
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 31, Number 2, April 2018, Pages 427–471
http://dx.doi.org/10.1090/jams/889

Article electronically published on October 19, 2017

ENERGY SOLUTIONS OF KPZ ARE UNIQUE

MASSIMILIANO GUBINELLI AND NICOLAS PERKOWSKI

1. Introduction

The aim of this paper is to establish the well-posedness of the martingale problem
for the stationary conservative stochastic Burgers equation (SBE) on R,

(1) dut = νΔutdt+ λ∂xu
2
tdt+

√
D∂xdWt,

where u : R+ × R → R is a continuous process in t taking values in the space of
(Schwartz) distributions over R, λ ∈ R, ν,D > 0, and W is a cylindrical Wiener
process such that ∂tW is a space-time white noise. A direct consequence will be the
well-posedness of the martingale problem for the quasi-stationary Kardar–Parisi–
Zhang (KPZ) equation

(2) dht = Δhtdt+ λ((∂xht)
2 −∞)dt+

√
2dWt,

where h : R+×R → R is a continuous process, and for any t the law of ht(·)−ht(0)
is a two-sided Brownian motion on R. The SBE describes the evolution of the weak
derivative ut(x) = ∂xht(x) of the solution to the KPZ equation h. Our uniqueness
proof also establishes that h is related to the solution of the linear multiplicative
stochastic heat equation (SHE),

(3) dZt = ΔZtdt+
√
2λZtdWt

by the Cole–Hopf transformation

(4) ht = λ−1 logZt +
λ3

12
t, t ≥ 0.

The SHE allows a formulation via standard Itô calculus and martingale, weak, or
mild solutions in suitable weighted spaces of continuous adapted processes. The
SBE and the KPZ equation, on the other hand, cannot be studied in standard
spaces due to the fact that the nonlinearity is ill-defined, essentially because the
trajectories of the solutions do not possess enough spatial regularity. Indeed, so-
lutions of the KPZ equation are of Hölder regularity less than 1/2 in space, so a
priori the pointwise square of their derivatives cannot be defined.

Despite this mathematical difficulty, the KPZ equation is expected to be a faith-
ful description of the large scale properties of one-dimensional growth phenomena.
This was the original motivation which led Kardar, Parisi, and Zhang [KPZ86] to
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study the equation, and both experimental and theoretical physics arguments have,
since then, confirmed their analysis. The rigorous study of the KPZ equation and
its relation with the SHE started with the work of Bertini and Giacomin [BG97] on
the scaling limit of the weakly asymmetric exclusion process (WASEP). Starting

from this discrete Markov process on {0, 1}Z and performing a suitable space-time
rescaling and recentering, they were able to prove that its density fluctuation field
converges to a random field u which is linked to the solution of the SHE by the
Cole–Hopf transformation (4). Incidentally they had to add exactly the strange
1/12 drift in order to establish their result. Their work clarifies that any physically
relevant notion of solution to the (still conjectural) equations (1) and (2) needs
to be transformed to the SHE by the Cole–Hopf transformation and also that the
SBE should allow the law of the space white noise as invariant measure. A priori
these insights are of little help in formulating the SBE/KPZ equation, since given a
solution Z to the SHE it is not possible to apply Itô’s formula to λ−1 logZ, and in
particular the inverse Cole–Hopf transformation is ill-defined. It should be noted
that the main difficulty of equations (1) and (2) lies in the spatial irregularity and
that no useful martingales in the space variable are known, a fact which prevents
an analysis via Itô’s stochastic integration theory. Moreover, the convergence result
of [BG97] relies strongly on the particular structure of the WASEP and does not
have many generalizations because most models behave quite badly under exponen-
tiation (Cole–Hopf transformation); see [DT16,CT17,CST16,Lab17] for examples
of models that do admit a useful Cole–Hopf transformation.

After the work of Bertini and Giacomin, there have been various attempts to
study the SBE via Gaussian analysis tools taking into account the necessary invari-
ance of the space white noise. A possible definition based on the Wick renormalized
product associated to the driving space-time white noise has been ruled out because
it lacks the properties expected from the physical solution [Cha00]. Assing [Ass02]
has been the first, to our knowledge, to attempt a martingale problem formula-
tion of the SBE. He defines a formal infinite-dimensional generator for the process
essentially as a quadratic form with dense domain, but he has not been able to
prove its closability. The singular drift, which is ill-defined pointwise, make sense
as a distribution on the Gaussian Hilbert space associated to the space white noise,
however this distributional nature prevents the identification of a suitable domain
for the formal generator.

The martingale problem approach has been subsequently developed by Gonçalves
and Jara [GJ10,GJ14].1 Their key insight is that while the drift in (1) is difficult
to handle in a Markovian picture (that is, as a function on the state space of the
process), it makes perfect sense in a pathwise picture. They proved in particu-
lar that a large class of particle systems (which generalize the WASEP studied by
Bertini and Giacomin) has fluctuations that subsequentially converge to random
fields u, which are solutions of a generalized martingale problem for (1) where the
singular nonlinear drift ∂x(u(t, x)

2) is a well-defined space-time distributional ran-
dom field. Avoiding a description of a Markovian generator for the process, they
manage to introduce an auxiliary process which plays the same role in the formu-
lation of the martingale problem. Subsequent work of Jara and Gubinelli [GJ13]

1The paper [GJ14] is the revised published version of [GJ10].
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gave a different definition of the martingale problem via a forward-backward de-
scription. The solution of the martingale problem is a Dirichlet process, that is
the sum of a martingale and a zero quadratic variation process. This property and
the forward-backward decomposition of the drift are reminiscent of Lyons–Zheng
processes and in general of the theory of Markov processes described by Dirich-
let forms; however, a complete understanding of the matter is at the moment not
well developed, and the martingale problem formulation avoids the subtleties of
the Markovian setting. Gonçalves and Jara called the solutions of this generalized
martingale problem energy solutions for the SBE/KPZ equation.

Following [GJ14], it has been shown for a variety of models that their fluctuations
subsequentially converge to energy solutions of the KPZ equation or the SBE, for
example for zero range processes and kinetically constrained exclusion processes
in [GJS15], various exclusion processes in [GJS17,FGS16,BGS16,GJ16], interacting
Brownian motions in [DGP17], and Hairer–Quastel type SPDEs in [GP16]. This is
coherent with the conjecture that the SBE/KPZ equation describes the universal
behavior of a wide class of conservative dynamics or interface growth models in the
particular limit where the asymmetry is “small” (depending on the spatial scale),
the so-called weak KPZ universality conjecture; see [Cor12,Qua14,QS15,Spo16]. In
order to fully establish the conjecture for the models above, the missing step was a
proof of uniqueness of energy solutions. This question remained open for some time
during which it was not clear if the notion is strong enough to guarantee uniqueness
or if it is too weak to expect well-posedness. Here we present a proof of uniqueness
for the refined energy solutions of [GJ13], on the full line and on the torus, thereby
finally establishing the well-posedness of the martingale problem and its expected
relation with the SHE via the Cole–Hopf transform. In fact we even prove that
the equation formulated in [GJ13] leads to strongly unique solutions, which directly
gives uniqueness in law. The reason we emphasize the (weaker) uniqueness in law
is that energy solutions frequently arise as scaling limits for particle systems.

Our proof follows the strategy developed by Funaki and Quastel in [FQ15].
Namely, we map a mollified energy solution to the SHE via the Cole–Hopf trans-
form, and we use a version of the Boltzmann–Gibbs principle to control the various
error terms arising from the transformation and to derive the relation (4) in the
limit as we take the mollification away. A direct corollary of our results is the proof
of the weak KPZ universality conjecture for all the models in the literature which
have been shown to converge to energy solutions.

Shortly after the introduction of energy solutions, the fundamental work [Hai13]
of Hairer on the KPZ equation appeared, where he established a pathwise notion of
solution using Lyons’s theory of rough paths to provide a definition of the nonlinear
term as a continuous bilinear functional on a suitable Banach space of functions.
Existence and uniqueness were then readily established by fixed point methods.
This breakthrough developed into a general theory of singular SPDEs, Hairer’s
theory of regularity structures [Hai14], which provides the right analytic setting to
control the singular terms appearing in stochastic PDEs, such as the SBE/KPZ
equations and their generalizations, but also in other important SPDEs, such as
the stochastic Allen–Cahn equation in dimensions d = 2, 3 and the (generalized)
parabolic Anderson model in d = 2, 3. The work of the authors of this paper
together with P. Imkeller on the use of paradifferential calculus [GIP15] and the
work of Kupiainen based on renormalization group (RG) techniques [Kup16,KM17]
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opened alternative ways to tackle singular SPDEs. All these approaches have in
common that they control the a priori ill-defined nonlinearities in the equation
using pathwise (deterministic) arguments, and it was not clear if a probabilistic
understanding of such singular SPDEs is possible at all. Our uniqueness proof for
the stationary martingale solution to the KPZ equation is a first indication that
it is possible and is a problem worth investigating closer—even if our method of
proof does not extend to other equations because we extensively use the specific
structure of the KPZ equation, including the facts that its invariant measure is
Gaussian, that its nonlinearity is antisymmetric, and most restrictively that it can
be mapped to the SHE through the Cole–Hopf transform.

From the point of view of the weak KPZ universality conjecture, the pathwise
approach is difficult to use and, for now, there are only a few convergence results
using either regularity structures, paracontrolled distributions, or RG techniques;
see [HQ15,HS15,GP17,Hos16]. The martingale approach has the advantage that it
is easy to implement, especially starting from discrete particle systems which often
do not have the semilinear structure that is at the base of the pathwise theories.

The main limitation of the martingale approach to the SBE/KPZ equation is that
currently it works only at stationarity. Using tools from the theory of hydrodynamic
limits, it seems possible to extend the results to initial conditions with small relative
entropy with respect to the stationary measure. However, this has not been done
yet and dealing with even more singular initial conditions is a completely open
problem. On the other hand, with energy solutions it is relatively easy to work on
the real line, while in the pathwise approach this requires dealing with weighted
function spaces, and the question of uniqueness seems still not clear.

To summarize, the main contribution of the present paper is a proof of uniqueness
of energy solutions (in the refined formulation of Jara and Gubinelli [GJ13]) on
the real line and on the torus. We start in section 2 by introducing the notion of
solution and the space of trajectories where solutions live. Subsequently, we discuss
in section 3 several key estimates available in this space, estimates which allow us
to control a large class of additive functionals. After these preliminaries we show
in section 4 how to implement the Cole–Hopf transformation at the level of energy
solutions and, by a careful control of some error terms, how to establish the Itô
formula which proves the mapping from the SBE to the SHE. Using the uniqueness
for the SHE, we conclude the uniqueness of energy solutions. In Appendix A we add
some detail on how to modify the proof to deal with the case of periodic boundary
conditions. Appendix B contains an auxiliary moment bound for the Cole-Hopf
transformation of the stochastic Burgers equation.

Notation. We use the notation a � b if there exists a constant c > 0, independent
of the variables under consideration, such that a � c · b, and we write a � b if a � b
and b � a. The Schwartz space on R

d is denoted with S (Rd), and its dual S ′(Rd) is
the space of tempered distributions. The notation D ′(Rd) refers to the distributions
on R

d, the dual space of C∞
c (Rd). The Fourier transform of u ∈ S ′(Rd) is denoted

with û = Fu, and we use the normalization û(ξ) =
∫
Rd e

2πiξ·xu(x)dx. For α ∈ R,
we use the following slightly unusual (but of course equivalent to the usual) norm
for the space Hα(Rd)

Hα
(
R

d
)
:=

{
u ∈ S ′ (

R
d
)
: ‖u‖2Hα(Rd) =

∫
Rd

|û(ξ)|2
(
1 + |2πξ|2

)α
< ∞
}
.
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Throughout this paper we work with the quadratic variation in the sense of
Russo and Vallois [RV07]: A real-valued stochastic process (Xt)t�0 has quadratic
variation ([X]t)t�0 if

[X]t = lim
ε→0

∫ t

0

1

ε
(Xs+ε −Xs)

2ds,

where the convergence is uniform on compacts in probability. If X is a continuous
semimartingale, then [X] is its semimartingale quadratic variation. Despite the fact
that we deal with continuous processes, we use the notation [·] for the quadratic
variation because 〈·, ·〉 will be reserved for the inner products in various Hilbert
spaces.

2. Controlled processes and energy solutions

2.1. Burgers equation. In this section we follow Gonçalves and Jara [GJ14]
and Gubinelli and Jara [GJ13] in defining stationary energy solutions to the SBE
u : R+ × R → R,

(5) dut = νΔutdt+ λ∂xu
2
tdt+

√
D∂xdWt,

where λ ∈ R, ν,
√
D > 0, and ∂tW is a space-time white noise. Recall that from a

probabilistic point of view the key difficulty in making sense of (5) is that we expect
the law of (a multiple of) the white noise on R to be invariant under the dynamics,
but the square of the white noise can only be defined as a Hida distribution and
not as a random variable. To overcome this problem, we first introduce a class of
processes u which at fixed times are distributed as the white noise but for which
the nonlinear term ∂xu

2 is defined as a space-time distribution. In this class of
processes it then makes sense to look for solutions of the Burgers equation (5).

If (Ω,F , (Ft)t�0,P) is a filtered probability space, then for an adapted process
W with trajectories in C (R+,S

′(R)) we say that ∂tW is a space-time white noise
on that space if for all ϕ ∈ S (R) the process (Wt(ϕ))t�0 is a Brownian motion in
the filtration (Ft)t�0 with variance E[Wt(ϕ)

2] = t‖ϕ‖2L2(R) for all t � 0. A (space)

white noise with variance σ2 is a random variable η with values in S ′(R) such
that (η(ϕ))ϕ∈S (R) is a centered Gaussian process with covariance E[η(ϕ)η(ψ)] =

σ2〈ϕ, ψ〉L2(R). If σ = 1, we simply call η a white noise. Throughout, we write μ for
the law of the white noise on S ′(R).

Definition 2.1 (Controlled process). Let ν,D > 0, let ∂tW be a space-time
white noise on the filtered probability space (Ω,F , (Ft)t�0,P), and let η be an
F0-measurable space white noise. Denote with Qν,D(W, η) the space of pairs (u,A)
of adapted stochastic processes with trajectories in C (R+,S

′(R)) such that

i) u0 =
√
D/(2ν)η and the law of ut is that of a white noise with variance

D/(2ν) for all t � 0;
ii) for any test function ϕ ∈ S (R), the process t �→ At(ϕ) is almost surely

of zero quadratic variation, satisfies A0(ϕ) = 0, and the pair (u(ϕ),A(ϕ))
solves the equation

(6) ut(ϕ) = u0(ϕ) + ν

∫ t

0

us(Δϕ)ds+At(ϕ)−
√
DWt(∂xϕ), t � 0;
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iii) for any T > 0 the time-reversed processes ût = uT−t, Ât = −(AT −AT−t)
satisfy

ût(ϕ) = û0(ϕ) + ν

∫ t

0

ûs(Δϕ)ds+ Ât(ϕ)−
√
DŴt(∂xϕ), t ∈ [0, T ], ϕ ∈ S (R),

where ∂tŴ is a space-time white noise in the filtration generated by (û, Â).

If there exist a space-time white noise ∂tW and a white noise η such that (u,A) ∈
Qν,D(W, η), then we simply write (u,A) ∈ Qν,D. For ν = 1 and D = 2, we omit the
parameters in the notation and write (u,A) ∈ Q(W, η), respectively (u,A) ∈ Q.

We will see that Qν,D(W, η) contains the probabilistically strong solution to (5),
while Qν,D is the space in which to look for probabilistically weak solutions.

Controlled processes were first introduced in [GJ13] on the circle, and the defi-
nition on the real line is essentially the same. For A = 0 the process (X, 0) ∈ Qν,D

is the stationary Ornstein–Uhlenbeck process. It is the unique-in-law solution to
the SPDE

dXt = νΔXtdt+
√
D∂xdWt

with initial condition u0 ∼
√
D/(2ν)η. Allowing A = 0 has the intuitive meaning

of considering perturbations of the Ornstein–Uhlenbeck process with antisymmetric
drifts of zero quadratic variation. In this sense we say that a couple (u,A) ∈ Qν,D

is a process controlled by the Ornstein–Uhlenbeck process.
As we will see below, for controlled processes we are able to construct some in-

teresting additive functionals. In particular, for any controlled process, the Burgers
drift makes sense as a space-time distribution:

Proposition 2.2. Let (u,A) ∈ Qν,D, let ρ ∈ L1(R) ∩ L2(R) with
∫
R
ρ(x)dx = 1,

and write ρN := Nρ(N ·) for N ∈ N. Then for all ϕ ∈ S (R), the process∫ t

0

(us ∗ ρN )2(−∂xϕ)ds, t � 0,

converges uniformly on compacts in probability to a limiting process that we denote
with ∫ t

0

∂xu
2
sds(ϕ), t � 0.

As the notation suggests, this limit does not depend on the function ρ.

The proof will be given in section 3.3. Note that the convolution us ∗ ρN is
well-defined for ρN ∈ L2(R) ∩ L1(R) and not only for ρN ∈ S (R) because at fixed
times us is a white noise.

Now we can define what it means for a controlled process to solve the SBE.

Definition 2.3. Let ∂tW be a space-time white noise on (Ω,F , (Ft)t�0,P), let η
be an F0-measurable space white noise, and let (u,A) ∈ Qν,D(W, η). Then u is
called a strong stationary solution to the SBE

(7) dut = νΔutdt+ λ∂xu
2
tdt+

√
D∂xdWt, u0 =

√
D

2ν
η,

if A(ϕ) = λ
∫ ·
0
∂xu

2
sds(ϕ) for all ϕ ∈ S (R). If (u,A) ∈ Qν,D and A(ϕ) =

λ
∫ ·
0
∂xu

2
sds(ϕ) for all ϕ ∈ S (R), then u is called an energy solution to (7).



ENERGY SOLUTIONS OF KPZ ARE UNIQUE 433

The notion of energy solutions was introduced in a slightly weaker formulation
by Gonçalves and Jara in [GJ14], and the formulation here is due to [GJ13]. Note
that strong stationary solutions correspond to probabilistically strong solutions,
while energy solutions are probabilistically weak in the sense that we do not fix
the probability space and the noise driving the equation. Our main result is that
strong and weak uniqueness hold for our solutions.

Before we state this precisely, let us introduce some notation. Given σ ∈ C∞
c (R)

with σ � 0 and
∫
R
σ(x)dx = 1, we write Z(σ) for the unique solution to the linear

multiplicative SHE

(8) dZ
(σ)
t = νΔZ

(σ)
t dt+

λ
√
D

ν
Z

(σ)
t dWt, Z

(σ)
0 (x) = e

λ
ν

√
D
2ν η(Θ(σ)

x ),

where Θ
(σ)
x = 1(−∞,x] −

∫∞
· σ(y)dy. If σ̃ is another function of this form, then

η(Θ
(σ̃)
x ) = η(Θ

(σ)
x ) + χ, where χ is an F0-measurable random variable that is inde-

pendent of x, and in particular Z
(σ̃)
t (x) = e

λ
ν

√
D
2ν χZ

(σ)
t (x) for all t ≥ 0 and x ∈ R,

which implies ∂x logZ
(σ̃) = ∂x logZ

(σ) for the distributional derivative ∂x.

Theorem 2.4. Let ∂tW be a space-time white noise on the filtered probability space
(Ω,F , (Ft)t�0,P), and let η be an F0-measurable space white noise. Then the strong
stationary u solution to

(9) dut = νΔutdt+ λ∂xu
2
tdt+

√
D∂xdWt, u0 =

√
D

2ν
η,

is unique up to indistinguishability. Moreover, for λ = 0, we have u = ν
λ∂x logZ

(σ),

where the derivative is taken in the distributional sense, and Z(σ) is the unique
solution to the linear multiplicative SHE (8) for an arbitrary σ ∈ C∞

c (R) with
σ � 0 and

∫
R
σ(x)dx = 1. Consequently, any two energy solutions of (9) have the

same law.

The proof will be given in section 4.1.

Remark 2.5. As far as we are aware, this is the first time that existence and unique-
ness for an intrinsic notion of solution to the Burgers equation on the real line is ob-
tained. The results of [Hai13,GP17,KM17] are restricted to the circle T. In [HL15]
the linear multiplicative heat equation is solved on the real line using regularity
structures, and by the strong maximum principle of [CGF17] the solution is strictly
positive, so in particular its logarithm is well-defined. Then it should be possible
to show that the derivative of the logarithm is a modeled distribution and solves
the SBE in the sense of regularity structures. However, it is not at all obvious if
and in which sense this solution is unique.

Remark 2.6 (Reduction to standard parameters). To simplify notation, we will
assume from now on that ν = 1 and D = 2 which can be achieved by a simple
transformation. Indeed, it is easy to see that (u,A) ∈ Qν,D(W, η) if and only if
(uν,D,Aν,D) ∈ Q(W ν,D, η), where

uν,D
t (ϕ) :=

√
2ν

D
ut/ν(ϕ), Aν,D

t (ϕ) :=

√
2ν

D
At/ν(ϕ), W ν,D

t (ϕ) :=
√
νWt/ν(ϕ),
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and ∂tW
ν,D is a space-time white noise. Moreover, u is a strong stationary solution

to (9) if and only if uν,D is a strong stationary solution to

duν,D
t = Δuν,D

t dt+ λ

√
D

2ν3
∂x(u

ν,D
t )2dt+

√
2∂xdW

ν,D
t , uν,D

0 = η.

By also rescaling the space variable, it would be possible to set λ = 1 in (5).
However, in the periodic setting discussed below, the rescaling of the space variable
would change the size of the torus on which the solution lives, so we prefer to work
with general λ instead.

Remark 2.7 (Martingale problem). Energy solutions can be understood as solutions
to a martingale problem. Indeed, given a pair of stochastic processes (u,A) with
trajectories in C (R+,S

′(R)), we need to check the following criteria to verify that
u is the unique-in-law energy solution to (9):

i) The law of ut is that of the white noise with variance D/(2ν) for all t � 0.
ii) For any test function ϕ ∈ S (R), the process t �→ At(ϕ) is almost surely

of zero quadratic variation, satisfies A0(ϕ) = 0, and the pair (u(ϕ),A(ϕ))
solves the equation

ut(ϕ) = u0(ϕ) + ν

∫ t

0

us(Δϕ)ds+At(ϕ) +Mt(ϕ), t � 0,

where M(ϕ) is a continuous martingale in the filtration generated by
(u,A), such that M0(ϕ) = 0 and M(ϕ) has quadratic variation [M(ϕ)]t
= D‖∂xϕ‖2L2t.

iii) For any T > 0 the time-reversed processes ût = uT−t, Ât = −(AT −AT−t)
satisfy

ût(ϕ) = û0(ϕ) + ν

∫ t

0

ûs(Δϕ)ds+ Ât(ϕ) + M̂t(ϕ), t ∈ [0, T ],

where M̂(ϕ) is a continuous martingale in the filtration generated by

(û, Â), such that M̂0(ϕ) = 0 and M̂(ϕ) has quadratic variation [M̂(ϕ)]t
= D‖∂xϕ‖2L2t.

iv) There exists ρ ∈ L1(R) ∩ L2(R) such that
∫
R
ρ(x)dx = 1 and with ρN :=

Nρ(N ·) we have

At(ϕ) = λ lim
N→∞

∫ t

0

(us ∗ ρN )2(−∂xϕ)ds

for all t ≥ 0 and ϕ ∈ S (R).

Remark 2.8 (Different notions of energy solutions). In [GJ14] a slightly weaker
notion of energy solution was introduced. Roughly speaking, Gonçalves and Jara
only make assumptions i), ii), and iv) of Remark 2.7 but do not consider the time
reversal condition iii). They then show that a wide class of weakly asymmetric
exclusion type processes have subsequential scaling limits that satisfy conditions
i), ii), and iv). We do not know whether this weaker formulation still identifies
the subsequential limits uniquely. However, the proof in [GJ14] actually shows
that any subsequential scaling limit of their particle system also satisfies iii), even
if Gonçalves and Jara do not mention this explicitly. Indeed, the time-reversal
condition iii) is satisfied for the particle system, and it trivially carries over to the
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limit. Therefore, the combination of [GJ14] with our uniqueness result proves the
weak KPZ universality conjecture for a wide class of particle systems.

Remark 2.9 (Relaxations). It suffices to assume (u,A) ∈ C (R+,D ′(R)) and to
verify the conditions of Remark 2.7 for ϕ ∈ C∞

c (R) instead of ϕ ∈ S (R). For
our proof of uniqueness we do need to handle test functions in S (R), but since all
terms in the decomposition

ut(ϕ) = u0(ϕ) + ν

∫ t

0

us(Δϕ)ds+ λ

∫ t

0

∂xu
�2
s ds(ϕ) +

√
DWt(ϕ)

come with good continuity estimates, it follows from the above conditions that u
and A have trajectories in C(R+,S

′(R)) and satisfy the same equation also for
test functions in S (R). It is even possible to only assume that (u(ϕ),A(ϕ)) is a
family of continuous adapted stochastic processes indexed by ϕ ∈ C∞

c (R) such that
the conditions i)–iv) in Remark 2.7 hold up to a null set that may depend on ϕ.

In that case we can find a version (ũ, Ã) with values in C(R+,S ′(R)) such that

P(u(ϕ) = ũ(ϕ),A(ϕ) = Ã(ϕ)) = 1 for all ϕ ∈ C∞
c (R). These relaxations may come

in handy when proving the convergence of fluctuations of microscopic systems to
the Burgers equation.

2.2. KPZ equation. Once we understand how to deal with the SBE, it is not
difficult to also handle the KPZ equation. Let ∂tW be a space-time white noise
on the filtered probability space (Ω,F , (Ft)t�0,P), and let χ be an F0-measurable
random variable with values in S ′(R) such that η := ∂xχ is a space white noise.
Then we denote with QKPZ(W,χ) the space of pairs (h,B) of adapted stochastic
processes with trajectories in C(R+,S

′(R)) which solve for all ϕ ∈ S (R) the
equation

(10) ht(ϕ) = χ(ϕ) +

∫ t

0

hs(Δϕ)ds+ Bt(ϕ) +
√
2Wt(ϕ),

and are such that B0(ϕ) = 0, and for which u := ∂xh, A := ∂xB satisfy (u,A) ∈
Q(W, η). Similarly, we write (h,B) ∈ QKPZ if there exist (W,χ) as above such that
(h,B) ∈ QKPZ(W,χ). In Proposition 3.15 we show in fact the following generaliza-
tion of Proposition 2.2: If (u,A) ∈ Q and (ρN ) ⊂ L1(R)∩L2(R) is an approximate

identity (i.e., supN ‖ρN‖L1(R) < ∞, ρ̂N (0) = 1 for all N , limN→∞ ρ̂N (x) = 1 for all

x), then there exists a process
∫ ·
0
u�2
s ds ∈ C (R+,S

′(R)), defined by(∫ t

0

u�2
s ds

)
(ϕ) := lim

n→∞

∫ t

0

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds,

where the convergence takes place in Lp(P) uniformly on compacts, and the limit
does not depend on the approximate identity (ρN ).

So we call (h,B) ∈ QKPZ(W,χ) a strong almost-stationary solution to the KPZ
equation

(11) dht = Δhtdt+ λ((∂xht)
2 −∞)dt+

√
2dWt, h0 = χ,

if B = λ
∫ ·
0
u�2
s ds. Similarly, we call (h,B) ∈ QKPZ an energy solution to (11) if

law(h0) = law(χ) and B = λ
∫ ·
0
u�2
s ds. The terminology “almost-stationary” comes

from [GJ14], and it indicates that for fixed t � 0 the process x �→ ht(x) is always
a two-sided Brownian motion; however, the distribution of ht(0) may depend on
time. The analogous result to Theorem 2.4 is then the following.



436 MASSIMILIANO GUBINELLI AND NICOLAS PERKOWSKI

Theorem 2.10. Let ∂tW be a space-time white noise on (Ω,F , (Ft)t�0,P), and let
χ be an F0-measurable random variable with values in S ′(R) such that ∂xχ is a
space white noise. Then the strong almost-stationary solution h to

(12) dht = Δhtdt+ λ((∂xht)
2 −∞)dt+

√
2dWt, h0 = χ,

is unique up to indistinguishability. Moreover, for λ = 0, we have

(13) ht = λ−1 logZt +
λ3

12
t, t ≥ 0,

where Z is the unique solution to the linear multiplicative SHE

(14) dZt = ΔZtdt+
√
2λZtdWt, Z0 = eλχ.

Consequently, any two energy solutions of (12) have the same law.

The proof will be given in section 4.1.

Remark 2.11. It is maybe somewhat surprising that the energy solution h to the
KPZ equation is not equal to the Cole–Hopf solution h̃ := λ−1 logZ, but instead
we have to add the drift tλ3/12 to h̃ to obtain h. Remarkably, this drift often
appears in results about the Cole–Hopf solution of the KPZ equation. For example
in [BG97, Theorem 2.3] it has to be added to obtain the Cole–Hopf solution as
the scaling limit for the fluctuations of the height profile of the weakly asymmetric
exclusion process (there the drift is −t/24 because Bertini and Giacomin consider
different parameters for the equation). The same drift also appears in [ACQ11,
Theorem 1.1], in the key formula [SS10, (4.17)], and in [FQ15, Theorem 1.1].

In [GJ14, Theorem 3] it is claimed that the Cole–Hopf solution is an energy
solution to the KPZ equation, and as we have seen this is not quite correct. The
reason is that the proof in [GJ14] is based on the convergence result of [BG97], but
they did not take the drift −t/24 into account which Bertini and Giacomin had to
add to obtain the Cole–Hopf solution in the limit.

Remark 2.12 (Martingale problem). Given a pair of stochastic processes (h,B) with
trajectories in C (R+,S

′(R)) we need to check the following criteria to verify that
h is the unique-in-law energy solution to (12):

i) For all ϕ ∈ S (R), we have B0(ϕ) = 0 and

ht(ϕ) = χ(ϕ) +

∫ t

0

hs(Δϕ)ds+ Bt(ϕ) +Wt(ϕ)

for a continuous martingaleW (ϕ) starting in 0 and with quadratic variation
[W (ϕ)]t = 2t‖ϕ‖2L2(R).

ii) The pair u := ∂xh, A := ∂xB satisfies conditions i), ii), iii) in Remark 2.7.
iii) There exists ρ ∈ L1(R) ∩ L2(R), such that

∫
R
ρ(x)dx = 1 and with ρN :=

Nρ(N ·), we have

Bt(ϕ) = λ lim
N→∞

∫ t

0

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds

for all t ≥ 0 and ϕ ∈ S (R).
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2.3. The periodic case. It is also useful to have a theory for the periodic model
u : R+ × T → R, where T = R/Z and

(15) dut = Δutdt+ λ∂xu
2
tdt+

√
2∂xdWt, u0 = η,

for a periodic space-time white noise ∂tW and a periodic space white noise η. For
a process W with trajectories in C(R+,S

′(T)), where S ′(T) are the (Schwartz)
distributions on the circle, we say that ∂tW is a periodic space-time white noise
if for all ϕ ∈ C∞(T) the process (Wt(ϕ))t�0 is a Brownian motion with variance
E[|Wt(ϕ)|2] = t‖ϕ‖2L2(T). A periodic space white noise is a centered Gaussian pro-

cess (η(ϕ))ϕ∈C∞(T) with trajectories in S ′(T), such that for all ϕ, ψ ∈ C∞(T), we

have E[η(ϕ)η(ψ)] = 〈Π0ϕ,Π0ψ〉L2(T), where Π0ϕ = ϕ −
∫
T
ϕ(x)dx is the projec-

tion of ϕ onto the mean-zero functions. The reason for setting the zero Fourier
mode of η equal to zero is that the SBE is a conservation law and any solution
u to (15) satisfies ût(0) = û0(0) for all t � 0, and therefore shifting η̂(0) simply
results in a shift of ût(0) by the same value, for all t � 0. So for simplicity we as-
sume η̂(0) = 0. Controlled processes are defined as before, except that now we test
against ϕ ∈ C∞(T) and all noises are replaced by their periodic counterparts. Then
it is easy to adapt the proof of Proposition 3.15 to show that also in the periodic set-
ting the Burgers drift

∫ ·
0
∂xu

2
sds is well-defined; alternatively, see [GJ13, Lemma 1].

Thus, we define strong stationary solutions, respectively energy solutions, to the
periodic Burgers equation exactly as in the nonperiodic setting. We then have the
analogous uniqueness result to Theorem 2.4:

Theorem 2.13. Let ∂tW be a periodic space-time white noise on (Ω,F , (Ft)t�0,P),
and let η be an F0-measurable periodic space white noise. Then the strong stationary
u solution to

(16) dut = Δutdt+ λ∂xu
2
tdt+

√
2∂xdWt, u0 = η,

is unique up to indistinguishability. Moreover, for λ = 0, we have u = λ−1∂x logZ,
where the derivative is taken in the distributional sense and Z is the unique solution
to the linear multiplicative SHE

(17) dZt = ΔZtdt+
√
2λZtdWt, Z0 = eλIη,

for FT(Iη)(k) := (2πik)−1FTη(k), k ∈ Z \ {0}, FT(Iη)(0) = 0, and where FT

denotes the Fourier transform on T. Consequently, any two energy solutions of (16)
have the same law.

We explain in Appendix A how to modify the arguments for the nonperiodic
case in order to prove Theorem 2.13.

3. Additive functionals of controlled processes

3.1. Itô trick and Kipnis–Varadhan inequality. Our main method for con-
trolling additive functionals of controlled processes is to write them as a sum of a
forward and a backward martingale which enables us to apply martingale inequal-
ities. For that purpose we first introduce some notation. Throughout this section
we fix (u,A) ∈ Q.

Definition 3.1. The space of cylinder functions C consists of all F : S ′(R) → R

of the form F (u) = f(u(ϕ1), . . . , u(ϕn)) for some n ∈ N, ϕ1, . . . , ϕn ∈ S (R) and
f ∈ C2(Rn) with polynomial growth of its partial derivatives up to order 2.
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For F ∈ C , we define the action of the Ornstein–Uhlenbeck generator L0 as

L0F (u) :=

n∑
i=1

∂if(u(ϕ1), . . . , u(ϕn))u(Δϕi)

+

n∑
i,j=1

∂2
ijf(u(ϕ1), . . . , u(ϕn))〈∂xϕi, ∂xϕj〉L2(R).

With the help of Itô’s formula it is easy to verify that if (X, 0) ∈ Q is the stationary
Ornstein–Uhlenbeck process (see the discussion below Definition 2.1) and F ∈ C ,

then F (Xt)−F (X0)−
∫ t
0
L0F (Xs)ds, t � 0, is a martingale and in particular L0F

is indeed the action of the generator of X on F . We will see in Corollary 3.8 that
L0 can be uniquely extended from C to a closed unbounded operator on L2(μ),
also denoted by L0, so C is a core for L0. We also define the Malliavin derivative

DxF (u) :=

n∑
i=1

∂if(u(ϕ1), . . . , u(ϕn))ϕi(x), x ∈ R,

for all F ∈ C , and since μ is the law of the white noise we are in a standard Gaussian
setting and D is closable as an unbounded operator from Lp(μ) to Lp(μ;L2(R)) for
all p ∈ [1,∞); see for example [Nua06]. Similarly also F �→ ∂xDxF is closable from
Lp(μ) to Lp(μ;L2(R)) for all p ∈ [1,∞), and we denote the domain of the resulting
operator by W 1,p. Then W 1,p is the completion of C with respect to the norm
E[|F |p]1/p + E[‖∂xDF‖pL2(R)]

1/p. So writing

E(F (u)) := 2‖∂xDxF (u)‖2L2(R),

we have E(F (·)) ∈ Lp/2(μ) for all F ∈ W 1,p. Finally, we denote

‖F‖21 := E[E(F (u0))].

The following martingale or Itô trick is well known for Markov processes; see for
example the monograph [KLO12], and in the case of controlled processes on R+×T

it is due to [GJ13]. The proof is in all cases essentially the same.

Proposition 3.2 (Itô trick). Let T > 0, p � 1, and F ∈ Lp([0, T ];W 1,p). Then
we have for all (u,A) ∈ Q,

(18) E

[
sup
t�T

∣∣∣∣∫ t

0

L0F (s, us)ds

∣∣∣∣p
]
�
(∫ T

0

‖E(F (s, ·))‖Lp/2ds
)p/2

.

For p = 2, we get in particular

E

[
sup
t�T

∣∣∣∣∫ t

0

L0F (s, us)ds

∣∣∣∣2
]
�
∫ T

0

‖F (s, ·)‖21ds.

Proof. We first assume that F (t) ∈ C for all t ∈ [0, T ] and that t �→ F (t, u) ∈ C1(R)
for all u ∈ S ′(R). Since (ut(ϕ))t�0 is a Dirichlet process for all ϕ ∈ S (R) (the sum
of a local martingale and a zero quadratic variation process), we can then apply
the Itô formula for Dirichlet processes (see [RV07]) to F and obtain for t � 0

F (t, ut) = F (0, u0) +

∫ t

0

(∂sF (s, us) + L0F (s, us))ds+

∫ t

0

∂uF (s, us)dAs +MF
t ,
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for a continuous martingale MF with MF
0 = 0 and quadratic variation d[MF ]s =

E(F (s, us))ds. Similarly, we get for ût = uT−t

F (T − T, ûT ) = F (T − (T − t), ûT−t) +

∫ T

T−t

(∂sF (T − s, ûs) + L0F (T − s, ûs))ds

+

∫ T

T−t

∂uF (T − s, ûs)dÂs + M̂F
T − M̂F

T−t

for a continuous backward martingale M̂F with M̂F
0 = 0 and quadratic variation

d[M̂F ]s = E(F (T − s, ûs))ds. Adding these two formulas, we get

0 = 2

∫ t

0

L0F (s, us)ds+MF
t + M̂F

T − M̂F
T−t,

and thus the Burkholder–Davis–Gundy inequality yields

E

[
sup
t�T

∣∣∣∣∫ t

0

L0F (s, us)ds

∣∣∣∣p
]
� E

[
sup
t�T

|MF
t + M̂F

T − M̂F
T−t|p

]
� E[[MF ]

p/2
T ] + E[[M̂F ]

p/2
T ]

� E

⎡⎣(∫ T

0

E(F (s, us))ds

)p/2
⎤⎦

�
(∫ T

0

‖E(F (s, ·)‖Lp/2ds
)p/2

,

where the last step follows from Minkowski’s inequality.
For a general F ∈ Lp([0, T ];W 1,p), we first approximate F in Lp([0, T ];W 1,p) by

a step function that is piecewise constant in time, then we approximate each of the
finitely many values that the step function takes by a cylinder function, and finally
we mollify the jumps of the new step function. In that way our bound extends to
all of Lp([0, T ];W 1,p). �

Remark 3.3. The right-hand side of (18) does not involve the Lp([0, T ];Lp(μ))-norm
of F, and indeed it is possible to extend the result to the following space. Identify all
F, F̃ ∈ C with E[E(F (u0)− F̃ (u0))

p/2]1/p = 0, and write Ẇ 1,p for the completion of
the resulting equivalence classes with respect to the norm F �→ E[E(F (u0))

p/2]1/p.

Then (18) holds for all F ∈ Lp([0, T ]; Ẇ 1,p) provided that the integral on the left-
hand side in (18) makes sense. But we will not need this.

Remark 3.4. If in the setting of Proposition 3.2 F (s) has a finite chaos expansion
of length n for all s ∈ [0, T ] (see section 3.2 for the definition), then also E(F (s))
has a chaos expansion of length 2n − 2 and therefore Gaussian hypercontractivity
shows that for all p � 1,

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

L0F (s, us)ds

∣∣∣∣p
]
�
(∫ T

0

‖F (s, ·)‖21ds
)p/2

.

The bound in Proposition 3.2 allows us to control
∫ ·
0
F (s, us)ds, provided that

we are able to solve the Poisson equation

L0G(s) = F (s)
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for all s ∈ [0, T ]. Note that this is an infinite-dimensional PDE which a priori is
difficult to solve, but that we only need to consider it in L2(μ) which has a lot of
structure as a Gaussian Hilbert space. We will discuss this further in section 3.2.
Nonetheless, we will encounter situations where we are unable to solve the Poisson
equation explicitly, and in that case we rely on the method of Kipnis and Varadhan
allowing us to bound

∫ ·
0
F (s, us)ds in terms of a certain variational norm of F . We

define for F ∈ L2(μ)

‖F‖2−1 := sup
G∈C

{2E[F (u0)G(u0)]− ‖G‖21},

and we write F ∈ ˙H −1 if the right-hand side is finite. For details on ‖·‖−1 and
˙H −1, see [KLO12, Chapter 2.2]. Here we just remark that for F ∈ L2(μ) and

G ∈ C , we have

2E[F (u0)G(u0)]− ‖G‖21 � 2
(

sup
H∈C

‖H‖1=1

E[F (u0)H(u0)]
)
‖G‖1 − ‖G‖21

�
(

sup
H∈C

‖H‖1=1

E[F (u0)H(u0)]
)2

,

and on the other hand we have 2λE[F (u0)H(u0)] � ‖F‖2−1+λ2 for all H ∈ C with
‖H‖1 = 1 and all λ > 0, and therefore

E[F (u0)H(u0)] � inf
λ>0

{‖F‖2−1

2λ
+

λ

2

}
= ‖F‖−1,

which proves that

(19) ‖F‖−1 = sup
H∈C

‖H‖1=1

E[F (u0)H(u0)].

We will need a slightly refined version of the Kipnis–Varadhan inequality which
also controls the p-variation. Recall that for p � 1, the p-variation of f : [0, T ] → R

is defined as

‖f‖pp−var;[0,T ] := sup
{ n−1∑

k=0

|f(tk+1)− f(tk)|p : n ∈ N, 0 = t0 < · · · < tn = T
}
.

Corollary 3.5 (Kipnis–Varadhan inequality). Let T > 0 and F ∈ L2([0, T ], ˙H −1∩
L2(μ)), and let (u,A) ∈ Q be a controlled process. Then for all p > 2,

E

[∥∥∥∥∫ ·

0

F (s, us)ds

∥∥∥∥2
p−var;[0,T ]

]
+ E

[
sup
t�T

∣∣∣∣∫ t

0

F (s, us)ds

∣∣∣∣2
]
�
∫ T

0

‖F (s, ·)‖2−1ds.

Proof. The nonreversible version of the Kipnis–Varadhan inequality is due to [Wu99],
and our proof is essentially the same as in [KLO12,FQ15]. But we are not aware
of any reference for the statement about the p-variation. Note that since the inte-
gral vanishes in zero, its supremum norm can be controlled by its p-variation. Let
H ∈ L2([0, T ];W 1,2), and decompose

(20)

∫ ·

0

F (s, us)ds =

∫ ·

0

L0H(s, us)ds+

∫ ·

0

(F − L0H)(s, us)ds.
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For the first term on the right-hand side, we apply the same martingale

decomposition as in the proof of the Itô trick to get
∫ t
0
L0H(s, us)ds =

−1/2(MH
t + M̂H

T − M̂H
T−t). By [Lep76, Proposition 2] we can therefore control

the p-variation by

E

[∥∥∥∥∫ ·

0

L0H(s, us)ds

∥∥∥∥2
p−var;[0,T ]

]
� E

[
sup
t�T

∣∣∣∣∫ t

0

L0H(s, us)ds

∣∣∣∣2
]

�
∫ T

0

‖H(s, ·)‖21ds,

where the second inequality follows from Proposition 3.2. For the second term on
the right-hand side of (20), we get

E

[∥∥∥∥∫ ·

0

(F − L0H)(s, us)ds

∥∥∥∥2
p−var;[0,T ]

]
� E

[∥∥∥∥∫ ·

0

(F − L0H)(s, us)ds

∥∥∥∥2
1−var;[0,T ]

]

� E

⎡⎣(∫ T

0

|(F − L0H)(s, us)|ds
)2
⎤⎦

� T

∫ T

0

‖(F − L0H)(s)‖2L2(μ)ds,

and therefore overall

E

[∥∥∥∥∫ ·

0

F (s, us)ds

∥∥∥∥2
p−var;[0,T ]

]
�
∫ T

0

(‖H(s, ·)‖21 + T‖(F − L0H)(s)‖2L2(μ))ds.

Now takeHλ(s) as the solution to the resolvent equation (λ−L0)Hλ(s) = −F (s).
Note that unlike the Poisson equation, the resolvent equation is always solvable
and Hλ(s) = −

∫∞
0

e−λrPOU
r F (s)dr, where POU is the semigroup generated by

L0. Then (F − L0Hλ)(s) = −λHλ(s), and by Lemma 3.9 we have ‖Hλ(s)‖21 =
2〈Hλ(s), (−L0)Hλ(s)〉L2(μ), which yields

λ‖Hλ(s)‖2L2(μ) +
1

2
‖Hλ(s)‖21 = 〈Hλ(s), (λ− L0)Hλ(s)〉L2(μ)

= 〈Hλ(s),−F (s)〉L2(μ) � ‖Hλ(s)‖1‖F (s)‖−1,

from which we get ‖Hλ(s)‖1 � 2‖F (s)‖−1, and then ‖Hλ(s)‖2L2(μ) � λ−12‖F (s)‖2−1.

Therefore,

‖Hλ(s)‖21 + T‖(F − L0Hλ)(s)‖2L2(μ) = ‖Hλ(s)‖21 + T‖λHλ(s)‖2L2(μ)

� ‖F (s)‖2−1 + λT‖F (s)‖2−1,

and now it suffices to send λ → 0. �
3.2. Gaussian analysis. To turn the Itô trick or the Kipnis–Varadhan inequality
into a useful bound, we must be able either to solve the Poisson equation L0G = F
for a given F or to control the variational norm appearing in the Kipnis–Varadhan
inequality. Here we discuss how to exploit the Gaussian structure of L2(μ) in order
to do so. For details on Gaussian Hilbert spaces we refer to [Jan97,Nua06]. Since
L2(μ) is a Gaussian Hilbert space, we have the orthogonal decomposition

L2(μ) =
⊕
n�0

Hn,
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where Hn is the closure in L2(μ) of the span of all random variables of the form

u �→ Hn(u(ϕ)), with Hn(x) = ex
2/2(−1)n∂n

x e
−x2/2 being the nth Hermite poly-

nomial and where ϕ ∈ S (R) with ‖ϕ‖L2(R) = 1. The space Hn is called the nth

homogeneous chaos, and
⊕n

k=0Hk is the nth inhomogeneous chaos. Also, μ is the
law of the white noise on R, and therefore we can identify

Hn = {Wn(fn) : fn ∈ L2
s(R

n)},

where Wn(fn) is the multiple Wiener–Itô integral of fn ∈ L2
s(R

n), that is

Wn(fn) :=

∫
Rn

f(y1, . . . , yn)W (dy1 · · · dyn).

Here L2
s(R

n) are the equivalence classes of L2(Rn) that are induced by the seminorm

‖f‖L2
s(R

n) := ‖f̃‖L2
s(R

n), f̃(x1, . . . , xn) =
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)),

where Sn denotes the set of permutations of {1, . . . , n}. Of course, ‖·‖L2
s(R

n) is a

norm on L2
s(R

n), and we usually identify an equivalence class in L2
s(R

n) with its
symmetric representative. The link between the multiple stochastic integrals Wn

and the Malliavin derivative D is explained in the following partial integration-by-
parts rule, which will be used for some explicit computations below.

Lemma 3.6. Let f ∈ L2
s(R

n), and let F be Malliavin differentiable in L2(μ). Then

E[Wn(f)F ] =

∫
R

E[Wn−1(f(y, ·))DyF ]dy.

Proof. The proof is virtually the same as for [Nua06, Lemma 1.2.1]. Since the span
of functions of the form f = f1⊗· · ·⊗ fn is dense in L2

s(R
n), it suffices to argue for

such f . By polarization it suffices to consider f1 = · · · = fn with ‖f1‖L2(R) = 1, for
which Wn(f) = Hn(W1(f1)) for the nth Hermite polynomial Hn. By another ap-
proximation argument we may suppose that F = Φ(W1(f1),W1(ϕ1), . . . ,W1(ϕm))
for orthonormal ϕ1, . . . , ϕm ∈ L2(R) that are also orthogonal to f1 and for Φ ∈
C∞

c (Rm+1). So if νm+1 denotes the (m+1)-dimensional standard normal distribu-
tion, then

E[Wn(f)F ] = E[Hn(W1(f1))Φ(W1(f1),W1(ϕ1), . . . ,W1(ϕm))]

=

∫
Rm+1

Hn(x1)Φ(x1, x2, . . . , xm+1)νm+1(dx1, . . . , dxm+1)

=

∫
Rm+1

Hn−1(x1)∂x1
Φ(x1, x2, . . . , xm+1)νm+1(dx1, . . . , dxm+1)

= E

[
Hn−1(W1(f1))

∫
R

DyFf1(y)dy

]
=

∫
R

E[Wn−1(f(y, ·))DyF ]dy,

which concludes the proof. �

Recall that so far we defined the operator L0 acting on cylinder functions. If
we consider a cylinder function F ∈ Hn for some given n, then the action of L0 is
particularly simple.
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Lemma 3.7. Let n � 0 and F ∈ C be such that in L2(μ) we have F = Wn(fn) for
fn ∈ H2

s (R
n) ⊂ L2

s(R
n), the twice weakly differentiable symmetric functions from

R
n to R that satisfy

‖fn‖2H2
s (R

n) � ‖fn‖2L2
s(R

n) + ‖Δfn‖2L2
s(R

n) < ∞.

Then
L0F = L0Wn(fn) = Wn(Δfn) in L2(μ).

Proof. Consider first a functional G ∈ C of the form G(u) = Hn(u(ϕ)), where
ϕ ∈ S (R) with ‖ϕ‖L2(R) = 1. In that case

L0G(u) = H ′
n(u(ϕ))u(Δϕ) +H ′′

n(u(ϕ))〈∂xϕ, ∂xϕ〉L2(R)(21)

= nHn−1(u(ϕ))u(Δϕ)− n(n− 1)Hn−2(u(ϕ))〈ϕ,Δϕ〉L2(R),

where in the second step we used that H ′
k = kHk−1 for k � 1 and H ′

0 = 0. Now
we use that ‖ϕ‖L2(R) = 1 to rewrite Hk(W1(ϕ)) = Wk(ϕ

⊗k) (see [Nua06, Proposi-
tion 1.1.4]) and note the additional factor k! in our definition of Hk compared to
the one in [Nua06]. Thus, we can apply [Nua06, Proposition 1.1.2] to compute the
first term on the right-hand side:

nHn−1(u(ϕ))u(Δϕ) = nWn−1(ϕ
⊗(n−1))W1(Δϕ)

= nWn(ϕ
⊗(n−1) ⊗Δϕ) + n(n− 1)Wn−2(ϕ

⊗(n−2))〈ϕ,Δϕ〉L2(R)

= Wn(Δϕ⊗n) + n(n− 1)Hn−2(u(ϕ))〈ϕ,Δϕ〉L2(R),

where in the first term on the right-hand side Δ denotes the Laplacian on R
n.

Plugging this back into (21), we obtain L0Wn(ϕ
⊗n) = Wn(Δϕ⊗n). By polarization

this extends to Wn(ϕ1 ⊗ · · · ⊗ ϕn), and then to general ϕ ∈ H2
s (R

n) by taking the
closure of the span of functions of the form ϕ1 ⊗ · · · ⊗ ϕn with ϕi ∈ S (R). �
Corollary 3.8. The operator L0 is closable in L2(μ), and the domain of its closure,
still denoted with L0, is

dom(L0) =
{
F =
∑
n�0

Wn(fn) : fn ∈ H2
s (R

n)∀n ∈ N and
∑
n�0

n!‖fn‖2H2
s (R

n) < ∞
}
.

For F ∈ dom(L0), we have

(22) L0F =
∑
n�0

Wn(Δfn).

Proof. Let F (u) = f(u(ϕ1), . . . , u(ϕn)) ∈ C be a cylinder function with chaos
expansion F =

∑
n�0 Wn(fn). By a standard approximation argument it follows

that L0F =
∑

n�0 Wn(Δfn). But then [Nua06, formula (iii) on p. 9] yields

E[|F |2] =
∑
n�0

n!‖fn‖2L2
s(R

n), E[|L0F |2] =
∑
n�0

n!‖Δfn‖2L2
s(R

n),

from which our claim readily follows because the Laplace operator on L2
s(R

n) is a
closed operator with domain H2

s (R
n). �

Before we continue, let us link the ‖ · ‖1-norm defined in section 3.1 with the
operator L0.

Lemma 3.9. For F ∈ C , we have

‖F‖21 = E[E(F (u0))] = 2E[F (u0)(−L0F )(u0)].
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Proof. See [GP15, section 2.4] for a proof in the periodic case which works also in
our setting. �

Next, we define two auxiliary Hilbert spaces that will be useful in controlling
additive functionals of controlled processes.

Definition 3.10. We identify all F, F̃ ∈ C with ‖F − F̃‖1 = 0, and we write ˙H 1

for the completion of the equivalence classes of C with respect to ‖·‖1.
Similarly, we identify F, F̃ ∈ L2(μ) with ‖F‖−1 + ‖F̃‖−1 < ∞ if ‖F − F̃‖−1 = 0

and the space ˙H −1 is defined as the completion of the equivalence classes with
respect to ‖·‖−1.

Definition 3.11. Recall that for r ∈ R and n ∈ N, the homogeneous Sobolev space
Ḣr(Rn) is constructed in the following way: We set for f ∈ S (R)

‖f‖2
Ḣr(Rn)

:=

∫
Rn

|f̂(z)|2|2πz|2rdz ∈ [0,∞],

and we consider only those f with ‖f‖Ḣr(Rn) < ∞, where we identify f and g if

‖f − g‖Ḣr(Rn) = 0. The space Ḣr(Rn) is then the completion of the equivalence

classes with respect to ‖·‖Ḣr(Rn).

We write Ḣr
s (R

n) for the space that is obtained if we perform the same construc-
tion replacing ‖·‖Ḣr(Rn) by

‖f‖2
Ḣr

s (R
n)

:=

∫
Rn

|̂̃f(z)|2|2πz|2rdz, f̃(x1, . . . , xn) =
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

Remark 3.12. By construction, Ḣr
s (R

n) is always a Hilbert space. For r < n/2
there is an explicit description (see [BCD11, Propositions 1.34 and 1.35]) for the
nonsymmetric case:

Ḣr
s (R

n) =

{
f ∈ S ′

s(R
n) : f̂ ∈ L1

loc and

∫
Rn

|f̂(z)|2|2πz|2rdz < ∞
}
.

Here we write S ′
s(R

n) for those tempered distributions u with u(ϕ) = u(ϕ̃) for all
ϕ ∈ S (Rn), where ϕ̃ is the symmetrization of ϕ.

Lemma 3.13. For fn ∈ Ss(R
n) and n � 1, we have

‖Wn(fn)‖21 = n!‖fn‖2Ḣ1
s (R

n)
, ‖Wn(fn)‖2−1 = n!‖fn‖2Ḣ−1

s (Rn)
.

Proof. For the ˙H 1-norm it suffices to note that

Eμ[Wn(fn)(−L0)Wn(fn)] = n!‖∇fn‖2L2
s(R

n) = n!‖fn‖2Ḣ1
s (R

n)
,

where the last equality follows from Plancherel’s formula. For the ˙H −1-norm let
us consider a test function G =

∑
m�0 Wm(gm) ∈ C . Then

E[Wn(fn)(u0)G(u0)] = n!〈fn, gn〉L2
s(R

n),
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and Plancherel’s formula and then the Cauchy–Schwarz inequality give

〈fn, gn〉L2
s(R

n) =

∫
Rn

f̂n(z)(ĝn(z))
∗dz

�
(∫

Rn

|f̂n(z)|2|2πz|−2dz

)1/2 (∫
Rn

|ĝn(z)|2|2πz|2dz
)1/2

= ‖fn‖Ḣ−1
s (Rn)‖gn‖Ḣ1

s (R
n),

from which (19) shows that ‖Wn(fn)‖2−1 � n!‖fn‖2Ḣ−1
s (Rn)

. To see the converse

inequality, let fn ∈ Ḣ−1
s (Rn). Then we have for ĝ(z) := (f̂n(z))

∗|2πz|−2/‖fn‖Ḣ−1
s

,

∫
Rn

f̂n(z)ĝ(z)dz =
‖fn‖2Ḣ−1

s

‖fn‖Ḣ−1
s

= ‖fn‖Ḣ−1
s

,

and ‖g‖Ḣ1
s
= 1. Of course Wn(g) may not be in C , but we can approximate it by

functions in C , and this concludes the proof. �

Corollary 3.14. We have an explicit representation of ˙H 1 and ˙H −1 via

˙H 1 =

⎧⎨⎩∑
n�1

Wn(fn) : fn ∈ Ḣ1
s (R

n),
∑
n

n!‖fn‖2Ḣ1
s (R

n)
< ∞

⎫⎬⎭ ,

˙H −1 =

⎧⎨⎩∑
n�1

Wn(fn) : fn ∈ Ḣ−1
s (Rn),

∑
n

n!‖fn‖2Ḣ−1
s (Rn)

< ∞

⎫⎬⎭ .

Moreover, there is a unique extension of L0 from dom(L0) ⊂ L2(μ) to ˙H 1 for

which L0 is an isometry from ˙H 1 to ˙H −1.

Proof. We only have to prove the statement about the extension of L0. Since
(1+ |2πz|2)2 > |2πz|2 for all z ∈ R

n, we have H2
s (R

n) ⊂ Ḣ1
s (R

n) and ‖fn‖2Ḣ1
s (R

n)
�

‖fn‖2H2
s (R

n) for all fn ∈ H2
s (R

n). Thus,

dom0(L0) := {F ∈ dom(L0) : E[F ] = 0} ⊂ ˙H 1.

For F =
∑

n�1 Wn(fn) ∈ dom0(L0), we have

‖L0F‖2−1 =
∑
n�1

n!‖Δfn‖2Ḣ−1
s (Rn)

,

and

‖Δfn‖2Ḣ−1
s (Rn)

=

∫
Rn

(|2πz|2|f̂n(z)|)2|2πz|−2dz = ‖fn‖2H1
s (R

n),

which proves that ‖L0F‖2−1 = ‖F‖21 and thus that L0 is an isometry from

dom0(L0) ⊂ ˙H 1 to ˙H −1 which can be uniquely extended to all of ˙H 1 because

dom0(L0) is dense in ˙H 1. �
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3.3. The Burgers and KPZ nonlinearity. With the tools we have at hand, it
is now straightforward to construct the KPZ nonlinearity (and in particular the
Burgers nonlinearity) for all controlled processes.

Proposition 3.15. Let T > 0, p � 1, let ρ, ϕ ∈ S (R), and let (u,A) ∈ Q. Then

E

[
sup
t�T

∣∣∣∣∫ t

0

[(us ∗ ρ)2 − ‖ρ‖2L2(R)](ϕ)ds

∣∣∣∣p
]

� (T p/2 ∨ T p)(‖ρ‖2L1(R)‖ϕ‖H−1/2(R))
p.(23)

Therefore, the integral
∫ ·
0
[(us ∗ ρ)2 − ‖ρ‖L2(R)](ϕ)ds is well-defined also for

ρ ∈ L1(R)∩L2(R). Moreover, there exists a unique process
∫ ·
0
u�2
s ds ∈ C (R+,S ′(R))

such that for every approximate identity (ρN ) ⊂ L1(R) ∩ L2(R) (i.e.,

supN ‖ρN‖L1(R)<∞, ρ̂N (0)=1 for all N , limN→∞ ρ̂N (x)=1 for all x), we have(∫ t

0

u�2
s ds

)
(ϕ) := lim

n→∞

∫ t

0

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds, t � 0, ϕ ∈ S (R),

where the convergence is in Lp(P), uniformly on compact subsets of R+. If ρ ∈
L1(R) is such that ρ̂(0) = 1, xρ ∈ L1(R) and ρN := Nρ(N ·), then

E

[
sup
t�T

∣∣∣∣∫ t

0

u�2
s ds(ϕ)−

∫ t

0

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds

∣∣∣∣p
]

� (T p/2 ∨ T p)N−p/2{(1 + ‖ρ‖L1(R))
3/2‖xρ‖1/2L1(R)‖ϕ‖L2(R)}p.(24)

Proof. Let us set

F (u) := (u ∗ ρ)2(ϕ)− ‖ρ‖2L2(R)

∫
ϕ(x)dx

=

∫
R

(u(ρ(x− ·))u(ρ(x− ·))− ‖ρ‖2L2(R))ϕ(x)dx

=

∫
R

W2(ρ(x− ·)⊗2)ϕ(x)dx = W2

(∫
R

ρ(x− ·)⊗2ϕ(x)dx

)
,

where in the last step we applied the stochastic Fubini theorem. Due to infrared
problems, it seems impossible to directly solve the Poisson equation L0G = F , so
instead we consider H with (1− L0)H = F which means that H = W2(h) for

(1−Δ)h(y1, y2) =

∫
R

ρ(x− y1)ρ(x− y2)ϕ(x)dx

or in Fourier variables

ĥ(ξ1, ξ2) =
ρ̂(−ξ1)ρ̂(−ξ2)ϕ̂(ξ1 + ξ2)

1 + |2πξ|2 .

Then we have

E

[
sup
t�T

∣∣∣∣∫ t

0

F (us)ds

∣∣∣∣p
]
= E

[
sup
t�T

∣∣∣∣∫ t

0

(1− L0)H(us)ds

∣∣∣∣p
]

� E

[
sup
t�T

∣∣∣∣∫ t

0

H(us)ds

∣∣∣∣p
]
+ E

[
sup
t�T

∣∣∣∣∫ t

0

L0H(us)ds

∣∣∣∣p
]
.(25)
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For the first term on the right-hand side, we further apply Gaussian hypercontrac-
tivity to estimate

E

[
sup
t�T

∣∣∣∣∫ t

0

H(us)ds

∣∣∣∣p
]
� T p

E[|H(u0)|p] � T p
E[|H(u0)|2]p/2 � T p‖h‖pL2(R)

� T p

(∫
R2

|ρ̂(−ξ1)|2|ρ̂(−ξ2)|2|ϕ̂(ξ1 + ξ2)|2
(1 + |2πξ|2)2 dξ

)p/2

� T p‖ρ‖2pL1(R)

(∫
R2

|ϕ̂(ξ1 + ξ2)|2
(1 + |ξ|2)2 dξ

)p/2

� T p‖ρ‖2pL1(R)

(∫
R

|ϕ̂(ξ1)|2
(1 + |ξ1|2)3/2

dξ1

)p/2

� T p‖ρ‖2pL1(R)‖ϕ‖
p
H−3/2(R)

,

where we used the completion of the square to compute∫
R

1

(1 + |ξ1 − ξ2|2 + |ξ2|2)2
dξ2 =

∫
R

1

(1 + 2|ξ2 − ξ1/2|2 + |ξ1|2/2)2
dξ2

=

∫
R

1

(1 + 2|ξ2|2 + |ξ1|2/2)2
dξ2 � 1

(1 + |ξ1|2)3/2
.

By Proposition 3.2 together with Remark 3.4 and Lemma 3.13, the second term on
the right-hand side of (25) is bounded by

E

[
sup
t�T

∣∣∣∣∫ t

0

L0H(us)ds

∣∣∣∣p
]
� T p/2‖h‖p

Ḣ1
s (R

2)

= T p/2

(∫
R2

∣∣∣∣ ρ̂(−ξ1)ρ̂(−ξ2)ϕ̂(ξ1 + ξ2)

1 + |2πξ|2

∣∣∣∣2 |2πξ|2dξ
)p/2

� T p/2‖ρ‖2pL1(R)

(∫
R2

|ϕ̂(ξ1 + ξ2)|2
1 + |ξ|2 dξ

)p/2

� T p/2‖ρ‖2pL1(R)

(∫
R

|ϕ̂(ξ1)|2
(1 + |ξ1|2)1/2

dξ1

)p/2

� T p/2‖ρ‖2pL1(R)‖ϕ‖
p
H−1/2(R)

.

Since ‖ϕ‖H−1/2 � ‖ϕ‖H−3/2 , the claimed estimate (23) follows.

If (ρN ) is an approximate identity, then ρ̂N (ξ1)ρ̂N (ξ2) converges to 1 for all

ξ1, ξ2, and since ‖ρN‖L1 and thus ‖ρ̂N‖L∞ is uniformly bounded the convergence

of
∫ t
0
[(us ∗ ρN )2−‖ρN‖2L2(R)](ϕ)ds follows from the above arguments together with

dominated convergence theorem. If (ρ̃N ) is another approximate identity, then

|̂̃ρN (x) − ρ̂N (x)| converges pointwise to 0 and is uniformly bounded, so the inde-
pendence of the limit from the approximate identity follows once more from the
dominated convergence theorem.

Finally, for FN (u) := u�2
s (ϕ) − [(u ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ), we can solve the

Poisson equation directly (strictly speaking, we would have to first approximate
u�2
s by (us ∗ ρM )2 − ‖ρM‖2L2(R), but for simplicity we argue already in the limit
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M → ∞). We get FN = L0H
N for HN = W2(h

N ) with

ĥN (ξ1, ξ2) =
(1− ρ̂N (−ξ1))ϕ̂(ξ1 + ξ2)

|2πξ|2 +
ρ̂N (−ξ1)(1− ρ̂N (−ξ2))ϕ̂(ξ1 + ξ2)

|2πξ|2 .

Let us concentrate on the first term, the second one being essentially of the same

form (start by bounding |ρ̂N (−ξ1)| � ‖ρN‖L1 � (1 + ‖ρN‖L1) in that case):∥∥∥∥∥F−1

(
(1− ρ̂N (−ξ1))ϕ̂(ξ1 + ξ2)

|2πξ|2

)∥∥∥∥∥
2

Ḣ1
s (R

2)

�
∥∥∥∥∥F−1

(
(1− ρ̂N (−ξ1))ϕ̂(ξ1 + ξ2)

|2πξ|2

)∥∥∥∥∥
2

Ḣ1(R2)

=

∫
R2

∣∣∣∣∣ (1− ρ̂N (−ξ1))ϕ̂(ξ1 + ξ2)

|2πξ|2

∣∣∣∣∣
2

|2πξ|2dξ

�
∫
R2

min{‖∂xρ̂N‖L∞ |ξ1|, (1 + ‖ρN‖L1)}2 |ϕ̂(ξ1 + ξ2)|2
|ξ1|2

dξ

� 2

∫ (1+‖ρN‖L1 )‖∂xρ̂N‖−1
L∞

0

‖∂xρ̂N‖2L∞dξ1‖ϕ‖2L2

+ 2

∫ ∞

(1+‖ρN‖L1 )‖∂xρ̂n‖−1
L∞

(1 + ‖ρN‖L1)2

|ξ1|2
dξ1‖ϕ‖2L2

� (1 + ‖ρN‖L1)‖∂xρ̂N‖L∞‖ϕ‖2L2(R) � (1 + ‖ρN‖L1)‖xρN‖L1‖ϕ‖2L2 .

Now ‖ρN‖L1 = ‖ρ‖L1 and ‖xρN‖L1 = N−1‖xρ‖L1 , and therefore our claim follows
from Proposition 3.2 together with Remark 3.4 and Lemma 3.13. �

Proposition 2.2 about the Burgers drift follows by setting∫ t

0

∂xu
2
sds(ϕ) :=

∫ t

0

u�2
s ds(−∂xϕ).

Remark 3.16. For the Ornstein–Uhlenbeck process (X, 0) ∈ Q, one can check that
the process

∫ ·
0
X�2

s ds has regularity C([0, T ], C1−
loc (R)). But given the bounds of

Proposition 3.15, we cannot even evaluate
∫ ·
0
X�2

s ds in a point, because the Dirac

delta just fails to be in H−1/2(R). The reason is that the martingale argument on
which our proof is based gives us at least regularity 1/2− in time, and this prevents
us from getting better space regularity. On the other hand we are able to increase
the time regularity by an interpolation argument as shown in the following corollary
which will be useful for controlling certain Young integrals below.

Corollary 3.17. For all ϕ ∈ S (R) and all T > 0, the process
((∫ ·

0
u�2
s ds
)
(ϕ)
)
t∈[0,T ]

is almost surely in C3/4−([0, T ],R), and we have for all ρ ∈ S (R) with ρ̂(0) = 1
and for all α < 3/4

lim
n→∞

∥∥∥∥∫ ·

0

u�2
s ds(ϕ)−

∫ ·

0

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds

∥∥∥∥
Cα([0,T ],R)

= 0,

where the convergence is in Lp for all p > 0 and we write again ρN := Nρ(N ·).
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Proof. Proposition 3.15 yields for all N , 0 � s < t, and p ∈ [1,∞)

(26) E

[∣∣∣∣∫ t

s

u�2
s ds(ϕ)−

∫ t

s

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds

∣∣∣∣p
]
� |t− s|p/2N−p/2,

and a direct estimate gives

E

[∣∣∣∣∫ t

s

[(us ∗ ρN )2 − ‖ρN‖2L2(R)](ϕ)ds

∣∣∣∣p
]

� |t− s|pE[|((u0 ∗ ρN )2 − ‖ρN‖2L2)(ϕ)|2]p/2.(27)

The expectation on the right-hand side is

E[|[(u0 ∗ ρN )2 − ‖ρN‖2L2 ](ϕ)|2] = E

[∣∣∣∣∫
R

W2(ρ
N (x− ·)⊗2)(u0)ϕ(x)dx

∣∣∣∣2
]

=

∫
R

dx

∫
R

dx′
E[W2(ρ

N (x− ·)⊗2)(u0)W2(ρ
N (x′ − ·)⊗2)(u0)]ϕ(x)ϕ(x

′)

�
∫
R

dx

∫
R

dx′
∫
R2

dy1dy2ρ
N (x− y1)ρ

N (x− y2)ρ
N (x′ − y1)ρ

N (x′ − y2)ϕ(x)ϕ(x
′)

=

∫
R

dx

∫
R

dx′|(ρN ∗ ρN )(x− x′)|2ϕ(x)ϕ(x′) � ‖(ρN ∗ ρN )2 ∗ ϕ‖L2‖ϕ‖L2

� ‖(ρN ∗ ρN )2‖L1‖ϕ‖2L2 = ‖(ρ ∗ ρ)N‖2L2‖ϕ‖2L2 = N‖ρ ∗ ρ‖2L2‖ϕ‖2L2 .

Plugging this into (27), we get for all N and 0 � s < t

(28) E

[∣∣∣∣∫ t

s

[(us ∗ ρN )2 − ‖ρN‖2L2 ](ϕ)ds

∣∣∣∣p
]
�ρ,ϕ |t− s|pNp/2.

Now if 0 � s < t � s + 1, we apply (26) and (28) with N � |t − s|−1/2, and we

get E
[∣∣∣∫ ts u�2

s ds(ϕ)
∣∣∣p] � |t − s|3p/4, from which Kolmogorov’s continuity criterion

yields the local Hölder-continuity of order 3/4−. Moreover, for N > |t − s|−1/2,
equation (26) gives for all λ ∈ [0, 1]

E

[∣∣∣ ∫ t

s

u�2
s ds(ϕ)−

∫ t

s

[(us ∗ ρN )2 − ‖ρN‖2L2 ](ϕ)ds
∣∣∣p] � |t− s|p(1/2+(1−λ)/4)N−λp/2,

while for N � |t− s|−1/2, we get

E

[∣∣∣ ∫ t

s

u�2
s ds(ϕ)−

∫ t

s

[(us ∗ ρN )2 − ‖ρN‖2L2 ](ϕ)ds
∣∣∣p]

� {|t− s|p/2N−p/2}λ

×
{
E

[∣∣∣∣∫ t

s

u�2
s ds(ϕ)

∣∣∣∣p
]
+ E

[∣∣∣∣∫ t

s

[(us ∗ ρN )2 − ‖ρN‖2L2 ](ϕ)ds

∣∣∣∣p
]}1−λ

� {|t− s|p/2N−p/2}λ × {|t− s|3p/4 + |t− s|pNp/2}1−λ

� {|t− s|p/2N−p/2}λ × {|t− s|3p/4}1−λ,

so that choosing λ > 0 small and applying once more Kolmogorov’s continuity

criterion, we get the convergence of
∫ t
s
[(us ∗ ρN )2−‖ρN‖2L2 ](ϕ)ds to

∫ t
s
u�2
s ds(ϕ) in

Lp(Ω;Cα([0, T ],R)) for all α < 3/4 and all p > 0. �



450 MASSIMILIANO GUBINELLI AND NICOLAS PERKOWSKI

4. Proof of the main results

4.1. Mapping to the stochastic heat equation. Let ∂tW be a space-time
white noise on the filtered probability space (Ω,F , (Ft)t�0,P), and let η be an
F0-measurable space white noise. Let (u,A) ∈ Q(W, η) be a strong stationary
solution to the SBE

(29) dut = Δutdt+ λ∂xu
2
tdt+

√
2∂xdWt, u0 = η.

Our aim is to show that u is unique up to indistinguishability, that is to prove
the first part of Theorem 2.4. The case λ = 0 is well understood, so from now on
let λ = 0. The basic strategy is to integrate u in the space variable and then to
exponentiate the integral and to show that the resulting process solves (a variant
of) the linear SHE. However, it is not immediately obvious how to perform the
integration in such a way that we obtain a useful integral process. Note that any
integral h of u is determined uniquely by its derivative u and the value h(σ) for a
test function σ with

∫
R
σ(x)dx = 1. So the idea, inspired by [FQ15], is to fix one

such test function and to consider the integral h with ht(σ) ≡ 0 for all t � 0.
More concretely, we take σ ∈ C∞

c (R) with σ � 0 and
∫
R
σ(x)dx = 1 and consider

the function

Θx(z) :=

∫
R

Θx,y(z)σ(y)dy :=

∫
R

(1y�z�x − 1x<z<y)σ(y)dy

= 1z�x −
∫
R

(1y>z1z�x + 1x<z1z<y)σ(y)dy = 1(−∞,x](z)−
∫ ∞

z

σ(y)dy,(30)

which satisfies for any ϕ ∈ S (R)

∂x〈Θx, ϕ〉L2(R) = ∂x

(∫ x

−∞
ϕ(z)dz −

∫
R

ϕ(z)

∫ ∞

z

σ(y)dydz

)
= ϕ(x)

and∫
R

〈Θx, ϕ〉L2(R)σ(x)dx =

∫
R

∫
R

∫
R

(1y�z�x − 1x<z<y)σ(y)σ(x)dydxϕ(z)dz = 0,

so x �→ 〈Θx, ϕ〉L2(R) is the unique integral of ϕ which vanishes when tested against
σ. Moreover,

〈Θx, ∂zϕ〉L2(R) =

∫
R

(1y�x(ϕ(x)− ϕ(y))− 1x<y(ϕ(y)− ϕ(x)))σ(y)dy

= ϕ(x)− 〈ϕ, σ〉L2(R),(31)

and in particular

(32) Δx〈Θx, ϕ〉L2(R) = ∂xϕ(x) = 〈Θx,Δϕ〉L2(R) + 〈∂zϕ, σ〉L2
z(R)

,

where the notation L2
z(R) means that the L2(R)-norm is taken in the variable z.

Now let ρ ∈ S (R) be an even function with ρ̂ ∈ C∞
c (R) and such that ρ̂ ≡ 1 on

a neighborhood of 0. We write ρL(x) := Lρ(Lx), and by our assumptions on ρ
there exists for every L ∈ N an M ∈ N such that ρN ∗ ρL = ρL for all N � M .
This will turn out to be convenient later. We also write ρLx (z) := ρL(x − z) and
ΘL

x := ρL ∗Θx ∈ S (R), and we define

uL
t (x) := (ut ∗ ρL)(x) = ut(ρ

L
x ), hL

t (x) :=

∫
R

Θx(z)u
L
t (z)dz, x ∈ R.
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Using that ρL is even, we get hL
t (x) = ut(Θ

L
x ). So since u is a strong stationary

solution to (29), we have

dhL
t (x)=ut(ΔzΘ

L
x )dt+dAt(Θ

L
x )+

√
2dWt(−∂zΘ

L
x ), d[hL(x)]t=2‖∂zΘL

x‖2L2(R)dt,

and (31) yields
(33)

∂zΘ
L
x (z) =

∫
R

Θx(z
′)∂zρ

L(z−z′)dz′ = −ρLz (x)+〈ρLz , σ〉L2(R) = −ρLx (z)+(ρL∗σ)(z).

Now set φL
t (x) := eλh

L
t (x). Then the Itô formula for Dirichlet processes of [RV07]

gives

dφL
t (x) = φL

t (x)

(
λdhL

t (x) +
1

2
λ2d[hL(x)]t

)
= λφL

t (x)
(
uL
t (ΔzΘ

L
x )dt+ dAt(Θ

L
x ) +

√
2dWt(−∂zΘ

L
x )

+ λ‖ρLx − ρL ∗ σ‖2L2(R)dt
)
,

and from (32) we get

ΔzΘ
L
x (z) = 〈Θx,Δzρ

L
z 〉L2(R) = 〈Θx,Δz′ρLz 〉L2

z′ (R)

= Δx〈Θx, ρ
L
z 〉L2(R) − 〈∂z′ρLz , σ〉L2

z′(R)

= ΔxΘ
L
x (z) + ∂z(ρ

L ∗ σ)(z).

Therefore, uL
t (ΔzΘ

L
x ) = Δxh

L
t (x) + ut(ρ

L ∗ ∂zσ). Since moreover

λφL
t (x)Δxh

L
t (x) = Δxφ

L
t (x)− λ2φL

t (x)(∂xh
L
t (x))

2,

we obtain

dφL
t (x) = Δxφ

L
t (x)dt+

√
2λφL

t (x)dWt(−∂zΘ
L
x )

+λ2φL
t (x)(λ

−1dAt(Θ
L
x )+(λ−1ut(ρ

L ∗ ∂zσ)−(uL
t (x))

2+‖ρLx−ρL ∗ σ‖2L2(R))dt).

Expanding the L2(R)-inner product and noting that W (−∂zΘ
L
x ) = W (ρLx ) −

W (ρL ∗ σ) by (33), we deduce that

dφL
t (x) = Δxφ

L
t (x)dt+

√
2λφL

t (x)dWt(ρ
L
x ) + λ2dRL

t (x) + λ2KL
x φ

L(x)dt

+ λ2φL
t (x)dQ

L
t − 2λ2φL

t (x)〈ρLx , ρL ∗ σ〉L2(R)dt−
√
2λφL

t (x)dWt(ρ
L ∗ σ),(34)

where we introduced the processes

(35) RL
t (x) :=

∫ t

0

φL
s (x){λ−1dAs(Θ

L
x )− ((uL

s (x))
2 − 〈(uL

s )
2, σ〉L2(R))ds−KL

x ds}

for the deterministic function

(36) KL
x := −((ρL ∗ ρL ∗Θx)

2(x)− 〈(ρL ∗ ρL ∗Θx)
2, σ〉L2(R)),

and

(37) QL
t :=

∫ t

0

{−〈(uL
s )

2−‖ρL‖2L2(R), σ〉L2(R)+‖ρL∗σ‖2L2(R)+λ−1us(ρ
L∗∂zσ)}ds.
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Integrating (34) against ϕ ∈ C∞
c (R), we get

dφL
t (ϕ) = φL

t (Δϕ)dt+
√
2λ

∫
R

φL
t (x)ϕ(x)dWt(ρ

L
x )dx+ λ2dRL

t (ϕ) + λ2φL
t (K

Lϕ)

+ λ2φL
t (ϕ)dQ

L
t − 2λ2

∫
R

φL
t (x)ϕ(x)〈ρLx , ρL ∗ σ〉L2(R)dxdt

−
√
2λφL

t (ϕ)dWt(ρ
L ∗ σ).(38)

In section 4.2 we will prove the following three lemmas.

Lemma 4.1. We have for all T > 0, p > 2, and all ϕ ∈ C∞
c (R)

lim
L→∞

(E[‖RL(ϕ)‖2p−var;[0,T ]] + E[sup
t�T

|RL
t (ϕ)|2]) = 0.

Lemma 4.2. The deterministic function KL converges to λ2/12 as L → ∞ and is
uniformly bounded in the sense that supL∈N,x∈R |KL

x | < ∞.

Lemma 4.3. For all T > 0, the process (QL
t )t∈[0,T ] converges in probability in

C3/4−([0, T ],R) to the zero quadratic variation process

Qt := −
∫ t

0

u�2
s ds(σ) + ‖σ‖2L2(R)t+ λ−1

∫ t

0

us(∂zσ)ds, t ∈ [0, T ].

With the help of these results it is easy to prove our main theorem.

Proof of Theorem 2.4. Consider the expansion (38) of φL(ϕ). Denoting φt(ϕ) :=
limL→∞ φL

t (ϕ), the stochastic integrals converge to

√
2λ

∫
[0,t]×R

φs(x)ϕ(x)dWs(x)dx−
√
2λ

∫ t

0

φs(ϕ)dWs(σ)

by the stochastic dominated convergence theorem; see [RY99, Proposition IV.2.13]
for a formulation in the finite-dimensional setting whose proof carries over without
problems to our situation. Lemma 4.1 shows that the p-variation ofRL(ϕ) converges
to zero in L2(P) whenever p > 2. Combining this with Lemmas 4.2 and 4.3, the
p-variation of φL(ϕ) stays uniformly bounded in L, and therefore we can use once
more that Lemma 4.3 gives us local convergence in C3/4− for QL to obtain that∫ ·
0
φL
s (ϕ)dQ

L
s converges as a Young integral to

∫ ·
0
φs(ϕ)dQs. In conclusion, we get

φt(ϕ) = 〈eη(Θ·), ϕ〉L2 +

∫ t

0

φs(Δϕ)ds+
√
2λ

∫
[0,t]×R

φs(x)ϕ(x)dWs(x)dx

+
λ4

12

∫ t

0

φs(ϕ)ds+ λ2

∫ t

0

φs(ϕ)dQs − 2λ2

∫ t

0

φs(ϕσ)ds

−
√
2λ

∫ t

0

φs(ϕ)dWs(σ).

So let us define

Xt :=
√
2λWt(σ) +

(
−λ4

12
+ λ2‖σ‖2L2

)
t− λ2Qt, Zt(x) := eXtφt(x), t � 0,
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for which Z0(ϕ) = φ0(ϕ) and

dZt(ϕ) = eXtdφt(ϕ) + Zt(ϕ)dXt +
1

2
Zt(ϕ)d[X]t + d[φ(ϕ), eX ]t

= Zt(Δϕ)dt+
√
2λ

∫
R

Zt(x)ϕ(x)dWt(x)dx+
λ4

12
Zt(ϕ)dt+ λ2Zt(ϕ)dQt

− 2λ2Zt(ϕσ)dt−
√
2λZt(ϕ)dWt(σ)

+
√
2λZt(ϕ)dWt(σ) + Zt(ϕ)

(
−λ4

12
+ λ2‖σ‖2L2

)
dt− λ2Zt(ϕ)dQt

+ λ2Zt(ϕ)‖σ‖2L2dt

+ 2λ2〈φtϕ, e
Xtσ〉L2dt− 2λ2Zt(ϕ)‖σ‖2L2dt

= Zt(Δϕ)dt+
√
2λ

∫
R

Zt(x)ϕ(x)dWt(x)dx.(39)

This shows that Z is a weak solution to the SHE. By Lemma B.1 in Appendix
B there exist c, T > 0 such that supx∈R,t∈[0,T ] e

−c|x|
E[Zt(x)

2] < ∞. This allows

us to extend (39) on [0, T ] to ϕ ∈ C2 which together with their derivatives up
to order 2 decay superexponentially. We can also extend (39) to time-dependent
ϕ ∈ C1,2([0, T ]× R) which are such that

sup
(t,x)∈[0,T ]×R

ea|x|{|∂tϕ(t, x)|+ |ϕ(t, x)|+ |∂xϕ(t, x)|+ |Δϕ(t, x)|} < ∞

for all a > 0, for which we get for t ∈ [0, T ]

Zt(ϕ(t)) = Z0(ϕ(0)) +

∫ t

0

Zs(∂sϕ(s) + Δϕ(s))ds

+
√
2λ

∫
[0,t]×R

Zs(x)ϕ(s, x)dWs(x)dx;

see, e.g., [Wal86, Exercise 3.1]. We apply this with ϕ(s, y) = p(t+ ε− s, x− y) for
t ∈ [0, T ] and x ∈ R fixed and where p is the heat kernel generated by Δ. Then
(∂s +Δ)ϕ ≡ 0, and

Zt(p(ε, x− ·)) = Z0(p(t+ ε, x− ·)) +
√
2λ

∫
[0,t]×R

Zs(y)p(t+ ε− s, x− y)dWs(y)dy.

Since Zr = φre
Xr and eXr does not depend on the space variable x, it is easy to

see that Zt and Z0 have modifications which are continuous in x. Therefore, as
ε → 0, the term on the left-hand side converges to Zt(x), and the first term on the
right-hand side converges to Z0(p(t, x− ·)). For the stochastic integral we have

E

[∣∣∣ ∫
[0,t]×R

Zs(y)(p(t+ ε− s, x− y)− p(t− s, x− y))dWs(y)dy
∣∣∣2]

=

∫
[0,t]×R

E[Zs(y)
2](p(t+ ε− s, x− y)− p(t− s, x− y))2dsdy

�
∫
[0,t]×R

ec|y|(p(t+ ε− s, x− y)− p(t− s, x− y))2dsdy

× sup
y∈R,t∈[0,T ]

e−c|y|
E[Zt(y)

2].
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By the dominated convergence theorem, the right-hand side converges to zero,
and therefore (Zt)t∈[0,T ] is the unique mild solution to the multiplicative SHE as
defined in Walsh [Wal86, Theorem 3.2]. Walsh considers the equation on [0, L] with
Neumann boundary conditions, but as [Qua14, Theorem 2.4] shows, the arguments
carry over to R as long as we have at most exponential growth of E[Zt(x)

2] in x.
So far we have only showed uniqueness on a small time interval, to extend this

to, say, [0, 2T ], we need a uniform L2-bound of the type E[Zt(x)
2] � ec|x| for all

t ∈ [0, 2T ]. Lemma B.1 gives us such a bound if we know that E[Zt(x)
10] � ec

′|x|

for t ∈ [0, T ] and some c′ > 0. But now we know that (Zt)t∈[0,T ] is the unique mild
solution to the SHE, and for t = 0 and p > 0 we have for some cp > 0

E[Z0(x)
p] = E[eλpu0(Θx)] = e

1
2λ

2p2‖Θx‖2
L2 � ecp|x|.

Therefore, the Burkholder–Davis–Gundy inequality together with the arguments

from the proof of [Qua14, Lemma 2.3] show that E[Zt(x)
p] � ec

′
p|x| for t ∈ [0, T ]

and some c′p > 0. Now the uniqueness extends to [0, 2T ], and of course we can
iterate the argument to see that (Zt)t≥0 is the unique mild solution to the SHE on
[0,∞).

But we know that

u = lim
L→∞

uL = lim
L→∞

∂xh
L = lim

L→∞
∂xλ

−1 log φL = ∂xλ
−1 log φ,

where the derivative is taken in the distributional sense. Since for fixed t � 0 we
have Zt(x) = φt(x)e

Xt and Xt does not depend on the space variable, we get

∂x(logZt(x)) = ∂x(log φt(x) +Xt) = ∂x log φt(x),

and therefore the strong stationary solution u is unique up to indistinguishability.
The uniqueness in law of energy solutions follows in the same way from the weak

uniqueness of Z. �

Proof of Theorem 2.10. Let (h,B) ∈ QKPZ be a strong almost-stationary solution
to the KPZ equation

dht = Δhtdt+ λ((∂xht)
2 −∞)dt+

√
2dWt, h0 = χ.

Since by definition of the pair (u,A) ∈ Q(W, η), we have u = ∂xh and ∂xu(Θx) =
u(x), we get

(40) ht(x) = ut(Θx) + ht(σ), t � 0, x ∈ R.

Again, by definition, u is a strong stationary solution to the SBE. So in the proof
of Theorem 2.4 we showed that

(41) ut(Θx) = λ−1 log φt(x) = λ−1(log Z̃t(x)−Xt),

where Z̃ solves the linear multiplicative heat equation with initial condition eλu0(Θ·),
and X was defined by X0 = 0 and

dXt =
√
2λdWt(σ)+

(
−λ4

12
+ λ2‖σ‖2L2 − λ2(−u�2

t (σ) + ‖σ‖2L2 + λ−1ut(∂zσ))

)
dt

=
√
2λdWt(σ)−

λ4

12
dt+ λ2u�2

t (σ)dt− λut(∂zσ)dt

= λ(ht(Δσ)dt+ λu�2
t (σ)dt+

√
2dWt(σ))−

λ4

12
dt = λdht(σ)−

λ4

12
dt.
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This shows that λ−1Xt = ht(σ) − h0(σ) − λ3

12 t, and therefore we get with (40)
and (41)

ht(x) = λ−1(log Z̃t(x)−Xt) + ht(σ) = λ−1 log Z̃t(x) + h0(σ) +
λ3

12
t.

Finally, Z̃t = e−λχ(σ)Zt, where Z solves (14), the linear multiplicative heat equation
with initial condition eλχ, and this concludes the proof of the strong uniqueness
for strong almost-stationary solutions. The weak uniqueness of energy solutions
follows from the weak uniqueness of Z. �

4.2. Convergence of the remainder terms. We now proceed to prove Lem-
mas 4.1–4.3 on the convergence of RL, KL, and QL, respectively.

4.2.1. Proof of Lemmas 4.1 and 4.2. To treat RL, we introduce the auxiliary pro-
cess

RL,N
t (x) :=

∫ t

0

φL
s (x){(−(ρN ∗ us)

2(∂zΘ
L
x ))−((uL

s (x))
2−〈(uL

s )
2, σ〉L2)−KL,N

x }ds

for

(42) KL,N
x := λ2

∫
R2

gL,N
x (y1, y2)Θ

L
x (y1)Θ

L
x (y2)dy1dy2.

We will show in Lemma 4.5 that KL,N
x converges to KL

x for all x ∈ R and is
uniformly bounded in N ∈ N and x ∈ R. Since by assumption A =

∫ ·
0
∂xu

2
sds and

∂zΘ
L
x ∈ S (R) is a nice test function, we get from Corollary 3.17 that RL,N

t (ϕ)
converges to RL

t (ϕ) in L2(P).
We also define

rL,N (us, x) := φL
s (x)((−(ρN ∗ us)

2(∂zΘ
L
x ))− ((uL

s (x))
2 − 〈(uL

s )
2, σ〉L2)−KL,N

x )

so that RL,N
t (x) =

∫ t
0
rL,N (us, x)ds. Using Corollary 3.5, we can estimate for

ϕ ∈ C∞
c (R)

(43) E[‖RL,N (ϕ)‖2p−var;[0,T ]] + E[ sup
0�t�T

|RL,N
t (ϕ)|2] � T‖rL,N (·, ϕ)‖2−1,

where we recall that

‖rL,N (·, ϕ)‖2−1 = sup
F∈C

{2E[rL,N (u0, ϕ)F (u0)]− ‖F‖21},

where C are the cylinder functions and ‖F‖21 = 2E[‖∂xDF (u0)‖2L2(R)] in terms of

the Malliavin derivative D associated to the measure μ. We prove below that we
can choose KL,N

x so that E[rL,N (ut, x)] = E[rL,N (u0, x)] = 0 for all x ∈ R. This is
necessary for ‖rL,N (·, ϕ)‖−1 to be finite for all ϕ ∈ C∞

c (R). At this point everything
boils down to controlling E[rL,N (u0, ϕ)F (u0)] and to showing that it goes to zero
as first N → ∞ and then L → ∞.

Observe that the random variable (−(ρN∗u0)
2(∂zΘ

L
x ))−((uL

0 (x))
2−〈(uL

0 )
2, σ〉L2)

is an element of the second homogeneous chaos of u0. Let us compute its kernel.
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From (31) we get

− (ρN ∗ u0)
2(∂zΘ

L
x ) =

∫
R2

[
−
∫
R

dz∂zΘ
L
x (z)ρ

N (z − y1)ρ
N (z − y2)

]
W (dy1dy2)

−
∫
R

‖ρN‖2L2(R)∂zΘ
L
x (z)dz

=

∫
R2

[∫
R

dz

∫
R

dz′Θx(z
′)∂z′ρL(z − z′)ρNz (y1)ρ

N
z (y2)

]
W (dy1dy2)− 0

=

∫
R2

[∫
R

dz(ρL(z−x)−〈ρL(z − ·), σ〉L2(R))ρ
N
z (y1)ρ

N
z (y2)

]
W (dy1dy2)

=

∫
R2

[∫
R

dz(ρLx (z)− 〈ρLz , σ〉L2(R))ρ
N
z (y1)ρ

N
z (y2)

]
W (dy1dy2),

and furthermore

(uL
0 (x))

2 − 〈(uL
0 )

2, σ〉L2 =

∫
R2

[ρLx (y1)ρ
L
x (y2)−〈ρLy1

ρLy2
, σ〉L2(R)]W (dy1dy2)

+ ‖ρL‖2L2(R)(1−
∫
R

σ(x)dx)

=

∫
R2

[ρLx (y1)ρ
L
x (y2)− 〈ρLy1

ρLy2
, σ〉L2(R)]W (dy1dy2).

Therefore, let

gL,N
x (y1, y2) :=

∫
R

dz(ρLx (z)− 〈ρLz , σ〉L2(R))ρ
N
z (y1)ρ

N
z (y2)

− [ρLx (y1)ρ
L
x (y2)− 〈ρLy1

ρLy2
, σ〉L2(R)],(44)

so that

W2(g
L,N
x ) = (−(ρN ∗ u0)

2(∂zΘ
L
x ))− ((uL

0 (x))
2 − 〈(uL

0 )
2, σ〉L2).

We also let W1(g
L,N
x (y1, ·)) :=

∫
R
gL,N
x (y1, y2)W (dy2). Using the partial integration

by parts derived in Lemma 3.6, we are able to bound ‖rL,N (·, ϕ)‖−1 by a constant:

Lemma 4.4. Setting KL,N
x := λ2

∫
R2 g

L,N
x (y1, y2)Θ

L
x (y1)Θ

L
x (y2)dy1dy2, we have

for all F ∈ C

(45) |E[rL,N (u0, ϕ)F (u0)]| � ‖F‖1(AL,N
1 + CL,N

1 ),

and in particular ‖rL,N (·, ϕ)‖−1 � AL,N
1 + CL,N

1 , where

(46) AL,N
1 := E

[∥∥∥∥∫
R

ϕ(x)W1(g
L,N
x (y1, ·)) � φL

0 (x)dx

∥∥∥∥2
Ḣ−1

y1
(R)

]1/2
and

(47) CL,N
1 := E

[∥∥∥∥∫
R

ϕ(x)φL
0 (x)

∫
R

gL,N
x (y1, y2)Θ

L
x (y1)dy1dx

∥∥∥∥2
Ḣ−1

y2
(R)

]1/2
.

Here the notation Ḣα
y (R) means that the norm is taken in the y-variable and

W1(g
L,N
x (y1, ·)) � φL

0 (x) := W1(g
L,N
x (y1, ·))φL

0 (x)−
∫
R

gL,N
x (y1, y2)Dy2

φL
0 (x)dy2

is a partial Wick contraction in the sense that E[W1(g
L,N
x (y1, ·)) � φL

0 (x)] = 0.



ENERGY SOLUTIONS OF KPZ ARE UNIQUE 457

Proof. Consider

(48) E[rL,N (u0, ϕ)F (u0)] =

∫
R

ϕ(x)E[(W2(g
L,N
x )−KL,N

x )φL
0 (x)F (u0)]dx.

Partially integrating by parts W2(g
L,N
x ), we have

E[W2(g
L,N
x )φL

0 (x)F (u0)] =

∫
R

E[W1(g
L,N
x (y1, ·))Dy1

[φL
0 (x)F (u0)]]dy1

=

∫
R

E[W1(g
L,N
x (y1, ·))φL

0 (x)Dy1
F (u0)]dy1

+

∫
R

E[W1(g
L,N
x (y1, ·))Dy1

(φL
0 (x))F (u0)]dy1.

The second term on the right-hand side can be integrated by parts again to obtain∫
R

E[W1(g
L,N
x (y1, ·))Dy1

(φL
0 (x))F (u0)]dy1

=

∫
R2

gL,N
x (y1, y2)E[D

2
y1,y2

(φL
0 (x))F (u0)]dy1dy2

+

∫
R2

gL,N
x (y1, y2)E[Dy1

(φL
0 (x))Dy2

F (u0)]dy1dy2,

while the first term can be written as∫
R

E[W1(g
L,N
x (y1, ·))φL

0 (x)Dy1
F (u0)]dy1

=

∫
R

E[(W1(g
L,N
x (y1, ·)) � φL

0 (x))Dy1
F (u0)]dy1

+

∫
R2

gL,N
x (y1, y2)E[Dy2

(φL
0 (x))Dy1

F (u0)]dy1dy2.

In conclusion, we have the decomposition

(49) E[rL,N (u0, ϕ)F (u0)] = AL,N +BL,N + CL,N

with

AL,N :=

∫
R

ϕ(x)

∫
R

E[(W1(g
L,N
x (y1, ·)) � φL

0 (x))Dy1
F (u0)]dy1dx,

BL,N :=

∫
R

dxϕ(x)

×
[∫

R2

gL,N
x (y1, y2)E

[
D2

y1,y2
(φL

0 (x))F (u0)
]
dy1dy2−KL,N

x E[φL
0 (x)F (u0)]

]
,

and

CL,N := 2

∫
R

ϕ(x)

∫
R2

gL,N
x (y1, y2)E[Dy1

(φL
0 (x))Dy2

F (u0)]dy1dy2dx.

So it suffices to bound the three terms AL,N , BL,N , CL,N independently. In order
to proceed, observe that

Dy1
φL
0 (x) = Dy1

(eλu0(Θ
L
x )) = λφL

0 (x)Θ
L
x (y1),

D2
y1,y2

φL
0 (x) = λ2φL

0 (x)Θ
L
x (y1)Θ

L
x (y2),
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so that by definition of KL,N
x

BL,N

=

∫
R

ϕ(x)

[∫
R2

gL,N
x (y1, y2)λ

2ΘL
x (y1)Θ

L
x (y2)dy1dy2 −KL,N

x

]
E[φL

0 (x)F (u0)]dx

=

∫
R

ϕ(x)[KL,N
x −KL,N

x ]E[φL
0 (x)F (u0)]dx = 0

and

CL,N = 2

∫
R

ϕ(x)

∫
R2

gL,N
x (y1, y2)λΘ

L
x (y1)E[φ

L
0 (x)Dy2

F (u0)]dy1dy2dx.

Using the duality of Ḣ1(R) and Ḣ−1(R) and the Cauchy–Schwarz inequality, we
bound further

(AL,N )2 � E

[∥∥∥∥∫
R

ϕ(x)(W1(g
L,N
x (y1, ·)) � φL

0 (x))dx

∥∥∥∥2
Ḣ−1

y1
(R)

]
E[‖Dy1

F (u0)‖2Ḣ1
y1

(R)
]

= (AL,N
1 )2‖F‖21,

where AL,N
1 is the constant defined in (46). Similarly, we obtain

(CL,N )2

� E

[∥∥∥∥∫
R

ϕ(x)φL
0 (x)

∫
R

gL,N
x (y1, y2)Θ

L
x (y1)dy1dx

∥∥∥∥
Ḣ−1

y2
(R)

]2
E[‖Dy2

F (u0)‖2Ḣ1
y2

(R)
]

= (CL,N
1 )2‖F‖21,

where CL,N
1 is the constant in (47). This proves (45). �

So to control RL,N , it remains to show that the two constants AL,N
1 and CL,N

1

vanish in the limit N,L → ∞. Before doing so, let us prove Lemma 4.2. More
precisely, we show the following refined version:

Lemma 4.5. We have supL,N,x |KL,N
x | < ∞ and KL

x = limN→∞ KL,N
x as well as

limL→∞ KL
x = λ2/12 for all x ∈ R.

Proof. Recall that ΘL
x = Θx ∗ ρL, so

λ−2KL,N
x =

∫
R2

gL,N
x (y1, y2)Θ

L
x (y1)Θ

L
x (y2)dy1dy2

=

∫
R

(ρLx (z)− 〈ρLz , σ〉L2(R))(ρ
N ∗ ρL ∗Θx)

2 (z) dz

− ((ρL ∗ ρL ∗Θx)
2(x)− 〈(ρL ∗ ρL ∗Θx)

2, σ〉L2(R)).(50)

By (33) we know that for N → ∞ the first term on the right-hand side converges
to∫

R

(ρLx (z)− 〈ρLz , σ〉L2(R))(ρ
L ∗Θx)(z)

2dz = −
∫
R

∂z(ρ
L ∗Θx)(z)(ρ

L ∗Θx)
2(z)dz

= −1

3

∫
R

∂z(ρ
L ∗Θx)

3(z)dz = 0,
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where in the last step we used that ρL ∗Θx ∈ S (R). Moreover,∣∣∣∣∫
R

(ρLx (z)− 〈ρLz , σ〉L2(R))(ρ
N ∗ ρL ∗Θx)

2(z)dz

∣∣∣∣
= |(ρL ∗ (ρN ∗ ρL ∗Θx)

2)(x)− 〈ρL ∗ (ρN ∗ ρL ∗Θx)
2, σ〉L2(R)|

� ‖ρL‖L1(R)‖(ρN ∗ ρL ∗Θx)
2‖L∞(R)(1 + ‖σ‖L1(R))

� ‖Θx‖2L∞(R)(1 + ‖σ‖L1(R)) � 1,

and by similar arguments also the second term on the right-hand side of (50) stays
bounded in L,N, x. Recalling that Θx(z) = 1(−∞,x](z) −

∫∞
z

σ(y)dy, we get by
symmetry of ρ ∗ ρ

lim
L→∞

(ρL ∗ ρL ∗Θx)(x) = lim
L→∞

(ρ ∗ ρ)L ∗Θx(x) =
1

2
−
∫ ∞

x

σ(y)dy

as well as limL→∞(ρL∗ρL∗Θx) = 1(−∞,x]−
∫∞
· σ(y)dy in Lp(R) for any p ∈ [1,∞).

In particular,

lim
L→∞

((ρL ∗ ρL ∗Θx)
2(x)− 〈(ρL ∗ ρL ∗Θx)

2, σ〉L2(R))

=
1

4
−
∫ ∞

x

σ(y)dy +

(∫ ∞

x

σ(y)dy

)2

−
∫
R

(
1(−∞,x](z)−

∫ ∞

z

σ(y)dy

)2

σ(z)dz.(51)

For the last term on the right-hand side we further get∫
R

(
1(−∞,x](z)−

∫ ∞

z

σ(y)dy

)2

σ(z)dz

=

∫ x

−∞
σ(z)dz − 2

∫
R2

dydz1z�x1y�zσ(y)σ(z)

+

∫
R3

dzdy1dy21y1�z1y2�zσ(y1)σ(y2)σ(z)

= 1−
∫ ∞

x

σ(z)dz − 2

∫
R2

dydz1z�x1y�zσ(y)σ(z)

+

∫
R3

dzdy1dy21y1�z1y2�zσ(y1)σ(y2)σ(z),

and the three-dimensional integral takes the value∫
R3

dzdy1dy21y1�z1y2�zσ(y1)σ(y2)σ(z)

=

∫
R3

dzdy1dy21z=min{y1,y2,z}σ(y1)σ(y2)σ(z) =
1

3

by symmetry of the variables z, y1, y2. To compute the two-dimensional integral,
observe first that

(1z�x,z�y + 1y�x,y<z) = 1z�y − 1x<z�y + 1y<z − 1x<y<z = 1− 1x<y1x<z,

and integrating this against σ(y)σ(z)dydz and using the symmetry in (y, z), we get∫
R2

dydz1z�x1y�zσ(y)σ(z) =
1

2

(
1−
(∫ ∞

x

σ(z)dz

)2
)
.
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Plugging all this back into (51), we have

lim
L→∞

((ρL ∗ ρL ∗Θx)
2(x)− 〈(ρL ∗ ρL ∗Θx)

2, σ〉L2(R))

=
1

4
−
∫ ∞

x

σ(y)dy +

(∫ ∞

x

σ(y)dy

)2

−
(
1−
∫ ∞

x

σ(z)dz −
(
1−
(∫ ∞

x

σ(z)dz

)2
)

+
1

3

)

=
1

4
− 1

3
= − 1

12
,

which concludes the proof. �

The following computation will be useful for controlling both AL,N
1 and CL,N

1 ,
which is why we outsource it in a separate lemma.

Lemma 4.6. Define the kernel

GL,N
x,x′ (y1) :=

∫
R

ΘL
x′(y2)g

L,N
x (y1, y2)dy2.

Then there exists C > 0 such that for all L ∈ N there is M(L) ∈ N with

sup
x,x′∈R,N�M(L)

‖GL,N
x,x′ ‖Ḣ−1(R) � CL−1/2.

Proof. We argue by duality. For f ∈ C∞
c , we have

〈GL,N
x,x′ , f〉L2(R) =

∫
R

dz(ρLx (z)− 〈ρLz , σ〉L2(R))(ρ
N ∗ f)(z)(ρN ∗ΘL

x′)(z)

− {(ρL ∗ f)(x)(ρL ∗ΘL
x′)(x)− 〈(ρL ∗ f)(ρL ∗ΘL

x′), σ〉L2(R)}
= (ρL ∗ ((ρN ∗ f)(ρN ∗ΘL

x′)))(x)

−
∫
R

dzσ(z)(ρL ∗ ((ρN ∗ f)(ρN ∗ΘL
x′)))(z)

−
{
(ρL ∗ f)(x)(ρL ∗ΘL

x′)(x)−
∫
R

dzσ(z)(ρL ∗ f)(z)(ρL ∗ΘL
x′)(z)

}
= E[f(x−RL

1 −RN
2 )ΘL

x′(x−RL
1 −RN

3 )− f(Z −RL
1 −RN

2 )ΘL
x′(Z −RL

1 −RN
3 )]

− E[f(x−RL
1 )Θ

L
x′(x−RL

4 )− f(Z −RL
1 )Θ

L
x′(Z −RL

4 )],

(52)

where the random variables (RL
1 , R

N
2 , RN

3 , RL
4 , Z) are independent and RL

i ∼ ρL,
RN

i ∼ ρN , and Z ∼ σ (note that ρL, ρN , σ are all probability densities). The
observation that we can simplify the notation in this way is taken from [FQ15].
Note that by assumption ρL ∗ ρN = ρL for sufficiently large N , and therefore

E[ΘL
x′(x−RL

1 −RN
3 )−ΘL

x′(x−RL
4 )] = ((ρL ∗ ρN ) ∗ΘL

x′)(x)− (ρL ∗ΘL
x′)(x) = 0.
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Similarly E[f(Z)(ΘL
x′(Z −RL

1 −RN
3 )−ΘL

x′(Z −RL
4 ))] = 0 by the independence of

Z and RL
i , R

N
i , hence we can regroup

〈GL,N
x,x′ , f〉L2(R)

= E[(f(x−RL
1 −RN

2 )− f(x))(ΘL
x′(x−RL

1 −RN
3 )−ΘL

x′(x−RL
4 ))]

+ E[(f(x−RL
1 −RN

2 )− f(x−RL
1 ))Θ

L
x′(x−RL

4 )]

− E[(f(Z −RL
1 −RN

2 )− f(Z))(ΘL
x′(Z −RL

1 −RN
3 )−ΘL

x′(Z −RL
4 ))]

− E[(f(Z −RL
1 −RN

2 )− f(Z −RL
1 ))Θ

L
x′(Z −RL

4 )].(53)

Let us estimate for example the most complicated term

|E[(f(Z −RL
1 −RN

2 )− f(Z))(ΘL
x′(Z −RL

1 −RN
3 )−ΘL

x′(Z −RL
4 ))]|

=

∣∣∣∣∣E
[(∫ Z−RL

1 −RN
2

Z

f ′(y)dy

)
(ΘL

x′(Z −RL
1 −RN

3 )−ΘL
x′(Z −RL

4 ))

]∣∣∣∣∣
� 2‖f‖Ḣ1(R)‖ΘL

x′‖L∞(R)|E[|RL
1 +RN

2 |1/2]| � ‖f‖Ḣ1(R)(L
−1/2 +N−1/2).

(54)

The other terms can be controlled using the same arguments, and therefore we get

(55) 〈GL,N
x,x′ , f〉L2(R) � ‖f‖Ḣ1(R)(L

−1/2 +N−1/2) � ‖f‖Ḣ1(R)L
−1/2,

which yields ‖GL,N
x,x′ ‖Ḣ−1(R) � L−1/2 by the density of C∞

c (R) in Ḣ1(R). �

Lemma 4.7. We have limL→∞ lim supN→∞ AL,N
1 = 0.

Proof. We expand the squared Ḣ−1-norm as

(AL,N
1 )2 = E

[∥∥∥∥∫
R

ϕ(x)W1(g
L,N
x (y1, ·)) � φL

0 (x)dx

∥∥∥∥2
Ḣ−1

y1
(R)

]

=

∫
R2

ϕ(x)ϕ(x′)E
[
〈φL

0 (x)�W1(g
L,N
x (y1, ·)), φL

0 (x
′)�W1(g

L,N
x′ (y1, ·))〉Ḣ−1

y1
(R)

]
dxdx′.

Integrating by parts the W1 terms and taking into account the cancellations due to
the partial Wick contractions, we get

E

[
〈φL

0 (x) �W1(g
L,N
x (y1, ·)), φL

0 (x
′) �W1(g

L,N
x′ (y1, ·))〉Ḣ−1

y1
(R)

]
= E[φL

0 (x)φ
L
0 (x

′)]

∫
R

〈gL,N
x (y1, y2), g

L,N
x′ (y1, y2)〉Ḣ−1

y1
(R)dy2

+

∫
R2

E[(Dy3
φL
0 (x))(Dy2

φL
0 (x

′))]〈gL,N
x (y1, y2), g

L,N
x′ (y1, y3)〉Ḣ−1

y1
(R)dy2dy3.
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The second term can be written as∫
R2

E[(Dy3
φL
0 (x))(Dy2

φL
0 (x

′))]〈gL,N
x (y1, y2), g

L,N
x′ (y1, y3)〉Ḣ−1

y1
(R)dy2dy3

= λ2
E[φL

0 (x)φ
L
0 (x

′)]

∫
R2

ΘL
x (y3)Θ

L
x′(y2)〈gL,N

x (y1, y2), g
L,N
x′ (y1, y3)〉Ḣ−1

y1
(R)dy2dy3,

so letting V L(x, x′) := λ2|ϕ(x)ϕ(x′)E[φL
0 (x)φ

L
0 (x

′)]|, we have

(AL,N
1 )2 =

∫
R2

dxdx′V L(x, x′)

∫
R

〈gL,N
x (y1, y2), g

L,N
x′ (y1, y2)〉Ḣ−1

y1
(R)dy2

+

∫
R2

dxdx′V L(x, x′)

×
∫
R2

ΘL
x (y3)Θ

L
x′(y2)〈gL,N

x (y1, y2), g
L,N
x′ (y1, y3)〉Ḣ−1

y1
(R)dy2dy3

=: A1,1 +A1,2.(56)

Let us consider first A1,2 =
∫
R2 V

L(x, x′)〈GL,N
x,x′ , G

L,N
x′,x 〉Ḣ−1(R)dxdx

′, which accord-

ing to Lemma 4.6 can be bounded by

A1,2 �
∫
R2

V L(x, x′)‖GL,N
x,x′ ‖Ḣ−1(R)‖G

L,N
x′,x‖Ḣ−1(R)dxdx

′

� L−1

∫
R2

V L(x, x′)dxdx′ � L−1

for all large N . We continue by estimating the term A1,1 in (56) which is bounded
by

(57) A1,1 �
∫
R2

dxdx′V L(x, x′)

∫
R

‖gL,N
x (·, y2)‖Ḣ−1(R)‖g

L,N
x′ (·, y2)‖Ḣ−1(R)dy2.

To treat the Ḣ−1(R)-norms, we argue again by duality, as in the proof of Lemma 4.6.
Therefore, let f ∈ C∞

c (R), and consider

〈gL,N
x (·, y2), f〉L2(R)

=

∫
R

dz(ρLx (z)− 〈ρLz , σ〉L2(R))(ρ
N ∗ f)(z)ρNz (y2)

− ((ρL ∗ f)(x)ρLx (y2)− 〈(ρL ∗ f)ρLy2
, σ〉L2(R))

= E[f(x−RL
1 −RN

2 )ρN (x− y2 −RL
1 )− f(y2 −RN

1 −RN
2 )σ(y2 −RN

1 −RL
3 )]

− E[f(x−RL
1 )ρ

L(x− y2)− f(y2 −RL
1 −RL

2 )σ(y2 −RL
1 )],

(58)

where RL
i , R

N
i , Z are independent random variables as above. Now observe that by

our assumptions on ρ

E[ρN (x− y2 −RL
1 )− ρL(x− y2)] = (ρL ∗ ρN )(x− y2)− ρL(x− y2) = 0
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if N is large enough, and similarly E[σ(y2 − RN
1 − RL

3 )] = E[σ(y2 − RL
1 )]. So for

large N we can decompose the expectations in (58) as

〈gL,N
x (·, y2), f〉L2(R)

= E[(f(x−RL
1 −RN

2 )− f(x−RL
1 ))ρ

N (x− y2 −RL
1 )]

+ E[(f(x−RL
1 )− f(x))(ρN(x− y2 −RL

1 )− ρL(x− y2))]

− E[(f(y2 −RN
1 −RN

2 )− f(y2 −RL
1 −RL

2 ))σ(y2 −RN
1 −RL

3 )]

− E[(f(y2 −RL
1 −RL

2 )− f(y2))(σ(y2 −RN
1 −RL

3 )− σ(y2 −RL
1 ))].

Bounding each term individually as in the proof of Lemma 4.6, we get

〈gL,N
x (·, y2), f〉L2(R) � ‖f‖Ḣ1(R) ×

(
E[|RN

2 |1/2ρN (x− y2 −RL
1 )]

+ E[|RL
1 |1/2(ρN (x− y2 −RL

1 ) + ρL(x− y2))]

+ E[|RN
1 +RN

2 +RL
1 +RL

2 |1/2σ(y2 −RN
1 −RL

3 )]

+ E[|RL
1 +RL

2 |1/2(σ(y2 −RN
1 −RL

3 ) + σ(y2 −RL
1 ))]
)
,

which yields

‖gL,N
x (·, y2)‖Ḣ−1(R)

� E[|RN
2 |1/2ρN (x−y2−RL

1 )] + E[|RL
1 |1/2(ρN (x−y2−RL

1 ) + ρL(x−y2))]

+ E[|RN
1 +RN

2 +RL
1 +RL

2 |1/2σ(y2 −RN
1 −RL

3 )]

+ E[|RL
1 +RL

2 |1/2(σ(y2 −RN
1 −RL

3 ) + σ(y2 −RL
1 ))].

By the same computation we get a similar bound for ‖gL,N
x′ (·, y2)‖Ḣ−1(R), and

plugging these back into (57), we generate a number of products between dif-
ferent expectations. Let us treat three prototypical cases: Writing V L(x) :=
|λϕ(x)|E[|φL

0 (x)|2]1/2, we have∫
R2

dxdx′|V L(x, x′)|
∫
R

E[|RL
1 |1/2ρN (x−y2−RL

1 )]E[|RL
1 |1/2ρN (x′−y2−RL

1 )]dy2

�
∫
R2

dxdx′V L(x)V L(x′)

×
∫
R

E[|RL
1 |1/2ρN (x− y2 −RL

1 )]E[|RL
1 |1/2ρN (x′ − y2 − RL

1 )]dy2

=

∫
R

E[|RL
1 |1/2(ρN ∗ V L)(y2 + RL

1 )]E[|RL
1 |1/2(ρN ∗ V L)(y2 +RL

1 )]dy2

= E

[
|RL

1 |1/2|RL
2 |1/2

∫
R

(ρN ∗ V L)(y2 +RL
1 )(ρ

N ∗ V L)(y2 +RL
2 )dy2

]
� E[|RL

1 |1/2|RL
2 |1/2‖(ρN ∗ V L)‖2L2(R)] � L−1(‖ρN‖L1(R)‖V L‖L2(R))

2 � L−1,

where we introduced a new independent copy RL
2 of RL

1 ; this is a trick that we will
apply several times in the following. Another situation occurs if only one of the
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two expectations depends on x (respectively x′), for example,∫
R2

dxdx′V L(x)V L(x′)

×
∫
R

E[|RN
2 |1/2ρN (x− y2 −RL

1 )]E[|RL
1 +RL

2 |1/2σ(y2 −RN
1 −RL

3 )]dy2

= ‖V L‖L1(R)

×
∫
R

E[|RN
2 |1/2(ρN ∗ V L)(y2 +RL

1 )]E[|RL
1 +RL

2 |1/2σ(y2 −RN
1 −RL

3 )]dy2

� E

[
|RN

2 |1/2|RL
4 +RL

5 |1/2
∫
R

(ρN ∗ V L)(y2 +RL
1 )σ(y2 −RN

6 −RL
7 )dy2

]
� E[|RN

2 |1/2|RL
4 + RL

5 |1/2‖ρN ∗ V L‖L2(R)‖σ‖L2(R)]

� N−1/2L−1/2‖ρN‖L1(R)‖V L‖L2(R)‖σ‖L2(R) � L−1.

Finally, we have to handle the case where none of the expectations depend on x or
x′, for example,∫

R2

dxdx′V L(x)V L(x′)

×
∫
R

E[|RL
1 +RL

2 |1/2σ(y2 − RN
1 −RL

3 )]E[|RL
1 +RL

2 |1/2σ(y2 −RL
1 )]dy2

= ‖V L‖2L1(R)E

[
|RL

1 +RL
2 |1/2|RL

4 +RL
5 |1/2

∫
R

σ(y2 −RN
1 −RL

3 )σ(y2−RL
4 )dy2

]
� E[|RL

1 +RL
2 |1/2|RL

4 +RL
5 |1/2‖σ‖2L2(R)] � L−1.

In conclusion A1,1 also vanishes as first N → ∞ and then L → ∞, and this
concludes the proof. �

Lemma 4.8. We have limL→∞ limN→∞ CL,N
1 = 0.

Proof. Recall that

(CL,N
1 )2 = E

[∥∥∥∥∫
R

ϕ(x)φL
0 (x)

∫
R

gL,N
x (y1, y2)Θ

L
x (y1)dy1dx

∥∥∥∥2
Ḣ−1

y2
(R)

]

=

∫
R2

V L(x, x′)〈GL,N
x,x , GL,N

x′,x′〉Ḣ−1(R)dxdx
′.

So by Lemma 4.6 we get directly (CL,N
1 )2 � L−1 for all large N , from where the

convergence immediately follows. �

Lemma 4.1 now follows by combining Lemma 4.4, Lemma 4.7, and Lemma 4.8.

4.2.2. Proof of Lemma 4.3. Recall that

QL
t :=

∫ t

0

{−〈(uL
s )

2 − ‖ρL‖2L2(R), σ〉L2(R) + ‖ρL ∗ σ‖2L2(R) + λ−1us(ρ
L ∗ ∂zσ)}ds.
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By Corollary 3.17 the first term on the right-hand side converges in
Lp(Ω;C3/4−([0, T ],R)) to −

∫ ·
0
u�2
s ds(σ) whenever p � 1 and T > 0. The conver-

gence of the remaining terms is obvious, and overall we get

lim
L→∞

QL
t = Qt := −

∫ t

0

u�2
s ds(σ) + ‖σ‖2L2(R)t+ λ−1

∫ t

0

us(∂zσ)ds,

where the convergence takes place in Lp(Ω;C3/4−([0, T ],R)).

Appendix A. The periodic case

For the periodic equation described in section 2.3 most of the analysis works
in the same way. The Itô trick and the Kipnis–Varadhan inequality are shown
using exactly the same arguments, and also the Gaussian analysis of section 3.2
works completely analogously. We only have to replace all function spaces over Rn

by the corresponding spaces over T
n, say L2(Rn) by L2(Tn). The construction of

the Burgers nonlinearity and the proof of its time-regularity also carry over to the
periodic setting, although we have to replace the integrals over R2 in Fourier space
by sums over Z

2. But since those sums can be estimated by the corresponding
integrals, we get the same bounds.

The first significant difference is in the construction of the integral. As discussed
in section 4.1, any integral Iu of u ∈ S ′(R) is determined uniquely by its derivative
u and the value Iu(σ) for some σ ∈ S (R) with

∫
R
σ(x)dx = 0. The same is true

on the circle, and here there is a canonical candidate for the function σ, namely
the constant function 1. So let (u,A) ∈ Q(W, η) be a pair of controlled processes,
where ∂tW is a periodic space-time white noise and η is a periodic space white
noise. Let ρ ∈ S (R) be an even function with ρ̂ ∈ C∞

c (R) and such that ρ̂ ≡ 1 on
a neighborhood of 0, and define

(59) uL
t := F−1

T
(ρ̂(L−1·)FTut) = ρ̄L ∗ ut, t � 0,

where FTu(k) :=
∫
T
e2πikxu(x)dx, respectively F−1

T
ψ(x) :=

∑
k∈Z

e2πikxψ(k),
denotes the Fourier transform (respectively inverse Fourier transform) on the torus,
u ∗ v(x) :=

∫
T
u(x − y)v(y)dy is the convolution on the torus, and ρ̄L :=∑

k∈Z
Lρ(L(· + k)) is the periodization of ρL := Lρ(L·). For the last identity

in (59) we applied Poisson summation; see for example [GP15, Lemma 6]. We then
integrate uL by setting

hL
t := F−1

T
(FTΘFT(u

L
t )) = Θ ∗ uL

t = (Θ ∗ ρ̄L) ∗ ut =: ΘL ∗ ut, t � 0,

where FTΘ(k) = 1k �=0(2πik)
−1, which corresponds to

Θ(x) = 1[− 1
2 ,0)

(x)(−x− 1

2
)+1[0, 12 )

(x)(−x+
1

2
) = −x− 1

2
+1[0, 12 )

(x), x ∈ [−1

2
,
1

2
),

or equivalently Θ(x) = 1
2 − x for x ∈ [0, 1). From the representation as a Fourier

multiplier, it is obvious that ∂x(Θ ∗ u) = Π0u, and since we assumed that uL
t =

Π0u
L
t for all t � 0, we get ∂xh

L = uL. Writing (Θ ∗ ρ̄L) ∗ ut(x) = ut(Θ
L
x ) for

ΘL
x (y) := (Θ∗ ρ̄L)(x−y), we get from the fact that u is a strong stationary solution

of the periodic Burgers equation that

dhL
t (x) = ut(ΔzΘ

L
x )dt+ dAt(Θ

L
x ) +

√
2dWt(−∂zΘ

L
x )

= Δxh
L
t (x) + dAt(Θ

L
x ) +

√
2dWt(∂xΘ

L
x )
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and d[hL(x)]t=2‖∂xΘL
x‖2L2(T)dt. From the expression Θ(x) = 1

2−x for x ∈ [0, 1), we

see that ∂xΘx = δ−1, where δ denotes the Dirac delta, and therefore ∂xΘ
L
x = ρ̄Lx−1

for ρ̄Lx (y) = ρ̄L(x− y). So setting φL
t (x) := eλh

L
t (x), we have

dφL
t (x) = φL

t (x)

(
λdhL

t (x) +
1

2
λ2d[hL(x)]t

)
= λφL

t (x)
(
Δxh

L
t (x) + dAt(Θ

L
x ) +

√
2dWt(∂xΘ

L
x ) + λ‖ρ̄Lx − 1‖2L2(T)dt

)
,

and since λφL
t (x)Δxh

L
t (x) = Δxφ

L
t (x)− λ2φL

t (x)(∂xh
L
t (x))

2, we get

dφL
t (x) = Δxφ

L
t (x)dt+

√
2λφL

t (x)dWt(∂xΘ
L
x )

+ λ2φL
t (x)(λ

−1dAt(Θ
L
x )− ((uL

t (x))
2 − ‖ρ̄Lx − 1‖2L2(T))dt)

= Δxφ
L
t (x)dt+

√
2λφL

t (x)dWt(ρ̄
L
x ) + λ2dRL

t (x) + λ2KLφL
t (x)dt

+ λ2φL
t (x)dQ

L
t −

√
2λφL

t (x)dWt(1)− 2λ2φL
t (x)dt,

where we expanded the L2(T)-norm and defined

RL
t (x) :=

∫ t

0

φL
s (x){λ−1dAs(Θ

L
x )−Π0((u

L
s (x))

2)ds−KLds}

for the constant KL = limN→∞ KL,N
x (which is independent of x) with KL,N

x

defined in (61), and

QL
t :=

∫ t

0

{−〈(uL
s )

2 − ‖ρ̄L‖2L2(R), 1〉L2(T) + 1}ds.

From here on the proof is completely analogous to the nonperiodic setting provided
that we establish the following three lemmas.

Lemma A.1. We have for all T > 0, p > 2, and all ϕ ∈ C∞(T)

lim
L→∞

(E[‖RL(ϕ)‖2p−var;[0,T ]] + E[sup
t�T

|RL
t (ϕ)|2]) = 0.

Lemma A.2. The constant KL converges to λ2/12 as L → ∞.

Lemma A.3. For all T > 0 the process (QL
t )t∈[0,T ] converges in probability in

C3/4−([0, T ],R) to the zero quadratic variation process

Qt := −
∫ t

0

u�2
s ds(1) + t, t ∈ [0, T ].

To prove these lemmas, we follow the argumentation in section 4.2. Here the
kernel gL,N

x takes the form
(60)

gL,N
x (y1, y2) :=

∫
T

dz(ρ̄Lx (z)− 1)ρ̄Nz (y1)ρ̄
N
z (y2)− (ρ̄Lx (y1)ρ̄

L
x (y2)− 〈ρ̄Ly1

ρ̄Ly2
, 1〉L2(T)),

and as in section 4.2 we see that we should choose

(61) KL,N
x := λ2

∫
T2

gL,N
x (y1, y2)Θ

L
x (y1)Θ

L
x (y2)dy1dy2.

The proof of Lemma A.2 is not a trivial modification of the one of Lemma 4.2, so
we provide the required arguments.
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Proof of Lemma A.2. Sending N → ∞ and using that ΘL
x (y) = ΘL(x − y) and

ρ̄Lx (y) = ρ̄L(x− y), we get

lim
N→∞

KL,N
x = KL

:= λ2

∫
T

dz(ρ̄Lx (z)− 1)ΘL
x (z)Θ

L
x (z)− λ2(〈ΘL, ρ̄L〉2L2(T) − 〈(ρ̄L ∗ΘL)2x, 1〉L2(T)),

and the first term on the right-hand side is λ2(−1/3)
∫
T
dz∂z(Θ

L
x (z)

3) = 0. More-
over, also

〈ΘL, ρ̄L〉L2(T) =

∫
T

ΘL(y)ρ̄L(y)dy =

∫
T

ΘL(y)(ρ̄L(y)− 1)dy

=

∫
T

1

2
∂y(Θ

L(y)2)dy = 0,

and therefore we remain with

λ−2KL = 〈(ρ̄L ∗ΘL)2x, 1〉L2(T) = ‖ρ̄L ∗ΘL‖2L2(T) =
∑
k∈Z

|FT(ρ̄
L ∗ΘL)(k)|2

=
∑

k∈Z\{0}

|ρ(L−1k)|2
(2πk)2

=
1

2π2

∞∑
k=1

|ρ(L−1k)|2
k2

L→∞−−−−→ 1

2π2

∞∑
k=1

1

k2
=

1

12
,

which concludes the proof. �

The rest of the proof is completely analogous to the nonperiodic case. Let us
just point out that if f ∈ C∞(T ), then∫

T

(f(x− y)− f(x))ρ̄L(y)dy = E[f(x− RL)− f(x)],

where RL is a random variable with density ρ̄L, and that

f(x−RL
1 )− f(x) =

∫ (x−RL
1 )(mod1)

x(mod1)

∂yf(y)dy,

and therefore the same line of argumentation as in section 4.2 yields Lemmas A.1
and A.3. From here we follow the same steps as in the proof of Theorem 2.4 to
establish Theorem 2.13.

Appendix B. Exponential integrability

Lemma B.1. Let φt(x) = eλut(Θx) for t ≥ 0 and x ∈ R, and

Zt(x) = φt(x) exp

(√
2λWt(σ)−

λ4

12
t+ λ2

∫ t

0

u�2
s ds(σ)− λ

∫ t

0

us(∂zσ)ds

)
.

Then there exist c, T > 0 such that

sup
t∈[0,T ],x∈R

e−c|x|
E[Zt(x)

2] < ∞.
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Moreover, if R ≥ 0 and there exists c′ > 0 with supt∈[0,R],x∈R
e−c′|x|

E[|Zt(x)|10] <
∞, then for some c, T > 0, independent of R,

sup
t∈[0,R+T ],x∈R

e−c|x|
E[Zt(x)

2] < ∞.

Proof. Note that

E[|Z0(x)|10] = E[e10λu0(Θx)] = e50λ
2‖Θx‖2

L2 � ec|x|

for some c > 0, so the second statement is a generalization of the first one. We
have

ZR+t(x) = ZR(x)e
λ(uR+t(Θx)−uR(Θx))e

√
2λ(WR+t(σ)−WR(σ))

× e−
λ4

12 teλ
2
∫R+t
R

u�2
s ds(σ)e−λ

∫R+t
R

us(∂zσ)ds,

and therefore with Hölder’s and Jensen’s inequalities

E[ZR+t(x)
2]5

� E[ZR(x)
10]E[e10λ(uR+t(Θx)−uR(Θx))]

× E[e10
√
2λWt(σ)]E[e10λ

2
∫R+t
R

u�2
s ds(σ)]E[e−10λ

∫ R+t
R

us(∂zσ)ds]

� ec|x|E[e20u0(Θx)]e100λ
2‖σ‖2

L2E[e10λ
2
∫R+t
R

u�2
s ds(σ)]

1

t

∫ R+t

R

E[e−t10λus(∂zσ)]ds

� ec|x|E[e10λ
2
∫ R+t
R

u�2
s ds(σ)].

It remains to bound the expectation on the right-hand side. To simplify notation,

we will write the following computations directly for
∫ R+t

R
u�2
s ds(σ), but to make

them rigorous we should mollify us before taking the square and derive bounds
that are uniform in the mollification. Let H be the functional from the proof of
Proposition 3.15 with (1− L0)H(u) = u�2(σ). By [GJ13, Lemma 3] we have

E[e10λ
2
∫R+t
R

u�2
s ds(σ)] � E[e20λ

2
∫R+t
R

H(us)ds]1/2E[e20λ
2
∫R+t
R

(−L0H)(us)ds]1/2

� E[e20λ
2
∫R+t
R

H(us)ds]1/2E[e800λ
4
∫R+t
R

E(H)(us)ds]1/2

�
(1
t

∫ R+t

R

E[e20λ
2tH(us)]ds

)1/2
×
(1
t

∫ R+t

R

E[e800λ
4tE(H)(us)]ds

)1/2
= E[e20λ

2tH(u0)]1/2E[e800λ
4tE(H)(u0)]1/2,

where the third step follows from Jensen’s inequality. Now H(u0) and E(H)(u0)
are random variables in the second inhomogeneous Gaussian chaos generated by
u0, and therefore they have small exponential moments. Indeed, if X is a random
variable living in a second-order homogeneous Gaussian chaos, then E[|X|n] �
(n− 1)n‖X‖nL2 for all n (see [Nua06, p. 62]), and therefore by Stirling’s formula

E[exp(κ|X|)] =
∞∑

n=0

κn

n!
E[|X|n] �

∞∑
n=0

κn

n!
nn‖X‖nL2

�
∞∑

n=0

κnen

nn+ 1
2

nn‖X‖nL2 �
∞∑
n=0

(κe‖X‖L2)n,
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which is finite as long as κ < 1/(e‖X‖L2). Since variables in the first- and zero-
order Gaussian chaos have all exponential moments and we can make t small by
choosing T sufficiently small, the proof is complete once we know that ‖H(u0)‖L2 +
‖E(H)(u0)‖L2 < ∞. But this we already showed in the proof of Proposition 3.15.

�
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