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ALGEBRAIC K-THEORY VIA BINARY COMPLEXES

DANIEL R. GRAYSON

This paper is dedicated to the memory of Daniel Quillen.

Introduction

In [11], Quillen defines the notion of exact category. Each such category N is an
additive category together with a suitable collection of sequences called short exact
sequences. Quillen constructs a space by gluing simplices to each other, using the
exact sequences of N to determine the simplices and the gluing instructions. Then
for each n ∈ N he defines KnN as a homotopy group of the space. The construction
is engineered so that K0N is isomorphic to the Grothendieck group of N . Because
they are defined as homotopy groups, these K-groups are difficult to compute, with
the case where N is the category of finite-dimensional vector spaces over a finite
field being one of the few cases where they are all known. Until now, there has
been no description of the K-groups not involving homotopy theory.

This paper1 resulted from contemplation of a result of Nenashev [10], which
depends on his earlier work [8, 9] and on work of Sherman [13, 14]. Nenashev
provides generators and relations for K1N , where N is an exact category; the
generators are double exact sequences in N :

0 N ′ i

j
N

p

q
N ′′ 0,

and the relations are those coming from short exact sequences of generators together
with some other ones, including his six-term relation. By letting the double exact
sequences be longer and multi-dimensional, we succeed, in Corollary 7.4, in giving
explicit generators and relations for KnN , for any n; the generators are what we
call acyclic binary chain multicomplexes of dimension n, and the relations are those
coming from short exact sequences and those coming from acyclic binary chain
multicomplexes that are trivial in one of the n directions. Said more succinctly, we
realize KnN as the Grothendieck group of a cube of exact categories; see Corollary
7.2. The basic tool used is an operationN �→ ΩN that transforms an exact category
into a split pair of exact categories and that can be iterated to yield a cube. On
the corresponding K-theory spectra, it amounts to taking the connective part of
the loop space; see Corollary 6.5.

Whether our presentation of the higher algebraic K-groups results in any con-
sequences for their computation remains to be seen.
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For background information on K-theory of exact categories with weak equiva-
lences, the reader may refer to section A of the appendix. We speak of K-theory
spectra rather than K-theory spaces throughout. That makes the proofs involving
loop spaces simpler, because replacing a space X by its loop space discards π0X,
which is just a set, but the corresponding operation on a connective spectrum X
discards the Eilenberg-MacLane spectrum of the abelian group π0X, which fits
into a handy fibration sequence with X. The extra structure retained allows us to
avoid distracting digressions to deal with the behavior of low-dimensional homotopy
groups and sets.

1. Long exact sequences in exact categories

Definition 1.1. A bounded chain complex N in an exact category N that arises
by being spliced together from short exact sequences of N will be called a long
exact sequence or an acyclic chain complex in N . In other words, the differentials
di : Ni → Ni−1 can be factored as Ni → Zi−1 → Ni−1 so that 0 → Zi → Ni →
Zi−1 → 0 is a short exact sequence of N for each i.

The component short exact sequences of an acyclic chain complex are unique
up to isomorphism, because Zi → Ni is a kernel of di, for all i. An exact functor
N ′ → N sends long exact sequences of N ′ to long exact sequences of N .

This definition of acyclicity is not expected to have good properties for an arbi-
trary exact category. For possibly better definitions, see Remark 6.7.

We have restricted our attention to bounded complexes in Definition 1.1, partly
because it’s the categories of bounded complexes whose K-theory can be under-
stood, and partly because there are examples of unbounded acyclic complexes of
modules over a ring where each module is projective, but the images of the differ-
entials are not.

An exact category is conveniently constructed as a full subcategory of an abelian
category by imposing various conditions on its collection of objects. The following
definition allows us to discuss those conditions abstractly.

Definition 1.2. We will say that a property of objects in an abelian category A
is closed under extensions if, for any exact sequence 0 → M ′ → M → M ′′ → 0 of
A where M ′ and M ′′ have the property, then so does M . If M ′ has the property
whenever M and M ′′ do, then we say that the property is closed under kernels of
epimorphisms, and if M ′′ has the property whenever M and M ′ do, then we say
that the property is closed under cokernels of monomorphisms. A full subcategory
N ⊆ A is said to be closed in one of the preceding senses if the class of objects of
A isomorphic to an object of N is closed in that sense.

Definition 1.3. An admissible embedding of an exact category N is a fully faithful
exact functor h : N ↪→ A, where: (1) A is an abelian category; (2) the class of
objects of A isomorphic to an object of h(N ) is closed under extension; (3) h reflects
exactness, in the sense that a sequence E : 0 → N ′ → N → N ′′ → 0 of N is an
exact sequence of N if h(E) is an exact sequence of A.

Recall (from [11, §2] and [17, (A.7.1)]) that exact categories in the sense of
Quillen are characterized by having admissible embeddings.

Definition 1.4. If N has an admissible embedding N ↪→ A so that every bounded
acyclic chain complex in A whose objects are in N also has the images of its
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differentials isomorphic to objects of N , then we will say that N supports long
exact sequences.

Since the image of a map is defined only up to isomorphism, if it is isomorphic
to an object of N , a representative for it may be chosen that is an object of N .

When N supports long exact sequences, as demonstrated by an embedding N ↪→
A, a bounded chain complex in N is acyclic in N if and only if it is acyclic in A;
moreover, all the usual properties of bounded acyclic chain complexes arising from
diagram chasing arguments and homology arguments in A apply to bounded acyclic
chain complexes in N : for example, in a short exact sequence of bounded chain
complexes in N , if two of the terms are acyclic, then so is the third; a homotopy
equivalence of bounded chain complexes is a quasi-isomorphism (for the definition,
see Definition 2.6 below); a retract of a bounded acyclic chain complex is acyclic;
a retract of a quasi-isomorphism between bounded chain complexes is a quasi-
isomorphism.

Lemma 1.5. Let N be an exact category. If N supports long exact sequences, then
any retraction in N can be completed to a direct sum diagram.

Proof. Given arrows p and i in N with pi = 1, we see that 0 ← • p←− • 1−ip←−−− • i←−
• ← 0 is an acyclic chain complex in A whose objects are in N , and thus the image
of the idempotent endomorphism 1− ip lies in N . �

Thomason has shown that the converse of Lemma 1.5 is true, providing an
intrinsic and simple characterization of the exact categories that support long exact
sequences: see the proof of Corollary 6.5.

Any conjunction of properties of objects in an abelian category A, each of which
is closed under extensions and closed under kernels of epimorphisms (or closed un-
der extensions and closed under cokernels of monomorphisms), specifies an exact
subcategory of A that supports long exact sequences. Examples of such proper-
ties of R-modules include: being finitely generated, being finitely presented, being
torsion free, flatness, projectivity, injectivity, being of finite projective dimension,
being of projective dimension ≤ n, being of flat dimension ≤ n, and being stably
free, but not being free (because there are stably free modules that are not free).
The analogous local properties of quasicoherent sheaves on a scheme also provide
examples.

Until further notice, we assume that the exact categories under consideration
support long exact sequences. A separate argument will be given later to remove
the assumption from the main results.

2. Chain complexes

In this section we review standard material about chain complexes.

Definition 2.1. For an exact category N , let CN denote the category of bounded
chain complexes in N ; the differential d = dN of a chain complex N is a map of
degree −1 on the underlying graded object gr N = (k �→ Nk) of N . We identify
a chain complex N with the pair (gr N, d). The short exact sequences of CN are
defined to be those sequences 0 → N ′ → N → N ′′ → 0 such that 0 → N ′

k →
Nk → N ′′

k → 0 is a short exact sequence of N for each k ∈ Z. The category N is
embedded in CN as the subcategory of complexes concentrated in degree 0. For
a graded object N of N and i ∈ Z, we define the shifted graded object N [i] to be
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k �→ Ni+k. For N ∈ CN and i ∈ Z, we define the shifted chain complex N [i] ∈ CN
by shifting the underlying graded object and taking (−1)id as the differential. For
integers j and k, we let C[j,k]N denote the full exact subcategory of CN whose
objects are those objects N with Ni = 0 unless j ≤ i ≤ k; we say that such an N
is supported on the interval [j, k].

Remark 2.2. One sees that CN is an exact category. If N ↪→ A is an admissible
embedding that shows that N supports long exact sequences, then CN ↪→ CA is
an admissible embedding that shows that CN supports long exact sequences, too.
The same statement holds for C[j,k]N .

Definition 2.3. Given a diagram M
f←− N

g−→ P in CN we define the double

mapping cylinder I(M
f←− N

g−→ P ) by taking grM ⊕ gr N [−1] ⊕ gr P as the
underlying graded object and equipping it with the differential⎛

⎝dM −f 0
0 −dN 0
0 g dP

⎞
⎠ .

Definition 2.4. We introduce the left inclusion λ : M → I(M ← N → P ) and the
right inclusion ρ : P → I(M ← N → P ). Moreover, given a commutative square

N
g

f

P

s

M
r

Q

the matrix
(
r 0 s

)
defines a projection map πr,s : I(M

f←− N
g−→ P ) → Q satisfy-

ing the equations πr,sλ = r and πr,sρ = s.

Definition 2.5. Given a map N
g−→ P in CN we define the mapping cone V(g) :=

I(0 ← N
g−→ P ).

Definition 2.6. We say that a map in CN is a quasi-isomorphism if its mapping
cone is acyclic.

Definition 2.7. Given a map N
g−→ P in CN we define the mapping cylinder

T(g) := I(N
1N←−− N

g−→ P ). The left inclusion λ : N → T(g) will be called the front
inclusion, the right inclusion ρ : P → T(g) will be called the back inclusion, and
the projection πg,1 : T(g) → P will be called the projection. The maps satisfy the
equations πg,1λ = g and πg,1ρ = 1P .

We see that the projection and the back inclusion of a mapping cylinder are
quasi-isomorphisms, because the complementary summand they split off from the
mapping cylinder is the mapping cone of an identity map.

With T serving as the cylinder functor, we see that the category q of quasi-
isomorphisms in CN is a category of weak equivalences in CN with the extension,
saturation and cylinder axioms [18, (1.2) and (1.6)]. In particular, qCN is an exact
category with weak equivalences (see Definition A.1).

We recall the following notation of [18]. If wN is an exact category with weak
equivalences (Definition A.1), then let Nw denote the full subcategory of N con-
sisting of the objects N such that 0 � N is in w. Since w satisfies the extension
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axiom, Nw is closed under extensions in N , and thus is an exact category; that is
why we included the extension axiom in Definition A.1.

We introduce the alternative notation CqN for the exact category (CN )q of
acyclic bounded chain complexes in N . If N supports long exact sequences, then
so does CqN , because a short exact sequence of CN with two of its objects in CqN
has all three of its objects in CqN .

3. Binary chain complexes

Definition 3.1. A binary chain complex in N is a chain complex in N with an
extra differential. In other words, it is a triple (N, d, d′), where N is a Z-graded
object of N with maps d : N → N [−1] (the top differential) and d′ : N → N [−1]
(the bottom differential) satisfying d2 = d′2 = 0. A map between two binary chain
complexes is a map between the underlying graded objects that commutes with
both differentials. Let BN denote the category of bounded binary chain complexes
in N . For integers j and k, let B[j,k]N denote the full exact subcategory of BN
whose objects are those objects N with Ni = 0 unless j ≤ i ≤ k.

We can regard a binary chain complex also as a pair of chain complexes with the
same underlying graded object. In other words, it is a pair of pairs ((N, d), (N ′, d′))
such that N = N ′.

Definition 3.2. The diagonal map Δ : CN → BN , defined by Δ(N, d) :=
(N, d, d), is split by the top and bottom forgetful functors 	,⊥ : BN → CN , defined
by 	(N, d, d′) := (N, d) and ⊥(N, d, d′) := (N, d′). We define gr(N, d, d′) := N . We
say that an object of BN is acyclic, or that an arrow of BN is a quasi-isomorphism,
or that a sequence of objects of BN is exact, if and only if its image under the func-
tor (	,⊥) : BN → CN ×CN has the same property. Let q denote the category of
quasi-isomorphisms in BN . There are unique notions of double mapping cylinder
(2.3), mapping cylinder (2.7), and mapping cone (2.5) in BN preserved by 	 and
⊥, for which we use the same notation as above (I, T and V).

The category BN is an exact category, and the category q of quasi-isomorphisms
in BN is a category of weak equivalences with the extension, saturation and cylinder
properties. We introduce the notation BqN := (BN )q. If N supports long exact
sequences, then so do BN and BqN , because a short exact sequence of BN with
two of its objects in BqN has all three of its objects in BqN .

4. The K-theory of binary chain complexes

For an exact category N , we regard KN as a spectrum and similarly for an
exact category with weak equivalences. See Definitions A.2 and A.3.

The map KN → KqCN arising from the embedding N ↪→ CN is a homotopy
equivalence of spectra. The proof in [17, (1.11.7)] depends on an assumption,
(1.11.3.1), that is slightly stronger than our assumption that N supports long exact
sequences, but the proof goes through almost verbatim, so we don’t repeat it here.
The proof in [2] works for any exact category.

Definition 4.1. Let C be a category. Let Ar C denote the category of arrows in C.
If f is an arrow of C, let [f ] denote the corresponding object of Ar C. We may refer
to it as a pair of objects of C.
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Definition 4.2. We regard the exact functor iCqN Δ−→ iBqN as an arrow in the
category of exact categories with weak equivalences. Thus we may use Definition

4.1 to define ΩN := [iCqN Δ−→ iBqN ] and Ω[j,k]N := [iCq
[j,k]N

Δ−→ iBq
[j,k]N ]. They

are objects in the category of arrows in the category of exact categories with weak
equivalences, or, more briefly, they are pairs of exact categories.

The relativeK-theory spectrumKΩN (see Definition A.4) is the factor ofKBqN
complementary to the “image” of KΔ : KCqN → KBqN . It is our main object of
study, which begins with the following theorem.

Theorem 4.3. If N is an exact category that supports long exact sequences, then
there is a natural homotopy equivalence

KΩN ∼ ΩK[qCN Δ−→ qBN ].

Proof. Here “natural” means functorial in N , and “homotopy equivalence” means
a sequence of homotopy equivalences in various directions (a “zigzag”). We use
ΩX, where X is a spectrum, as notation for the shifted spectrum X[−1]. Wald-
hausen’s fibration theorem (see [18, (1.6.4)] or [17, (1.8.2)]), generalized from spaces
to spectra in the usual way, yields the homotopy Cartesian squares in the following
diagram (the spectra in their lower left-hand corners are contractible):

KiCqN KiCN KiBqN KiBN

KqCqN KqCN , KqBqN KqBN .

The functor Δ provides a map from the left square to the right square, yielding the
following homotopy cartesian square on relative K-theory, with contractible lower
left-hand corner:

K[iCqN Δ−→ iBqN ] K[iCN Δ−→ iBN ]

K[qCqN Δ−→ qBqN ] K[qCN Δ−→ qBN ].

The map KiCN KΔ−−→ KiBN is a homotopy equivalence, because the additivity
theorem and compatibility with inductive limits apply to show, using the naive
admissible filtration that any chain complex or binary chain complex has, that
its source and target are compatibly homotopy equivalent to Ki

∐
Z
N . Thus the

upper right corner of the square above is also contractible, providing the desired
homotopy equivalence. Introducing the abbreviations

iΔN := [iCN Δ−→ iBN ],

iΔqN := [iCqN Δ−→ iBqN ] = ΩN ,

qΔN := [qCN Δ−→ qBN ],

qΔqN := [qCqN Δ−→ qBqN ],
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we may express the homotopy equivalence as the following sequence of natural

homotopy equivalences: ΩK[qCN Δ−→ qBN ] = ΩKqΔN ∼−→ ΩK[iΔN → qΔN ]
∼←−

ΩK[iΔqN → qΔqN ]
∼−→ ΩK[iΔqN → 0] ∼= KiΔqN = KΩN . Alternatively,

a similar natural zigzag of homotopy equivalences could be constructed using any
functorial construction of homotopy fibers or homotopy cofibers of maps of spectra,
thereby avoiding the use of multi-relative K-theory. �

Remark 4.4. The naive filtration of a chain complex does not preserve quasi-

isomorphisms; thus it cannot be used to show that KqCN KΔ−−→ KqBN is a

homotopy equivalence. But it can be used to show that K0qCN K0Δ−−−→ K0qBN
is an isomorphism, a fact that follows from the theorem above and the fact that Δ
has a left inverse (e.g., ⊥). The isomorphism is compatible with π−1KΩN = 0.

Corollary 4.5. There is a natural homotopy equivalence

KΩN ∼ Ω2K[qBN �−→ qCN ].

Proof. We have a commutative diagram

KqCN KΔ

1

KqBN

K�

K[qCN Δ−→ qBN ]

KqCN

K[qBN �−→ qCN ]

involving two fibration sequences up to homotopy, which by a diagram chase, pro-

vides a homotopy equivalence ΩK[qBN �−→ qCN ]
∼−→ K[qCN Δ−→ qBN ], yielding

the result.
To make the naturality clear, we realize the homotopy equivalence explicitly as

the composition of the equivalences and isomorphisms in the following sequence,
which involves K-theory of 2-dimensional cubes of exact categories, mentioned in
the appendix:

Ω2K[qBN �−→ qCN ] ∼= Ω2K

⎡
⎢⎢⎣

0 0

qBN �
qCN

⎤
⎥⎥⎦

∼−→ Ω2K

⎡
⎢⎢⎢⎣
qCN 1

Δ

qCN

1

qBN �
qCN

⎤
⎥⎥⎥⎦

∼−→ Ω2K

⎡
⎢⎢⎢⎣
qCN

Δ

0

qBN 0

⎤
⎥⎥⎥⎦

∼= ΩK[qCN Δ−→ qBN ] ∼ KΩN .

�

Let t denote the category of maps f in BN such that 	f is in q, and let b
denote the category of maps f in BN such that ⊥f is in q. They are categories of
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weak equivalences satisfying the extension, saturation, and cylinder axioms. If N
supports long exact sequences, then so do BtN (and BbN ), because a short exact
sequence of BN with two of its objects in BtN has all three of its objects in BtN .

Definition 4.6. Suppose N is an exact category. Suppose we are given objects N
and P of BN , and a pair of maps r : 	N → 	P and r′ : ⊥N → ⊥P in CN . Then
we define the binary mapping cylinder T(r, r′) := (T(r),T(r′)) ∈ BN , by observing
that the two mapping cylinders T(r) and T(r′) have the same underlying graded
object, namely gr N ⊕ gr N [−1]⊕ gr P . The two front inclusions 	N � T(r) and
⊥N � T(r′) agree on underlying graded objects, because they are both given by
the inclusion gr N � gr N ⊕ gr N [−1] ⊕ gr P of the first factor, and thus they
combine to give a map λ : N � T(r, r′), which we call the front inclusion; 	λ is
a quasi-isomorphism if r is, and ⊥λ is a quasi-isomorphism if r′ is. Similarly, we
have the back inclusion ρ : P � T(r, r′), which is a quasi-isomorphism. If r = r′,
then they give rise to a unique map r̃ = (r, r′) : N → P , and the binary mapping
cylinder reduces to the mapping cylinder: T(r, r′) = T(r̃).

Remark 4.7. In the context of the definition above, the projections πr,1 : T(r) →
	P and πr′,1 : T(r′) → ⊥P for the two mapping cylinders do not agree on the
underlying graded objects, because their matrices are

(
r 0 1P

)
and

(
r′ 0 1P

)
.

Thus generally there is no projection T(r, r′) → P in the category BN .

Theorem 4.8. If N is an exact category that supports long exact sequences, then
the map K	 : KtBN → KqCN is a homotopy equivalence.

Proof. We consider the exact functor F : qCN → tBN defined by F (N, d) :=
(N, d, 0). The composite 	 ◦ F is the identity functor. The composite F ◦ 	
is the exact endofunctor of tBN given by (N, d, d′) �→ (N, d, 0). Use the bi-
nary mapping cylinder of Definition 4.6 to define another exact endofunctor G

of tBN by G(N, d, d′) := T((N, d)
1−→ (N, d), (N, d′)

0−→ (N, 0)). Observe that
	G(N, d, d′) is the mapping cylinder of an identity map, so its front inclusion is

a quasi-isomorphism. Thus, the front and back inclusions 1 ∼
λ

G F ◦ 	∼
ρ

provide weak equivalences of tBN , i.e., arrows of t, and thus, according to [18,
Prop. 1.3.1], induce homotopies on K-theory, rendering KF ◦ K	 homotopic to
the identity and showing that KF is a homotopy inverse for K	. �

Corollary 4.9. If N is an exact category that supports long exact sequences, then
there is a natural homotopy equivalence KΩN ∼ ΩKqBtN .

Proof. We apply Waldhausen’s fibration theorem (see [18, (1.6.4)] or [17, (1.8.2)])
to obtain the fibration sequence in the bottom row of the following diagram:

KqBN K�
KqCN K[qBN �−→ qCN ]

KqBtN KqBN

1

KtBN .

K� ∼

The top row is also a fibration sequence. The right-hand vertical map is a homo-
topy equivalence (by the theorem), and thus the vertical maps induce a homotopy
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equivalence on the homotopy fibers, yielding a homotopy equivalence KqBtN ∼
ΩK[qBN �−→ qCN ], which can be expressed as a natural zigzag. Applying Corol-
lary 4.5 yields the result. �

5. Stably potentially acyclic graded objects

The following relation was used in the proof of the cofinality theorem [3, (1.1)].

Definition 5.1. An additive functor F : M → N between additive categories is
called cofinal if for any object N ∈ N , there exists an object N ′ ∈ N and an object
M ∈ M, such that N ⊕ N ′ ∼= FM . We say that objects N and N ′ of N are
equivalent modulo the image of F if and only if there exist objects M and M ′ of
M such that N ⊕ FM ∼= N ′ ⊕ FM ′.

Equivalence modulo the image of F is an equivalence relation, coarser than
isomorphism.

Lemma 5.2. Suppose an additive functor F : M → N between additive categories
is cofinal. The set GF of equivalence classes 〈N〉 modulo the image of F , associated
to objects N ∈ N , together with the binary operation defined by 〈N〉 + 〈N ′〉 :=
〈N ⊕N ′〉, is an abelian group.

Proof. Write N ∼ N ′ for the relation. One checks that the binary operation
〈N〉 + 〈N ′〉 is well defined, with 0 := 〈0〉 serving as the identity element. The
operation is commutative and associative, because direct sum in N is commutative
and associative up to isomorphism. Cofinality shows that additive inverses exist,
and thus GF is an abelian group. �

Definition 5.3. For an exact categoryN , we let GrN denote the exact category of
bounded Z-graded objects of N . An object N ∈ GrN is called potentially acyclic if
there is a differential d on N that makes the resulting chain complex (N, d) acyclic.
It is called stably potentially acyclic if there is a potentially acyclic graded object
N ′ such that N ⊕N ′ is potentially acyclic. Let χ(N) denote the class

∑
i(−1)i[Ni]

in K0N .

Lemma 5.4. A graded object N of an exact category N is stably potentially acyclic
if and only if χ(N) = 0 in K0N .

Proof. We consider equivalence modulo the image of the forgetful functor F :
CqN → GrN . In other words, N ∼ N ′ if there exist potentially acyclic objects X
and X ′ such that N ⊕X ∼= N ′⊕X ′. Since N ⊕N [−1] is always potentially acyclic,
F is cofinal, and Lemma 5.2 applies to show that the group GF of equivalence
classes 〈N〉 is an abelian group, in which 〈N [−1]〉 = −〈N〉. Observe that 〈N〉 = 0
if and only if N is stably potentially acyclic.

An object of N is regarded as a graded object by concentrating it in degree 0.
If 0 → N ′ → N → N ′′ → 0 is a short exact sequence of graded objects, then
N ′⊕N [1]⊕N ′′[2] is potentially acyclic, allowing us to conclude that 〈N ′〉+〈N ′′〉 =
〈N〉 and providing a well-defined map j : K0N → GF . Observe that 〈N [i]〉 =
(−1)i〈N〉 and thus 〈N〉 = 〈

⊕
i Ni[−i]〉 =

∑
i〈Ni[−i]〉 =

∑
i(−1)i〈Ni〉. Thus the

map χ : GF → K0N defined by χ〈N〉 := χ(N) is a well-defined isomorphism
inverse to j. We see that 〈N〉 = 0 if and only if χ〈N〉 = 0, yielding the result. �
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Remark 5.5. As an aside, we mention that the proof of Lemma 5.4 can be made
into an effective computational tool that converts a proof of an equation χ(N) = 0
in K0N into a proof that N is stably potentially acyclic. In the case where N = 0,
the result is a graded object N ′, as in Definition 5.3, that is made acyclic in two
ways; i.e., the result is an acyclic binary complex.

Definition 5.6. Suppose that N is an exact category that supports long exact
sequences. Define x to be the subcategory of CN whose arrows N → N ′ are those
satisfying χ(N) = χ(N ′).

Definition 5.7. For t ∈ Z write V tX for the stage of the Postnikov filtration of a
spectrum X obtained from X by killing πsX for all s < t. In particular, V 0X is
the connective part of X.

Remark 5.8. The category x is a category of weak equivalences satisfying the exten-
sion, saturation, and cylinder axioms. We introduce the notation CxN := (CN )x.
Its objects are the chain complexes N satisfying χ(N) = 0. It is an exact category
that supports long exact sequences, because a short exact sequence of CN with two
of its objects in CxN has all three of its objects in CxN . Thomason’s cofinality
theorem [17, (1.10.1)] provides a fibration sequence of spectra up to homotopy:

KqCxN → KqCN → “K0N”,

where “G” denotes the Eilenberg-MacLane spectrum whose only nonvanishing ho-
motopy group is a G in dimension 0. (Presumably Thomason was working with
the stable model structure of [1, Theorem 2.3].)

Thus K0qC
xN = 0 and KiqC

xN ∼= KiqCN ∼= KiN for i > 0. We see that
Thomason’s theorem says that KqCxN ∼ V 1KqCN .

Observe that if (N, d, d′) ∈ BbN , then (N, d) ∈ CxN , because acyclicity of
(N, d′) shows that χ(N) = 0. Hence	 induces an exact functor	 : tBbN → qCxN .

Theorem 5.9. If N is an exact category that supports long exact sequences, then
the map K	 : KtBbN → KqCxN is a homotopy equivalence.

Proof. We apply Waldhausen’s approximation theorem (see [18, (1.6.7)] or [17,
(1.9.1)]) to the map 	 : tBbN → qCxN ; its conclusion is what we want for the
spaces at level 1 of the Ω-spectra involved here. As required, tBbN satisfies the
saturation axiom and the cylinder axiom, and qCxN satisfies the saturation axiom.
The required approximation property consists of two parts. The first part, that a
map f in BbN is in t if and only if 	f is in q, is the definition of t.

The second part of the approximation property states that given an object N ∈
BbN and a map r : 	N → P in CxN , there exists a cofibration (admissible

monomorphism) s : N � T in BbN and a quasi-isomorphism u : 	T
∼−→ P so that

u ◦ 	s = r.
Since χ(P ) = 0, by Lemma 5.4 we can find a potentially acyclic graded object

Y of N such that gr P ⊕ Y is potentially acyclic. Let y be an acyclic differential
on Y , and let z be an acyclic differential on gr P ⊕ Y . Observe that the inclusion
in1 : P � P⊕(Y, y) and the projection pr1 : P⊕(Y, y) � P are quasi-isomorphisms.
Define r′ := in1 ◦ r. We use the binary mapping cylinder of Definition 4.6 to define

T := T(	N
r′
−→ P ⊕ (Y, y),⊥N

0−→ (gr P ⊕ Y, z)); the underlying graded objects
of the sources and targets of the two maps are the same, as required. We take
s : N � T to be its front inclusion, which is an admissible monomorphism, and
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we take u′ := πr′,1 : 	T = T(r′) → P ⊕ (Y, y) to be the projection, which is a
quasi-isomorphism. We compute u′ ◦ 	s = πr′,1λ = r′, using an identity given in
Definition 2.7. The map u := pr1 ◦ u′ is a quasi-isomorphism, because pr1 and u′

are.
Since ⊥T is the mapping cylinder of a map whose target, (gr P ⊕Y, z), is acyclic,

it is acyclic, and hence T is an object of BbN , as required. We compute u ◦ 	s =
pr1 ◦ u′ ◦ 	s = pr1 ◦ r′ = pr1 ◦ in1 ◦ r = r, thereby satisfying the second part of the
approximation property and completing the proof. �

Corollary 5.10. If N is an exact category that supports long exact sequences, then
there is a natural homotopy equivalence of spectra KΩN ∼ V 0ΩKN , as well as a
natural homotopy equivalence of spaces KΩN〈1〉 ∼ V 1Ω(KN〈1〉), where V 1 is the
functor that takes the connected component of the base point of a space.

Proof. Thomason’s cofinality theorem (see Remark 5.8) shows that ΩKqCxN ∼
ΩV 1KN ∼ V 0ΩKN . Interchanging top and bottom differentials gives an isomor-
phism KqBbN ∼= KqBtN . Observe that qBbN = tBbN , because any map between
acyclic chain complexes is a quasi-isomorphism. Now we combine Corollary 4.9 with
Theorem 5.9.

In other words, we assemble the following sequence of natural homotopy equiv-
alences, equalities, and isomorphisms into a natural zigzag: KΩN ∼ ΩKqBtN ∼=
ΩKqBbN = ΩKtBbN ∼ ΩKqCxN ∼ ΩV 1KN ∼ V 0ΩKN .

The remark about K-theory spaces follows from the observation that our model
for the K-theory spectrum is an Ω-spectrum from level 1 onward. �

6. Passing to arbitrary exact categories

Now we drop the standing assumption that the exact categories under consider-
ation support long exact sequences and begin working to generalize Corollary 5.10
to arbitrary exact categories. In that generality, the notion of quasi-isomorphism
is not useful, for it may not be true that the composite of two quasi-isomorphisms
is a quasi-isomorphism.

The full subcategory CqN ⊆ CN of acyclic complexes is closed under extensions.
To see that, consider a short exact sequence 0 → (N ′, d′) → (N, d) → (N ′′, d′′) → 0
of CN with (N ′, d′) and (N ′′, d′′) in CqN . Let N ↪→ A be an admissible embedding
into an abelian category (see Definition 1.3). By a diagram chase, (N, d) is acyclic
in A, because (N ′, d′) and (N ′′, d′′) are. By induction on n and the 3×3 lemma one
sees that 0 → im d′n → im dn → im d′′n → 0 is exact in A for each n. By assumption,
im d′n and im d′′n are in N (up to isomorphism), so by admissibility, im dn is also in
N (up to isomorphism). Hence (N, d) ∈ CqN .

It follows that CqN is an exact category. By the same reasoning, considering
the top and bottom differentials separately, BqN is an exact category.

Recall from [3, §1] that a full subcategory M ⊆ N closed under extensions in
N (see Definition 1.2) is called cofinal in N if for any N ∈ N there exists N ′ ∈ N
such that N ⊕N ′ ∈ M. We may harmlessly modify the definition to require only
that N ⊕ N ′ is isomorphic to an object of M; direct sums are defined only up
to isomorphism, so the modification is an improvement. (See also Definition 5.1.)
For such a functor, the cofinality theorem [3, (1.1)] (or [4]) states that the map
KiM → KiN is an isomorphism for i > 0 and an injection for i = 0. The following
lemma documents part of the proof there.
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Lemma 6.1. Suppose M ⊆ N is a cofinal full subcategory closed under extensions.
Then for any objects N1, . . . , Nk with the same class in coker(K0M → K0N ), there
is an object N ′ ∈ N such that Ni ⊕N ′ is isomorphic to an object of M, for all i.

We use it in the next lemma.

Lemma 6.2. Suppose M ⊆ N is a cofinal full subcategory closed under extensions.
Consider M to be an exact category by equipping it with the sequences of M that
are short exact sequences of N . Then for any (N, d, d′) ∈ BqN there is an object
(L, e) ∈ CqN such that (N, d, d′)⊕ (L, e, e) ∈ BqM (up to isomorphism).

Proof. For any k, the identity [im dk] =
∑∞

i=k(−1)i−k[Ni] = [im d′k] in K0N al-
lows us to apply Lemma 6.1 to find N ′

k ∈ N such that im dk ⊕ N ′
k ∈ M (up to

isomorphism) and im d′k ⊕N ′
k ∈ M (up to isomorphism). Let

L =
⊕
k

(N ′
k[−k]⊕N ′

k[−(k − 1)]),

equipped with the differential e derived from the identity maps Nk → Nk, making
(L, e) acyclic. We see that im(d ⊕ e)k ∼= im dk ⊕ N ′

k ∈ M and im(d′ ⊕ e)k ∼=
im d′k ⊕N ′

k ∈ M. Since the images of the differentials of (N ⊕ L, d⊕ e, d′ ⊕ e) are
in M, and M is closed under extensions in N , it follows that the terms of N ⊕ L
are in M (up to isomorphism), too, since each term is an extension of two images,
yielding the result. �

Corollary 6.3. Suppose M ⊆ N is a cofinal full subcategory closed under exten-
sions, regarded as an exact category as in Lemma 6.2. Then the same is true for
CqM ⊆ CqN and BqM ⊆ BqN .

Corollary 6.4. Suppose M ⊆ N is a cofinal full subcategory closed under exten-
sions, regarded as an exact category as in Lemma 6.2. Then the map KΩM →
KΩN is a homotopy equivalence.

Proof. It is enough to show thatKiΩM → KiΩN is an isomorphism for each i. It is
a direct summand of the map KiB

qM → KiB
qN (because Δ is split by ⊥), so is an

isomorphism for i > 0 and is injective for i = 0, by the cofinality theorem. It is also
surjective for i = 0, because Lemma 6.2 implies that K0B

qM⊕K0C
qN → K0B

qN
is surjective. �

Corollary 6.5. If M is an exact category, then there is a natural homotopy equiv-
alence of spectra KΩM ∼ V 0ΩKM.

Proof. According to Thomason [17, (A.9.2)], there is a natural procedure, which
adds images for the idempotent maps, that embeds M as a full subcategory, closed
under extensions, in an exact category N that supports long exact sequences. (The
appropriate admissible embedding N ↪→ A to use is the Gabriel-Quillen embed-
ding, which satisfies an even stronger property [17, (1.11.3.1)]: that a map of N
sent to an epimorphism of A is an admissible epimorphism of N ; for the proof,
see [17, (A.7.16(b))].) Since M is cofinal in N , the map KΩM → KΩN is a
natural homotopy equivalence, by Corollary 6.4, and V 0ΩKM → V 0ΩKN is a
natural homotopy equivalence, by the cofinality theorem, yielding the result from
Corollary 5.10. �
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Remark 6.6. It would be good to have a construction of the map KΩM → ΩKM,
for any exact category M (which might involve formally inverting some homotopy
equivalences), without first adding images for idempotent maps.

Remark 6.7. Let M and N be as in the proof of Corollary 6.5, and let M be
a bounded chain complex of M that is acyclic in N . The kernels Zi ∈ N of
the differentials di : Mi → Mi−1 all lie in coker(K0M → K0N ), and all but
finitely many of them are zero, so by Lemma 6.1 there is an object X such that
Zi ⊕ X ∈ M (up to isomorphism), for all i. Since Zi = 0 for some i, it follows
that X is isomorphic to an object of M, and thus we may assume X ∈ M. Hence
there is a bounded acyclic chain complex M ′ of M, obtained as a direct sum of

shifts of the chain complex [· · · → 0 → X
1−→ X → 0 → · · · ], such that M ⊕M ′ is

isomorphic to an acyclic chain complex of M.
Thus it seems that Definition 1.1 could be improved, for an arbitrary exact

category M, by saying that M is acyclic if it is a direct summand of a chain
complex obtainable by splicing short exact sequences together. It might also be a
good idea to require the complementary summand to arise by splicing short exact
sequences. Rewriting this paper from that point of view might be possible, but the
absence of the kernels of the differentials of M would prevent some arguments in
this paper and in [17] from going through verbatim. See [2] for an idea about how
to deal with that.

An alternative approach would be to try to use Schlichting’s definition of an
acyclic chain complex [12, Section 3.1.3]. A chain complex called “acyclic” here
is called “strictly acyclic” there, and an “acyclic” chain complex is defined there
to be one homotopy equivalent to a strictly acyclic chain complex. Schlichting’s
definition is based on the observation of Neeman and of Keller that a bounded
complex becomes zero in the derived category of M if and only if it is acyclic in
Schlichting’s sense.

7. Iteration of the construction

Because ΩN is a pair of exact categories, we may iterate the construction of
ΩN from N . Iterating n times yields an n-dimensional cubical diagram ΩnN of
exact categories; its multi-relative K-theory spectrum KΩnN is the n-fold iterated
homotopy cofiber of the corresponding cube of K-theory spectra and is considered
in the following corollary.

Corollary 7.1. If N is an exact category, then there is a natural homotopy equiv-
alence of spectra KΩnN ∼ V 0ΩnKN , for all n ≥ 0.

Proof. The case where n = 0 amounts to the statement that KN is connective,
which is true. Arguing by induction for n ≥ 1, we may assume that there is a natural
homotopy equivalence KΩn−1N ∼ V 0Ωn−1KN . It is implemented by a natural
zigzag of homotopy equivalences in various directions, where naturality means that
the spectra and maps in the zigzag are functorial in the exact category N . We will

apply the assumption to the source and target of the arrow ΩN = [CqN Δ−→ BqN ].
The map KΔ in the homotopy fibration sequence

KCqN KΔ−−→ KBqN → KΩN
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is split (by K	), so

V 0Ωn−1KCqN KΔ−−→ V 0Ωn−1KBqN → V 0Ωn−1KΩN
is also a homotopy fibration sequence; the splitting is needed to ensure that the long
exact sequence of homotopy groups remains exact when all the negative homotopy
groups are replaced by 0, and the exactness can be used to prove that the sequence
remains a homotopy fibration sequence. We combine it with the homotopy fibration
sequence that characterizes the multi-relative K-theory spectrum KΩnN in the
following diagram:

KΩn−1CqN KΔ
KΩn−1BqN KΩnN

V 0Ωn−1KCqN KΔ
V 0Ωn−1KBqN V 0Ωn−1KΩN .

The naturality in the inductive assumption, applied to the exact functor CqN Δ−→
BqN of exact categories, gives a zigzag of commutative squares connecting the two
vertical zigzags of homotopy equivalences in the diagram, yielding a natural zigzag
of homotopy equivalencesKΩnN ∼ V 0Ωn−1KΩN between the two cofibers. Corol-
lary 6.5 gives a natural homotopy equivalence V 0Ωn−1KΩN ∼ V 0Ωn−1V 0ΩKN .
Finally, the homotopy equivalence V 0Ωn−1V 0ΩKN ∼−→ V 0ΩnKN yields the re-
sult. �

Corollary 7.2. If N is an exact category, then there is a natural isomorphism of
groups KnN ∼= K0Ω

nN .

In the next corollary, we unwind the right-hand side of the isomorphism of Corol-
lary 7.2 in order to make the presentation of the abelian group KnN it provides
explicit.

Definition 7.3. An acyclic binary multicomplex of dimension n in N is an object
of the exact category (Bq)nN ; i.e., it is a bounded Z

n-graded object of N equipped
with acyclic differentials di and d′i in direction i, for each i with 1 ≤ i ≤ n, where
the maps di and d′i commute with dj and d′j provided i �= j. (Four pairs of maps
have just been asserted to commute: di commutes with dj , di commutes with d′j ,
d′i commutes with dj , and d′i commutes with d′j .) A map between acyclic binary
multicomplexes is a map of underlying graded objects that commutes with each of
the differentials, and a short exact sequence is a short sequence consisting of short
exact sequences in each component.

Corollary 7.4. If N is an exact category, then the abelian group KnN has the
following presentation by generators and relations. There is one generator for each
acyclic binary multicomplex of dimension n in N . The relations are of two types:
(1) those coming from short exact sequences, as in the definition of the Grothendieck
group; (2) any generator that is trivial, in the sense that di = d′i for some i, is made
to vanish.

Proof. Let X be a cube of connective spectra, let Xv be the spectrum at the
terminal vertex v of the cube, and let X̄ denote the iterated homotopy cofiber of
X. One sees that the abelian group π0X̄ is isomorphic to the quotient of π0Xv

by the subgroup generated by the images of the maps π0Xw → π0Xv arising from
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the edges w → v of the cube arriving at v. The proof goes by induction using the
long exact sequence of homotopy groups associated to a homotopy fiber sequence
of spectra.

We get the result by applying that to the situation at hand, in which X̄ =
KΩnN , Xv = K(Bq)nN , the edges w → v correspond to the various diagonal
maps KΔ : K(Bq)iCq(Bq)n−i−1N → K(Bq)nN , and π0X̄ ∼= KnN . �

8. Remarks

Remark 8.1. The double short exact sequences used by Nenashev as generators for
K1N in [10] and mentioned in the introduction of this paper are derived from the
generators used by Sherman in [14] and concern the case where n = 1 and the acyclic
binary complexes are supported on [0, 2]; i.e., they are the objects of the category
Bq

[0,2]N . Nenashev’s six-term relation follows from our relations by taking the total

complex of his 3×3-diagram and filtering it vertically and horizontally. If our map
K0B

q
[0,2]N → K1N agrees with Nenashev’s, then it is surjective, too. We have not

checked that, but it can be shown directly that K0Ω[0,2]N → K0ΩN is surjective,
for any exact category N , so acyclic binary complexes supported on [0, 2] suffice to
generate K1N ; we omit the proof, because it is complicated. It follows that acyclic
binary multicomplexes supported on [0, 2]n suffice to generateKnN . To see that, we
show for each i that the map ηi : K0Ω

i+1
[0,2]Ω

n−i−1N → K0Ω
i
[0,2]Ω

n−iN is surjective,

and then we compose those maps. The functors Ω[0,2] and Ω commute up to

natural isomorphism, so ηi is a direct summand of K0Ω[0,2](B
q
[0,2])

i(Bq)n−i−1N →
K0Ω(B

q
[0,2])

i(Bq)n−i−1N , which is surjective by our assertion with N replaced by

the exact category (Bq
[0,2])

i(Bq)n−i−1N , yielding surjectivity of ηi.

Remark 8.2. Here is a heuristic argument for the generation of K1N by acyclic
binary complexes of length 2, as asserted in Remark 8.1. Any element of πn+1KN
can be viewed as a proof that 0 = 0 in πnKN . A proof that 0 = 0 in K0N
amounts to writing the element 0 in the free abelian group generated by the objects
of N as a linear combination of expressions 〈P 〉 − 〈P ′〉 − 〈P ′′〉 arising from short
exact sequences 0 → P ′ → P → P ′′ → 0. Hence it amounts to an equation∑

i(〈Ni〉 − 〈N ′
i〉 − 〈N ′′

i 〉) =
∑

j(〈Mj〉 − 〈M ′
j〉 − 〈M ′′

j 〉). Writing N :=
⊕

i Ni,

etc., yields an isomorphism N ⊕M ′ ⊕M ′′ ∼= N ′ ⊕N ′′ ⊕M . The exact sequences
0 → N ′⊕M ′ → N⊕M ′⊕M ′′ → N ′′⊕M ′′ → 0 and 0 → N ′⊕M ′ → N ′⊕N ′′⊕M →
N ′′⊕M ′′ → 0 have isomorphic objects and thus yield an acyclic binary complex of
length 2 that seems to capture the essence of the proof, and thus every element of
K1N ought to arise this way. See also Remark 5.5.

Remark 8.3. The computation of the tame symbol in [3, (7.7)] was probably the
first place that acyclic binary complexes were encountered in K-theory. Actually,
the differentials there go in opposite directions, but there is a conjectural fix for
that. Namely, given exact sequences E = [A � B � C] and F = [C � B � A],
the two exact sequences [0 � A � A] ⊕ E ⊕ [C � C � 0] and [A � A �
0]⊕F ⊕ [0 � C � C] have the same underlying graded object, and thus determine
an acyclic binary complex. The corresponding classes in K1 are related; see [15,
(*) above Theorem 10].

Remark 8.4. The acyclic binary multicomplexes supported on [0, 1]n correspond to
the commuting n-tuples of automorphisms discussed in [6]. They include products
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of units, such as the Steinberg symbols in K2 of a ring, as well as the operation A�B
of Milnor [7], which produces an element of K2R from two commuting elementary
automorphisms.

Definition 8.5. For a ring R, let PR denote the exact category of finitely generated
projective left R-modules.

Remark 8.6. The Dennis-Stein symbols [16] in K2 of a commutative ring possibly
correspond to certain acyclic binary multicomplexes supported on [0, 2] × [0, 1].
Given elements a and b of a ring R such that 1 + ab is a unit, Dennis and Stein
define

〈a, b〉 := x21(−b/(1 + ab))x12(a)x21(b)x12(−a/(1 + ab))h12(1 + ab)−1 ∈ K2R,

where hij(u) := wij(u)wij(−1) and wij(u) = xij(u)xji(−u−1)xij(u). Given an
invertible n by n matrix θ over R, let I(θ) ∈ Bq

[0,1]PR be the acyclic binary complex

whose top differential is θ : Rn → Rn and whose bottom differential is idn : Rn →
Rn. For a unit u of R, let I(u) := I(u · id1). Given elements a and b of a ring R
such that 1− ab is a unit, the identity(

1 0
b 1

)(
1 a
0 1− ab

)
=

(
1 b
a 1

)
=

(
1− ab a

0 1

)(
1 0
b 1

)

shows that

α :=

(
1 a
0 1− ab

)
and β :=

(
1− ab a

0 1

)

are conjugate matrices, and hence that I(α) ∼= I(β). The triangular form of α and
β shows that we have exact sequences 0 → I(1) → I(α) → I(1 − ab) → 0 and
0 → I(1 − ab) → I(β) → I(1) → 0; these are two short exact sequences in BqPR
whose objects, in reverse order, are isomorphic. Using Remark 8.3, we get an object
of BqBqPR, hence a class in K0Ω

2PR, which is isomorphic to K2R. Perhaps the
corresponding element of K2R is 〈−a, b〉.

Appendix A. Exact categories with weak equivalences

In this section, we introduce K-theory of exact categories with weak equiva-
lences, modeled after Waldhausen’s notion of category with cofibrations and weak
equivalences [18, (1.1)] and motivated by Thomason’s treatment in [17].

Let N be an exact category. It is an additive category together with a collection
of short exact sequences that has an admissible embedding (see Definition 1.3).

We will assume that the exact categories under consideration in this paper are
small, so their K-theory spaces are defined. We also assume each exact category
comes with a chosen zero object called 0.

As Waldhausen does, we regard an exact category N as a category with cofi-
brations (in the sense of [18, (1.1)]) by letting the cofibrations be the admissible
monomorphisms. The cofibration sequences are thereby identified with the short
exact sequences, the coproduct N ∨N ′ of objects N and N ′ of N is identified with
the direct sum N ⊕N ′, and the zero object ∗ is identified with the zero object 0.

Definition A.1. An exact category with weak equivalences wN is an exact category
N with a category of weak equivalences w ⊆ N satisfying the extension axiom, in
the sense of [18, (1.2)].
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Definition A.2. If wN is an exact category with weak equivalences, we let KwN
denote its K-theory spectrum; see, for example, [17, Definition 1.5.3]. Its space
at level n, for n > 0, is realized concretely by the construction S. of Waldhausen,
iterated n times [18, (1.3) and (1.5.3)]:

KwN〈n〉 := |wS.nN|.

Defined that way, it is an Ω-spectrum starting at n = 1; i.e., the map KwN〈n〉 →
ΩKwN〈n+1〉 is a homotopy equivalence for n ≥ 1. For an integer m we let KmwN
denote the homotopy group πmKwN . It is the m-th K-group of wN .

Definition A.3. If N is an exact category, let i denote the subcategory of it
whose arrows are the isomorphisms, regarded as a category of weak equivalences.
We define the K-theory spectrum of N by KN := KiN , and we define KmN :=
KmiN .

Suppose f : vM → wN is an exact functor between exact categories equipped
with categories of weak equivalences; this means that f is an additive functor
M → N that sends short exact sequences of M to short exact sequences of N and
sends arrows in v to arrows in w. As in Definition 4.1, we let [f ] refer to f as an
object in its category of arrows.

Definition A.4. Let K[f ] denote the relative K-theory spectrum, whose defining
attribute is that it is the spectrum that fits into the following fibration sequence up
to homotopy:

KvM f−→ KwN → K[f ].

The spectrum K[f ] is realized concretely by the construction S.S.[f ] of Wald-
hausen [18, (1.5.5) and (1.5.7)], developed using [18, (1.5.3)] by repeating the S.-
construction n times, with n ≥ 1:

K[f ]〈n〉 := |S.nS.[f ]|.

Here S.[f ] is a certain simplicial exact category with weak equivalences defined in
[18, (1.5.4)].

To speak of the sequence above as a homotopy fibration sequence, one needs to
specify a preferred null-homotopy for the composite map. It is provided by the
commutative square

KvM f
KwN

K[1vM ] K[f ]

and the contractibility of K[1vM ]; see [18, 1.5.7]. In the body of the paper we
will leave the presence of such preferred null-homotopies and auxiliary contractible
spaces implicit.

For an integer m we let Km[f ] denote the homotopy group πmK[f ]. It is the
m-th K-group of [f ].
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The notion of a relative K-theory spectrum can be generalized to provide a
combinatorial construction of the multi-relative K-theory space KN of an n-dimen-
sional cube N of exact categories, as discussed in [5, §4] for spaces. Extending the
construction to yield a spectrum or to handle exact categories with weak equiva-
lences presents no difficulties.

Acknowledgments

The author thanks Alexander Nenashev for his welcome and unexpected result
that motivated the work here, as well as for many helpful remarks on a late draft
of this paper; Clayton Sherman, for his work that contributed to Nenashev’s result;
Friedhelm Waldhausen for his fibration and approximation theorems, for his hos-
pitality, and for useful comments on rough drafts of this paper; Robert Thomason
for his early and incisive application of Waldhausen’s methods to chain complexes;
Ulf Rehmann, Markus Rost, the University of Bielefeld, and the Sonderforschung
Bereich 701, for their hospitality, as much of this work was done in Bielefeld; the
referees for their helpful comments.

References

1. A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial
sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture
Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR513569 (80e:55021)
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