
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 31, Number 2, April 2018, Pages 303–318
http://dx.doi.org/10.1090/jams/883

Article electronically published on June 2, 2017

QUANTUM UNIQUE ERGODICITY AND THE NUMBER

OF NODAL DOMAINS OF EIGENFUNCTIONS

SEUNG UK JANG AND JUNEHYUK JUNG

1. Introduction

1.1. Nodal domains of eigenfunctions on a surface. Let (M, g) be a smooth
compact Riemannian surface without boundary, and let {un} be an orthonormal
Laplacian eigenbasis ordered by the eigenvalue, i.e.,

−Δgun = λ2
nun,

〈un, um〉M = δnm,

0 = λ0 < λ1 ≤ λ2 ≤ . . . ,

where Δg is the Laplace-Beltrami operator on M . Here 〈f, h〉M =
∫
M

fh̄dVg, where
dVg is the volume form of the metric g. We assume throughout the paper that every
eigenfunction is real valued. We denote by Zun

the nodal set {x ∈ M : un(x) = 0}
of un and by N (un) the number of nodal domains of un, where nodal domains are
the connected components of M\Zun

.
The purpose of this paper is to understand the growth of N (un) as n tends

to +∞. Note that Courant’s nodal domain theorem [CH53] and Weyl law imply
that N (un) = O(λ2

n). However, it is not true in general that the number of nodal
domains necessarily grows with the eigenvalue. For instance, when M = S2 (the
standard sphere) or M = T 2 (the flat torus), there exists a sequence of eigenfunc-
tions {unk

} with λnk
→ ∞ that satisfy N (φnk

) ≤ 3 [Ste25,Lew77,JN99].
We first state the main result of the paper.

Theorem 1.1. Let φ be a Hecke-Maass eigenform for an arithmetic triangle group
with eigenvalue λ. Then we have limλ→+∞ N (φ) = +∞.

Note that there are 76 arithmetic triangle groups [Tak77a] which are divided
into 18 commensurable classes [Tak77b].

Remark 1.2. This result in the stronger form of a lower bound of �ε λ
2
27−ε for the

number of nodal domains is obtained in [GRS15], however, assuming the generalized
Lindelöf hypothesis for a certain family of L-functions.

Received by the editors October 29, 2015 and, in revised form, January 13, 2017.
2010 Mathematics Subject Classification. Primary 58J51; Secondary 11F41.
The first author was partially supported by the National Institute for Mathematical Sciences

(NIMS) grant funded by the Korea government (No. A2320).
The second author was partially supported by the TJ Park Post-doc Fellowship funded by

POSCO TJ Park Foundation.
This work was supported by the National Research Foundation of Korea (NRF) grant funded

by the Korea government (MSIP) (No. 2013042157) and by the National Science Foundation
under agreement No. DMS-1128155.

c©2017 American Mathematical Society

303

http://www.ams.org/jams/
http://www.ams.org/jams/
http://dx.doi.org/10.1090/jams/883


304 SEUNG UK JANG AND JUNEHYUK JUNG

Remark 1.3. We refer the readers to Section 6 of [GRS15] for further examples;
Section 2.5 of [GRS15] might be required in order to apply Theorem 1.6 to those
examples.

Theorem 1.1 is a consequence of Theorem 1.6 given below which considers the
number of nodal domains when we have quantum unique ergodicity (QUE). Note
that the arithmetic quantum unique ergodicity theorem by Lindenstrauss [Lin06]
asserts that QUE holds for Maass-Hecke eigenforms on these triangles. In order to
state Theorem 1.6, we first fix a 	→ a(x, hD), a quantization of a symbol a(x, ξ) ∈
C∞ (T ∗M), to a pseudo-differential operator. (We refer the readers to [Zwo12]
for detailed discussion on the subject.) We say QUE holds for the sequence of
eigenfunctions {un}n≥1 if we have

(1.1) lim
n→∞

〈
a
(
x, λ−1

n D
)
un, un

〉
M

=

∫
S∗M

a(x, ξ)dμ

for any fixed symbol a ∈ C∞ (T ∗M) of finite order. Here dμ is a normalized
Liouville measure on the unit cotangent bundle S∗M . We often write Op(a) for an
operator that acts on an eigenfunction u with the eigenvalue λ as a(x, λ−1D).

Remark 1.4. The classical notions of equidistribution of these “Wigner measures”
[Šni74,CdV85,Zel87] are concerned with (1.1) for degree zero homogeneous symbols.
One can prove that if (1.1) holds with degree zero homogeneous symbols, then (1.1)
holds with finite order symbols, by observing that any weak limit of these measures
is supported in S∗M ⊂ T ∗M .

Remark 1.5. For a compact smooth negatively curved Riemannian manifold, it is
conjectured by Rudnick and Sarnak [RS94] that QUE holds for any given orthonor-
mal eigenbasis {un}.
Theorem 1.6. Let M be a smooth compact Riemannian surface without boundary.
Assume that there exists an orientation-reversing isometric involution τ : M → M
such that Fix(τ ) is separating. Let {un} be an orthonormal basis of L2(M) such
that each un is a joint eigenfunction of the Laplacian and τ . Assume that QUE
holds for the sequence {un}. Then

lim
n→∞

N (un) = +∞.

We say a function f on M is even (resp. odd) if τf = f (resp. τf = −f).
In order to prove Theorem 1.6, we first use a topological argument to bound the
number of nodal domains of an even (resp. odd) eigenfunction from below by the
number of sign changes (resp. the number of singular points) of the eigenfunction
along Fix(τ ). Such an argument is first developed in [GRS13], and we review in
Section 4.1 in terms of the nodal graphs and Euler’s inequality as in [JZ16]. We
then use Bochner’s theorem and a Rellich type identity to deduce from QUE that
even (resp. odd) eigenfunctions {un} have a growing number of sign changes (resp.
singular points) along Fix(τ ) as n tends to +∞. This is the main contribution of
the paper, and we sketch the argument in the following section.

Remark 1.7. In [JZ16], the same assertion has been obtained whenM is a negatively
curved surface, but for a density one subsequence of {un}. The argument of [JZ16]
to detect a sign change of an eigenfunction un on a curve β is to compare∣∣∣∣∫

β

un(s)ds

∣∣∣∣ and

∫
β

|un(s)|ds.
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(See [GRS13, Jun16, BR15, JZ16, Mag15, GRS15], where such an idea is used to
prove a lower bound for the number of sign changes in various contexts.) In order to
bound ‖un‖L1(β) from below using Hölder’s inequality, the authors use the quantum
ergodic restriction (QER) theorem [TZ13,DZ13] for the lower bound of ‖un‖L2(β)

and the point-wise Weyl law with an improved error term [Bér77] for the upper
bound of ‖un‖L∞(β). For the upper bound of the integral of un over β, the authors
use the Kuznecov sum formulas [Zel92]. Note that the result of [Bér77] requires a
global assumption on the geometry of M that it does not have conjugate points,
which is satisfied if M is negatively curved. Also note that in order to bound
such quantities using QER theorem and Kuznecov sum formulas, it is necessary to
remove a density 0 subsequence.

1.2. Sketch of the proof: sign changes of even eigenfunctions. The main
step in the proof of Theorem 1.6 is to show that all but finitely many un have at
least one sign change on any given fixed segment β of Fix(τ ).

To simplify the discussion, let {ψn} be a sequence of functions in C∞
0 ([0, 1]).

Assume that for any fixed integer m ≥ 0 we have

(1.2) lim
n→∞

∫ 1

0

∣∣∣∣∂mψn

∂sm
(s)

∣∣∣∣2 ds = a2m,

for some positive real number a2m. Let hn(ξ) = |gn(ξ)|2/‖gn‖22, where gn(ξ) is the
Fourier transform of ψn,

gn(ξ) = (2π)−
1
2

∫ 1

0

eiξsψn(s)ds.

Assume that there exists a unique probability measure dμ(ξ) whose 2mth moment
is a2m/a0 and whose (2m+1)th moment is zero for any m ≥ 0. Then (1.2) implies
that a sequence of probability measures hn(ξ)dξ converges to dμ(ξ) in moments.

We claim that all but finitely many ψn have at least one sign change on (0, 1)
under the assumption that dμ(ξ) is not positive-definite, i.e., not a Fourier trans-
form of a positive measure (Lemma 4.6). Assume for contradiction that there exists
a subsequence {ψnk

} of {ψn} such that ψnk
does not change sign on (0, 1) for all

k. Then by Bochner’s theorem, {hnk
(ξ)} is a sequence of positive-definite func-

tions, and it cannot converge in moments to a measure that is not positive-definite,
contradicting the assumption that dμ(ξ) is not positive-definite.

Now let f ∈ C∞
0 (β) be a non-negative function. Our aim is to apply the above

argument to ψn(s) = f(s)un|β(s), when QUE holds for the sequence of eigenfunc-
tions {un}. Note that it is not known whether the limit

lim
n→∞

∫
β

|ψn(s)|2ds

should exist. However, under the assumption that QUE holds for {un}, we may
instead compute the limit (Theorem 3.1)

(1.3) lim
n→∞

∫
β

|ψn(s)|2 −
∣∣∣∣ 1

λm
n

∂mψn

∂sm
(s)

∣∣∣∣2 ds = 2(1− b2m)

∫
β

f2(s)ds

for each fixed m ≥ 0 with an explicit constant 0 < b2m ≤ 1 using the Rellich
identity, as in the proof of the quantum uniquely ergodic restriction theorem of
[CTZ13].
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We first deduce from (1.3) that (Corollary 3.2)

lim inf
n→∞

∫
β

|ψn(s)|2 ds ≥ 2

∫
β

f2(s)ds,

and so

lim sup
n→∞

2

∫
β

f2(s)ds

(∫
β

|ψn(s)|2 ds
)−1

≤ 1.

Assume for simplicity that, for some 0 ≤ a ≤ 1, we have

lim
n→∞

2

∫
β

f2(s)ds

(∫
β

|ψn(s)|2 ds
)−1

= a.

Then (1.3) implies that

lim
n→∞

∫
β

∣∣∣∣ 1

λm
n

∂mψn

∂sm
(s)

∣∣∣∣2 ds(∫
β

|ψn(s)|2 ds
)−1

= (1− a) + ab2m,

and we may apply the argument to

hn(ξ) = λn

∣∣∣ψ̂n(λnξ)
∣∣∣2 (∫

β

|ψn(s)|2 ds
)−1

to conclude that all but finitely many un have at least one sign change on β, by
verifying that the unique measure having (1− a) + ab2m as the 2mth moment and
0 as the (2m+ 1)th moment is not positive-definite for any given 0 ≤ a ≤ 1. This
implies that the number of sign changes of un along Fix(σ) tends to +∞ as n → ∞
(Theorem 4.3).

2. Lp
estimates for the restriction to a curve of derivatives

of eigenfunctions

Let u be a Laplacian eigenfunction with the eigenvalue λ. Let L be a degree m
linear differential operator on M ; i.e., for any coordinate patch (U, p) there exist
smooth functions aα ∈ C∞(Rn) (in which aα ≡ 0 for some α with |α| = m) such
that for any φ, ψ ∈ C∞

0 (U) and for each f ∈ C∞(M),

φL(ψf) = φp∗
∑

|α|≤m

aα(x)∂
α
(
p−1

)∗
(ψf).

Recall that

(2.1) sup
x∈M

|Lu(x)| = O
(
λm+ 1

2

)
,

which is a consequence of the generalization of remainder estimate for spectral
function by Avakumovic-Levitan-Hörmander to that for the derivatives of spectral
function [Bin04]. Denoting by 〈f, g〉β =

∫
β
f(s)g(s)ds, (2.1) implies that

(2.2) |〈Lu, u〉β| �β sup
x∈M

|Lu(x)| sup
x∈M

|u(x)| = O
(
λm+1

)
.

In the proof of Theorem 3.1, we need an improvement over (2.2), and we achieve
an improvement by combining the L2 eigenfunction restrictions estimates along
curves due to Burq, Gérard, and Tzvetkov [BGT07] and (2.1).

Lemma 2.1. For any fixed degree m differential operator L, we have

|〈Lu, u〉β| = O
(
λm+ 3

4

)
.
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Proof. By Hölder’s inequality,

|〈Lu, u〉β| ≤ sup
x∈M

|Lu(x)| ‖u‖L1(β).

From [BGT07], we have ‖u‖L2(β) = O
(
λ

1
4

)
; hence

‖u‖L1(β) ≤ l(β)
1
2 ‖u‖L2(β) = Oβ

(
λ

1
4

)
.

Therefore by (2.1), we conclude

|〈Lu, u〉β| = O
(
λm+ 3

4

)
. �

Since we only need any power saving over O
(
λm+1

)
in (2.2) in our proof, it is

unnecessary to optimize our bound in Lemma 2.1. The optimal upper bound for

‖Lu‖L2(β) is O
(
λm+ 1

4

)
which is sharp when L = 1 and M is the standard sphere

S2. Note that when L corresponds to a normal derivative along β, the bound can
be improved to O(1) using second-microlocalization techniques, due to [CHT15].

3. Rellich type analysis when QUE holds: even eigenfunctions

In this section, we prove (1.3) with explicit constants {b2m}. The main idea is
to follow the computation involving the Rellich identity in [CTZ13], with a specific
choice of symbols.

Theorem 3.1. Assume that QUE holds for the sequence of even eigenfunctions
{un}. Fix a segment β ⊂ Fix(τ ). For any fixed real valued function f ∈ C∞

0 (β)
and for any fixed non-negative integer m, we have

lim
n→∞

∫
β

|f(t)un(t)|2dt− λ−2m
n

∫
β

|∂m
t (f(t)un(t))|2 dt

= 2

(
1− 1

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

)∫
β

f2(t)dt.

Proof. We drop the subscript n in un and λn for simplicity.
Let (t, n) be Fermi normal coordinates in a small tubular neighborhood Uε of β

near a point x0 ∈ β. Let p : Uε → R
2 be the coordinate chart. We may assume

that

U = Uε = p−1 ({(t, n) | t ∈ V, |n| < ε})
in these coordinates, where V ⊂ R is a coordinate chart that contains x0. Let
(t, n, ξt, ξn) be the local coordinates of T ∗(U) under the identification

R
2 → T ∗

x=(t,n)(U),

(ξt, ξn) 	→ ξtdt+ ξndn.

We consider the standard quantization in these coordinates; i.e., for any given
symbol a(t, n, ξt, ξn) of finite order, we let

Op(a)u(t0, n0)

=
λn

(2π)n

∫
p(U)×R2

eλi((t0−t)ξt+(n0−n)ξn)a(t0, n0, ξt, ξn)u(t, n)dtdndξtdξn.
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For example, if a(t, n, ξt, ξn) =
∑

|α|≤N aα(t, n)ξ
α1
t ξα2

n , then

Op(a)u =
∑

|α|≤N

aα(t, n)

(
∂t
iλ

)α1
(
∂n
iλ

)α2

u.

Let U− ⊂ U be given by

U− = {(t, n) ∈ U | n < 0}.

For any pseudo-differential operator T on M , from Green’s formula, we have

(3.1) 〈ΔgTu, u〉U− − 〈Tu,Δgu〉U− = 〈∂nTu|β , u|β〉β − 〈Tu|β , ∂nu|β〉β.

Since u is an eigenfunction, 〈Tu,Δgu〉U− = 〈TΔgu, u〉U− . Also since we are assum-
ing that u is even, 〈Tu|β, ∂nu|β〉β = 0. Therefore we have the Rellich identity,

(3.2)
1

λ
〈[−Δg, T ]u, u〉U− = − 1

λ
〈∂nTu|β , u|β〉β,

where λ−1 is the normalizing factor.
Now fix χ ∈ C∞

0 (R) such that

χ(x) =

{
0 if |x| ≥ 1,
1 if |x| ≤ 1

2 .

We define a symbol supported near β for 0 < δ < ε,

aδ,m(x, ξ) = χ
(n
δ

)
f2(t)iξn

m−1∑
k=0

ξ2kt ,

and let T = Op(aδ,m). Observing that −(∂2
n+ ∂2

t )u = λ2u along β, we may rewrite
the right-hand side (RHS) of (3.2) as〈

f2
(
1 + (−1)m−1λ−2m∂2m

t

)
u|β, u|β

〉
β
.

We integrate by parts to further simplify the second term as follows:〈
(−1)m−1f2λ−2m∂2m

t u|β , u|β
〉
β
+ λ−2m 〈∂m

t (fu|β) , ∂m
t (fu|β)〉β

=
〈
(−1)m−1λ−2mf [f, ∂2m

t ]u|β , u|β
〉
β

=Om,f (λ
− 1

4 ),

where we used Lemma 2.1 with L = f [f, ∂2m
t ] in the last estimate. So we have

(3.3)

− 1

λ2
〈∂nTu|β , u|β〉β =

∫
β

|f(t)u(t)|2dt− λ−2m

∫
β

|∂m
t (f(t)u(t))|2 dt+Om,f

(
λ− 1

4

)
.

Now let −Δg =
∑

|α|=1,2 bα(n, t)
(
∂n

i

)α1
(
∂t

i

)α2
. Observe from (2.1) that if α1 +

α2 = 1,

1

λ

[
bα(n, t)

(
∂n
i

)α1
(
∂t
i

)α2

, χ
(n
δ

)
f2(t)

(−1)k∂n∂
2k
t

λ2k+1

]
u = Oδ,m,f (λ

− 1
2 ),
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and that if α1 + α2 = 2,

1

λ

[
bα(n, t)

(
∂n
i

)α1
(
∂t
i

)α2

, χ
(n
δ

)
f2(t)

∂n(−1)k∂2k
t

λ2k+1

]
u

=Op
(α1

δ
bα(n, t)χ

′
(n
δ

)
f2(t)ξα1

n ξ2k+α2
t

)
u

+Op
(
χ
(n
δ

)
Rm,f,α(n, t, ξn, ξt)

)
u+Oδ,m,f (λ

− 1
2 )

for some symbol Rm,f,α of finite order depending only on m, f, α. Therefore we
may reexpress the left-hand side (LHS) of (3.2) as

〈
Op

⎛⎝ ∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ

′
(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt

⎞⎠u, u

〉
U−

+
〈
Op

(
χ
(n
δ

)
Rm,f (n, t, ξn, ξt)

)
u, u

〉
U−

+Oδ,m,f (λ
− 1

2 )

for some finite order symbol Rm,f .
We bound the second inner product using Cauchy-Schwartz inequality by

∣∣∣∣〈Op
(
χ
(n
δ

)
Rm,f (n, t, ξn, ξt)

)
u, u

〉
U−

∣∣∣∣
≤
∥∥∥Op

(
χ
(n
δ

)
Rm,f (n, t, ξn, ξt)

)
u
∥∥∥2
L2(U−)

≤
∥∥∥Op

(
χ
(n
δ

)
Rm,f (n, t, ξn, ξt)

)
u
∥∥∥2
L2(U)

,

and from the assumption that the QUE holds, we may estimate the last quantity
as Om,f (δ) + oδ,m,f (1) as λ tends to +∞.

Now let χ0 ∈ C∞
0 (R) be given by χ0(x) = χ′(x) if x < 0, and χ0(x) = 0

otherwise. We then have

〈
Op

⎛⎝ ∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ

′
(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt

⎞⎠u, u

〉
U−

=

〈
Op

⎛⎝ ∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ0

(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt

⎞⎠u, u

〉
U

=

∫
S∗U

∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ0

(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt dμ+ oδ,m,f (1)(3.4)

as λ tends to +∞ from the assumption that QUE holds.
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We therefore conclude from (3.3) and (3.4) that∫
β

|f(t)u(t)|2dt− λ−2m

∫
β

|∂m
t (f(t)u(t))|2 dt

=

∫
S∗U

∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ0

(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt dμ

+Om,f

(
λ− 1

4

)
+Om,f (δ) + oδ,m,f (1),

and so

lim
λ→∞

∫
β

|f(t)u(t)|2dt− λ−2m

∫
β

|∂m
t (f(t)u(t))|2 dt

=

∫
S∗U

∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ0

(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt dμ+Om,f (δ).

Note that no terms in the left-hand side depend on δ. Also note that b20(0, t) =
b02(0, t) = 1 and b11(0, t) = 0 since we are taking the Fermi normal coordinate.
Therefore by taking δ → 0, we have

lim
δ→0

∫
S∗U

∑
|α|=2

α1ξ
α1
n ξα2

t

δ
bα(n, t)χ0

(n
δ

)
f2(t)

m−1∑
k=0

ξ2kt dμ+Om,f (δ)

=

∫
S∗
βU

∑
|α|=2

α1bα(0, t)f
2(t)ξα1

n ξα2
t

m−1∑
k=0

ξ2kt dμ

=
1

π

∫
β

f2(t)dt

∫
ξ2t+ξ2n=1

(1− ξ2mt )dξ

=2

(
1− 1

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

)∫
β

f2(t)dt.

This implies that

lim
λ→∞

∫
β

|f(t)u(t)|2dt− λ−2m

∫
β

|∂m
t (f(t)u(t))|2 dt

= 2

(
1− 1

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

)∫
β

f2(t)dt+ om,f (1)

as δ → 0, and since δ can be chosen arbitrarily small, we conclude that

lim
λ→∞

∫
β

|f(t)u(t)|2dt− λ−2m

∫
β

|∂m
t (f(t)u(t))|2 dt

= 2

(
1− 1

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

)∫
β

f2(t)dt.

�

As an immediate application of Theorem 3.1, we give a sharp lower bound for
the L2 estimate of the restriction of eigenfunctions.
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Corollary 3.2. Assume that QUE holds for the sequence of even eigenfunctions
{un}. Then for any fixed real valued function f ∈ C∞

0 (β), we have

lim inf
n→∞

∫
β

f2(t)|un(t)|2dt ≥ 2

∫
β

f2(t)dt.

Proof. By the positivity of λ−2m
∫
β
|∂m

t (f(t)u(t))|2 dt,

lim inf
n→∞

∫
β

f2(t)|un(t)|2dt ≥ 2

(
1− 1

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

)∫
β

f2(t)dt

= 2

∫
β

f2(t)dt+O(1/m1/2).

Since the limit does not depend on m, we conclude that

lim inf
n→∞

∫
β

f2(t)|un(t)|2dt ≥ 2

∫
β

f2(t)dt. �

Remark 3.3. A constant lower bound for the L2 norm of the restriction of an
eigenfunction to a geodesic segment is first proven in [GRS13], when the geodesic
segment is sufficiently long, from the arithmetic QUE theorem [Lin06,Sou10].

Remark 3.4. If the geodesic flow on M is ergodic, it is known that there exists a
density 1 subsequence {un} of even eigenfunctions that satisfies

(3.5) lim
n→∞

‖un‖2L2(β) = 2l(β);

hence the lower bound in Corollary 3.2 is sharp. The existence of such a subsequence
is a consequence of results which are studied in [Bur05,TZ13,DZ13,CTZ13].

Remark 3.5. If β is not a part of Fix(τ ) and satisfies a certain asymmetry condition
(see, for instance, [TZ13, Definition 1]), then

lim
k→∞

‖unk
‖2L2(β) = l(β)

along a density 1 subsequence {unk
} of {un}. When β is a segment of Fix(τ ), then

every odd eigenfunction vanishes identically on β, hence explaining why we expect
the factor 2 in (3.5).

4. The number of nodal domains of even eigenfunctions

4.1. Graph structure of the nodal set and Euler’s inequality. In this sec-
tion we briefly review the topological argument in [GRS13,JZ16] on bounding the
number of nodal domains from below by the number of zeros on Fix(τ ). We refer
the readers to [JZ16] for details.

First note that if there exists a segment of η ⊂ Fix(τ ) such that η ⊂ Zu, then
because the normal derivative of u vanishes along Fix(τ ), any point on η is a singular
point, contradicting the upper bound on the number of singular points in [Don92].
Therefore together with the following lemma on the local structure of the nodal
set, we conclude that Zu ∩ Fix(τ ) is a finite set of points.

Lemma 4.1 (Section 6.1, [JZ16]). Assume that u vanishes to order N at x0.
Then there exists a small neighborhood U of x0 such that the nodal set in U is C1

equivalent to 2N equi-angular rays emanating from x0.
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From Lemma 4.1, we may view the nodal set as a graph (a nodal graph) embedded
on a surface as follows:

(1) For each connected component of Zu that is homeomorphic to a circle and
that does not intersect Fix(τ ), we add a vertex.

(2) Each singular point is a vertex.
(3) Each intersection point in Fix(τ ) ∩ Zu is a vertex.
(4) Edges are the arcs of Zu ∪ Fix(τ ) that join the vertices listed above.

Let V (u) and E(u) be the finite set of vertices and the finite set of edges given
above, respectively. This way, we obtain a nodal graph V (u), E(u) of u embedded
into the surface M .

From the assumption that Fix(τ ) is separating, the nodal domains that intersect
Fix(τ ) are cut in two by Fix(τ ). Therefore the number of faces divided by two
bounds the number of nodal domains N (u) from below.

Observe from Lemma 4.1 that every vertex of a nodal graph has a degree at least
2. Then by Euler’s inequality [JZ16, (6.1)],

|V (u)| − |E(u)|+ |F (u)| −m(u) ≥ 1− 2g,

we obtain a lower bound for the number of nodal domains by the number of zeros
on Fix(τ ). Here m(G) is the number of connected components of the nodal graph,
and g is the genus of the surface M .

Lemma 4.2 (Lemma 6.4, [JZ16]).

N (u) ≥ 1

2
# (Zu ∩ Fix(τ )) + 1− g.

Therefore in order to prove Theorem 1.6, it is sufficient to prove the following
theorem.

Theorem 4.3. Assume that QUE holds for the sequence of even eigenfunctions
{un}n≥1. Then

lim
n→∞

#(Zun
∩ Fix(τ )) = +∞.

4.2. Lemmata from probability theory. In order to prove Theorem 4.3, we
first recall some facts about probability measures. We assume that all random
variables in this section are defined on the real line.

Lemma 4.4. Suppose a random variable X has moments μk = E[Xk] that satisfies
the condition

lim sup
k→∞

μ
1
2k

2k /2k = r < ∞.

Then, X has the unique distribution with moments (μk)k≥1.

Proof. See [Dur10, Theorem 3.3.11]. �
Lemma 4.5. If Xn converges to X in moments and the distribution of X is
uniquely determined by its moments, then for each t ∈ R, E[eitXn ] converges to
E[eitX ].

Proof. Suppose we have a counterexample of this lemma. That is, we have a se-
quence (Xn) of random variables and X a random variable, such that E[Xm

n ] →
E[Xm] for all m > 0, but E[exp(it0Xn)] → E[exp(it0X)] for some t0 ∈ R.

Let Fn(x) := Pr[Xn ≤ x] be the cumulative distribution functions of random
variable Xn. By Helly’s selection theorem [Dur10, Theorem 3.2.6], together with
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the tightness of (Xn)’s [Dur10, Theorems 3.2.7 and 3.2.8] there exists a subsequence
(Fnk

) that converges to a cumulative distribution function G of some random vari-
able Y on the real line.

[Dur10, Theorem 3.2.2] implies that, by appropriately settling the probability
space Ω for Xnk

’s and Y , we can have Xnk
(ω) → Y (ω) almost surely for ω ∈ Ω.

(For instance, we can set Ω = (0, 1), Pr = (the Lebesgue measure), and Xnk
(ω) =

sup{x ∈ R | Fnk
(x) < ω}, etc.) In particular, as exp(it0Xnk

) → exp(it0Y ) almost
surely, together with | exp(it0Xnk

)| ≤ 1 for all k implies that E[exp(it0Xnk
)] →

E[exp(it0Y )] by the bounded convergence theorem.
From the assumption that X is the unique random variable with the sequence

of the moments (E[Xm]), we claim X = Y by showing that E[Xm] = E[Y m] for all
m > 0. Equivalently, E[Xm

nk
] → E[Y m] as k → ∞. Denote by χM the indicator

function of [−M,M ] for M > 0. We first estimate

|E[Xm
nk
]− E[Y m]| ≤ E[|Xnk

|m(1− χM (Xnk
))] + E[|Y |m(1− χM (Y ))]

+ |E[Xm
nk
χM (Xnk

)− Y mχM (Y )]|.
We bound the first term by Cauchy-Schwarz inequality and Markov inequality,

E[|Xnk
|m(1− χM (Xnk

))] ≤ E[|Xnk
|2m]

1
2E[(1− χM (Xnk

))2]
1
2

= E[X2m
nk

]
1
2 (Pr[|Xnk

| > M ])
1
2

≤ E[X2m
nk

]
1
2E[X2

nk
]
1
2M−1 ≤ KM−1,

where K = sup{E[X2m
nk

],E[X2
nk
] | k} < ∞. We bound the second term by Fatou’s

lemma,

E[|Y |m(1− χM (Y ))] ≤ lim inf
k→∞

E[|Xnk
|m(1− χM (Xnk

))] ≤ KM−1,

where we used the estimate of the first term in the last inequality. Finally, observe
that the third term converges to 0, i.e., |E[Xm

nk
χM (Xnk

) − Y mχM (Y )]| → 0 as
k → ∞, by the bounded convergence theorem.

Therefore
lim sup
k→∞

|E[Xm
nk
]− E[Y m]| = O(M−1),

and since M can be chosen arbitrarily large, we conclude E[Xm
nk
] → E[Y m] which

implies that X = Y . Therefore E[exp(it0Xnk
)] → E[exp(it0Y )] = E[exp(it0X)],

contradicting the initial assumption

E[exp(it0Xnk
)] → E[exp(it0X)]. �

We now present a new method for detecting sign changes of functions using
Lemma 4.4, Lemma 4.5, and Bochner’s theorem.

Lemma 4.6. Let {fn} be a sequence of real valued functions in C∞
0 ([0, 1]), and let

{an} be a sequence of positive reals such that for each fixed non-negative integer m
we have

(4.1) lim
n→∞

a−2m
n

∫ 1

0

|∂m
x fn(x)|2 dx = b2m

for some positive real numbers b2m. Assume that dμ(ξ) is the unique probability
distribution whose 2mth moment is b2m/b0 and whose (2m + 1)th moment is zero
for any m ≥ 0. If dμ(ξ) is not positive-definite, then all but finitely many fn has
at least one sign change on (0, 1).
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Proof. Assume for contradiction that there exists a subsequence {fnk
} such that

fnk
does not change sign on (0, 1) for all k ≥ 1. Let hk be given by

hk(ξ) =
ank

2π

∣∣∣∣∫ 1

0

fnk
(x)eiank

ξxdx

∣∣∣∣2 (∫ 1

0

|fnk
(x)|2dx

)−1

.

Then from (4.1), we have for each m ≥ 0,

lim
k→∞

∫ ∞

−∞
ξ2mhk(ξ)dξ = b2m/b0,

and since hk(ξ) is an even function in ξ, the sequence of probability distribution
{hk(ξ)dξ} converges in moments to dμ(ξ). We therefore conclude from Lemma 4.5
that the sequence of characteristic functions of hk(ξ)dξ converges point-wise to the
characteristic function of dμ(ξ).

Now observe that since fnk
does not change sign along (0, 1), hk(ξ) is a positive-

definite function in ξ for each k by Bochner’s theorem. Therefore the characteristic
function of hk(ξ)dξ is a non-negative function for each k. However, since we assumed
dμ(ξ) is not positive-definite, the characteristic function

∫∞
−∞ eitξdμ(ξ) is negative

for some t ∈ R, which contradicts the point-wise convergence of characteristic
functions. We therefore conclude that all but finitely many fn has at least one sign
change on (0, 1). �

4.3. Sign changes of even eigenfunctions on fixed segments.

Lemma 4.7. Assume that QUE holds for the sequence of even eigenfunctions
{un}n≥1. For any fixed segment β ⊂ Fix(τ ), all but finitely many un have at
least one sign change on β.

Proof. Assume for contradiction that there exists a subsequence of even eigenfunc-
tions {unk

}k≥1 such that unk
does not change sign along β for all k ≥ 1. Fix a

non-negative function f ∈ C∞
0 (β).

First, by Corollary 3.2, we can find a subsequence {ujk}k≥1 ⊂ {unk
}k≥1 such

that

lim
k→∞

2

∫
β

f2(t)dt||fujk ||−2
L2(β) = a

for some 0 ≤ a ≤ 1. Then by Theorem 3.1, we have that

lim
k→∞

1− λ−2m
jk

∫
β

|∂m
t (f(t)ujk(t))|

2 ||fujk ||−2
L2(β)dt = a− a

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

.

We therefore have

lim
k→∞

λ−2m
jk

∫
β

|∂m
t (f(t)ujk(t))|

2 ||fujk ||−2
L2(β)dt = (1− a) +

a

π

∫ 1

−1

ξ2m
dξ√
1− ξ2

=

∫ ∞

−∞
ξ2mdμa(ξ)

= b2m,

where dμa(ξ) is the probability measure given by

dμa(ξ) =
(1− a)

2
(δ−1(ξ) + δ1(ξ))dξ +

a

π
I[−1,1](ξ)

dξ√
1− ξ2

.
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Here I[−1,1](ξ) is the indicator function of [−1, 1]. Observe that∫ ∞

−∞
ξ2mdμa(ξ) ≤ (1− a) +

a

π

∫ 1

−1

dξ√
1− ξ2

= 1,

and

lim sup
m→∞

1

2m
b

1
2m
2m = 0 < +∞,

so by Lemma 4.4, dμa(ξ) is the only probability measure on R whose 2mth moment
is b2m and whose (2m+ 1)th moment is zero for any m ≥ 0.

Note that the characteristic function of dμa(ξ) is given by∫ ∞

−∞
eitξdμa(ξ) = (1− a) cos(t) + aJ0(t),

where J0(t) is the Bessel function of the first kind and that

(1− a) cos(π) + aJ0(π) ≤ J0(π) = −0.3042 . . . < 0

which implies that dμa(ξ) is not positive-definite.
It now follows from Lemma 4.6 that f(t)ujk has at least one sign change along

β for all but finitely many k, which contradicts the assumption that unk
does not

change sign on β for all k ≥ 1. We therefore conclude that all but finitely many un

have at least one sign change on β. �
We complete the proof of Theorem 1.6 by proving Theorem 4.3.

Proof of Theorem 4.3. Fix N ∈ N. Let β1, . . . , βN ⊂ Fix(τ ) be a set of disjoint
segments. Then by Lemma 4.7, for all sufficiently large k, un has at least one sign
change on each curve βi for i = 1, . . . , N . Hence we have

lim inf
k→∞

#(Zun
∩ Fix(τ )) ≥ N,

and since N can be chosen arbitrarily large, we conclude that

lim
k→∞

#(Zun
∩ Fix(τ )) = +∞. �

5. Nodal domains of odd eigenfunctions

In this section we prove an analogy of Theorem 1.6 for sequence odd eigenfunc-
tions assuming QUE. Recall from (3.1) that

〈ΔgTu, u〉U− − 〈Tu,Δgu〉U− = 〈∂nTu|β , u|β〉β − 〈Tu|β, ∂nu|β〉β.
From the assumption that u is an odd eigenfunction, we have the Rellich identity
for odd eigenfunctions

(5.1)
1

λ
〈[−Δg, T ]u, u〉U− =

1

λ
〈Tu|β, ∂nu|β〉β.

Let
aδ,m(x, ξ) = χ

(n
δ

)
f2(t)ξ2mt ξn,

and let T = Op(aδ,m). For simplicity, let Nu = λ−1∂nu|β . Then the RHS of (5.1) is

(−1)mλ−2m

∫
β

f2(t)
(
∂2m
t Nu(t)

)
Nu(t)dt

= λ−2m

∫
β

|∂m
t (f(t)Nu(t))|2 dt+Om,f

(
λ− 1

4

)
,
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and the LHS of (5.1) is

2

π

∫ 1

−1

ξ2m
√
1− ξ2dξ

∫
β

f2(t)dt+ oδ,m,f (1) +Om,f (δ).

Therefore Theorem 3.1 for odd eigenfunctions assuming QUE is

lim
k→∞

λ−2m
n

∫
β

|∂m
t (f(t)Nun(t)) |2dt =

2

π

∫
β

f2(t)dt

∫ 1

−1

ξ2m
√
1− ξ2dξ

= b2m

∫
β

f2(t)dt.

Let dμ(ξ) = π−1
√
1− ξ2dξ. Observe that

b2m =
2

π

∫ 1

−1

ξ2m
√
1− ξ2dξ ≤ 2

π

∫ 1

−1

√
1− ξ2dξ = 1,

and

lim sup
m→∞

1

2m
b

1
2m
2m = 0 < +∞,

so by Lemma 4.4, dμ(ξ) is the only probability measure on R whose 2mth moment
is b2m and whose (2m+ 1)th moment is zero for any m ≥ 0. Now note that∫

eitξdμ(ξ) = J1(t)/t,

and since J1(5)/5 = −0.0655 . . . < 0, dμ(ξ) is not positive-definite, so we may apply
Lemma 4.6 to conclude.

Lemma 5.1. Assume that QUE holds for a sequence of odd eigenfunctions {un}.
For any fixed segment β ⊂ Fix(τ ), all but finitely many ∂nun|β has at least one sign
change on β.

As in Theorem 4.3, Lemma 5.1 implies the following.

Theorem 5.2. Assume that QUE holds for a sequence of odd eigenfunctions {un}.
Then

lim
k→∞

#{x ∈ Fix(τ ) : (∂nun)(x) = 0} = +∞.

We now use the topological argument in [GRS13, JZ16] to conclude an analogy
of Theorem 1.6 for odd eigenfunctions.

Theorem 5.3. Assume that QUE holds for a sequence of odd eigenfunctions {un}.
Then

lim
k→∞

N (un) → +∞.

6. Proof of Theorem 1.1

We now prove Theorem 1.1 using Theorem 1.6. Let Γ be an arithmetic triangle
group, and let X = Γ\H. Let {φj}j be the complete sequence of Hecke-Maass eigen-
forms on X; i.e., it is a joint eigenfunction of −Δg and Hecke operators {Tn}n≥1. It
is shown in [GRS15] that there exists an orientation-reversing isometric involution
τ : X → X such that Fix(τ ) is separating and that τ commutes with all Tn. From
the multiplicity one theorem for Hecke eigenforms [AL70], the sequence of Hecke
eigenvalues {λφ(n)}n≥1 of Tn (i.e., Tnφ = λφ(n)φ) determines φ uniquely. Hence
any Hecke-Maass eigenform φj on X is an eigenfunction of τ so that we have either
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τφj = φj or τφj = −φj for all j. Now from the arithmetic quantum unique ergod-
icity theorem by Lindenstrauss [Lin06], QUE holds for {φj}j—hence we conclude
that limj→+∞ N (φj) = +∞ by Theorem 1.6.
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folds, Comm. Partial Differential Equations 17 (1992), no. 1-2, 221–260, DOI

10.1080/03605309208820840. MR1151262
[Zwo12] Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138,

American Mathematical Society, Providence, RI, 2012. MR2952218

Center for Applications of Mathematical Principles (CAMP), National Institute

for Mathematical Sciences (NIMS), Daejeon 34047, South Korea

E-mail address: seungukj@nims.re.kr

360 State Street, New Haven, Connecticut 06510

E-mail address: junehyuk@ias.edu

http://www.ams.org/mathscinet-getitem?mr=3554896
http://www.ams.org/mathscinet-getitem?mr=3447086
http://www.ams.org/mathscinet-getitem?mr=0477199
http://www.ams.org/mathscinet-getitem?mr=2195133
http://www.ams.org/mathscinet-getitem?mr=3355806
http://www.ams.org/mathscinet-getitem?mr=1266075
http://www.ams.org/mathscinet-getitem?mr=0402834
http://www.ams.org/mathscinet-getitem?mr=2680500
http://www.ams.org/mathscinet-getitem?mr=0429744
http://www.ams.org/mathscinet-getitem?mr=0463116
http://www.ams.org/mathscinet-getitem?mr=3053760
http://www.ams.org/mathscinet-getitem?mr=916129
http://www.ams.org/mathscinet-getitem?mr=1151262
http://www.ams.org/mathscinet-getitem?mr=2952218

	1. Introduction
	1.1. Nodal domains of eigenfunctions on a surface
	1.2. Sketch of the proof: sign changes of even eigenfunctions

	2. Lp estimates for the restriction to a curve of derivatives  of eigenfunctions
	3. Rellich type analysis when QUE holds: even eigenfunctions
	4. The number of nodal domains of even eigenfunctions
	4.1. Graph structure of the nodal set and Euler’s inequality
	4.2. Lemmata from probability theory
	4.3. Sign changes of even eigenfunctions on fixed segments

	5. Nodal domains of odd eigenfunctions
	6. Proof of Theorem 1.1
	Acknowledgments
	References

