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MIXED 3-MANIFOLDS ARE VIRTUALLY SPECIAL

PIOTR PRZYTYCKI AND DANIEL T. WISE

1. Introduction

A compact connected oriented irreducible 3-manifold with arbitrary, possibly
empty boundary is mixed if it is not hyperbolic and not a graph manifold. A group
is special if it is a subgroup of a right-angled Artin group. Our main result is the
following.

Theorem 1.1. Let M be a mixed 3-manifold. Then π1M is virtually special.

Corollary 1.2. The fundamental group of a mixed 3-manifold is linear over Z.

As explained below, Theorem 1.1 has the following consequence.

Corollary 1.3. A mixed 3-manifold with possibly empty toroidal boundary virtually
fibers.

An alternative definition of a special group is the following. A nonpositively
curved cube complex X is special if its immersed hyperplanes do not self-intersect,
are two-sided, do not directly self-osculate or interosculate (see Definition 6.1). A
group G is (compact) special if it is the fundamental group of a (compact) special
cube complex X. Then G is a subgroup of a possibly infinitely generated right-
angled Artin group [HW08, Thm 4.2]. Conversely, a subgroup G of a right-angled
Artin group is the fundamental group of the corresponding cover X of the Salvetti
complex, which is special. Note that if the fundamental group G of a special cube
complex X is finitely generated, then a minimal locally convex subcomplex X ′ ⊂ X
containing a π1-surjective finite graph in X1 has finitely many hyperplanes and is
special so that G embeds in a finitely generated right-angled Artin group.

Special groups are residually finite. Moreover, assuming that X has finitely
many hyperplanes, the stabilizer in G of any hyperplane in the universal cover

X̃ of X is separable (see Corollary 6.8). For 3-manifold groups, separability of a
subgroup corresponding to an immersed incompressible surface implies that in some
finite cover of the manifold the surface lifts to an embedding. There are immersed
incompressible surfaces in graph manifolds that do not lift to embeddings in a finite
cover [RW98].
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There are a variety of groups with the property that every finitely generated
subgroup is separable; for instance, this was shown for free groups by M. Hall and
for surface groups by Scott. A compact 3-manifold is hyperbolic if its interior is
homeomorphic to a quotient of H3 (equivalently to the quotient of the interior of
the convex hull of the limit set) by a geometrically finite Kleinian group. It was
recently proved that hyperbolic 3-manifolds with an embedded geometrically finite
incompressible surface have fundamental groups that are virtually compact spe-
cial [Wis17, Thm 16.1 and 16.28]. This implies separability for all geometrically
finite subgroups [Wis17, Thm 15.9]. By the Tameness [Ago04,CG06] and Covering
[Thu80,Can96] Theorems all other finitely generated subgroups correspond to vir-
tual fibers, and hence they are separable as well. Very recently, Agol, Groves, and
Manning [Ago13, Thm 1.1] building on [Wis17] proved that the fundamental group
of every closed hyperbolic 3-manifold is virtually compact special and hence all its
finitely generated subgroups are separable. For more details, see the survey article
[AFW15].

Another striking consequence of virtual specialness is virtual fibering. Since
special groups are subgroups of right-angled Artin groups, they are subgroups of
right-angled Coxeter groups as well [HW99,DJ00]. Agol proved that such groups
are virtually residually finite rationally solvable (RFRS) [Ago08, Thm 2.2]. Then he
proved that if the fundamental group of a compact connected oriented irreducible
3-manifold with toroidal boundary is RFRS, then it virtually fibers [Ago08, Thm
5.1]. In view of these results, every hyperbolic manifold with toroidal boundary
virtually fibers [Ago13, Thm 9.2]. Similarly, our Theorem 1.1 yields Corollary 1.3.

Liu proved that an aspherical graph manifold has virtually special fundamental
group if and only if it admits a nonpositively curved Riemannian metric [Liu13, Thm
1.1]. Independently and with an eye toward the results presented here, we proved
virtual specialness for graph manifolds with nonempty boundary [PW14, Cor 1.3].
Note that graph manifolds with nonempty boundary carry a nonpositively curved
metric by [Lee95, Thm 3.2]. Our Theorem 1.1 thus resolves the question of virtual
specialness for arbitrary compact 3-manifold groups.

Corollary 1.4. A compact aspherical 3-manifold has virtually special fundamental
group if and only if it admits a Riemannian metric of nonpositive curvature.

Corollary 1.4 was conjectured by Liu [Liu13, Conj 1.3]. As discussed above, he
proved the conjecture for graph manifolds while for hyperbolic manifolds this follows
from [Wis17] and [Ago13]. All mixed manifolds admit a metric of nonpositive
curvature, essentially due to [Lee95, Thm 3.3], as shown in [Bri01, Thm 4.3]. Hence
Theorem 1.1 resolves Liu’s conjecture in the remaining mixed case. However, the
equivalence in Corollary 1.4 appears to be more circumstantial than a consequence
of an intrinsic relationship between nonpositive curvature and virtual specialness:
all manifolds in question except for certain particular closed graph manifolds have
both of these features.

As a consequence of virtual specialness of mixed manifolds (Theorem 1.1), hyper-
bolic manifolds with nonempty boundary [Wis17, Thm 16.28] and graph manifolds
with nonempty boundary [PW14, Cor 1.3], we have the following.

Corollary 1.5. The fundamental group of any knot complement in S3 has a faithful
representation in SL(n,Z) for some n.
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Note that existence of a nonabelian representation of any nontrivial knot comple-
ment group into SU(2) is a well-known result of Kronheimer and Mrowka [KM04].

Organization. As explained in Section 2, the proof of Theorem 1.1 is divided into
two steps. The first step is Theorem 2.1 (Cubulation), which roughly states that
in any mixed manifold there is a collection of surfaces sufficient for cubulation. In
Section 3 we review the construction of surfaces in graph manifolds with boundary.
We discuss surfaces in hyperbolic manifolds with boundary in Section 4. We prove
Theorem 2.1 in Section 5 by combining the surfaces from graph manifold blocks
and hyperbolic blocks.

The second step is Theorem 2.4 (Specialization), which provides the virtual spe-
cialness of the nonpositively curved cube complex produced in the first step. In
Section 6 we extend some separability results for special cube complexes to the non-
compact setting. We apply them in Section 7 to obtain cubical small cancellation
results for noncompact special cube complexes. This allows us to prove Theorem 2.4
in Section 8.

Ingredients in the proof of Theorem 1.1.

• Canonical completion and retraction (Theorem 6.3) for special cube com-
plexes [HW10].

• Criterion 2.3 for virtual specialness [HW10].
• Gitik–Minasyan double quasiconvex coset separability [Min06].
• Criterion for relative quasiconvexity [BW13].
• Combination Theorem 4.8 for relatively quasiconvex groups [MP09].
• Relative cocompactness of cubulations of relatively hyperbolic groups

[HW14].
• Criterion 4.3 for WallNbd-WallNbd Separation [HW14].
• Proposition 3.1 which constructs virtually embedded surfaces in graph man-

ifolds with boundary [PW14].
• Separability and double coset separability of embedded surfaces in graph

manifolds [PW14].
• Special Quotient Theorem 4.7 for groups hyperbolic relative to free-abelian

subgroups [Wis17].
• Theorem 2.6 on virtual specialness of hyperbolic manifolds with nonempty

boundary [Wis17].
• Main Theorem 7.1 of cubical small cancellation [Wis17].

2. Technical reduction to two steps

Let M be a compact connected oriented irreducible 3-manifold. By passing to a
double cover, we can also assume that M has no π1-injective Klein bottles. More-
over, assume that M is not a Sol or Nil manifold. Up to isotopy, M then has
a unique minimal collection of incompressible tori not parallel to ∂M , called JSJ
tori, such that the complementary components called blocks are either algebraically
atoroidal or else Seifert fibered [Bon02, Thm 3.4]. We say that M is mixed if it
has at least one JSJ torus and one atoroidal block. (Equivalently, by Perelman’s
geometrization, M is not hyperbolic and not a graph manifold.) By Thurston’s
hyperbolization all atoroidal blocks are hyperbolic, and we will denote them by
Mh

k . The JSJ tori adjacent to at least one hyperbolic block are transitional. The
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complementary components of the union of the hyperbolic blocks are graph mani-
folds with boundary and will be called graph manifold blocks and denoted by Mg

i .
Up to a diffeomorphism isotopic to the identity, each of their Seifert fibered blocks
admits a unique Seifert fibration that we fix. If a transitional torus is adjacent on
both of its sides to hyperbolic blocks, we replace it by two parallel tori (also called
JSJ, and transitional) and add the product region T × I bounded by them as a
graph manifold block to the family {Mg

i }. Similarly, for a boundary torus of M
adjacent to a hyperbolic block, we introduce its parallel copy in M (called JSJ, and
transitional) and add the product region to {Mg

i }. These Mg
i = T ×I will be called

thin. We will later fix one of many Seifert fibrations on thin Mg
i .

Unless stated otherwise, all surfaces are embedded or immersed properly. Let

S → M be an immersed surface in a 3-manifold. Let M̂ → M be a covering map.

A map Ŝ → M̂ that covers S → M and does not factor through another such map

is its elevation (it is a lift when Ŝ = S). A connected oriented surface S → M that
is not a sphere is immersed incompressible if it is π1-injective and its elevation to

the universal cover M̃ of M is an embedding. The surface S is virtually embedded

if there is a finite cover M̂ of M with an embedded elevation of S. Given a block
B and an immersed surface φ : S → M , a piece of S in B is the restriction of φ to
a component of φ−1(B) in S.

The elevations of JSJ tori, boundary tori, and transitional tori of M to the

universal cover M̃ are called JSJ planes, boundary planes, and transitional planes,
respectively, and we keep the term blocks (hyperbolic, graph manifold, or Seifert
fibered) for the elevations of blocks of M . We warn that this terminology refers to

graph manifold blocks in M̃ even though they are not compact. Having specified

a block M̃o of M̃ and a surface S̃o ⊂ M̃o, we denote by T(S̃o) the set of JSJ and

boundary planes in ∂M̃o intersecting S̃o.

An axis for an element g ∈ π1M acting on M̃ is a copy of R in M̃ on which g acts
by nontrivial translation. A cut-surface for g ∈ π1M is an immersed incompressible

surface S → M covered by S̃ ⊂ M̃ such that there is an axis R for g satisfying

S̃ ∩ R = {0}, where the intersection is transverse.

Theorem 2.1 (Cubulation). Let M be a mixed 3-manifold. There is a finite family
of immersed incompressible surfaces S in M , in general position, and such that:

(1) For each element of π1M there is a cut-surface in S.
(2) All JSJ tori belong to S.
(3) Each piece of S in Mg

i is virtually embedded in Mg
i for each S ∈ S.

(4) Each piece of S in Mh
k is geometrically finite for each S ∈ S.

(5) The family S satisfies the following Strong Separation property.

To make sense of the term “sufficiently far” in what follows, we fix a Riemannian

metric on M and lift it to the universal cover M̃ . Note, however, that satisfying
Strong Separation does not depend on the choice of this metric.

Definition 2.2. A family S of surfaces in M satisfies the Strong Separation prop-

erty if the following hold for the family S̃ of elevations to M̃ of the surfaces in S.

(a) For any S̃, S̃′ ∈ S̃ intersecting a block M̃h
k covering Mh

k , if S̃′ ∩ M̃h
k and

S̃ ∩ M̃h
k are sufficiently far and T(S̃′ ∩ M̃h

k )∩T(S̃ ∩ M̃h
k ) = ∅, then a surface

from S̃ separates S̃′ from S̃.
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(b) For any S̃, S̃′ ∈ S̃ intersecting a block M̃g
i covering Mg

i , if S̃′ ∩ M̃g
i and

S̃ ∩ M̃g
i are sufficiently far, then a surface from S̃ separates S̃′ from S̃.

We will appeal to parts (a) and (b) above as Strong Separation (a) and Strong
Separation (b).

We consider the dual CAT(0) cube complex X̃ associated to S by Sageev’s con-

struction. Each S̃ ∈ S̃ cuts M̃ into two closed halfspaces U, V, and the collection of

pairs {U, V } endows M̃ with a Haglund–Paulin wallspace structure (we follow the
treatment of these ideas in [HW14, §2.1] where U ∩ V is allowed to be nonempty).

The group G = π1M acting on M̃ preserves this structure, and hence it acts on

the associated dual CAT(0) cube complex X̃. The stabilizer in G of a hyperplane

in X̃ coincides with a conjugate of π1S for an appropriate S ∈ S by general posi-

tion. Note that if there is a cut-surface S ∈ S for g ∈ G, then g acts freely on X̃
[Wis12, Lem 7.16].

If a group G acting freely on a CAT(0) cube complex X̃ has a finite index

subgroup G′ such that G′\X̃ is special, then we say that the action of G on X̃ is
virtually special. This coincides with the definition used in [HW10] by the freeness
of the action and [HW10, Thm 3.5 and Rem 3.6]. We prove Theorem 1.1 using
the following criterion for virtual specialness. Disjoint hyperplanes osculate if they
have dual edges sharing an endpoint.

Criterion 2.3. Let G act freely on a CAT(0) cube complex X̃. Suppose that:

(1) there are finitely many G orbits of hyperplanes in X̃;

(2) for each hyperplane Ã ⊂ X̃, there are finitely many Stab(Ã) orbits of hy-

perplanes that intersect Ã;

(3) for each hyperplane Ã ⊂ X̃, there are finitely many Stab(Ã) orbits of hy-

perplanes that osculate with Ã;

(4) for each hyperplane Ã ⊂ X̃, the subgroup Stab(Ã) ⊂ G is separable; and

(5) for each pair of intersecting hyperplanes Ã, B̃ ⊂ X̃, the double coset

Stab(Ã)Stab(B̃) ⊂ G is separable.

Then the action of G on X̃ is virtually special.

Criterion 2.3 follows directly from [HW10, Thm 4.1], since in Conditions (4) and

(5) we require Stab(Ã) and Stab(Ã)Stab(B̃) to be closed in the profinite topology on
G and not only to have closures disjoint from certain specified sets as was required
in [HW10, Thm 4.1].

For each Mg
i we choose one conjugate Pi of π1M

g
i in G = π1M . Then G is

hyperbolic relative to {Pi} (see, e.g., [BW13]) and we can discuss quasiconvexity
of its subgroups relative to {Pi} (see, e.g., [BW13, Def 2.1]). For each S ∈ S,
Theorem 2.1(4) implies that π1S is quasiconvex in G relative to {Pi} by [Hru10, Cor
1.3] and [BW13, Thm 4.16].

Let M̃g
i ⊂ M̃ be the elevation of Mg

i stabilized by Pi. We describe a convex Pi-

invariant subcomplex Ỹi ⊂ X̃ determined by M̃g
i . Let Ui be the family of halfspaces

U in the wallspace M̃ for which there is some R > 0 with diam(U ∩NR(M̃g
i )) = ∞,

where NR denotes the R-neighborhood. Note that Ui does not depend on the fixed

Riemannian metric on M . Let Ỹi ⊂ X̃ be the subcomplex consisting of cubes
spanned by the vertices whose halfspaces are all in Ui.
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By [HW14, Thm 7.12] the group G acts cocompactly on X̃ relative to {Ỹi} in the

following sense. There exists a compact subcomplex K ⊂ X̃ such that:

• X̃ = GK ∪
⋃

i GỸi;

• gỸi ∩ Ỹj ⊂ GK unless j = i and g ∈ Pi; and

• Pi acts cocompactly on Ỹi ∩GK.

Because G acts freely on X̃, by [HW14, Prop 8.1(1)] each Ỹi is superconvex in the
sense that there is a uniform bound on the diameter of a rectangle [−d, d] × [0, 1],

whose 1-skeleton isometrically embeds in the 1-skeleton of X̃ with [−d, d]×{0} ⊂ Ỹi

and [−d, d] × {1} outside Ỹi.
Observe that G = π1M splits as a graph of groups with transitional tori groups

as edge groups. The group G is hyperbolic relative to the vertex groups Pi = π1M
g
i .

We now explain that to prove Theorem 1.1 it suffices to complement Theorem 2.1
with the following.

Theorem 2.4 (Specialization). Let G be the fundamental group of a graph of
groups with free-abelian edge groups. Suppose that G is hyperbolic relative to some
collection of the vertex groups {Pi}. Suppose that G acts cocompactly on a CAT(0)

cube complex X̃ relative to superconvex {Ỹi}. Suppose also that:

(i) the action of G on X̃ is free and satisfies finiteness Conditions (1)–(3) of
Criterion 2.3;

(ii) for any finite index subgroup E◦ of an edge group E ⊂ Pi, there is a finite
index subgroup P ′

i ⊂ Pi with P ′
i ∩E ⊂ E◦;

(iii) the action of each Pi on Ỹi is virtually special, with finitely many orbits of
codim-2-hyperplanes;

(iv) each nonparabolic vertex group is virtually compact special.

Then the action of G is virtually special.

A codim-2-hyperplane in a CAT(0) cube complex is the intersection of a pair of
intersecting hyperplanes.

We now derive the hypothesis of Theorem 2.4 from the conclusion of Theorem 2.1.

By Theorem 2.1(1), the action of π1M on X̃ is free. Moreover, since the family S

is finite, Condition (1) of Criterion 2.3 is satisfied. Since S is in general position,
we have finitely many intersection curves between each pair of surfaces in S, which
gives Condition (2). We now deduce Condition (3). Disjoint hyperplanes in a
CAT(0) cube complex osculate (i.e., have dual edges sharing an endpoint) if and
only if they are not separated by another hyperplane. (The “if” part follows from
the observation that a hyperplane dual to an edge of a shortest path between the
carriers of disjoint hyperplanes separates them.) Similarly, we say that two disjoint

surfaces S̃, S̃′ ∈ S̃ osculate if there is no surface in S̃ separating S̃′ from S̃. Hence

osculating hyperplanes in X̃ correspond to osculating S̃, S̃′ ∈ S̃. We need to show

that there are finitely many Stab(S̃) orbits of surfaces in S̃ osculating with S̃. Note

that if S̃′ osculates with S̃, then it must intersect one of the finitely many Stab(S̃)

orbits of graph manifold and hyperbolic blocks intersected by S̃, since otherwise it

would be separated from S̃ by a transitional plane T̃ . But T̃ ∈ S̃ by Theorem 2.1(2),

so S̃ and S̃′ would not osculate. If both S̃ and S̃′ intersect the same block M̃g
i , then

by Strong Separation (b) of Theorem 2.1(5) they are at bounded distance, and so

there are finitely many Stab(S̃) orbits. If S̃ and S̃′ do not intersect the same graph
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manifold block but intersect the same block M̃h
k , then by Strong Separation (a) of

Theorem 2.1(5) they are at bounded distance, hence there are finitely many Stab(S̃)
orbits as well. This proves Condition (3) of Criterion 2.3. Hence, Hypothesis (i) of
Theorem 2.4 is satisfied.

Hypothesis (ii) of Theorem 2.4 coincides with [PW14, Cor 4.2], which is a par-
ticular case of [Ham01, Thm 1]. To verify Hypothesis (iii) we need the following.

Lemma 2.5. Let Sh be a finite family of geometrically finite immersed incompress-
ible surfaces in a compact hyperbolic 3-manifold Mh. There exists R such that if

the stabilizer of an elevation S̃ to M̃h of a surface in Sh intersects a stabilizer of a

boundary plane T̃ ⊂ ∂M̃h along an infinite cyclic group, then N = NR(S̃) ∩ T̃ is
nonempty.

Moreover, assume that we have two such elevations S̃, S̃′ of possibly distinct

surfaces. If S̃ ∩ T̃ and S̃′ ∩ T̃ are nonempty and at distance ≥ R in the intrinsic

metric on T̃ (resp. N and N ′ = NR(S̃′)∩ T̃ are sufficiently far with respect to some

specified r), then S̃ and S̃′ are disjoint (resp. at distance ≥ r) and T(S̃) ∩ T(S̃′) ⊂
{T̃}.

Note that N ⊂ T̃ is at a finite Hausdorff distance from a line, since the intersec-

tion of the stabilizers of S̃ and T̃ is infinite cyclic.

Proof. We can assume that the Riemannian metric on Mh is hyperbolic and the

toroidal boundary components are horospherical. Thus in M̃h we have well-defined
1-Lipschitz nearest point projections onto boundary planes. Note that these pro-
jections are invariant under quasi-isometry, up to a uniformly bounded error.

Consider an elevation S̃ ⊂ M̃h of a surface in Sh and suppose that the stabilizer

of S̃ intersects a stabilizer of a boundary plane T̃ along an infinite cyclic group.

The first assertion saying that there exists a uniform R for which N = NR(S̃)∩ T̃ is
nonempty follows from the fact that the surfaces in Sh have finitely many maximal
parabolic subgroups.

For the second assertion, let Π be the nearest point projection onto T̃ . There

exists a point s ∈ S̃ with Π(s) ∈ N . Since S is geometrically finite, s is connected

with any other point s′ of S̃ by a geodesic γ at a uniformly bounded distance from

S̃. A geodesic is an α-distorted path for any α in terms of [GP16, § 2.2]. We now
apply [GP16, Prop 8.2.5], which is formulated in the Cayley graph of π1M

h, but
all our notions are invariant under quasi-isometry. By [GP16, Prop 8.2.5] there is
a uniform constant d such that Π(s′) ∈ Nd(Π(s)) or Π(s′) ∈ Nd(γ). Hence after

increasing R, we have Π(S̃) ⊂ N .

Consider now S̃� = S̃ ∪ (T(S̃) − T̃ ). For each boundary plane T̃ ′ 
= T̃ its image

Π(T̃ ′) is uniformly bounded. Thus after increasing R, we have Π(S̃�) ⊂ N . Since

Π is 1-Lipschitz, the distance between S̃ and S̃′ is bounded below by the distance
between N and N ′. This proves the second assertion. �

We now verify Hypothesis (iii) of Theorem 2.4, by appealing to Criterion 2.3.

The action of Pi on Ỹi is free. By the choice of Ui in the definition of Ỹi, any

hyperplane Ã intersecting Ỹi corresponds to a surface S̃ ∈ S̃ that for some R > 0

has NR(S̃)∩ M̃g
i of infinite diameter. Consequently, Stab(S̃) nontrivially intersects

Pi = Stab(M̃g
i ). By Lemma 2.5 we can assume that R coincides with the one given

by Lemma 2.5.
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Condition (1) of Criterion 2.3 is immediate. To prove Conditions (2) and (3),

it suffices to justify the claim that any pair of surfaces S̃, S̃′ ∈ S̃ with N =

NR(S̃) ∩ M̃g
i , N

′ = NR(S̃′) ∩ M̃g
i sufficiently far is separated by another surface

in S̃. If both S̃, S̃′ intersect M̃g
i , then the claim follows from Strong Separation (b)

in Theorem 2.1(5). Otherwise, if one of S̃, S̃′ is disjoint from M̃g
i and they are not

separated by a JSJ plane, then they both intersect a hyperbolic block M̃h
k adjacent

to M̃g
i . By Lemma 2.5, for every r if N and N ′ are sufficiently far, then S̃ ∩ M̃h

k

and S̃′ ∩ M̃h
k are at distance ≥ r and T(S̃ ∩ M̃h

k )∩ T(S̃′ ∩ M̃h
k ) = ∅. Then the claim

follows from Strong Separation (a). As a consequence of Condition (2) the complex

Ỹi has finitely many Pi orbits of codim-2-hyperplanes.

The nontrivial stabilizers in Pi of hyperplanes in Ỹi correspond to either fun-
damental groups of the pieces of S in Mg

i , which are virtually embedded in Mg
i

by Theorem 2.1(3) or infinite cyclic subgroups of the fundamental groups of the
transitional tori, to which by [PW14, Cor 4.3] (or [Ham01]) we can also asso-
ciate virtually embedded ∂-parallel annuli. All these stabilizers are separable by
[PW14, Thm 1.1] and double coset separable by [PW14, Thm 1.2]. Hence we have

Conditions (4) and (5) of Criterion 2.3, and by Criterion 2.3 the action of Pi on Ỹi

is virtually special. This is Hypothesis (iii).
Hypothesis (iv) follows from the following.

Theorem 2.6 ([Wis17, Thm 16.28]). Let M be a compact hyperbolic manifold with
nonempty boundary. Then π1M is virtually compact special.

3. Surfaces in graph manifold blocks

The goal of the next three sections is to prove Theorem 2.1 (Cubulation). We
first review the existence results for surfaces in graph manifolds with boundary. Let
Mg be a graph manifold, i.e., a compact connected oriented irreducible 3-manifold
with only Seifert fibered blocks in its JSJ decomposition. Assume ∂Mg 
= ∅. If Mg

is Seifert fibered, then an immersed incompressible surface S → Mg is horizontal
if it is transverse to the fibers and vertical if it is a union of fibers. An immersed
incompressible surface S → Mg that is not a ∂-parallel annulus is assumed to be
homotoped so that its pieces are horizontal or vertical.

Proposition 3.1 ([PW14, Prop 3.1]). Let Mg be a graph manifold with ∂Mg 
= ∅.
There exists a finite cover M̂g with a finite family Sg of embedded incompressible
surfaces that are not ∂-parallel annuli such that:

• for each block B̂ ⊂ M̂g and each torus T ⊂ ∂B̂, there is a surface S ∈ Sg

such that S ∩ T is nonempty and vertical with respect to B̂;

• for each block B̂ ⊂ M̂g there is a surface S ∈ Sg such that S ∩ B̂ is
horizontal.

Every block B̂ ⊂ M̂g is a product of a circle and a surface.

Let F be a family of properly embedded essential arcs and curves in a compact

hyperbolic surface Σ̂ with geodesic boundary. We say that F strongly fills (resp.

fills) Σ̂ if the complementary components on Σ̂ of the geodesic representatives of
the arcs and curves in F are discs (resp. discs or annuli parallel to the components

of ∂Σ̂). This does not depend on the choice of the hyperbolic metric on Σ̂.
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Construction 3.2. Let Mg be a non-thin graph manifold with ∂Mg 
= ∅. Consider

M̂g and Sg satisfying Proposition 3.1. Add the following surfaces to Sg:

• all JSJ tori of M̂g;

• vertical tori in each block B̂ ⊂ M̂g, whose base curves fill the base Σ̂ of B̂.

Then the base arcs and curves of the vertical pieces of Sg in B̂ strongly fill Σ̂. We
retain the notation Sg for the projection of this extended family to Mg.

Remark 3.3. Let Sg be the family from Construction 3.2. Let B be a block of
Mg. For each g ∈ π1B, some piece of Sg in B is a cut-surface for g.

To prove Strong Separation in Theorem 2.1 (Cubulation), we will need the fol-
lowing WallNbd-WallNbd Separation property in blocks.

Definition 3.4 ([HW14, §8.3]). Let S be a family of immersed incompressible

surfaces in a compact Riemannian 3-manifold M . Let S̃ be the family of elevations

of the surfaces in S to the universal cover M̃ of M . The family S has WallNbd-

WallNbd Separation if for any r there is d = d(r) such that if S̃, S̃′ ∈ S̃ have

neighborhoods Nr(S̃), Nr(S̃
′) at distance ≥ d, then Nr(S̃), Nr(S̃

′) are separated by

a surface in S̃. This property is independent of the choice of Riemannian metric,
but the value of d might vary. Similarly S has Ball-Ball Separation if for any r
there is d such that each pair of metric r-balls at distance ≥ d is separated by a

surface in S̃.
We analogously define WallNbd-WallNbd Separation and Ball-Ball Separation

for a family of essential arcs and curves in a compact hyperbolic surface.

The following is easy to prove directly, but for uniformity of our arguments, we
will deduce it in Section 4 from Criterion 4.3.

Lemma 3.5. A strongly filling family of arcs and curves in a hyperbolic surface Σ̂
satisfies WallNbd-WallNbd Separation. Consequently, if their base arcs and curves

strongly fill, then the vertical pieces of Sg in B̂ as well as in B satisfy WallNbd-
WallNbd Separation.

Let Σ be the base orbifold of a non-thin block B ⊂ Mg. The fundamental groups
of the components of ∂Σ intersect trivially. Thus by the compactness of the base
arcs of the annular vertical pieces of Sg in B, we have the following analogue of
Lemma 2.5.

Remark 3.6. Let Sg be a finite family of immersed incompressible surfaces in a
non-thin graph manifold Mg. There exists R with the following property. Let

B ⊂ Mg be a block with elevation B̃ ⊂ M̃g, and let S̃, S̃′ be elevations to M̃g of

surfaces in Sg. Suppose that S̃o = S̃ ∩ B̃ and S̃′
o = S̃′ ∩ B̃ are both vertical, and

suppose that there is a plane T̃ ⊂ ∂B̃ intersecting both S̃o and S̃′
o. If the distance

between the lines S̃o ∩ T̃ and S̃′
o ∩ T̃ is ≥ R in the intrinsic metric on T̃ , then S̃o

and S̃′
o are disjoint and T(S̃o) ∩ T(S̃′

o) = {T̃}.
In [PW14] we also established the following.

Corollary 3.7 ([PW14, Cor 3.3]). Let Mg be a graph manifold with ∂Mg 
= ∅.
There exists a finite cover M̂g of Mg such that for each essential circle C in a

torus T ⊂ ∂M̂g there is an incompressible surface SC embedded in M̂g with SC ∩T
consisting of a nonempty set of circles parallel to C.
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Finally, the following holds by [RW98, Thm 2.3].

Lemma 3.8. Let S be an incompressible surface embedded in a graph manifold
Mg. Let S′ → S be a finite cover. Then S′ → Mg is virtually embedded.

4. Surfaces in hyperbolic blocks

We now review the existence results for surfaces in hyperbolic blocks. First we
establish a hyperbolic analogue of Proposition 3.1.

Theorem 4.1 (Compare [Wis17, Cor 16.32]). Let Mh be a compact hyperbolic
3-manifold with nonempty boundary. There is in Mh a finite family Sh of geo-
metrically finite immersed incompressible surfaces containing cut-surfaces for all
elements of π1M

h. Moreover, the surfaces have no accidental parabolics, i.e., any
parabolic element in π1S with S ∈ Sh lies in π1C for some component C of ∂S.

Proof. We follow the proof of [Wis17, Lem 16.31]. By Theorem 2.6, without loss
of generality we can assume π1M

h = π1X for a compact special cube complex

X. Since π1M
h acts freely on the universal cover X̃ of X, for every g ∈ π1M

h

there is a CAT(0) geodesic axis R ⊂ X̃. Let Ã ⊂ X̃ be any hyperplane intersected

transversely by γ. Since Ã is convex in X̃, the subgroup Stab(Ã) ⊂ π1M
h is

undistorted, hence geometrically finite by [Hru10, Thm 1.5 and Cor 1.3].

Let M̃h ⊂ H3 be the universal cover of Mh. The boundary of the hyperbolic

convex core N of the Stab(Ã) cover of Mh consists of finitely many geometrically

finite surfaces. Suppose first that g is hyperbolic. Since M̃h and X̃ are quasi-

isometric, the geodesic axis R for g in M̃h intersects an elevation Ñ of N . Thus

there is an elevation S̃ ⊂ ∂Ñ of a surface S ⊂ ∂N intersecting R as well. Hence S
is a cut-surface for g.

Let Σ,Σ′ be the two noded surfaces at infinity obtained from the domain of
discontinuity of π1S by quotienting by π1S. The intersection of the convex hull of

the limit set of π1S with M̃h is contained in Ñ , thus lies on one side of S̃. Thus
the surface Σ on the opposite side does not have nodes, in the sense that it is
homeomorhpic to S. Hence parabolic elements in π1S correspond to the nodes of
Σ′, which form a family of essential circles Cj on S that are embedded and disjoint.
(See [Kap01, §4.23 p. 112] for an argument using Margulis tubes.) Then a boundary
surface of the convex core for one of the components of S −

⋃
j Cj is a cut-surface

for g and has no accidental parabolics.
In the case where g is parabolic, we replace in the argument above the g-invariant

geodesic R in M̃h by a g-invariant horocycle R. The rest of the argument remains
the same. �
4.1. WallNbd-WallNbd Separation. We now describe a tool from [HW14] for
verifying WallNbd-WallNbd Separation in relatively hyperbolic spaces.

Definition 4.2. Let S be a finite family of immersed incompressible surfaces in

a compact Riemannian 3-manifold M . Let S̃ be the family of elevations of the

surfaces in S to the universal cover M̃ of M . Let T ⊂ M be a connected subspace,

and let T̃ be its elevation to M̃ .
We say that S satisfies WallNbd-WallNbd Separation in T if for any r there is d

such that if S̃, S̃′ ∈ S̃ have nonempty N = Nr(S̃) ∩ T̃ , N ′ = Nr(S̃
′) ∩ T̃ at distance

≥ d, then N and N ′ are separated in T̃ by a restriction to T̃ of a surface in S̃.
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We say that S satisfies Ball-WallNbd Separation in T if for any r there is d

such that if S̃ ∈ S̃ has nonempty N = Nr(S̃) ∩ T̃ and m is a point of T̃ with

N ′ = Nr(m) ∩ T̃ at distance ≥ d from N , then N and N ′ are separated in T̃ by a

restriction to T̃ of a surface in S̃.

Criterion 4.3 ([HW14, Cor 8.10]). Let S be a finite family of

(a) essential arcs and curves in a compact hyperbolic surface M satisfying Ball-
Ball Separation; or

(b) immersed incompressible surfaces in a compact Riemannian 3-manifold M .
Let Ti ⊂ M be connected subspaces. Suppose that π1M is hyperbolic relative
to Ei ⊂ π1M that are the images of π1Ti. Assume that π1S is relatively
quasiconvex for each S ∈ S. Suppose that S satisfies Ball-Ball Separation in
M and WallNbd-WallNbd Separation and Ball-WallNbd Separation in all
Ti.

Then S satisfies WallNbd-WallNbd Separation in M .

The hypothesis of Ball-Ball Separation can be verified using the following.

Lemma 4.4 ([HW14, Lem 5.3]). Let S be a finite family of

(a) essential arcs and curves in a compact hyperbolic surface M ; or
(b) immersed incompressible surfaces in a compact Riemannian 3-manifold M .

If the action of π1M on the associated dual CAT(0) cube complex is free, then S

satisfies Ball-Ball Separation.

Consequently, Criterion 4.3(a) and Lemma 4.4(a) yield Lemma 3.5.

Corollary 4.5. Let Sh be a finite family of geometrically finite surfaces in a hy-
perbolic 3-manifold Mh. Suppose that:

(i) for each g ∈ π1M
h there is a cut-surface for g in Sh; and

(ii) for each parabolic element g ∈ π1S with S ∈ Sh there is a surface S′ ∈ Sh

with a curve C ⊂ ∂S′ such that gn is conjugate to an element of π1C for
some n 
= 0.

Then S satisfies WallNbd-WallNbd Separation in Mh.

Let ∂tM
h ⊂ ∂Mh denote the union of toroidal boundary components.

Proof. We verify the hypotheses of Criterion 4.3(b). Ball-Ball Separation in Mh

follows from Hypothesis (i) and Lemma 4.4(b). We now verify WallNbd-WallNbd
Separation and Ball-WallNbd Separation in a torus Ti, where

⊔
i Ti = ∂tM

h. Con-

sider an elevation T̃ of Ti to the universal cover M̃h of Mh. For any r there is d

such that the intersections Nr(S̃)∩ T̃ or Nr(m)∩ T̃ from the definition of WallNbd-
WallNbd Separation and Ball-WallNbd Separation are either of diameter ≤ d

or at Hausdorff distance ≤ d from a line C̃ in T̃ stabilized by g ∈ π1S ∩ π1Ti.

For S′ ∈ Sh, the intersections S̃′ ∩ T̃ are infinite families of parallel lines. By

Hypothesis (ii), their directions include the direction of each C̃ above. This yields
WallNbd-WallNbd Separation and Ball-WallNbd Separation in Ti. �

4.2. Capping off surfaces. We will need one more crucial piece of information
concerning the existence of surfaces in hyperbolic blocks with designated boundary
circles.
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Proposition 4.6. Let Mh be a compact hyperbolic 3-manifold, and let C0, . . . , Cn

be essential circles in the tori T0 � · · · � Tn = ∂tM
h. There exists a geometrically

finite immersed incompressible surface S → Mh with S ∩ ∂tM
h covering C0 and

such that every parabolic element of π1S is conjugate into π1Ci for some i.

In the proof we will need the following relative version of the Special Quotient
Theorem.

Theorem 4.7 ([Wis17, Lem 15.3]). Let G be a compact special group that is hyper-
bolic relative to free-abelian subgroups {Ei}. Then there are finite index subgroups
E◦

i ⊂ Ei such that for any further subgroups Ec
i ⊂ E◦

i with Ei/E
c
i finite or vir-

tually cyclic, the quotient G/〈〈{Ec
i }〉〉 is hyperbolic and virtually compact special.

Moreover, each Ei/E
c
i embeds into G/〈〈{Ec

i }〉〉.
We will also use the following combination theorem.

Theorem 4.8 ([MP09, Thm 1.1]). Let S ⊂ Mh be an incompressible geometrically
finite surface in a hyperbolic manifold Mh. Let Cj be components of ∂S contained
in boundary tori Tij of Mh (some Tij may coincide). Then for all but finitely many
cyclic covers T ′

j of Tij to which Cj lift, the fundamental group π1S
� of the graph

of spaces S� obtained by amalgamating S with T ′
j along Cj embeds in π1M

h and is
relatively quasiconvex. Moreover, every parabolic subgroup of π1S

� is conjugate in
π1S

� to a subgroup of π1S or π1T
′
j.

Proof of Proposition 4.6. By Theorem 2.6 without loss of generality we can assume
that G = π1M

h is compact special. By Theorem 4.7 there are gi ∈ π1Ci such that
G = G/〈〈{gi}〉〉 is hyperbolic and virtually compact special. For a subgroup F ⊂ G
we denote by F its image in G. Additionally, by Theorem 4.7 we obtain that for
each E = π1T with T ⊂ ∂tM

h the quotient E ⊂ G is infinite. We will prove that
there is a finite index normal subgroup G′ ⊂ G satisfying the following.

(i) For each E = π1T the image of E ∩G′ → H1(G′) has rank 1.
(ii) The cover M ′ of Mh corresponding to G′ has

rk H2(M
′)/im

(
H2(∂M

′) → H2(M
′)
)
≥ 2.

Properties (i) and (ii) above are preserved when passing to further finite covers,
so it suffices to achieve them separately. To obtain Property (i), let E = π1T .
By canonical completion and retraction (see Theorem 6.3), there is a finite index

subgroup G
′ ⊂ G that retracts onto an infinite cyclic subgroup Z ⊂ E ∩G

′
. Thus

Z embeds in H1(G
′
). The preimage G′ ⊂ G of G

′ ⊂ G satisfies Property (i) for the
specified E. Property (ii) follows directly from [CLR97, Cor 1.4].

By Property (i), there is a map f∗ : G′ → Z factoring through H1(G
′
) and with f∗

nontrivial on each g−1Eg ∩G′ with g ∈ G. Let f : M ′ → S1 be a map inducing f∗.
By Sard’s theorem there is a point s ∈ S1 so that S′ = f−1(s) ⊂ M ′ is a properly
embedded surface, possibly disconnected. Then S′ ∩ ∂tM

′ is a union of families
of identically oriented circles covering Ci. We compress S′ to an incompressible
surface with the same boundary.

We now claim that if S′ is a virtual fiber, thus a fiber since S′ is embedded,
then without changing ∂S′, we can change S′ so that it is geometrically finite.
In H2(M

′, ∂M ′;R) we consider the Thurston norm ball Bx; see [Thu86]. Let
L ⊂ H2(M

′, ∂M ′;R) be the subspace of homology classes whose restriction to
H1(∂M

′;R) is proportional to [∂S′]. By Property (ii) the rank of the image of
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H2(M
′) in H2(M

′, ∂M ′) is ≥ 2. Hence the dimension of L is ≥ 2. We can take
S′ represented by a point on a ray not passing through a maximal face of Bx ∩ L.
By [Thu86, Thm 3] the surface S′ is not a fiber of M ′. By the Covering [Thu80]
and Tameness [Bon86] Theorems the surface S′ is geometrically finite, proving the
claim.

Let S′
o be a component of S′ intersecting T0. Note that each parabolic element of

π1S
′
o is conjugate into π1C

′ for some component C ′ ⊂ ∂S′ since S′ intersects all the
boundary tori of M ′. Consequently, all parabolic elements of π1S

′
o are conjugate

into π1Ci.
Since S′

o is geometrically finite, Theorem 4.8 applies to S′
o. Let {C ′

j} be the

components of ∂S′
o outside T0, and for each j let Tij denote the torus containing

C ′
j . Let S� be the graph of spaces obtained by amalgamating S′

o along C ′
j with

T ′
j provided by Theorem 4.8. Then S� → M ′ extends to an immersion N → M ′,

where N is the regular neighborhood of S� in the π1S
� cover of M ′. Let S be the

non-toroidal component of ∂N that is the component that can be decomposed into
two surfaces parallel to S′

o and annuli parallel to T ′
j combined along curves parallel

to C ′
j . The immersed surface S → M ′ is incompressible, since π1S embeds in π1S

�.
Moreover, S is not a virtual fiber since π1S

∗ is relatively quasiconvex and of infinite
index in π1M

h. By Theorem 4.8 every parabolic element of π1S is conjugate in
π1S

� to a parabolic element of π1S
′
o or into one of the π1T

′
j . But each parabolic

element of π1S
′
o is conjugate into some π1Ci. Moreover, the intersection of π1S

with a π1S
� conjugate of π1T

′
j lies in a conjugate of π1C

′
j . Thus the immersion

S → M ′ → Mh has the desired property for parabolic elements. �

5. Cubulation

In this section we combine the surfaces described in the graph manifold blocks
and hyperbolic blocks. To prove Theorem 2.1 (Cubulation) we need the following:

Lemma 5.1. Let S be a connected compact surface with χ(S) < 0. There exists
K = K(S) such that for each assignment of a positive integer nC to each boundary

circle C ⊂ ∂S, there is a connected finite cover Ŝ → S whose degree on each
component of the preimage of C equals KnC .

We can allow S to be disconnected. We can also allow annular components but
obviously require that the integers nC coincide for both boundary circles of such a
component.

Proof. Let K = K(S) be the degree of a cover of S with nonzero genus. The lemma
follows from [PW14, Lem 4.6]. �

Proof of Theorem 2.1. The proof has two steps. In the first step we construct a
family S of surfaces satisfying Theorem 2.1(1)–(4). In the second step we prove
that S satisfies the Strong Separation property in Theorem 2.1(5).

Construction. Let Shk be the family of surfaces in Mh
k given by Theorem 4.1. Let

C be the family of circles embedded in the transitional tori of M that are covered
by the boundary circles of the surfaces in {Shk} up to homotopy on the tori. Note
that every transitional torus contains circles of C. Let Ci ⊂ C be the circles lying
in ∂Mg

i .



332 P. PRZYTYCKI AND D. T. WISE

By Corollary 3.7 each circle C ∈ Ci is covered by a boundary circle of an im-
mersed incompressible surface Sg

C → Mg
i virtually embedded in Mg

i . Let Sgi be the

family of surfaces in Mg
i provided by Construction 3.2, and let S′gi = S

g
i ∪{Sg

C}C∈Ci
.

Let C′ denote the family of circles embedded in the transitional tori of M covered
(up to homotopy) by the boundary circles of the surfaces in {S′gi }. Let C′

k ⊂ C′

be the circles lying in ∂Mh
k . By Proposition 4.6 for each circle C ′ ∈ C′

k, there
is a geometrically finite immersed incompressible surface Sh

C′ → Mh
k such that

Sh
C′ ∩∂tM

h
k is nonempty and covers C ′. Moreover, we require that all the parabolic

elements of π1S
h
C′ are conjugate to π1C with C ∈ C′. Let S′hk = Shk ∪ {Sh

C′}C′∈C′
k
.

We will apply Lemma 5.1 to produce families of surfaces {Ŝ′hk }, {Ŝ
′g
i } covering

{S′hk }, {S
′g
i } such that So = {Ŝ′hk } ∪ {Ŝ′gi } has the following property. There is a

uniform d such that for each circle in C′, each component of its preimage in a
surface in So covers it with degree d. In order to arrange this for a boundary circle
C of a surface in {S′hk } ∪ {S′gi }, let dC denote the degree with which C maps onto
a circle in C′. Let nC = 1

dC

∏
C dC . Applying Lemma 5.1 with this choice of {nC}

provides the uniform d = K
∏

C dC . Note that for an annular surface the degrees
dC coincide and hence the numbers nC coincide. We can then take a cyclic cover.

We will now extend each surface So ∈ So to a surface immersed properly in M by

combining appropriately many copies of other surfaces in So. First assume So ∈ Ŝ
′g
i .

Let C′
o ⊂ C′ denote the set of circles covered by the boundary components of So,

and let mC′ denote the number of components of So mapping to the circle C ′ ∈ C′
o.

Denote by Ŝh
C′ the surface in So covering Sh

C′ , and denote by lC′ the number of

boundary components of Ŝh
C′ covering C ′. Let L =

∏
C′∈C′

o
lC′ . Take 2L copies of

So and 2mC′ L
lC′

copies of Ŝh
C′ , for each C ′, with two opposite orientations. These

surfaces combine to form a desired immersed incompressible surface extending So.

Note that for each C ′ ∈ C′ the surface Ŝh
C′ appears within such an extension of

some surface So ∈ Ŝ
′g
i .

Hence it remains to consider the case So ∈ Ŝhk ⊂ Ŝ′hk , where Ŝhk is the family of
surfaces covering the surfaces in Shk. This case is treated similarly to the previous
one. Let Co ⊂ C be the set of circles covered by the boundary components of So.

Consider all the surfaces Ŝg
C covering Sg

C for C ∈ Co. Let C′
o ⊂ C′ denote the set of

circles covered by the boundary components of these surfaces Ŝg
C . Consider all the

surfaces Ŝh
C′ , where C ′ ∈ C′

o. Gluing the appropriate number of copies of So, Ŝ
g
C ,

and Ŝh
C′ gives the desired extension.

We denote the union of both of these families of extended surfaces together with
the family of the JSJ tori by S. So S obviously satisfies Theorem 2.1(2). Observe
that Theorem 2.1(1) follows from Theorem 2.1(2) and the existence of cut-surfaces

in Theorem 4.1 and Construction 3.2. The surfaces in Ŝ
′g
i are virtually embedded

in Mg
i by Lemma 3.8, hence S satisfies Theorem 2.1(3). The surfaces in Ŝ′hk are

geometrically finite, and thus S satisfies Theorem 2.1(4).
We also record that by the way we have applied Proposition 4.6 to construct Sh

C′ ,
the pieces of S in every hyperbolic block Mh

k satisfy Hypothesis (ii) of Corollary 4.5.

Strong Separation. We now verify Theorem 2.1(5). We adopt the convention
that in thin graph manifold blocks T × I we choose the vertical direction so that all
the pieces in T×I of the surfaces in S are horizontal. Let R be a constant satisfying
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Lemma 2.5 and Remark 3.6 in all hyperbolic and non-thin graph manifold blocks
of M , with respect to the pieces of S.

We first prove Strong Separation (b). Suppose that S̃, S̃′ ∈ S̃ intersect a graph

manifold block M̃g
i ⊂ M̃ . We need to show that if S̃ ∩ M̃g

i and S̃′ ∩ M̃g
i are

sufficiently far, then S̃ and S̃′ are separated by another surface in S̃.

First consider the case where S̃′ intersects a JSJ or boundary plane T̃ of M̃g
i

intersected by S̃. Since by Theorem 2.1(1) the components of S ∩Mg
i are virtually

embedded, there is h ∈ Stab(T̃ ) such that the surfaces S̃ ∩ M̃g
i and hS̃ ∩ M̃g

i are
disjoint. Moreover, by passing to a power of h, we can assume that they are at

distance ≥ R. Let M̃hor ⊂ M̃g
i be the maximal graph manifold containing T̃ such

that S̃ is horizontal in all the blocks of M̃hor. In the extreme cases M̃hor can equal

M̃g
i or T̃ . Let Ñ be the union of M̃hor with the adjacent hyperbolic and Seifert

fibered blocks. By Lemma 2.5 and Remark 3.6 the surfaces S̃ ∩ Ñ and hS̃ ∩ Ñ are

disjoint and the boundary lines of S̃ ∩ Ñ and hS̃ ∩ Ñ do not intersect a common

JSJ plane outside M̃hor. Hence the entire S̃ and hS̃ are disjoint.

For each S̃ and T̃ we fix h as above. The surface hS̃ ∩ M̃hor is in a bounded

neighborhood of S̃ ∩ M̃hor. Hence if S̃′ ∩ M̃g
i is sufficiently far from S̃ ∩ M̃g

i , then

S̃′ ∩ M̃hor is at distance ≥ R from each of h±1S̃ ∩ M̃hor. As before, S̃′ is disjoint

from both h±1S̃, and one of h±1S̃ separates S̃′ from S̃, as desired. Since there are

finitely many Stab(S̃ ∩ M̃g
i ) orbits of JSJ or boundary planes T̃ of M̃g

i intersected

by S̃, this argument works for all T̃ simultaneously.
To complete the proof of Strong Separation (b) it remains to consider a second

case where S̃′ intersects a Seifert fibered block M̃o ⊂ M̃g
i intersected by S̃, but is

disjoint from the JSJ and boundary planes of M̃g
i intersected by S̃. In that case

the pieces of S̃ and S̃′ in M̃o are vertical. Since the proof for Strong Separation (a)

is the same, we perform it simultaneously: in that case M̃o denotes the hyperbolic

block M̃h
k . In both cases if we denote as usual by T(S̃ ∩ M̃o) the set of JSJ and

boundary planes in ∂M̃o intersecting S̃, then T(S̃∩M̃o) and T(S̃′∩M̃o) are disjoint.

As before, for any JSJ or boundary plane T̃ ∈ T(S̃ ∩ M̃o), we fix h ∈ Stab(T̃ )

such that S̃ and hS̃ are disjoint. We do the same with S̃ replaced by S̃′. There is

R′ such that for each T̃ , the translate hS̃ ∩ T̃ is contained in the R′-neighborhood

of S̃ ∩ T̃ in the intrinsic metric on T̃ , and the same property holds with S̃ replaced

by S̃′. Let d = d(r) be a WallNbd-WallNbd Separation constant guaranteed by
Lemma 3.5 and Corollary 4.5 for r = R +R′ in all hyperbolic and non-thin Seifert
fibered blocks with respect to the pieces of S.

If the piece S̃′ ∩ M̃o is at distance ≥ 2r + d from the piece S̃ ∩ M̃o, then by

WallNbd-WallNbd Separation there is a surface S̃∗ ∈ S̃ such that S̃∗∩M̃o separates

Nr(S̃
′ ∩ M̃o) from Nr(S̃ ∩ M̃o) in M̃o. If T(S̃∗ ∩ M̃o) is disjoint from T(S̃′ ∩ M̃o) ∪

T(S̃ ∩ M̃o), then S̃∗ is disjoint from S̃′ and S̃ and separates them, as desired.

Otherwise, if T(S̃∗∩M̃o) intersects T(S̃′∩M̃o)∪T(S̃∩M̃o), we can assume without

loss of generality that there is a JSJ or boundary plane T̃ ∈ T(S̃∗∩M̃o)∩T(S̃′∩M̃o).

By the definition of R′ and r = R + R′, there is a translate hS̃′ disjoint from S̃′

such that hS̃′ ∩ T̃ separates S̃′ ∩ T̃ from NR(S̃∗ ∩ T̃ ) in the intrinsic metric on

T̃ . Moreover, by Remark 3.6 or Lemma 2.5 the surface hS̃′ ∩ M̃o is disjoint from
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S̃∗ ∩ M̃o and T(hS̃′ ∩ M̃o) intersects T(S̃∗ ∩ M̃o) only in T̃ . Hence hS̃′ and S̃ are

disjoint and hS̃′ separates S̃′ from S̃, as desired. �

6. Separability in special cube complexes

The goal of the next three sections is to prove Theorem 2.4 (Specialization). We
begin with reviewing the definition of a special cube complex.

6.1. Special cube complexes.

Definition 6.1 (Compare [HW08, Def 3.2]). Let X be a nonpositively curved
cube complex, possibly not compact. A midcube (resp. codim-2-midcube) of an
n-cube [0, 1]n = In is the subspace obtained by restricting exactly one (resp. two)
coordinate to 1

2 . Let M denote the disjoint union of all midcubes (resp. codim-2-
midcubes) of X. An immersed hyperplane (resp. immersed codim-2-hyperplane) of
X is a connected component of the quotient of M by the inclusion maps.

An immersed hyperplane (resp. immersed codim-2-hyperplane) A of X self-
intersects if it contains two different midcubes (resp. codim-2-midcubes) of the
same cube of X. If A does not self-intersect, then it embeds into X, and it is
called a hyperplane (resp. codim-2-hyperplane). If the hyperplanes of X do not self-
intersect, which happens for example when X is CAT(0), then codim-2-hyperplanes
are components of intersections of pairs of intersecting hyperplanes. For an im-
mersed hyperplane A, the map A → X is π1-injective since it is a local isometry.
We shall regard π1A as a subgroup of π1X.

An edge e is dual to an immersed hyperplane A if A contains the midcube of e.
A hyperplane A is two-sided if one can orient all of its dual edges so that any two
that are parallel in a square s of X are oriented consistently within s.

If a hyperplane A is two-sided and we orient its dual edges as above, we say that
A directly self-osculates if it has two dual edges with the same initial vertex or with
the same terminal vertex. If A is two-sided and the initial vertex of one of its dual
edges coincides with the terminal vertex of another or the same dual edge, then A
indirectly self-osculates.

Distinct hyperplanes A,B interosculate if there are dual edges e1, e2 of A and
f1, f2 of B such that e1, f1 lie in a square and e2, f2 share a vertex but do not lie
in a square.

A nonpositively curved cube complex is special if its immersed hyperplanes do
not self-intersect, are two-sided, and do not directly self-osculate or interosculate.

A group is special if it is the fundamental group of a special cube complex.

Note that we do not require special cube complexes to be compact. However, in
this article we will always assume that they have finitely many hyperplanes.

Theorem 6.2 ([HW08, Thm 4.2]). A special cube complex X with finitely many
hyperplanes admits a local isometry X → R(X) into the Salvetti complex R(X) of
a finitely generated right-angled Artin group.

The generators of the Artin group correspond to the hyperplanes of X. Each
edge of X dual to a hyperplane A ⊂ X is mapped by the local isometry to an edge
of R(X) labeled by the generator corresponding to A. Note that R(X) is compact
special.
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Our goal is to revisit and strengthen hyperplane separability and double hyper-
plane separability established in [HW08] for compact special cube complexes. The
starting point and the main tool is the following.

Theorem 6.3 ([HW08, Cor 6.7]). Let Y → X be a local isometry from a compact

cube complex Y to a special cube complex X. There is a finite cover X̂ → X, called
the canonical completion of Y → X, to which Y lifts and a canonical retraction

map X̂ → Y ⊂ X̂, restricting to the identity on Y , which is continuous and maps

hyperplanes of X̂ intersecting Y into themselves.

If one first subdivides X (or takes an appropriate cover) to eliminate indirect
self-osculations, then the canonical retraction can be made cellular.

All paths that we discuss in X are assumed to be combinatorial. Let ||X|| denote
the minimum of the lengths of essential closed paths in X or ∞ if X is contractible.

Lemma 6.4. Let X be a special cube complex with finitely many hyperplanes. Then

for each d there is a finite cover X̂ of X with ||X̂|| > d.

Note that the above property is preserved when passing to further covers.

Proof. Let X → R = R(X) be the local isometry into the Salvetti complex of the
finitely generated right-angled Artin group F coming from Theorem 6.2. Since R
is compact, there is a finite set F of conjugacy classes of elements of F that can be
represented by closed paths of length ≤ d in R. Since F is residually finite, it has a

finite index subgroup F̂ disjoint from the set of elements whose classes lie in F. Let

R̂ → R be the finite cover corresponding to F̂ ⊂ F . Then ||R̂|| > d. Let X̂ → X be

the pullback of R̂ → R. Since X̂ → R̂ is a local isometry, it is π1-injective, and we

have ||X̂ || > d as desired. �
6.2. Separability. A subgroup H of a group G is separable if for each g ∈ G−H,
there is a finite index subgroup F of G with g /∈ FH.

Definition 6.5. Let X be a nonpositively curved cube complex, and let X̃ be its

universal cover. Let A be an immersed hyperplane in X with an elevation Ã in X̃.

The carrier N(Ã) is the smallest subcomplex of X̃ containing Ã. It is isomorphic

with Ã × I. The carrier N(A) is the quotient of N(Ã) by Stab(Ã). There is an
induced map N(A) → X. If A does not self-intersect and does not self-osculate
(directly or indirectly), then N(A) embeds in X and we identify it with its image.
We similarly define carriers of immersed codim-2-hyperplanes.

A path α → X starting (resp. ending) at a vertex v of N(A) is a path that starts
(resp. ends) at the image of v in X. The path α is in N(A) if it lifts to a path in
N(A). The path α is path-homotopic into N(A) if it is path-homotopic to a path
in N(A).

Definition 6.6. An immersed hyperplane A in a cube complex X has injectivity
radius > d if each path of length ≤ 2d in X starting and ending at N(A) is path-
homotopic into N(A). In particular if d = 0, then A does not self-intersect or

self-osculate. Equivalently, all elevations of N(A) to the universal cover X̃ of X are
at distance > 2d.

Lemma 6.7. Let X be a special cube complex with finitely many hyperplanes. Let

A ⊂ X be a hyperplane. Then for each d there is a finite cover X̂ → X such that

any elevation Â ⊂ X̂ of A has injectivity radius > d.
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In the compact case, Lemma 6.7 and the following consequence was proved in
[HW08, Cor 9.7] using Theorem 6.3. Note that the conclusion of Lemma 6.7 is
preserved when passing to further covers.

Corollary 6.8. Let G be the fundamental group of a virtually special cube complex
with finitely many hyperplanes, and let H ⊂ G be the fundamental group of an
immersed hyperplane. Then H is separable in G.

Proof of Lemma 6.7. As before, let X → R = R(X) be the local isometry into the
Salvetti complex of the finitely generated right-angled Artin group F coming from
Theorem 6.2. Let T be the hyperplane in R that is the image of the hyperplane A.
Since R is compact, it admits finitely many paths starting and ending at N(T ) of
length ≤ 2d, not path-homotopic into N(T ). Let F denote the family of conjugacy
classes determined by closing them up by paths in N(T ). Then F is a union
of classes determined by finitely many nontrivial cosets of the form Hg, where
H = π1T . Since hyperplane subgroups in F are separable [HW08, Cor 9.4], there

is a finite index subgroup F̂ ⊂ F disjoint from the set of elements whose classes lie

in F. Let R̂ → R be the finite cover corresponding to F̂ ⊂ F . Then elevations of T

to R̂ have injectivity radius > d. Let X̂ → X be the pullback of R̂ → R.

We verify that X̂ is the desired cover. The universal cover X̃ of X embeds into

the universal cover R̃ of R as a convex subcomplex. Let Ã be an elevation of A

to X̃, and let T̃ be the elevation of T to R̃ containing Ã. The π1X̂ orbit of Ã

is contained in the π1R̂ orbit of a T̃ . Since π1R̂ translates of N(T̃ ) in R̃ are at

distance > 2d, so are the π1X̂ translates of N(Ã) in X̃. �
6.3. Double coset separability. Let H1, H2 ⊂ G be subgroups of a group G.
The double coset H1H2 is separable if for each g ∈ G−H1H2 there is a finite index
subgroup F of G with g /∈ FH1H2.

Definition 6.9. Let A be a hyperplane in a nonpositively curved cube complex

X. Let Ã be an elevation of A to the universal cover X̃ of X. Let Ã+d ⊂ X̃ be the
combinatorial ball of radius d around the carrier of Ã. We say that A is d-locally

finite if Ã+d has finitely many Stab(A) orbits of hyperplanes.

In particular A is 0-locally finite if there are finitely many Stab(A) orbits of

hyperplanes intersecting Ã. If, additionally, there are finitely many Stab(A) orbits

of hyperplanes osculating with Ã, then A is 1-locally finite.

Lemma 6.10. Let G be the fundamental group of a special cube complex with
finitely many hyperplanes. Let H1, H2 ⊂ G be conjugates of the fundamental groups
of hyperplanes one of which is d-locally finite for all d. Then the double coset H1H2

is separable in G.

While Lemma 6.10 could be avoided in the proof of Theorem 1.1, we include it
to shed more light on double hyperplane separability.

Proof of Lemma 6.10. Let X̃ be the universal cover of the special cube complex X

with π1X = G and finitely many hyperplanes. Let Ã, B̃ ⊂ X̃ be the hyperplanes

stabilized by H1, H2. Let A,B ⊂ X be the projections of Ã, B̃. Without loss of
generality, we may assume that A is d-locally finite for all d. Let ṽ be a base vertex

of N(Ã). Choose a path ρ̃ → X̃ starting at ṽ and ending with an edge ẽ dual to

B̃. Let v, e be the projections of ṽ, ẽ to N(A), N(B). Then ρ̃ projects to a path ρ
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that starts at v and ends with e. The elements of H1H2 are represented by closed
paths of the form αρβρ−1, where α, β are closed paths in N(A), N(B) based at v
and the endpoint of ρ. Let γ → X be a closed path based at v representing an

element outside H1H2. We want to find a finite cover X̂ of X, where the based lifts
of γ and each path αρβρ−1 above have distinct endpoints. Equivalently, we want
the based lift of γρ and each lift of ρ starting at the preimage of v in the based
elevation of N(A) to end with edges dual to distinct elevations of B. Here a based

lift or elevation is a lift or elevation where v lifts to a specified basepoint of X̂.
Suppose that ρ and γρ have length ≤ d. By Lemma 6.7 we can assume that A has

injectivity radius > d. Then the quotient A+d = H1\Ã+d embeds into X. Since A is
d-locally finite, there are finitely many hyperplanes in A+d. Applying Theorem 6.2
to A+d, let A+d → R(A+d) be the local isometry into the Salvetti complex R(A+d)
of the right-angled Artin group with generators corresponding to hyperplanes in
A+d. Apply Theorem 6.3 to the induced local isometry R(A+d) → R(X). Consider

its canonical completion R̂(X) → R(X) and the retraction R̂(X) → R(A+d). Take

the pullback of the cover R̂(X) → R(X) to X̂ → X. We now verify that X̂ is the
required cover.

Let Â ⊂ X̂ be an elevation of A mapping to R(A+d) ⊂ R̂(X). Let B̂, B̂′ ⊂ X̂

be hyperplanes dual to the last edges ê, ê′ ⊂ Â+d of lifts of ρ, γρ starting at some

lifts of v in N(Â). Since γ represents an element outside H1H2, the hyperplanes

in X̃ dual to the last edges of any lifts of ρ, γρ starting at the H1 orbit of ṽ
are distinct. Hence the hyperplanes in A+d dual to the projections of ê, ê′ are
distinct. Hence the projections of these hyperplanes to R(A+d) are also distinct.

The retraction R̂(X) → R(A+d) shows that hyperplanes T̂B , T̂
′
B ⊂ R̂(X) containing

these projections are also distinct. Since B̂, B̂′ map to T̂B , T̂
′
B, they are distinct as

well. �

The proof of Lemma 6.10 also gives the following.

Corollary 6.11. Let X be a special cube complex with finitely many codim-2-
hyperplanes. Let A,B ⊂ X be hyperplanes, and let Q be a component of A ∩ B.

There is a finite cover X̂ → X with the following property. If elevations Â, B̂ ⊂ X̂

of A,B intersect along an elevation of Q, then Â ∩ B̂ projects entirely to Q.

Proof. Choose a component Q′ of A ∩ B distinct from Q. Let e, e′ be edges in
N(Q), N(Q′) dual to B. Note that e, e′ are dual to distinct hyperplanes in N(A).
Consider closed paths γ = αβ, where α, β are paths in N(A), N(B) and moreover

α starts with e and ends with e′. We need to find a cover X̂ where such paths γ

do not lift. In other words, the extremal edges of any lift of α to X̂ are dual to
distinct elevations of B.

Since there are finitely many codim-2-hyperplanes in X, the carrier N(A) has
finitely many hyperplanes. In other words, the hyperplane A is 0-locally finite. We
repeat the construction from the proof of Lemma 6.10 with d = 0 to obtain the

cover X̂. Let Â ⊂ X̂ be an elevation of A mapping to R(N(A)) ⊂ R̂(X). Then

any lifts of e, e′ to N(Â) are dual to distinct hyperplanes in X̂. Replacing X̂ with
a further cover that is a regular cover of X, we obtain the same property for all
elevations of A. �
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>2d

Q Q′

Figure 1. Double injectivity radius > d at Q = {Q,Q′}

When we have a map N(Q) → N(A), a path in N(A) starting (resp. ending) at
a vertex v of N(Q) is a path that starts (resp. ends) at the image of v in N(A).

Definition 6.12. Let A 
= B be hyperplanes in a cube complex X, and let Q be
a family of components of A ∩ B. Hyperplanes A,B have double injectivity radius
> d at Q if each path of length ≤ 2d in X starting at N(A) and ending at N(B)
has the following property. Such a path is path-homotopic to a concatenation at
a vertex of N(Q) of a pair of paths in N(A) and N(B). In particular A ∩ B = Q.

In other words, if elevations N(Ã), N(B̃) of N(A), N(B) to the universal cover of

X are at distance ≤ 2d, then Ã ∩ B̃ is nonempty and projects to Q. We refer the
reader to Figure 1.

Lemma 6.13. Let X be a special cube complex with finitely many codim-2-hyper-
planes. Let A,B ⊂ X be hyperplanes, and let Q be a component of A∩B. For each

d there is a finite cover X̂ → X with the following property. If elevations Â, B̂ ⊂ X̂
of A,B intersect along an elevation of Q, then they have double injectivity radius

> d at the family of components of Â ∩ B̂ projecting to Q.

Note that this property is preserved when passing to further covers. In particular,
we can arrange that it holds for all A,B and Q simultaneously.

Proof. By Corollary 6.11 there is a finite cover X̌ of X where the intersection of
some elevations Ǎ ∩ B̌ is nonempty and projects to Q. Then passing to a regular
cover and quotienting by the group permuting the components of Ǎ∩B̌, we obtain a
cover X ′ of X with elevations A′, B′ of A,B such that the intersection Q′ = A′∩B′

is connected and projects to Q.

If we find a cover X̂ ′ → X ′ satisfying the conclusion of the lemma with A′, B′, Q′

in place of A,B,Q, then a regular cover X̂ of X factoring through X̂ ′ will satisfy
the conclusion of the lemma with A,B,Q. Thus we can replace X by X ′, suppress
the primes, and assume that A ∩B = Q.

Applying Theorem 6.2, let X → R be the local isometry into the Salvetti complex
R = R(X) of a finitely generated right-angled Artin group F . Let TA, TB ⊂ R
denote the hyperplanes that are the images of A,B, and let TQ ⊂ R denote the
codim-2-hyperplane TA ∩ TB . Consider paths γ → R of length ≤ 2d starting at
N(TA) and ending at N(TB) but with γ not path-homotopic to a concatenation at
N(TQ) of a pair of paths in N(TA), N(TB). Since R is compact, there are finitely
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many such paths γ. Let F denote the family of conjugacy classes of elements
of F determined by the closed paths αβγ−1, with α in N(TA) and β in N(TB)
concatenated at N(TQ). Then F is a union of classes determined by finitely many
nontrivial double cosets of the form H1H2g, where H1 = π1TA, H2 = π1TB . Since
double cosets of hyperplane subgroups in F are separable (a case of Lemma 6.10

proved in [HW08, Cor 9.4]), the group F has a finite index subgroup F̂ disjoint

from the set of elements whose classes lie in F. Let R̂ → R be the finite cover
corresponding to F̂ ⊂ F . Any intersecting elevations T̂A, T̂B ⊂ R̂ of TA, TB have

double injectivity radius > d at T̂A ∩ T̂B. Let X̂ → X be the pullback of R̂ → R.

We show that X̂ has the desired property. Let Â, B̂ ⊂ X̂ be intersecting eleva-

tions of A,B. Let Ã, B̃ be their further elevations to the universal cover X̃ of X

at distance ≤ 2d. The universal cover X̃ embeds as a convex subcomplex of the

universal cover R̃ of R. The hyperplanes T̃A, T̃B ⊂ R̃ containing Ã, B̃ intersect,

since their images T̂A, T̂B ⊂ R̂ have double injectivity radius > d at T̂A ∩ T̂B . By
Helly’s theorem [Rol98, Thm 2.2] the combinatorial convex hull of a pair points in

intersecting hyperplanes contains an intersection point. Hence the hyperplanes Ã

and B̃ intersect as well. �

7. Background on cubical small cancellation

In this section we review the main theorem of cubical small cancellation [Wis17].
It will be used in the proof of Theorem 2.4 (Specialization).

7.1. Pieces. Let X be a nonpositively curved cube complex. Let {Yi → X}
be a collection of local isometries of nonpositively curved cube complexes. The
pair 〈X|{Yi → X}〉, or briefly 〈X|Yi〉, is a cubical presentation. Its group is
π1X/〈〈{π1Yi}〉〉 which equals π1X

∗, where X∗ is obtained from X by attaching

cones along the Yi. Let X = 〈〈{π1Yi}〉〉\X̃ denote the cover of X in the universal

cover X̃∗ of X∗.
An abstract cone-piece in Yi of Yj is the intersection P = Ỹi∩Ỹ ′

j of some elevations

Ỹi, Ỹ
′
j of Yi, Yj to the universal cover X̃ of X. In the case where j = i, we require

that the elevations are distinct in the sense that for the projections P → Yi, Yj

there is no automorphism Yi → Yj such that the following diagram commutes.

P → Yi

↓ ↙ ↓
Yj → X

Note that an abstract cone-piece in Yi actually lies in Ỹi.

Let Ã be a hyperplane in X̃ disjoint from Ỹi. An abstract wall-piece in Yi is the

intersection Ỹi ∩N(Ã). An abstract piece is an abstract cone-piece or an abstract
wall-piece.

A path α → Yi is a piece in Yi if it lifts to Ỹi into an abstract piece in Yi. We
then denote by |α|Yi

the combinatorial distance between the endpoints of a lift of

α to Ỹi, i.e., the length of a geodesic path in Yi path-homotopic to α.
The cubical presentation 〈X|Yi〉 satisfies the C ′( 1

n ) small cancellation condition

if |α|Yi
< 1

n ||Yi|| for each piece α in Yi. Recall that ||Yi|| denotes the minimum of
the lengths of essential closed paths in Yi.
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7.2. Ladder Theorem. A disc diagram D is a compact contractible 2-complex
with a fixed embedding in R2. Its boundary path ∂pD is the attaching map of
the cell at ∞. The diagram is spurless if D does not have a spur, i.e., a vertex
contained in only one edge. If X is a combinatorial complex, a disc diagram in X
is a combinatorial map of a disc diagram into X.

Let D → X̃∗ be a disc diagram with a boundary path ∂pD → X. Note that

the 2-cells of X̃∗ are squares or triangles, where the latter have exactly one vertex
at a cone-point. The triangles in D are grouped together into cone-cells around
these cone-points. The complexity of D is the pair of numbers (# cone-cells of D,
# squares of D) with lexicographic order.

In addition to spurs, there are two other types of positive curvature features in
∂pD: shells and cornsquares. A cone-cell C adjacent to ∂pD is a shell if ∂C ∩ ∂pD
(outer path) is connected and its complement in ∂C (inner path) is a concatenation
of ≤ 6 pieces. A pair of consecutive edges of ∂pD is a cornsquare if the carriers of
their dual hyperplanes intersect at a square and surround a square subdiagram, i.e.,
a subdiagram all of whose 2-cells are squares. A ladder is a disc diagram that is the
concatenation of cone-cells and rectangles with cone-cells or spurs at extremities,
as in Figure 2. A single cone-cell is not a ladder, while a single edge is a ladder.
The following summarizes the main results of cubical small cancellation theory.

Theorem 7.1 ([Wis17, Thm 3.45], see also [Jan17]). Assume that 〈X|Yi〉 satisfies
the C ′( 1

12 ) small cancellation condition. Let D → X̃∗ be a minimal complexity disc

diagram for a closed path ∂pD → X. Then one of the following holds:

(a) D is a single vertex or a single cone-cell;
(b) D is a ladder; or
(c) D has at least three spurs and/or shells and/or cornsquares. Moreover, if

there is no shell or spur, then there must be at least four cornsquares.

The following consequence allows us to identify Yi with any of its lifts to X.

Corollary 7.2. Let 〈X|Yi〉 satisfy the C ′( 1
12 ) small cancellation condition. Then

each Yi lifts to an embedding in X.

Proof. We argue by contradiction. Let γ → Yi be a path of minimal length that is
not a closed path but which projects to a closed path γ → X. Let v be the vertex

of γ which is the projection of the endpoints of γ. Let D → X̃∗ be a disc diagram
with ∂pD = γ of minimal complexity among all such paths γ. Then the boundary
∂C of any cone-cell C in D is essential in Yj into which it maps.

Figure 2. Two ladders are on the left. On the right are two
cornsquares, a spur, and a shell within a disc diagram.
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If in γ − v, there were two consecutive edges forming a cornsquare, we could
homotope D so that there is a square at that exact corner [Wis17, Lem 2.6]. That
square would lift to Yi, and we could homotope γ through it to reduce the com-
plexity. The diagram D has no spur. If there is a shell C in D whose outer path
is contained in γ − v, then let γC = γ ∩ ∂C denote that outer path and suppose
that ∂C maps to Yj . If γC is a piece in Yj of Yi, then this contradicts that ∂C is
essential in Yi. Otherwise j = i, and there is an identification Yj → Yi agreeing on
γC . We then replace inside γ the outer path γC by the inner path of C to obtain

γ′ → Yi with the same endpoints as γ. The projection γ′ → X of γ′ bounds the
disc diagram D−C of smaller complexity than D, which is a contradiction. Hence
by Theorem 7.1, the diagram D is a single cone-cell C. Since ∂C is essential, the
path γ − v is not a piece, hence again we can identify Yj with Yi along γ − v and
γ. But γ − v is a closed path in Yj , a contradiction. �

7.3. Small cancellation quotients. We now prove that in small cancellation quo-
tients we can separate elements from cosets and double cosets. We also prove a
convexity result for carriers.

Lemma 7.3. Let 〈X|Yi〉 be a cubical presentation with all abstract pieces of uni-
formly bounded diameter. Suppose that each Yi is virtually special with finitely

many immersed hyperplanes. Let Ã ⊂ X̃ be a hyperplane, and let g ∈ G−H, where

G = π1X and H = Stab(Ã). Then there are finite index subgroups P ′
i ⊂ Pi = π1Yi

such that the following hold.

(1) Letting X = 〈〈{P ′
i}〉〉\X̃, the immersed hyperplane A in X that is the pro-

jection of Ã has no self-intersections and no self-osculations.
(2) Any two vertices of N(A) are connected by a geodesic that lies in the union

of
• a uniform neighborhood of N(A), and

• the translates of Y i = P ′
i\Ỹi in X intersecting A.

(3) g /∈ H in the quotient G = G/〈〈{P ′
i}〉〉.

Proof. Assume that all the abstract pieces have diameter < d. By Lemma 6.4 we
can choose P ′

i so that ||Y i|| ≥ 12d. By Lemma 6.7 we can further choose P ′
i so that

all the hyperplanes of Y i have injectivity radius > 3d. We also require that P ′
i ⊂ Pi

are characteristic, so that 〈X|Y i〉 satisfies the C ′( 1
12 ) small cancellation condition.

Note that merely requiring that P ′
i is normal in Pi might not suffice, since we need

that every automorphism of Yi respecting the map Yi → X elevates to Y i, thus

ensuring that in Ỹi there do not appear new abstract cone-pieces in Y i of Y i.

We first prove Assertion (2). Let D → X̃∗ be a disc diagram bounded by a
geodesic α in the 1-skeleton of N(A) and a geodesic γ in the 1-skeleton of X.
We assume that D has minimal complexity among all such disc diagrams with
prescribed common endpoints of α and γ. Then the boundary ∂C of any cone-cell
C in D is essential in Y i into which it maps. Hence |∂C|Y i

≥ ||Y i|| ≥ 12d, where

|∂C|Y i
denotes the minimal length of a closed path in the free homotopy class of

∂C in Y i. Consequently, since the inner path of a shell C is a concatenation of at
most 6 pieces, a geodesic in Y i that is path-homotopic to the inner path of C is
shorter than the outer path of C.

If in ∂pD = αγ there are two consecutive edges forming a cornsquare, they
cannot both lie in α or both lie in γ. Otherwise we could homotope D so that there
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is a square at that exact corner [Wis17, Lem 2.6]. Then we could homotope α or γ
through that square to reduce the complexity. The diagram D has no spur except
possibly where α and γ are concatenated. If there is a shell C in D whose outer
path is contained in γ, then replacing the outer path of C by a geodesic that is
path-homotopic to the inner path of C contradicts that γ is a geodesic.

Finally, suppose that the outer path of a shell C is contained in α. Let αC =

∂C ∩ α denote the outer path of C, and let δ denote the inner path of C. Let Ỹi

denote the universal cover of Y i into which ∂C maps. Consider the copy of Ỹi in

X̃ that contains a lift of αC to N(Ã). If Ã is disjoint from Ỹi, then αC is a piece
and ∂C is a concatenation of at most 7 pieces, which contradicts |∂C|Y i

≥ 12d.

Otherwise let Ãi = Ã∩ Ỹi. Hence αC projects into the quotient N(Ai) of N(Ãi) in

Y i. Since the injectivity radius of the hyperplane Ai in Y i is > 3d, the inner path
δ is path-homotopic in Y i to a path α′

C in N(Ai). If we choose α′
C to be geodesic,

then since it is path-homotopic to the inner path δ, we have |α′
C | = |δ|Y i

< |αC |.
This contradicts that α is a geodesic in N(A).

Thus there can be at most two spurs and/or shells and/or cornsquares in D,
and these are located where α and γ are concatenated. By Theorem 7.1 the disc
diagram D is a single cone-cell or ladder. For any of its cone-cells C let αC =
α ∩ ∂C, γC = γ ∩ ∂C. Let λC , δC denote the remaining, possibly trivial, arcs of
∂C. Since λC , δC are pieces, we have |λC |Y i

< d and |δC |Y i
< d, where ∂C maps

to Y i. As before, if Ã is disjoint from Ỹi containing a lift of αC to N(Ã), then
αC is a piece. Since |∂C|Y i

≥ 12d, this contradicts that γC is a geodesic. Hence

Ã intersects Ỹi, as required in Assertion (2). Furthermore, if D is a ladder, then
each subpath γo of γ outside the cone-cells of D has endpoints at distance ≤ d from
N(A), and the rectangle that γo bounds in D shows that γo is contained in the
d-neighborhood of N(A). This finishes the proof of Assertion (2).

For Assertion (3), let A be the immersed hyperplane in X that is the projection

of Ã. Let γ → X be a minimal length path starting and ending at N(A) such that
a concatenation of γ with a path in N(A) represents the conjugacy class of g. We
increase d so that d ≥ |γ|, and we then choose P ′

i as before. If g lies in H, then
a lift of γ to X forms a closed path with a path α in N(A). Let D be a minimal
complexity disc diagram with ∂pD = αγ among all such γ. Then D cannot have
spurs by the minimality of |γ|. As before, there are no consecutive edges forming
cornsquares in α or in γ. Since d ≥ |γ|, there are no shells with outer path in γ.

C ′C α ′

α
C

δ δ

γ γ

C

Figure 3. The shell C is surrounded by a hyperplane and a short
inner path δ. We can thus replace C by a square diagram C ′ as on
the right.
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If there is a shell C with outer path αC = α∩ ∂C, then as before the inner path

δ is path-homotopic in Y i to a path α′
C in N(Ai). Then as in Figure 3, we could

replace αC by α′
C and replace C by a square diagram. This contradicts the minimal

complexity of D.
By Theorem 7.1 the disc diagram D is a single cone-cell or a ladder, and for

any of its cone-cells C the hyperplane Ã intersects Ỹi containing the lift of αC to

N(Ã). We have |λC |Y i
+ |γC | + |δC |Y i

≤ 3d, while the injectivity radius in Y i of

the projection of the hyperplane Ãi = Ã ∩ Ỹi is > 3d. Then we can replace αC by
α′
C and replace C by a square diagram to contradict the minimal complexity of D.
Assertion (1) follows from the same proof as Assertion (3), where we consider

all paths γ of length 0. �

Lemma 7.4. Let 〈X|Yi〉 be a cubical presentation with all abstract pieces of uni-
formly bounded diameter. Suppose that each Yi is virtually special with finitely
many immersed codim-2-hyperplanes. Let H1, H2 ⊂ G = π1X be stabilizers of in-

tersecting hyperplanes Ã, B̃ ⊂ X̃, and let g ∈ G − H1H2. There are finite index
subgroups P ′

i ⊂ Pi = π1Yi such that g /∈ H1H2 in the quotient G = G/〈〈{P ′
i}〉〉.

Proof. Assume that all the abstract pieces have diameter < d. Let Q̃ = Ã∩ B̃, and
let A,B,Q be the immersed hyperplanes and codim-2-hyperplane in X that are the

projections of Ã, B̃, Q̃. Let γ → X be a minimal length path starting at N(A) and
ending at N(B) such that its concatenation with a pair of paths in N(A), N(B)
concatenated at N(Q) represents the conjugacy class of g. We increase d so that
d ≥ |γ|. Let P sp

i ⊂ Pi be finite index special subgroups.
By Lemmas 6.4, 6.7, and 6.13 we can choose finite index subgroups P ′

i ⊂ P sp
i

that are characteristic in Pi and such that Y i = P ′
i\Ỹi satisfy the following:

• ||Y i|| ≥ 12d;
• all hyperplanes in Y i have injectivity radius > 4d; and
• all pairs Ai, Bi of hyperplanes in Y i intersecting at a codim-2-hyperplane Qi

have double injectivity radius > 3d at the family of components of Ai ∩Bi

in the P sp
i /P ′

i orbit of Qi.

The reason we used the P sp
i /P ′

i orbit instead of the entire Pi/P
′
i orbit is the

following. Since P sp
i is special, an element p ∈ P sp

i /P ′
i cannot map Ai to a distinct

hyperplane intersecting Ai. Hence if p ∈ P sp
i /P ′

i maps a component of Ai ∩ Bi to

a component of Ai ∩Bi, then it cannot interchange Ai and Bi, and so it stabilizes
Ai and Bi.

Let X = 〈〈{P ′
i}〉〉\X̃. Let A,B,Q be the hyperplanes and codim-2-hyperplane

in X that are the projections of Ã, B̃, Q̃.
We now argue by contradiction to prove the lemma. If g lies in H1H2, then there

is a disc diagram D → X̃∗ bounded by a closed path αγβ−1, where α, β−1 are paths
in N(A), N(B) concatenated at a vertex v ∈ N(Q), and we lift γ to X. Assume
that D has minimal complexity among all such diagrams and γ. By minimality of
|γ| the diagram D has no spurs except possibly where α and β are concatenated. By
replacing v, we can remove such spurs and assume that D is spurless. The diagram
D also cannot have two consecutive edges of α, β, or γ forming cornsquares.

An outer path of a shell C cannot be contained entirely in α, β, or γ, as in the
proof of Lemma 7.3. We now prove that the outer path of a shell C with ∂C
mapping to Y i cannot be contained in αγ (or γβ−1). Otherwise, recall that |γ| ≤ d
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β
C

β
C 
′

α
C

C δ C δ

β β ′

γ

α α
C
′

γ

α′

Figure 4. The shell C in the first diagram is surrounded by two
hyperplanes and a short inner path δ as in the second diagram.
We can thus replace C by a square diagram bounded by α′

Cδβ
′−1
C

to obtain a smaller complexity diagram on the right.

and the length of a geodesic that is path-homotopic to the inner path of C is < 6d.
Hence if αC = ∂C ∩α is a piece, then this contradicts |∂C|Y i

≥ 12d. If αC is not a

piece, then since the hyperplane injectivity radius in Y i is > 4d, we could replace
αC by α′

C and replace C by a square diagram, contradicting minimal complexity.

Since 〈X|Y i〉 satisfies the C ′( 1
12 ) small cancellation condition, by Theorem 7.1

the disc diagram D is either:

(a) a single cone-cell C; or
(b) a ladder with a shell C containing v; or
(c) a diagram with two cornsquares located where γ is concatenated with α

and β, and with a shell C containing v as in Figure 4.

In each case there is a cone-cell C containing v. Let αC and βC denote the subpaths

α ∩ ∂C and β ∩ ∂C. The complement δ in ∂C of β−1
C αC either coincides with γ in

case (a), is a piece in case (b), or is an inner path of a shell, hence a concatenation
of at most 6 pieces in case (c). In each case we have |δ|Y i

< 6d, where ∂C maps to

Y i.
Let ṽ ∈ N(Q̃) be a lift of v. Let Ỹi be the elevation of Yi containing ṽ. Let

Ãi = Ã ∩ Ỹi, B̃i = B̃ ∩ Ỹi. If both Ãi, B̃i are empty, then both αC , βC are pieces

which contradicts |∂C|Y i
> 12d. If exactly one of Ãi, B̃i is empty, say B̃i, then βC

is a piece. Since the injectivity radius of Ãi is > 4d, as before we could replace
αC by α′

C and replace C by a square diagram, contradicting minimal complexity.

Hence both Ãi, B̃i are nonempty and D shows that they intersect in nonempty

Q̃i = Q̃ ∩ Ỹi.

Let Ai, Bi, Qi ⊂ Y i denote the projections of Ãi, B̃i, Q̃i. The double injectivity
radius in Y i is > 3d. Hence δ is homotopic in Y i to a concatenation at pN(Qi)
of paths α′

C , β
′
C in N(Ai), N(Bi) for some p ∈ P sp

i /P ′
i . Thus there is in Y i a

square diagram with boundary α′
Cδβ

′−1
C . We replace C by this square diagram,

and we replace the subpath αC of α by α′
C to obtain α′, and similarly we replace

the subpath βC of β by β′
C to obtain β′. Since p ∈ P sp

i /P ′
i , we have pN(Ai) =

N(Ai) and pN(Bi) = N(Bi). Translating the whole diagram by p−1 yields a
disc diagram bounded by p−1(α′)p−1(γ)p−1(β′−1), where p−1(α′), p−1(β′−1) are
paths in N(A), N(B) concatenated at N(Q). This diagram has a smaller number
of cone-cells than D, which contradicts the minimal complexity assumption. See
Figure 4. �
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8. Specialization

In this section we prove Theorem 2.4 (Specialization).

Proof of Theorem 2.4. To prove that the action of G on X̃ is virtually special, we
will verify the conditions of Criterion 2.3. Freeness and finiteness Conditions (1)–
(3) of Criterion 2.3 are Hypothesis (i) of Theorem 2.4. We now verify Condition (4).

Let H be the stabilizer of a hyperplane Ã ⊂ X̃. Let g ∈ G−H. We will find finite
index subgroups P ′

i ⊂ Pi such that:

(a) G = G/〈〈{P ′
i}〉〉 is hyperbolic and virtually compact special;

(b) the image H is quasiconvex in G;
(c) g /∈ H .

The result then follows from separability of quasiconvex subgroups in hyperbolic
virtually compact special groups [HW08, Thm 7.3].

By Hypothesis (iv) and Theorem 4.7, there are E◦
n ⊂ En such that P ′

i ∩En ⊂ E◦
n

implies that G splits as a graph of hyperbolic virtually compact special groups with
finite edge groups. Then G is hyperbolic virtually compact special and Condi-
tion (a) is satisfied. By Hypothesis (ii), there are indeed finite index subgroups
P ′
i ⊂ Pi satisfying P ′

i ∩ En ⊂ E◦
n.

To arrange Conditions (b) and (c) we apply cubical small cancelation theory.

Let X = G\X̃, and let Yi = Pi\Ỹi. Consider the cubical presentation 〈X|Yi〉.
By Hypothesis (iii), the complexes Yi are virtually special and have finitely many

immersed codim-2-hyperplanes. Since Ỹi are superconvex, there is a uniform bound

on the diameters of abstract wall-pieces. Let K ⊂ X̃ be the compact subcomplex

from the definition of relative cocompactness. If j 
= i or g′ 
= Pi, then g′Ỹi ∩ Ỹj ⊂
GK. Since G is relatively hyperbolic, the intersections g′Pig

′−1 ∩Pj are finite, and

hence there is a uniform bound on the diameters of abstract cone-pieces g′Ỹi ∩ Ỹj .
We can thus apply Lemma 7.3 and replace P ′

i by further finite index subgroups
satisfying its conclusion. Condition (c) follows directly from Lemma 7.3(3). Let A

be the hyperplane in X that is the projection of Ã, as in Lemma 7.3(1). The group
G acts cocompactly on Xc = 〈〈{P ′

i}〉〉\GK. We can assume that Xc is connected
and contains an edge dual to A. We will prove that A ∩Xc is quasiconvex in Xc,
which means that its stabilizer H is quasiconvex in G, giving Condition (b). By
Lemma 7.3(2), any two points of N(A) ∩ Xc are connected in X by a geodesic γ
that lies in the union of a uniform neighborhood of N(A) and the translates of Y i

intersecting A. Every component of γ − Xc is contained in some translate of the
closure Zi of Y i −Xc. By the last part of the definition of relative cocompactness

in Section 2, the group Pi acts cocompactly on Ỹi ∩ GK. Thus, since P ′
i is of

finite index in Pi, the intersection Zi ∩Xc is compact. Hence we can form a quasi-
geodesic γc by replacing in γ each component of γ − Xc in a translate g′Zi by a
path of uniformly bounded length in g′Y i ∩Xc. The quasi-geodesic γc is contained
in the union of a uniform neighborhood of N(A) and the translates of Y i ∩ Xc

intersecting A. Since Y i ∩ Xc are uniformly bounded, γc is at uniform distance
from A, as desired. This completes the proof of Condition (4) of Criterion 2.3.

To prove Condition (5) we need to replace (c) above by

(c′) g /∈ H1H2,
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where H1, H2 are the stabilizers of intersecting hyperplanes Ã1, Ã2 ⊂ X̃ and g ∈
G − H1H2. It suffices to consider P ′

i provided by Lemma 7.4. Once we have
(a), (b), and (c′), we appeal to [Min06, Thm 1.1], which says that in hyperbolic
groups with separable quasiconvex subgroups, double cosets of quasiconvex sub-
groups are separable as well. �
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