Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Maximal properties of the normalized Cauchy transform
HTML articles powered by AMS MathViewer

by Alexei Poltoratski
J. Amer. Math. Soc. 16 (2003), 1-17
DOI: https://doi.org/10.1090/S0894-0347-02-00403-4
Published electronically: August 27, 2002

Abstract:

We study the normalized Cauchy transform in the unit disk. Our goal is to find an analog of the classical theorem by M. Riesz for the case of arbitrary weights. Let $\mu$ be a positive finite measure on the unit circle of the complex plane and $f\in L^{1}(\mu )$. Denote by $K\mu$ and $Kf\mu$ the Cauchy integrals of the measures $\mu$ and $f\mu$, respectively. The normalized Cauchy transform is defined as $C_{\mu }: f\mapsto \frac {Kf\mu }{K\mu }$. We prove that $C_{\mu }$ is bounded as an operator in $L^{p}(\mu )$ for $1<p\leq 2$ but is unbounded (in general) for $p>2$. The associated maximal non-tangential operator is bounded for $1<p<2$ and has weak type $(2,2)$ but is unbounded for $p>2$.
References
  • A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), no. 5, 490–503, 515 (Russian, with English and Armenian summaries). MR 931885
  • A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), no. Issled. Lineĭn. Oper. Teorii Funktsiĭ. 17, 7–33, 321 (Russian, with English summary); English transl., J. Soviet Math. 63 (1993), no. 2, 115–129. MR 1039571, DOI 10.1007/BF01099304
  • A. B. Aleksandrov, On the existence of angular boundary values of pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 23, 5–17, 307 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 87 (1997), no. 5, 3781–3787. MR 1359992, DOI 10.1007/BF02355824
  • A. B. Aleksandrov, Isometric embeddings of co-invariant subspaces of the shift operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 24, 5–15, 213 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 92 (1998), no. 1, 3543–3549. MR 1464420, DOI 10.1007/BF02440138
  • A. B. Aleksandrov, On the maximum principle for pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 217 (1994), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 22, 16–25, 218 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 85 (1997), no. 2, 1767–1772. MR 1327511, DOI 10.1007/BF02355285
  • A. B. Aleksandrov, Invariant subspaces of the backward shift operator in the space $H^{p}$ $(p\in (0,\,1))$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 7–29, 318 (Russian, with English summary). Investigations on linear operators and the theory of functions, IX. MR 566739
  • Douglas N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191. MR 301534, DOI 10.1007/BF02790036
  • Guy David, Analytic capacity, Cauchy kernel, Menger curvature, and rectifiability, Harmonic analysis and partial differential equations (Chicago, IL, 1996) Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 183–197. MR 1743862
  • Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
  • John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • [N]N N. K. Nikolski, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin-New York, 1986.
  • F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), 463–487. MR 1626935, DOI 10.1155/S1073792898000312
  • [P1]P1 A. Poltoratski, On the boundary behavior of pseudocontinuable functions, St. Petersburg Math. J. 5 (1994), 389-406.
  • Alexei G. Poltoratski, On the distributions of boundary values of Cauchy integrals, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2455–2463. MR 1327037, DOI 10.1090/S0002-9939-96-03363-1
  • [P3]P3 A. Poltoratski, Properties of Exposed Points in the Unit Ball of $H^{1}$, Indiana Univ. Math. J. 50 (2001), 1789–1806. [P4]P4 A. Poltoratski, The Krein spectral shift and rank one perturbations of spectra, Algebra i Analiz 10 (1998 No 5), 143-183 (Russian; English translation to appear in St. Petersburg Math. J.).
  • Alexei G. Poltoratski, Finite rank perturbations of singular spectra, Internat. Math. Res. Notices 9 (1997), 421–436. MR 1443321, DOI 10.1155/S1073792897000299
  • Alexei G. Poltoratski, Equivalence up to a rank one perturbation, Pacific J. Math. 194 (2000), no. 1, 175–188. MR 1756633, DOI 10.2140/pjm.2000.194.175
  • Donald Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10, John Wiley & Sons, Inc., New York, 1994. A Wiley-Interscience Publication. MR 1289670
  • Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • [T]T Tolsa X., Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math. 164 (2001), 57–116.
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 30E20
  • Retrieve articles in all journals with MSC (2000): 30E20
Bibliographic Information
  • Alexei Poltoratski
  • Affiliation: Department of Mathemathcs, Texas A&M University, College Station, Texas 77843
  • MR Author ID: 292108
  • Email: alexeip@math.tamu.edu
  • Received by editor(s): June 12, 2000
  • Published electronically: August 27, 2002
  • Additional Notes: The author is supported in part by N.S.F. grant DMS 9970151
  • © Copyright 2002 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 16 (2003), 1-17
  • MSC (2000): Primary 30E20
  • DOI: https://doi.org/10.1090/S0894-0347-02-00403-4
  • MathSciNet review: 1937196