Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Local Rankin-Selberg convolutions for $\mathrm {GL}_{n}$: Explicit conductor formula
HTML articles powered by AMS MathViewer

by Colin J. Bushnell, Guy M. Henniart and Philip C. Kutzko
J. Amer. Math. Soc. 11 (1998), 703-730
DOI: https://doi.org/10.1090/S0894-0347-98-00270-7

Abstract:

Let $F$ be a non-Archimedean local field and $n_{1}$, $n_{2}$ positive integers. For $i=1,2$, let $G_{i}=\mathrm {GL}_{n_{i}}(F)$ and let $\pi _{i}$ be an irreducible supercuspidal representation of $G_{i}$. Jacquet, Piatetskii-Shapiro and Shalika have defined a local constant $\varepsilon (\pi _{1}\times \pi _{2},s,\psi )$ to the $\pi _{i}$ and an additive character $\psi$ of $F$. This object is of central importance in the study of the local Langlands conjecture. It takes the form \begin{equation*}\varepsilon (\pi _{1}\times \pi _{2},s,\psi ) = q^{-fs}\varepsilon (\pi _{1} \times \pi _{2},0,\psi ), \end{equation*} where $f=f(\pi _{1}\times \pi _{2},\psi )$ is an integer. The irreducible supercuspidal representations of $G=\mathrm {GL}_{n}(F)$ have been described explicitly by Bushnell and Kutzko, via induction from open, compact mod centre, subgroups of $G$. This paper gives an explicit formula for $f(\pi _{1} \times \pi _{2},\psi )$ in terms of the inducing data for the $\pi _{i}$. It uses, on the one hand, the alternative approach to the local constant due to Shahidi, and, on the other, the general theory of types along with powerful existence theorems for types in $\mathrm {GL}(n)$, developed by Bushnell and Kutzko.
References
  • J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32 (French). Edited by P. Deligne. MR 771671
  • Colin J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of $\textrm {GL}_N$, J. Reine Angew. Math. 375/376 (1987), 184–210. MR 882297, DOI 10.1515/crll.1987.375-376.184
  • C. J. Bushnell and G. Henniart, Local tame lifting for $\mathrm {GL} (N)$ I: simple characters, Publ. Math. IHES 83 (1996), 105–233.
  • —, An upper bound on conductors for pairs, J. Number Theory 65 (1997), 183–196.
  • Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
  • —, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc., to appear.
  • —, Semisimple types in $\mathrm {GL} _{n}$ Preprint, King’s College London (1997).
  • W. Casselman, Introduction to the theory of admissible representations of $\mathfrak {p}$-adic reductive groups, Preprint, University of British Columbia, 1974.
  • I. M. Gel′fand and D. A. Každan, Representations of the group $\textrm {GL}(n,K)$ where $K$ is a local field, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 73–74 (Russian). MR 0333080
  • Roger Godement and Hervé Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 0342495, DOI 10.1007/BFb0070263
  • Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 167–192. MR 0340486
  • Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs $\epsilon$ de paires, Invent. Math. 113 (1993), no. 2, 339–350 (French, with English and French summaries). MR 1228128, DOI 10.1007/BF01244309
  • H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199–214 (French). MR 620708, DOI 10.1007/BF01450798
  • H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
  • François Rodier, Whittaker models for admissible representations of reductive $p$-adic split groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 425–430. MR 0354942
  • F. Sauvageot, Principe de densité pour les groupes réductifs, Compositio Math. 108 (1997), 151–184.
  • Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
  • Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111. MR 729755, DOI 10.2307/2374430
  • Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
  • Allan J. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR 544991
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 22E50
  • Retrieve articles in all journals with MSC (1991): 22E50
Bibliographic Information
  • Colin J. Bushnell
  • Affiliation: Department of Mathematics, King’s College, Strand, London WC2R 2LS, United Kingdom
  • MR Author ID: 43795
  • Email: bushnell@mth.kcl.ac.uk
  • Guy M. Henniart
  • Affiliation: Département de Mathématiques, URA 752 du CNRS, Université de Paris-Sud, 91405 Orsay Cedex, France
  • MR Author ID: 84385
  • Email: henniart@dmi.ens.fr or Guy.Henniart@math.u-psud.fr
  • Philip C. Kutzko
  • Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
  • MR Author ID: 108580
  • Email: pkutzko@blue.weeg.uiowa.edu
  • Received by editor(s): October 3, 1997
  • Received by editor(s) in revised form: March 2, 1998
  • Additional Notes: The first author thanks Université de Paris Sud for hospitality and support for a period during the preparation of this paper.
    The research of the second author was partially supported by EU TMR-Network “Arithmetic Geometry and Automorphic Forms” and a joint CNRS, NSF research grant.
    The research of the third author was partially supported by NSF grant DMS-9003213 and a joint CNRS, NSF research grant.
  • © Copyright 1998 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 11 (1998), 703-730
  • MSC (1991): Primary 22E50
  • DOI: https://doi.org/10.1090/S0894-0347-98-00270-7
  • MathSciNet review: 1606410