every x, y in the same interval. 
It is easy to check that these properties are still true on the whole of 1R+. We 
shall show that, if A(E) ~ (1 + E)/E' n1 ,then IIExl1 ~ (1 + E + E')G(A(E». The 
remarks we have just made show this when A(E) ~ 1. 

Let us suppose then that E is a minimal interval oflength at least (1 +E) / E' n1 
for which the inequality fails. We know that A(E) ~ 1. We also know that 
there exists some (M, g)-form x* = E~l x; such that IIExll ~ Ix*(Ex)l. By 
Lemma 5, we must have M ~ Mf(N/E') , or the inequality would not fail for 
E . Letting E j = En ran(x;> , we have 

M 

IIExll ~ g(M)-1 L IIEjXIl 
j=l 

by the definition of an (M, g)-form. 
Let Aj = A(Ej ) for each i. Since M ~ 2, we may assume that none of the 

intervals E j are equal to E. For each i we either have Aj ~ (1 + E) / E' n lor, 
by the minimality of E, that IIEjxll ~ (1 + E + E')G(AJ. Let A be the set of 
i with the first property, and let B be the complement of A. Let k be the 
cardinality of A. It is clear that k < M, using the R.I.S. condition. 

Since G is a concave and nondecreasing function and EAj ~ A, Jensen's 
inequality gives us that 

jEB jEB 

~ (1 + E + E')(M - k)G(A/(M - k» . 
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It follows that 

IIExll ~ M-IG(M)[(I + t + /)(M - k)G()'/(M - k» 

+ (1 + t)(1 + t + t')k// nd 
~ (1 + t + /)[(1 - k/M)G(M)G()'/(M - k» + (1 +t)k/t' nd 
~ (1 + t + /)[(1 - k/M)G«I - k/M)-l).) + (1 + t)k/t' nd. 

Let G' ( 1) be the right derivative of G at 1. Since G is a concave function, 
we have the easy inequality 

(1- t)G (1 ~ t) + t(G(I) - d(I» ~ G()') 

for every 0 ~ t < 1 and ). ~ 1. Also, G(l) - G'(1) = 1 - G'(l) = g'(I), and, 
since g ~ JI, we have g'(I) ~ 1(1)/2 > O. 

By the definition ofR.I.S. we have n1 ~ 2(1 +t)Mf(N/t')/t' 1 (1). It follows 
that 

(I+t)k/t' nl ~ (k/M) ((1+t)Mf (N/t')/t' n l ) ~ (k/M)(I (1)/2) ~ (k/M)g' (1). 

Hence, by the inequality above with t = k / M , we have 

(1 + t + t') [(1 - k/M)G(I - k/M)-l).) + (1 + t)k// n1] 

~ (1 + t + /) ((1 - t)G C ~ t) + tg' (1») 
~ (1 + t + /)G()') , 

contradicting our assumption about the interval E and proving the lemma. 0 

It is now easy to construct an asymptotic biorthogonal system in Schlump-
recht's space. Let a E (0, 1) and let NI < N2 < ... be a sequence of 
squares satisfying J(NI)/NI < a/2, J(NI) > 8a- l , and N j > M f (2Nj _ l ) 

for all j > 1. Let Ak be the set of norm-I vectors of the form x = L~I Xi 
where XI' ••• ,xN is a multiple of a R.I.S. with constant 1 + a /2. Because 

k 
Schlumprecht's space satisfies a lower J-estimate, we know that the multi-
ple is at most J(Nk)N;;l. Let AZ be the set of functionals of the form 
J(Nk)-l L~l x; where x: < ... < X;'k and Ilx;1I ~ 1 for each i. It is clear 
that the sets Ak are asymptotic for every k. If j > k then, using the fact that 
N j > M f (2Nk) , we may apply Lemma 5 with t = 1/2 and M = N j since y* 
is clearly an (M, J)-form whenever y* E A;. Because of the normalization 
of the R.I.S., this gives us ly*(x)1 ~ 2J(Nk )/Nk < a for every y* E A; and 
x EAk • 

If j < k then we know from Lemma 7 that II LiEA Xiii ~ 2I A IJ(Nk)/NkJ(IAI) 
for every subset A of {I, 2, ... , Nd. If IAI ~ ~ then this is at most 
4IAI/Nk. By splitting into ~ successive pieces of this form, we find that 
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x is an l~-average with constant 4. By Lemma 4 we obtain that ly*(x)1 ~ 
f(Nj )-I.4(1 + 2Nj / y'"J{) ~ 8f(N)-1 < o. 

Finally, we know that IIxll ~ (1 +o)Nkf(Nk)-lllxjll for each i, so if we let 
x; be a support functional of Xj then x* = f(Nk)-1 L;::I x; is an element of 
AZ and x*(x) ~ (1 +0)-1 > 1-0. It follows that AI' A2 , ••• and A; , A;, ... 
form an asymptotic biorthogonal system with constant o. An obvious modifi-
cation of this argument will also give an asymptotic biorthogonal system with 
vanishing constant. 

This together with the result of the last section shows that, for every C, 
Schlumprecht's space can be renormed so as not to contain a C -unconditional 
basic sequence. Since Schlumprecht's space itself has a one-unconditional basis, 
it follows that it is arbitrarily distortable. This is also an easy direct consequence 
of the existence of an asymptotic biorthogonal system, or indeed of Lemma 7, 
which is what Schlumprecht used. 

3. A SPACE CONTAINING NO UNCONDITIONAL BASIC SEQUENCE 

We now come to the main result of the paper, namely, the construction of 
a Banach space X containing no unconditional basic sequence. As we men-
tioned in the introduction, it was observed by W. B. Johnson that our original 
arguments could be modified to show that X was H.I. This is what we shall 
actually present in this section. 

The definition of the space resembles that of Schlumprecht's space, or at least 
it can do so. We shall give three equivalent definitions, for which we shall need 
a certain amount of preliminary notation. 

First, let Q be the set of scalar sequences with finite support, rational coordi-
nates, and maximum at most one in modulus. Let J c N be a set such that, if 
m < nand m, n E J , then log log log n ~ 4m2 . Let us write J in increasing 
order as {jl' j2' ... }. We shall also assume that fU I) > 256. (Recall that 
f(x) is the function log2(x + I).) Now let K c J be the set UI , j3' j5' ... } , 
and let LeN be the set of integers j2' j4' j6' .... 

Let a be an injection from the collection of finite sequences of succes-
sive elements of Q to L such that, if Z I ' ... , Z s is such a sequence, S = 
a(zl' ... , zs)' and Z = L;=I Zj' then (1/20)f(SI/40)I/2 ~ Isupp(z)l. 

We shall use the injection a to define special functionals in an arbitrary 
normed space of the form (coo' 11.11) in much the same way that we defined 
them in §l. (Of course, for most spaces they are not terribly interesting.) 

If X = (coo' 11.11) is a normed space on the finitely supported sequences and 
mEN, let A:(X) be the set of functionals of the form f(m)-I L7:1 1; such 
that It < ... < fm and 111;11 ~ I for each i. If kEN, let r: be the set 
of sequeLlces gl' ... ' gk such that gj E Q for each i, gl E AJ~ (X) and 

2k 

g;+1 E A:(gl, ... ,g;l(X) for each 1 ~ i ~ k - I. We call these special sequences. 

Let BZ(X) be the set of functionals of the form f(k)-1/2 L~=I gj such that 
(gl' ... , gk) E r: . These are specialfunctiona/s. 
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Dually, if a convex set D c coo is given, we define Am(D) to be the set of 
vectors of the form f(m)-' E:, Xi where x, < ... < xm and Xi E D for 
each i. Then special sequences of vectors are defined using a in the obvious 
corresponding way, and this gives us sets Bk(D). 

Our first definition of the norm is geometrical and goes via the dual space. 
Let Do be the intersection of coo with the unit ball of i,. Once we have 
defined DN , let D~ be the set of vectors of the form f(n)-' E:, Xi' where 
x, ' ... 'Xn are successive vectors in DN . Let D~ be the set of special vectors 
for DN with lengths in K, that is, D~ = UkEKBk(DN). Let D'; be the set of 
all vectors Ex where X E DN and E interval. Then let DN+, be the convex 
hull of the union of D~, every AD~ with IAI = I , and D'; . 

Now let D = U~=o DN . It is easy to see that D is the smallest symmetric 
convex set containing Do that is closed under taking successive sums ofthe form 
f(n)-' E7=, Xi' taking special vectors with lengths in K, and under interval 
projections. Our space is defined by IIxll = sup{l(x, y)1 : y ED} . 

The second definition of the norm is as the limit of a sequence of norms. 
Define Xo = (coo' 11.11 0) by IIxllo = IIxlloo ' and, for N ~ 0, let 

n 
Ilxllx =sup{f(n)-'" IIEiXllx : n EN, E, < ... < En} 

N+l ~ N 
i=' 

V sup{lg(Ex)1 : k E K, g E B;(XN ) , E eN} . 
Note that this is an increasing sequence of norms, because the sets B; (X N) 
increase as N increases (and, more generally, if IIxlly ~ Ilxliz for every X E 
coo' then B;(Y) c B;(Z)). They are also all bounded above by the ii-norm. 
Define 11.11 by IIxll = limN -+oo IIxllx . 

N 
Finally, we give an implicit definition of the norm in the obvious way. Set 

n 

Ilxll = IIxlico V sup{f(n)-' L IIEiXIl : 2 ~ n EN, E, < ... < En} 
i=' 

V sUP{lg(Ex)1 : k E K, g E B;(X) , E eN} . 
Recall that E c N is always an interval in these, definitions. Its role is 

to ensure that (e;)~, is a (bimonotone) normalized Schauder basis for the 
completion of X. Note also that, if we did not insist that the Ei were intervals, 
then the unit vector basis of this space would trivially be unconditional. It is 
not hard to check that the norm given by the third definition is indeed well 
defined and agrees with both the previous ones. 

Before getting down to analysing the space, we shall need a few simple facts 
about functions in the class !T defined earlier. 

We shall now introduce some convenient definitions. Let 

f: [1, 00) -+ [1,00) 

be a function. The (increasing) submultiplicative hull of f is the function F 
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defined by 

F(x) = inf{f(x,)f(x2)··· f(xk ) : kEN, xi ~ 1, x, .. ·xk ~ x} . 

The following facts are trivial. First, F ~ f. Second, F(xy) ~ F(x)F(y). 
Third, if g : [1, 00) ---+ [1, 00) is any nondecreasing submultiplicative func-
tion dominated by f then g is dominated by F. (That is, F is the largest 
nondecreasing submultiplicative function dominated by f.) 

Now let g : [1 , 00) ---+ [1 , 00) be any function. The concave envelope of g 
is, of course, the smallest concave function G: [1 , 00) ---+ [1 , 00) dominating 
g, that is, 

G(x) = SUP{Ag(y) + (1 - A)g(Z): 0 ~ A ~ 1, AY + (1 - A)Z = x} . 

We now prove an easy lemma. 

Lemma 8. If g : [1, 00) ---+ [1, 00) is a supermultiplicative function then its 
concave envelope G is also supermultiplicative. 
Proof. Let € > 0, and let x,, X2 ~ 1. We shall show that (G(x,) - €) x 
(G(x2) - €) ~ G(x,)G(x2) , which will prove the result. First, for i = 1, 2, pick 
Ai' J.li' Yi' and zi such that 0 ~ Ai ~ 1, Ai + J.li = 1, AiYi + J.liZi = Xi' and 
Aig(Yi) + J.lig(z;) ~ G(xi ) - € • 

Then 
(G(x,) - €)(G(x2) - €) 

~ (A,g(y,) + J.l,g(Z,))(A2g(Y2) + J.l2 g (z2)) 

~ A, A2g(y 'Y2) + A,J.l2g (y, z2) + J.l,A2g(Z 'Y2) + J.l,J.l2g (z, z2) 
~A,G(y,X2)+J.l,G(Z,X2) ~ G(x,x2) 

as we wanted. 0 

Now let Ko c K , and let us define a function ¢: [1 , 00) ---+ [l , 00) as 

¢(x) = { (log2(X + 1))'/2 if x E K o' 
10g2 (x + 1) otherwise. 

Let h be the submultiplicative hull of ¢, let H be the function given by 
H(x) = xjh(x) , and let G be the concave envelope of H. Since h is sub-
multiplicative, H is supermultiplicative, and so G is also supermultiplicative. 
Now let g(x) = xjG(x). Then g is submultiplicative. As before, let f be the 
function 10g2 (x + 1). The easy facts about submultiplicative hulls and concave 
envelopes and the fact that vfJ E!T give that (log2(x+ 1))'/2 ~ g(x) ~ ¢(x) ~ 
10g2(x + 1). It follows easily from these comments, and the remarks following 
the definition of !T , that g E !T. It will be useful to extend the definition 
of G to the whole of lR+ by setting G(x) = x when 0 ~ x ~ 1. It is easy 
to check that G thus extended is still supermultiplicative and concave, as we 
commented in the proof of Lemma 7. 

We now need to calculate G(N) when N E J \ Ko. In fact, we shall want 
slightly more than this, as is suggested by the statement of the next lemma. 
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Lemma 9. If N E J \ Ko then G(x) = Xf(X)-1 for every x in the interval 
[log N , expN] . 
Proof. Let k, I E Ko U {I} be maximal and minimal respectively such that 
k < N and I > N, and let (k!)4 < x < f-l(f(l)1/2). We shall show first 
that h(x) = f(x). Recall that h(x) is defined to be inf{ ,p(xl )··· ,p(xm) : Xi ~ 

1 , XI x2 ... xm ~ x} . 
Assume then that XI"'" xm are such that h(x) = ,p(xl )··· ,p(xm) and 

XI ... xm ~ x. We may assume that Xi > 1 for every i. We know that 
,p(x) = f(Xj)I/2 if Xj E Ko and f(x) otherwise. By the submultiplicativity 
of f, there can be at most one j such that Xj fj Ko' Because f(l)1/2 > f(x) , 
we also know that, if Xj E Ko' then Xj ~ k, and therefore k > 1. Thirdly, 
it is not possible to find r, s, t such that x, = Xs = xt E Ko since, for every 
P E K, f(p)3/2 > f(p3) by our choice for min(K). Since x> (k!)4 , it is clear 
that at least one, and hence exactly one, Xj is not in Ko' Let it be XI' and 
assume that m > 1. Now we know that x2X3'" xm ~ (k!)2 ~ XI/2 . It follows 
that XI ~ XI/2 and hence that ,p(xl )··· ,p(xm) ~ f(x l/2)f(min(K))1/2. Since 
f is the function log2(x + 1) and f(min(K)) ~ 36, this is greater than f(x). 
This contradiction shows that m = 1 and hence that h(x) = f(x) . 

We now know that H(x) = Xf(X)-1 whenever (k!)4 < X < f-l(f(l)1/2) 
and, in particular, for all X in the interval [log log N , exp exp N]. It is easy to 
deduce from this the conclusion of the lemma. Indeed, given Xo in the interval 
[logN, expN] , we will certainly know that G(xo) = xof(XO)-1 if the function 
given by the tangent to Xf(X)-1 at Xo is at least Xf(X)-1/2 for all positive X 
outside the interval [log log N , exp exp N] . 

The equation of the tangent at Xo is 

y = f~;o) + f(~o) ( 1 - (xo + 1) ~~(xo + 1)) (x - xo) . 

When X ~ 0 this is certainly at least x~ log 2/ (xo + 1) (log( Xo + 1)) 2 , which is 
at least xo/2f(xO)2. For Xo ~ 10gN and X ~ 10glogN this exceeds Xf(X)-1/2. 
When X ~ 2xo we also know that y ~ x/4f(xo)' When X ~ expexpN the 
condition Xo ~ expN is enough to guarantee that this is at least as big as 
Xf(X)-1/2. 0 

We shall now prove a crucial lemma about X. It is an easy consequence of 
Lemmas 7 and 9. 

Lemma 10. Let N E L, let n E [log N , expN], let € > 0, and let XI ' ••. , xn 
be a R.l.S. with constant 1 + €. Then II E7=1 xiII ~ (1 + € + €')nf(n)-I . 
Proof. It is obvious from the implicit definition of the norm in X that it sat-
isfies a lower f-estimate. Let g be the function defined before the last lemma 
in the case Ko = K. As usual let X = E:'I Xi' Since g ~ ,p, it is clear that 
every vector in X is either normed by an (M, g)-form or has the supremum 
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norm. It is also clear that the second possibility does not happen in the case of 
vectors of the form Ex when A(E) ~ 1 . Since g E!T and, as we commented 
above, g ~ //2 , all the hypotheses of Lemma 7 are satisfied. It follows that 
II E7=1 XiII ~ (1 + f + f')G(n). By Lemma 9, GCn) = nfCn)-l , so the lemma is 
proved. 0 

Lemma 11. Let N E L, let 0 < f < 1/4, let M = N f , and let XI' ... ,xN 

be a R.I.S. with constant 1 + f. Then E~I Xi is an it! -vector with constant 
(1+4f). 
Proof. Let m = N/M, let X = E~lXi' and for 1 ~ j ~ M let Yj = 

E{:U-l)m+l Xi· Then each Yj is the sum of a R.I.S. of length m with constant 
C1 + f). By Lemma 10 we have IIYjll ~ C1 + 2f)mfCm)-1 for every j while 
II E~=I Yjll = IIxll ~ N fCN)-l . It follows that X is an it! -vector with constant 
at most Cl + 2f)f(N)/ fCm). But m = N 1- f , so f(N)/ fCm) ~ C1- f)-I. The 
result follows. 0 

The next lemma is similar to Lemma 10 but is more complicated. 

Lemma 12. Let k E K and x~, ... ,x; be a special sequence of length k, 
where each x; is an (Mi' f)-form. Let Xl' ... ,xk be a sequence of successive 
vectors such that every Xi is a normalized R.I.S. vector of length Mi and constant 
1 + f/4, f = 1/10. Assume that ICE;=l xnCE;=1 Ex;) I ~ 2 for every interval 
E. Then 

IltXil1 ~ C1 + 2f)k/fCk). 
1=1 

Proof. We know by Lemma 11 that each Xi is an i;::' -average with constant 
1 + f, where Ni = ~/4. Also Ml = j2k and M~/4 = Nl ~ 4Mf Ck/f)/f/Cl). 
Recall that a was chosen so that, if z 1 ' ... , z s is a sequence of successive 
vectors in Q, S = aCz1, ... , zs)' and z = E:=l zi' then C1/20)fCS1/40 )I/2 ~ 
Isupp(z)l. This and the lower bound for Nl ensure that Xl' ... ,xk is a R.I.S. 
of length k with constant 1 + f . 

To prove Lemma 12 we shall apply Lemma 7. First, we shall show that, if 
z; , ... ,z; is any special sequence of functionals of length k and E is any 
interval, then IzOOCEx)1 ~ 1/4, where ZOO is the Ck, v'7)-form fCk)-1/2 E;=l < 
and X = E;=l Xi . 

Indeed, let t be maximal such that z; = x; or zero if no such t exists. 
Suppose i f:. j or one of i, j is greater than t+ 1 . Then, since a is an injection, 
we can find Ll f:. L2 E L such that < is an CL1, f)-form and Xj is the 
normalized sum of a R.I.S. of length L2 and also an iti-average with constant 
1 +f , where L; = L;/4 . Just as at the end of §2, we can now use Lemmas 4 and 5 
to show that 1«Ex)1 < k-2. If Ll < L2 , it follows from the definition of L 
that Ll < L;. We know that Ll ~ j2k since Ll appears in a special sequence 
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of length k. Lemma 4 thus gives 1«Ex)1 = I(Ez;)(x)1 ~ 3(1 + E)/J(LI ). 
The conclusion in this case now follows from the fact that J(l) ~ 4k2 when 
I ~ j2k' 

If L2 < LI ' we apply Lemma 5 with EI = 1 to the nonnormalized sum x; 
of the R.I.S., the normalized sum of which is x j . The definition of L gives us 
that M f (L2) < LI ' so Lemma 5 gives 1«Ex;)1 ~ 3. It follows from the lower 
J-estimate that IIx;1I ~ L2/ J(L2) . The conclusion now follows because I ~ j2k 

implies that J(l)/l ~ 1/4e . 
Now choose an interval F such that 

t k 

I (EZ;)(Ex)1 = I (EX;)(Fx)1 ~ 2. 
i=1 i=1 

It follows that 
k 

I(EZ;)(Ex)1 ~ 2+ IZ;+I(xt+I)1 +k2.k-2 ~ 4. 
i=1 

We finally obtain that Iz*(Ex)1 ~ 4J(k)-1/2 < 1/4 as claimed. 
Now let <p' be the function 

<p'(x) = { (log2(x + 1»1/2 if x E K, x =I- k, 
log2(x + 1) otherwise. 

Let g' be the function obtained from <p' by the construction explained before 
Lemma 9, in the case Ko = K \ {k}. Lemma 9 in this case tells us that 
g'(l) = J(l) for every IE L u {k}. 

It follows from what we have just shown about special sequences of length 
k that 

1/4 < II Ex II ~ sUP{IX*(Ex)1 : M ~ 2, x* is an (M, g')-form} 

whenever E is an interval of length at least 1. Since x is the sum of a R.I.S., 
Lemma 7 implies that IIxll ~ (1 + 2E)kg'(k)-1 = (1 + 2E)k/J(k). 0 

We shall now prove that X is H.I. As we noted earlier, this implies that X 
contains no unconditional basic sequence, but in proving that X is H.I. we 
shall more or less have proved that directly anyway. 

Let Y, Z be two infinite-dimensional subspaces of X such that Y n Z = 
{O}. Our aim is now to show that the projection from Y + Z to Y given by 
y + z ~ y is not continuous. To do this, we shall construct, for every tJ > 0, 
vectors y E Y and z E Z such that tJlly + zll > Ily - zll. This implies that 
the above projection has norm at least (1 - tJ)tJ- 1 /2, proving the result. So let 
us now choose tJ > 0, and let k E K be an integer such that J(k) -1/2 < tJ /4. 

By standard arguments, we may assume that both Y and Z are spanned by 
block bases. Since X satisfies a lower J-estimate, Lemma 3 tells us that every 
block subspace of X contains, for every E > 0 and N EN, an .e~ -average 
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with constant 1 + € • It is also immediate from the definition of the norm that 
every vector either has the supremum norm or satisfies the inequality 

IIExl1 :s:; suP{IX*(Ex)1 : M ~ 2, x* is an (M, g)-form}, 

where g is the function obtained from ¢ after the proof of Lemma 8 in the 
case Ko = K . This allows us to make the following construction. 

Let Xl E Y be a normalized R.I.S. vector of length Ml = j2k ELand 
constant (1 + E/4), where E = 1/10 and ~/4 ~ Nl = 4Mf (k/E)/E/(1). 

Let the nonnormalized R.I.S. whose sum is Xl be x ll ' ... ,XIM . By Lem-
I 

rna 11, Xl is an l~-average with constant 1 + E. By Lemma 7, we have 
IIXIIl :s:; (1 + E)Mlg(Ml)-lllxllll. For each j between 1 and Ml let X~j be a 
support functional for x lj and let x'; bethe (Ml' g)-form g(Ml)-IE~IX~j' 
Then x';(x l ) ~ (1 +E)-lllxlil. By continuity and the density of Q it follows 
that there exists an (Ml' g)-form x~ E Q such that Ix~(xl) -1/21:S:; k- l and 
ran(xn = ran(xl ). Also, note that by Lemma 9 there is no difference between 
an (Ml' g)-form and an (Ml' f)-form. 

Now let M2 = a(x~), and pick a normalized R.I.S. vector x2 E Z of length 
M2 with constant 1 +E/4 such that Xl < x2. Then x2 is an l{;-average with 
constant 1 + E ,where N2 = M;/4 . As above, we can find an (M2' g)-form x; 
such that Ix;(x2) - 1/21 :s:; k- l and ran(x;) = ran(x2). 

Continuing in this manner, we obtain a pair of sequences Xl' ... ,xk and 
x~ , ... ,xZ with various properties we shall need. First, Xi E Y when i is odd 
and Z when i is even. Second, IIXili = 1 for every i and Ilx;11 :s:; 1. We 
also know that Ix;(xi ) - 1/21 :s:; l/k for each i. As in the proof of Lemma 
12, our choice of a and the lower bound for Nl ensure that Xl' ... ,xk is 
a R.I.S. of length k. Finally, and perhaps most importantly, the sequence 
x~ , ... ,xZ has been carefully chosen to be a special sequence of length k. It 
follows immediately from the implicit definition of the norm and the fact that 
ran(x;) c ran(xi ) for each i that 

II EXil1 ~ f(k)-1/2 Ex;(x) ~ f(k)-1/2(k/2 - 1) . 
1=1 1=1 

The proof will be complete if we can find a suitable upper bound for 
II E;=I(-l)i-lX;II. For this we apply Lemma 12. We need to show that 

k k 
I (~X;) (L)-l)i-l EXi ) I :s:; 2 

1=1 1=1 
for every interval E. This follows easily from the fact that x; (x;) is almost 
exactly 1/2 for every i. Lemma 12 therefore shows that II E;=l (_l)i-l xiii :s:; 
(1 + 2E)kf(k)-1 . 

We have now constructed two vectors Y E Y , the sum of the odd-numbered 
x/s, and Z E Z, the sum of the even-numbered x/s, such that lIy + zil ~ 
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(1/3)f(k)1/21IY - zll ~ 15- 11ly - zll. Hence, Y and Z do not form a topolog-
ical direct sum, so X is H.1. If X contained an unconditional basic sequence 
Xl ' x 2 ' • •• then the subspace generated by this sequence would split into a di-
rect sum of the subspaces generated by {X2n - l : n EN} and {x2n : n EN}. It 
follows that X does not contain an unconditional basic sequence. The reader 
will observe that it is easy to use the preceding argument to show this directly. 
In the next section, we shall examine some of the other consequences of a space 
being H.I., but first we shall observe that X is reflexive. Recall that a basis 
(Xn):ol of a Banach space is shrinking if for every continuous linear functional 
x* and every ( > 0 there exists n E N such that the norm of x* restricted to 
the span of xn' xn+l ' ... is at most ( . It is boundedly complete if, given any se-
quence of scalars (an):l for which the partial sums 2::=1 anxn are bounded, 
the sum 2::1 anxn converges. It is a well-known result of James (see, e.g., 
[LT, §l.b]) that a Banach space with a shrinking and boundedly complete basis 
is reflexive. 

It follows immediately from the fact that X satisfies a lower f-estimate that 
the standard basis el ' e2 , ••• is boundedly complete. Now suppose that it is not 
a shrinking basis. Then we can find ( > 0, a norm-l functional x* E X* , and 
a sequence of successive normalized blocks Xl' X2 ' ••• such that x*(xn) ;;;: ( 
for every n. It follows that 2:nEA xn is an fl~'-vector with constant (-1 for 
every A eN. Given N E L we may construct a R.I.S. Yl'···' YN with 
constant (-1 where Yi is of the form Ai 2:jEAj x j , with Ai ;;;: IAil-l. Then 
X*(YI + ... + YN ) ;;;: (N. For N sufficiently large, this contradicts Lemma 10. 

4. OPERA TORS ON H.1. SPACES 

In this section, we shall prove some results about H.I. spaces over C. This 
is because we shall need to use a little spectral theory. In the next section we 
shall show that some of the results carry over to the real case. We do not know 
of a direct proof. Later, however, we will give a proof for our specific example 
(over the reals) which does not mention complex numbers. The elementary 
background in spectral theory that we use can be found in [DS, Part I, Chapter 
VII], or in many other textbooks. 

Let X be a complex Banach space, and let T be a bounded linear operator 
from X into itself. We say that A E C is infinitely singular for T if, for every 
( > 0, there exists an infinite-dimensional subspace YE of X such that the 
restriction of T - A.I to YE has norm at most ( . 

Saying that A is not infinitely singular for T is equivalent to saying that 
T - A.I is an isomorphism on some finite-codimensional subspace of X. Since 
this property is clearly unaffected by a small enough perturbation, it follows that 

FT = {A E C : A not infinitely singular for T} 

is an open subset of C. Notice that ker(T - AI) is finite dimensional when 
A E FT. We shall now prove some lemmas about FT. These are basically 
well-known facts in operator theory. 
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Lemma 13. If A E FT and if (xn) is a bounded sequence such that (T - U)xn 
is norm-convergent, then (xn) has a norm-convergent subsequence; furthermore, 
the image by T - U of any closed subspace of X is closed. 
Proof. Let S = T - U , let Y be a finite-codimensional subspace on which 
S is an isomorphism, and let X = Y EB Z. Let xn = Yn + zn with Yn E Y 
and zn E Z. Then SXn = SYn + SZn' Since Z is finite dimensional and 
(xn) is bounded, we can pass to a subsequence such that SZn converges. Since 
SXn converges, this gives us that SYn converges (relabeling the subsequence as 
Syn ). Since S is an isomorphism on Y, it follows that Yn converges. Finally 
pass to a further subsequence on which zn converges. To prove the second 
assertion, note that if F is a closed subspace of X, then F = F n Y + G, for 
some finite-dimensional G, and hence T(F) = T(F n Y) + T( G) is closed. 0 

Lemma 14. If A E 8Sp(T) n FT , then A is an eigenvalue of T with finite 
multiplicity. 
Proof. Since A E 8Sp(T) it is an approximate eigenvalue of T. In other words, 
there exists a sequence (xn) of norm-l vectors with TXi - AXi -t O. By the 
previous lemma (xn) has a convergent subsequence. But then the limit of the 
subsequence is an eigenvector with eigenvalue A. 0 

The next lemma follows easily from well known facts in Fredholm theory. 
The argument here is elementary. It was shown to us by W. B. Johnson, as was 
the proof of Lemma 16. 

Lemma 15. If A E 8Sp(T) n FT then A is an isolated point of Sp(T). 
Proof. Since F T is open, it is enough to show that A is an isolated point of 
8Sp(T)nFT . Suppose that this is not the case. Then there exists a sequence (An) 
in 8Sp(T) nFT converging to A, with An =I- A for every n. Since An EFT' An 
is an eigenvalue, by Lemma 14. Let xn be a norm-l eigenvector with eigenvalue 
An' By Lemma 13, since (T - U)xn tends to 0, we may assume that (xn) is 
norm-convergent to some (norm-I) vector x such that Tx = AX. Let Y be the 
closed subspace of X generated by the sequence (xn)' Let U be the restriction 
of T - U to Y. It is clear that Y is invariant under U and that U Y is dense 
in Y. Furthermore, since (T - AI)Y = UY and A E FT , it follows from 
Lemma 13 that UY is closed and, hence, that UY = Y. Since x E Y, we 
know that Yo = ker U is not {O} and that it is finite dimensional. We can 
therefore write Y as a direct sum Yo + Y1. We have that UY1 = Y, so for 
small € it is still true that (U - € I) Y1 = Y. But since (U - € I) Yo = Yo when 
€ =I- 0, this yields that ker(U - €I) =I- {O}, for every small €, contradicting the 
fact that A E 8Sp(T). 0 

Lemma 16. Let S be a bounded linear operator from X to itself. Suppose that 
Sp(S) = {O}. If X is infinite dimensional, then 0 is infinitely singular for S. 
Proof. . Suppose that 0 E Fs but that X is infinite dimensional. Then S is 
an isomorphism on some finite-codimensionaI subspace Z of X. Replacing S 
by an appropriate multiple, we may assume that IISzl1 ~ IIzll for every Z E Z . 
Define Zo = Z, ZI = Z n SZ, ... , Zk+1 = Z n SZk' All these subspaces of 
X are infinite dimensional. If Z is a nonzero element of Zk' then Z = Sk Zo 
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for some Zo E Z and 0 < II Zo II ~ IISk Zo II . This shows that IISk II ~ 1 for every 
k , contradicting the fact that the spectral radius of S is O. 0 

Lemma 17. If X is infinite dimensional then FT =j:. C. 
Proof. Assume that FT = C. It follows from Lemma 15 that ,every point in 
aSp(T) is isolated in Sp(T) , so the spectrum of T is finite. Let us write 
Sp(T) = {AI' '" ,An}' Consider the polynomial P = n;=1 (z - AJ. For 
every A =j:. 0, we can write P - A = n;=1 (z - IlJ, where Ilj ¢. Sp(T) for 
every i = 1, ... , n. It follows that (P - A){T) = peT) - U is invertible 
for every A =j:. 0 and, therefore, that Sp(P(T)) = {O}. Since X is infinite 
dimensional, Lemma 16 tells us that 0 is infinitely singular for P(T). Hence, 
there exists a normalized basic sequence (xn) such that P(T)xn -> O. Writing 
peT) = (T - A/)P1 (T) and making repeated applications of Lemma 13, we 
arrive at the absurd conclusion that some subsequence of (xn ) is convergent. 0 

Suppose now that X is a complex H.I. Banach space. Let T be a bounded 
linear operator from X into itself. It follows easily from the H.I. property 
that there exists at most one value AO that is infinitely singular for T. If 
AO is infinitely singular for T, the H.I. property implies that T - AoI is not 
an isomorphism on any infinite-dimensional subspace of X. In other words, 
T - AoI is strictly singular. 

We have therefore proved the following theorem. 
Theorem 18. If X is a complex H.I. Banach space then every bounded linear 
operator T from X into X can be written T = U + S, where A E C and S 
is strictly singular. The spectrum of T is finite or consists of A and a sequence 
(An) of eigenvalues with finite multiplicity converging to A. 
Corollary 19. A complex H.I. space X is not isomorphic to any proper subspace 
and, in particular, is not isomorphic to its hyperplanes. 

5. FURTHER PROPERTIES 

We shall now show how to pass from the complex case back to the real case. 
The following lemma will be useful; it was shown to us by R. G. Haydon. 
As before, it implies that there is no isomorphism between X and a proper 
subspace. 
Lemma 20. Suppose X is a real H.I. space and T a bounded linear operator 
from X into itself. If we denote by S the natural extension of T to the com-
plexifi,cation of X then the spectrum of S is invariant by conjugation and the 
part in the upper complex plane is finite or consists of a converging sequence. 
Proof. If A ¢. Fs is real, there exists for every € > 0 a (real) infinite-dimensional 
subspace Yf of X such that liT - A Idy II < € on YE • Since X is H.I., it 
follows that C \ Fs contains at most one' real element. Let now A, Il ¢. Fs ' 
and Il ¢. {A,.A:}. We may assume that A is not real. Let 

T;" = T2 - 2ReAT + IAI2Id. 
Then (S - .A:ld)(S - Ald)(x + iy) = T;"x + i T;"Y. For every € > 0 it is thus 
possible to find an infinite-dimensional subspace YE of X such that II T;" II < € 



872 w. T. GOWERS AND B. MAUREY 

on y;,. Since X is H.I., we may assume the same for Tp. on the same Y£. 
Now, Tl - Tp. = aT + b Id for some a, b E JR, not both 0, and it has norm less 
than 2€ on Y£. Thus a =I- o. We obtain that T is nearly equal to (-b I a) Id 
on Y£. Since Tl is nearly 0 on Y£, we get easily that -bla must be a root 
of the polynomial (z - X)(z - A), which of course is impossible. 

We know, therefore, that <C \ Fs contains at most a pair (A, X) , and the rest 
of the proof is as in §4. 0 

We have therefore proved the following result. 
Theorem 21. If X is a real H.I. space (e.g., X could be the real version of the 
space from §3) then X is not isomorphic to any proper subspace. In particular, 
X is not isomorphic to its hyperplanes. 

As we mentioned earlier, we have a direct proof of this result (i.e., one that 
does not mention the complex numbers) when X is the real version of the 
space from §3. It uses a lemma which is of independent interest and has other 
applications [G2]. 

Suppose then that X is indeed the Banach space over JR that was constructed 
in §3. 

Lemma 22. Let Y be a block subspace of X, and let T be a bounded linear 
operator from Y to X. There exists A E JR such that 

T(xn) - AXn ---+ n 0 

for every sequence (xn) such that xn E Y is an .e~+ -average with constant 1 + 
€/4, € = 1/10 for every integer n. 

We shall prove first a preliminary result: 
Lemma 23. Let Y be a block subspace of X, and let (Yn) be a sequence in Y 
such that Y n is an .e~+ -average with constant 1 + € 14, e = 1 I 10 for every n. 
For every bounded linear operator T from Y to X, we have 

d(Tyn , JRyn) ---+n o. 
Proof. Let (In) be the basis of Y. Since it converges weakly to 0, we may 
perturb T slightly in such a way that, for every n, T(In) is a finite block with 
respect to the basis of X and so that min supp( T(In» ---+ n 00 • 

For Y E Y with finite support, let I(y) be the smallest interval containing 
the supports of y and T(y). Since the (Yn) have increasing lengths, we may 
assume passing to a subsequence and after a small perturbation that they are 
successive. We can then assume also that I(Yn) < I(Yn+l). 

If the result is not true, we may assume, on passing to a subsequence, that 
there exists ~ > 0 such that d (Ty n ' JRy n) > ~ for every n. By the Hahn-
Banach theorem, we can find y: E B(X*) , for each n, such that y:(TYn) > ~ 
and Y:(Yn) = O. We may also assume that ran(y:) c I(Yn). 

We now claim that, for every pEL and mEN, there exist a normalized 
R.I.S. vector x E Y of length p and constant 1 + €/4 and a (p, f)-form x* 
such that m < I(x) , ran(x*) c I(x) , and 

x*(x) = 0, x*(T(x» > ~/2. 
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Indeed, it is clear that we can select Y n ' ••• ,Y n forming a R.I.S. of length 
1 p 

PEL and constant 1 + €/4 such that m < [(Yn ). By Lemma 10, we know 
1 

that 

II~Yn;1I ~ 2p/f(p)· 

Letting x* = (Y:1 + ... + Y: )/ f(p) E B(X*) , we obtain x*(Ef=1 T(yn)) > 
p I 

~p/ f(p). On the other hand, x*(Ef=1 Yn) = O. We simply have to choose x 
to be a norm one multiple of Yn + ... + Yn • 

1 P 
The rest of the proof of the lemma is similar to the proof that X is R.I. at 

the end of §3. Let XI E Y be a normalized R.I.S. vector oflength MI = j2k E L 
and constant (1 + €/4) , where ~/4 = NI ~ 4Mf (k/€)/€/(1) , and let x; be 
an (MI' f)-form in Q such that Ix;(xl)1 ~ k-2 and x;(T(xl )) > ~/2. We 
assume, as we may, that ran(x;) C [(XI)' 

Now let M2 = O'(x;) , and pick a normalized R.I.S. vector x2 E Y of length 
M2 with constant 1+€/4 such that [(XI) < [(x2) and an (M2' f)-form x; E Q 
such that ran(x;) C [(x2), Ix;(x2)1 ~ k-2 and x;(T(x2)) > ~/2. 

Continuing in this manner, we obtain a pair of sequences XI' ... ,xk and 
x; , '" ,x; with various properties we need. First, the intervals [(xJ are 
successive, and we have ran(x;) c [(xJ, Ilxill = 1, and Ilx;1I ~ 1 for every i. 
We also know that Ix;(xi)1 ~ k-2 and x;(T(xJ) > ~/2 for each i. It is easy 
to show that I(E~=I x;)(E~=1 ExJI ~ 2 for every interval E, so we can apply 
Lemma 12 to obtain II E~=I xiII ~ 2k/ f(k). 

Finally, as with the earlier argument, the sequence x;, ... , x; has been 
chosen to be a special sequence of length k. It follows from the definition of 
the norm and the fact that [(xJ < [(Xi+I ) , ran(xn c [(xJ for each i that 

k 

II ~ T(xJII > ~kf(k)-1/2 /2. 
1=1 

From this and the preceding estimate, we can deduce that 1ITJ1 ~ ~J f(k)/4, 
for every k E K , contradicting the boundedness of T. 0 

Proof of Lemma 22. We know by Lemma 23 that, for every sequence (xn ) of 
l~+ -averages in Y with constant 1 + € /4, there exists A E R. and a subsequence 
(x~) such that T(x~) - AX~ --+ O. It is easy to deduce from this that T(xn)-
AXn --+ 0, by mixing subsequences with possibly different values of A. One can 
deduce that A is independent of the sequence (xn ) by the same argument. 0 

It is clear now that U = T - A.I is strictly singular, where [ denotes the injec-
tion from Y to X . Indeed, every infinite-dimensional subspace of Y contains 
sequences of l~+ -averages (xn) with constant 1 + €/4, for which U(xn) --+ O. 

It is easy to finish the proof of the hyperplane property. Let T be any 
bounded linear operator from X to X. We know that, for some A E R., 
S = T - A Id is strictly singular. If A = 0, T cannot be an isomorphism from 
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X into X. If A. "I 0, it is known that A. Id + S is a Fredholm operator with 
index 0, so T cannot be an isomorphism from X onto a proper subspace. 
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ABSTRACT. We construct a Banach space that does not contain any infinite un-
conditional basic sequence and investigate further properties of this space. For 
example, it has no subspace that can be written as a topological direct sum of 
two infinite-dimensional spaces. This property implies that every operator on 
the space is a strictly singular perturbation of a multiple of the identity. In par-
ticular, it is either strictly singular or Fredholm with index zero. This implies 
that the space is not isomorphic to any proper subspace. 
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