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Introduction

The Weil conjectures were finally proven by P. Deligne in the 1970s, culminating
in the theory of weights for �-adic cohomology in his celebrated paper [De1]. In
that paper, Deligne made the following conjecture on the existence of compatible
systems :

Conjecture ([De1, 1.2.10]). Soient X normal connexe de type fini sur Fp, et F
un faisceau lisse irréducible dont le déterminant est défini par un caractère d’ordre
fini du groupe fondamental.

(ii) Il existe un corps de nombres E ⊂ Q� tel que le polynôme det(1 − Fxt,F )
pour x ∈ |X|, soit à coefficients dans E.

(v) Pour E convenable (peut-être plus grand qu’en (ii)), et chaque place non
archimédienne λ première à p, il existe un Eλ-faisceau compatible à F (mêmes
valeurs propres des Frobenius).

(vi) Pour λ divisant p, on espère des petits camarades cristallins.

Part (vi) is written vaguely because a good theory of p-adic cohomology was
not available at the time Deligne conjectured it. R. Crew made this conjecture
more precise in [Cr, 4.13] after P. Berthelot’s foundational works in p-adic coho-
mology theory. This conjecture has been one of the driving forces in developing a
p-adic cohomology theory over fields of positive characteristic parallel to the �-adic
cohomology theory (e.g., introduction of [Ch]).

WhenX is a curve, all parts of the the conjecture except for (vi) are consequences
of the Langlands correspondence, which was proven by V. Drinfeld in the rank 2 case
and by L. Lafforgue in the higher rank case. Moreover, Deligne and Drinfeld proved
all parts of the conjecture except for (vi) for any smooth scheme X as a consequence
of the Langlands correspondence. In this paper, we prove part (vi) of the conjecture
when X is a curve. In fact, we prove a stronger result: a correspondence between
irreducible overconvergent F -isocrystals with finite determinant on an open dense
subscheme of X and cuspidal automorphic representations of the function field of
X with finite central character (see Theorem 4.2.2). Finally, in Theorem 4.4.5, we
prove the converse of Deligne’s conjecture when X is smooth using the techniques
of Deligne and Drinfeld in [EK] and [Dr] assuming the Bertini-type conjecture in
4.4.2: for any overconvergent F -isocrystal over a smooth scheme, there exists an
�-adic companion for any � �= p.

Our strategy of proof is similar to the �-adic case. First, we apply the prod-
uct formula for epsilon factors, which was proven in the p-adic setting by Abe
and A. Marmora in [AM]. By using Deligne’s principe de récurrence, the product
formula for epsilon factors reduces one to associating an isocrystal to a cuspidal
automorphic representation (cf. [A2]). Finally, we use the moduli spaces of shtukas
to establish the Langlands correspondence for isocrystals as was done by Drinfeld
and Lafforgue in the �-adic case. In order to apply the methods of Drinfeld and Laf-
forgue, we construct a six functor formalism for suitable p-adic cohomology theory
for certain algebraic stacks.

Before explaining our construction, let us review the history of attempts to con-
struct a six functor formalism in the p-adic setting. For a more detailed overview
of the history, we refer the reader to [I], [Ke3]. The first p-adic cohomology defined
for an arbitrary separated scheme of finite type over a perfect field of character-
istic p was proposed by Berthelot during the 1980s (called rigid cohomology). He
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also defined a theory of coefficients for rigid cohomology, called overconvergent
F -isocrystals: these can be seen as a p-adic analogue of vector bundles with an
integrable connection. One can see from this analogy that it is not reasonable to
expect a six functor formalism in the style of A. Grothendieck in the framework of
overconvergent F -isocrystals. In order to remedy this, and in the analogy with the
complex situation, Berthelot introduced the theory of arithmetic D-modules. We
refer to [Ber4] for a beautiful survey by the founder himself. In the p-adic case,
the theory is very complicated since we need to deal with differential operators
of infinite order unlike the complex situation. As a result, many of the founda-
tional properties had been left as conjectures. Among these conjectures, the most
important one concerns the preservation of finiteness properties of the arithmetic
D-modules under various cohomological operations. A big step toward this prob-
lem was the introduction of overholonomic modules by D. Caro, which potentially
bypasses Berthelot’s original strategy to construct the six functor formalism. His
work was successful in proving stability for most of the standard cohomological op-
erations, but the finiteness of overconvergent F -isocrystals was still unresolved. A
breakthrough was achieved by K. S. Kedlaya in his resolution of Shiho’s conjecture,
or the proof of the semistable reduction theorem [Ke5]. This extremely powerful
theorem enabled us to answer many tough questions in the theory of arithmetic
D-modules: a finiteness result by Caro and N. Tsuzuki (cf. [CT]), an analogue of
Weil II by Abe and Caro (cf. [AC1]), and many more. Even though we do not
explicitly use Kedlaya’s theorem in the proof of the Langlands correspondence for
isocrystals, the main theorem of this paper can be seen as another application of
Kedlaya’s result. In previous works ([CT,AC1] etc.), Kedlaya’s result was used to
develop a theory of arithmetic D-modules for “realizable schemes”. We refer to §1.1
for a detailed overview. In particular, quasi-projective schemes are included in this
framework. However, to construct the isocrystals corresponding to cuspidal auto-
morphic representations, the category of quasi-projective schemes is too restricted.
A large part of this paper is devoted to constructing a theory of arithmetic D-
modules for admissible stacks. In particular, we end our search, since Monsky and
Washnitzer, for a p-adic six functor formalism for separated schemes of finite type
over a perfect field.

Our construction of a six functor formalism is more or less formal: making full
use of the existence of the formalism in a local situation, we glue. Even though
we do not axiomatize, it can be carried out for any cohomology theory over a
field admitting a reasonable six functor formalism locally. First, let us explain the
construction in the case of schemes. As we have already mentioned, for realizable
schemes (e.g., quasi-projective schemes) we already have the formalism thanks to
works of Caro and others. For a realizable scheme X, we denote by Db

hol(X) the
associated triangulated category with t-structure, and by Hol(X) its heart. The
category Hol(X) is analogous to the category of perverse sheaves in the philosophy
of the Riemann–Hilbert correspondence. When X is a scheme of finite type over
k, we are able to take a finite open covering {Ui} by realizable schemes, and define
Hol(X) by gluing

{
Hol(Ui)

}
. The first difficulty is to define the derived category. A

starting point of our construction is an analogy with Beilinson’s equivalence proven
in [AC2]

Db(Hol(X))
∼−→ Db

hol(X),
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where X is a realizable scheme. This equivalence suggests defining the derived cate-
gory naively byDb(Hol(X)) for general schemeX. The next problem is to construct
the cohomological functors. To do this, we construct cohomological functors for fi-
nite morphisms and projections separately and combine these for the general case.
Let us explain the method in the easier case where f : X → Y is a finite morphism
between realizable schemes. In that case the pushforward f+ is an exact functor,
so we can define f+ : Hol(X) → Hol(Y ) by gluing, and we consider the associated
derived functor to get the functor between derived categories. The definition of f !

is more technical. When the morphism f is between realizable schemes, by using
some general nonsense, we are able to show that f ! is the right derived functor of
H 0f ! using the fact that (f+, f

!) is an adjoint pair and f+ is exact. Thus, for a
general finite morphism f , we define H 0f ! by gluing, and we define the functor
between derived categories by taking the right derived functor. Since the category
Hol(X) does not possess enough injectives, we need techniques of Ind-categories
to overcome this deficit. Even though the construction is more involved, we can
define the cohomological functors for projections X × Y → Y using similar ideas.
Since any morphism between separated schemes of finite type can be factored into
a closed immersion and a projection, we may define the cohomological operations
in complete generality by composition.

For an algebraic stack X, we use a simplicial technique to construct the derived
category Db

hol(X): take a presentation X → X, and consider the simplicial algebraic
space X• := cosk0(X → X). The derived category of X should coincide with that
of X• with suitable conditions on the cohomology. Since D-modules behave like
perverse sheaves, there are minor differences with the analogous construction in
the �-adic setting (cf. [LO]). However, the construction is mostly parallel. Now,
we would like to construct the cohomological operations for algebraic stacks in
a manner similarly to that for schemes described above. However, in general,
morphisms between algebraic stacks cannot be written as a composition of finite
morphisms and projections. In this paper, we restrict our attention to admissible
stacks, i.e., algebraic stacks whose diagonal morphisms are finite.

This formalism is especially used to show the �-independence of the traces of
actions of correspondences on cohomology groups. This is then used to calculate
the traces of elements of certain Hecke algebra acting of cohomology groups of the
moduli spaces of shtukas. We refer to §4.2 for a more detailed explanation of the
proof of the main theorem.

Let us give an overview of the organization of this paper. We begin with collect-
ing known results concerning arithmetic D-modules in §1.1, and the subsection con-
tains few new facts. In §1.2, we show some elementary properties of Ind-categories.
In §1.3, we introduce a t-structure corresponding to constructible sheaves in the
spirit of the Riemann–Hilbert correspondences. This t-structure is useful when we
construct various types of trace maps. In arithmetic D-module theory, the coeffi-
cient categories are K-additive where K is a complete discrete valuation field whose
residue field is k. However, for the Langlands correspondence it is convenient to
work with Qp-coefficients. Passing from K-coefficients to K-coefficients is rather
formal, and some generality is developed in §1.4. We conclude the first section in
§1.5 by constructing the trace maps for flat morphisms in the style of [SGA4]. This
foundational property had been lacking in the theory of arithmetic D-modules, and
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it plays an important role in the proof of the �-independence type theorem, which
is the main theme in §3.

In §2, we develop a theory for algebraic stacks. Most of the properties used
in this section are formal in the six functor formalism, and almost no knowledge
of arithmetic D-modules is required. In §2.1 we define the triangulated category
of holonomic complexes for algebraic stacks. Some cohomological operations for
algebraic stacks are introduced in §2.2. In §2.3, we restrict our attention to so-called
admissible stacks. Any morphism between admissible stacks can be factorized into
morphisms which have already been treated in §2.2, and our construction of six
functor formalism for these types of stacks is completed. We show basic properties
of the operations in this subsection. The final subsection §2.4 is complementary, and
we collect some facts which are needed in the proof of the Langlands correspondence.

In §3, we show an �-independence type theorem of the trace of the action of a
correspondence on cohomology groups. With the trace formalism developed in §1.5,
even though there are some differences since we are dealing with algebraic stacks,
our task is to translate the proof of [KS] in our language.

In the final section, §4, we show the Langlands correspondence. In order to be
friendly to readers who are only interested in §4, the section begins with reviewing
p-adic theory as well as recalling some notation of this paper. We state the main
theorem and explain the idea of the proof in the second subsection. The actual
proof is written in the third subsection, and we conclude the paper with some
well-known applications.

Conventions and notation.

0.0.1. In this paper, we usually use Roman fonts (e.g., X) for schemes, script fonts
(e.g., X ) for formal schemes, and Gothic fonts (e.g., X) for algebraic stacks. When
we write (−)(′) it means “(−) (resp. (−)′)”. Throughout this paper, we fix a prime
number p. When a discrete valuation field K is fixed and its residue field is finite,
we often denote by Qp an algebraic closure of K. Throughout this paper, we fix a
universe U.

0.0.2. For the terminologies of algebraic stacks, we follow [LM]. Especially, any
scheme, algebraic space, or algebraic stack is assumed quasi-separated. For an al-
gebraic stack X, we denote by Xsm the category of affine schemes over X such that
the structural morphism X → X is smooth. Morphisms between X,Y ∈ Xsm are
smooth morphisms X → Y over X. Recall that a presentation of X is a smooth sur-
jective morphism X → X from an algebraic space X . Finite morphisms or universal
homeomorphisms between algebraic stacks are always assumed representable.

0.0.3. When d ≥ 0 is an integer, smooth morphisms between algebraic stacks of
relative dimension d are understood to be equidimensional. Let P : X → X be a
smooth morphism from an algebraic space to an algebraic stack. Then the contin-
uous function dim(P ) : X → N is defined in [LM, (11.14)]. This function is called
the relative dimension of P and is sometimes denoted by dX/X.

0.0.4. Let X be a topological space, and let π0(X) be the set of connected com-
ponents of X. Let d : π0(X) → Z be a map. For any connected component Y

of X, assume that a category CY endowed with an autofunctor TY : CY ∼−→ CY is
attached, and CX ∼=

∏
Y ∈π0(X) CY via which TX is identified with (TY )Y ∈π0(X).

For M ∈ CX , we define T d(M) as follows: Let M = (MY )Y ∈π0(X) ∈
∏

CY . Then
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T d(M) := (T d(Y )MY )Y . We may take the autofunctor T to be the shift functor or
the Tate twist functor. When T = [1] (resp. T = (1)), the functor T d is denoted
by [d] (resp. (d)).

1. Preliminaries

1.1. Review of arithmetic D-modules. Let us briefly recall the status of the
theory of arithmetic D-modules. Let s be a positive integer, and put q := ps. Let
R be a complete discrete valuation ring whose residue field, which is assumed to be
a perfect field of characteristic p, is denoted by k. Put K := Frac(R). We moreover

assume that the s-th absolute Frobenius homomorphism σ : k
∼−→ k sending x to xq

lifts to an automorphism R
∼−→ R also denoted by σ.

1.1.1. Definition ([AC1, 1.1.3]). A scheme over k is said to be realizable if it
can be embedded into a proper smooth formal scheme over Spf(R). We denote by
Real(k/R) the full subcategory of the category of k-schemes Sch(k) consisting of
realizable schemes.

For a realizable scheme X, the triangulated category of holonomic complexes
Db

hol(X/K), endowed with a t-structure, is defined. Let us recall the construc-
tion. Let P be a proper smooth formal scheme over Spf(R). Then the category of

overholonomic D†
P,Q-modules (without Frobenius structure) is defined by Caro in

[Ca2]. We denote by Hol(P) its thick full subcategory generated by overholonomic

D†
P,Q-modules which can be endowed with s′-th Frobenius structure for some pos-

itive integer s′ divisible by s (but we do not consider the Frobenius structure).

The objects of Hol(P) are called holonomic modules. By definition, Db
hol(D

†
P,Q) is

the full subcategory of Db(D†
P,Q) whose cohomology complexes are holonomic. Of

course, this subcategory is triangulated by [KSc, 13.2.7].
Now, let X ↪→ P be an embedding into a proper smooth formal scheme, whose

existence is assured since X is a realizable scheme. Then Db
hol(X/K) is the sub-

category of Db
hol(P) which is supported on X. This category does not depend

on the choice of the embedding up to canonical equivalence, and it is well-defined.
Moreover, the t-structure is compatible with this equivalence (cf. [AC1, 1.2.8]). The
heart of the triangulated category is denoted by Hol(X/K). For further details of
this category, one can refer to [AC1, §1.1, §1.2] and [AC2, §1]. In [AC2], Hol(X/K)
and Db

hol(X/K) are denoted by HolF (X/K) and Db
hol,F (X/K), respectively.

Remark. In [AC2], the category HolF (X/K) is introduced using the category
of “overholonomic modules after any base change”, whereas, here, we simply used
the category of overholonomic modules to define Hol(X/K). Since overholonomic
modules with Frobenius structure are overholonomic modules after any base change
by [AC2, 1.2], the categories HolF (X/K) in [AC2] and Hol(X/K) defined above are
the same. However, to prove that Hol(X) is a noetherian category (cf. [AC2, 1.5]),
it is convenient to work in the category of overholonomic modules after any base
change.

1.1.2. Remark. Lifting R
∼−→ R of the Frobenius automorphism of k is not unique

in general. Let σ′ : R
∼−→ R be another lifting. Let X be a smooth formal scheme

over R. We denote by X σ(′)
:= X ⊗R↗σ(′) R. Locally on X , we have the following
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commutative diagram over Spf(R):

X σ

∼ G��
X

F ′ ������
�����

��

F �������������

X σ′
,

where F and F ′ denote liftings of the relative s-th Frobenius. For a D†
X ,Q-module

M , we have

F ∗(M σ) ∼= F ∗(G∗M σ′
) ∼= F ′∗(M σ′

),

where M σ(′)
denotes the D†

X σ(′)
,Q
-module defined by changing base using σ(′). This

shows that endowing M with a Frobenius structure with respect to σ is equivalent
to endowing M with a Frobenius structure with respect to σ′. Thus, our category
Hol(X/K) does not depend on the choice of σ. However, the category of modules
with Frobenius structure does depend on the choice. For example, assume k is
algebraically closed, and consider σ and σ′. Put

K
(′)
0 :=

{
x ∈ K | σ(′)(x) = x

}
.

We may take σ, σ′ so that K0 and K ′
0 are not the same. Consider the unit object

K in Hol(Spf(R)). Endow it with a Frobenius structure Φ(′) with respect to σ(′).
Then

HomF (′)-Hol(X/K)

(
(K,Φ(′)), (K,Φ(′))

) ∼= K
(′)
0 .

Thus, we do not have an equivalence of categories between F -Hol(X/K) and
F ′-Hol(X/K) compatible with the forgetful functors to Hol(X/K).

1.1.3. The six functors have already been defined for realizable schemes. For details
one can refer to [AC1], [AC2]. For the convenience of the reader, we collect known
results. Let f : X → Y be a morphism in Real(k/R). Then we have the triangulated
functors

f!, f+ : Db
hol(X/K) → Db

hol(Y/K), f !, f+ : Db
hol(Y/K) → Db

hol(X/K).

These functors satisfy the following fundamental properties of six functor formalism:

(1) Db
hol(X/K) is a closed symmetric monoidal category, namely it is equipped

with the tensor product ⊗ and the unit object KX with which it forms a
symmetric monoidal category (sometimes called commutative tensor cat-
egory as in [KSc, 4.2.16]), and ⊗ has the left adjoint functor Hom. The
adjoint functor Hom is denoted sometimes by HomX for clarification, and
it is called the internal hom (cf. [AC1, 1.1.6, Appendix]).

(2) f+ is monoidal, namely it commutes with ⊗ and preserves the unit object.
(3) Given composable morphisms f and g, there exists a canonical isomorphism

(f ◦ g)+ ∼= g+ ◦ f+. We associate Db
hol(X/K) to X ∈ Real(k/R), and with

this pullback and the canonical isomorphisms for compositions, we have
the fibered category over Real(k/R). Moreover, we have a similar fibered
category for f ! as well (cf. [AC1, 1.3.14], checking of the category being
fibered readily follows from the construction of the functor).

(4) (f+, f+) and (f!, f
!) are adjoint pairs (cf. [AC1, 1.3.14 (viii)]).

(5) We have a morphism of functors f! → f+ compatible with transitivity
isomorphisms of composition. This morphism is an isomorphism when f is
proper (cf. [AC1, 1.3.7, 1.3.14 (vi)]).
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(6) When j is an open immersion, there exists the isomorphism j+
∼−→ j! com-

patible with the transition isomorphism of the composition of two open
immersions (cf. [V2, II.3.5]).

(7) Let VecK be the abelian category of K-vector spaces, and we denote by
Db

fin(VecK) the derived category consisting of bounded complexes of K-
vector spaces whose cohomologies are finite dimensional. There exists
a canonical equivalence of monoidal categories RΓ: Db

hol(Spec(k)/K)
∼−→

Db
fin(VecK). For X → Spec(k) in Real(k/R), we put RHom(−,−) :=

RΓ ◦ f+ ◦Hom(−,−). Note that we have an isomorphism RiHom(F ,G ) ∼=
Hom(F ,G [i]) for F ,G ∈ Db

hol(X).
(8) Consider the following cartesian diagram of schemes:

(1.1.3.1) X ′ g′
��

f ′

��
�

X

f

��
Y ′

g
�� Y.

Assume that the schemes are realizable. Then we have a canonical isomor-
phism g+f! ∼= f ′

! g
′+ compatible with compositions. When f is proper (resp.

open immersion), this isomorphism is the base change homomorphism de-
fined by the adjointness of (f+, f+) (resp. (f!, f

!)) via the isomorphism of
(5) (resp. (6) (cf. [AC1, 1.3.14 (vii)]).

(9) We have a canonical isomorphism f!F ⊗ G ∼= f!(F ⊗ f+G ) (cf. [AC1,
Appendix]).

(10) Let i be a closed immersion in Real(k/K), and let j be the open immersion
defined by the complement. Then we have a canonical distinguished triangle
of functors

j!j
! → id → i+i

+ +1−−→,

where the first and second morphisms are adjunction morphisms.

Before recalling several more properties, let us show the following lemma:

Lemma. Let ι : X → X ′ be a universal homeomorphism in Real(k/R). Then the
adjoint pair (ι+, ι

!) induces an equivalence between Db
hol(X/K) and Db

hol(X
′/K),

and we have a canonical isomorphism ι+ ∼= ι!. Moreover, assume we are given the
following commutative diagram where ι and ι′ are universal homeomorphisms:

X
f ��

ι

��

Y

ι′

��
X ′

f ′
�� Y ′.

Then f
(′)
+ , f

(′)
! , f (′)+, and f (′)! commute canonically with ι(′)+ ∼= ι(′)!.

Proof. The first equivalence is nothing but [AC1, 1.3.12]. Since ι!
∼−→ ι+ by (5)

above, we have ι+ ∼= (ι!)
−1 ∼= (ι+)

−1 ∼= ι!. Commutation results follows by transi-
tivity of pushforwards and pullbacks. �

This result can be applied in particular when f is the relative Frobenius mor-
phism (see the remark below). We need some more properties, which may not be
regarded as standard properties of six functor formalism:
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(11) For X in Real(k/R), let Xσ := X ⊗k↗σ k. Then we have a pullback

σ∗ : Db
hol(X/K)

∼−→ Db
hol(X

σ/K), which is exact, and all the cohomological
functors commute canonically with this pullback. (This follows easily from
the definition of the cohomological functors; see also [Ber3, 4.5].)

Now, for a separated scheme of finite type over k, we denote by Isoc†(X/K) the
thick full subcategory of the category of overconvergent isocrystals on X generated
by those which can be endowed with the s′-th Frobenius structure for some s|s′.
We caution that our notation is slightly different from the standard one as in
[Ber1, 2.3.6]. In fact, by his notation, Berthelot simply means the category of
overconvergent isocrystals, and Frobenius structure does not play any role in his
definition.

(12) Let X be a realizable scheme such that Xred is a smooth realizable scheme
of dimension d : π0(X) → N (cf. 0.0.3). Then there exists a fully faith-

ful functor sp+ : Isoc†(X/K) → Hol(X/K) called the specialization func-
tor. We denote the essential image1 of sp+ shifted by −d by Sm(X/K) ⊂
Hol(X/K)[−d] ⊂ Db

hol(X/K) (cf. [Ca5, 4.2.2]).

Remark. (i) Let F : X → X be the s-th absolute Frobenius endomorphism.
Combining (11) and the lemma above applied to the s-th relative Frobenius mor-
phism FX/k : X → Xσ, we get an equivalence of categories

F ∗ := F+
X/k ◦ σ∗ : Db

hol(X/K) → Db
hol(X/K).

This pullback is nothing but the one used in [Ber3, Definition 4.5]. For a coho-
mological functor C : Db

hol(X/K) → Db
hol(Y/K), we say that C commutes with a

Frobenius pullback if there exists a canonical isomorphism C ◦ F ∗ ∼= F ∗ ◦ C.
(ii) Let F : X → X ′ be the relative Frobenius morphism. For M ∈ Db

hol(X
′),

the lemma above yields a canonical isomorphism α : F+F
!M

∼−→ M . On the other
hand, when X and X ′ can be lifted to smooth formal schemes X , X ′, [Ber3, 4.2.4]

gives us another isomorphism β : F+F
!M ∼= M , since F �D†

X ′
∼= F ∗D†

X ′ ⊗ ωX /X ′

by [Ber3, 2.4.4]. These two isomorphisms coincide. Indeed, to see this, it suffices
to check the coincidence for M = OX ′ . By left-to-right conversion, it suffices
to check for M = ωX ′ and F+, F

! the corresponding functors for right modules.
The homomorphism α is nothing but the adjunction map, and this is by definition

Virrion’s trace map TrVir : F∗
(
ωX ⊗D†

X
F ∗D†

X ′

)
→ ωX ′ defined in [V1, III.7.1].

By [V1, III.5.4], this map can be characterized as the unique map γ such that the
following diagram commutes:

F∗ωX
�� ��

TrF
��

F∗
(
ωX ⊗D†

X
F ∗D†

X ′

)
,

γ��������
������

��

ωX ′

where TrF is the homomorphism induced by the trace map of Hartshorne [Ber3,
2.4.2]. Thus, it suffices to check that the diagram is commutative when γ = β.
By construction of the equivalence of [Ber3, 4.2.4], β is defined by taking limit to
[Ber3, (2.5.6.2)]. It is not hard to check the commutativity using [A1, 1.5] and the
description of Garnier [A1, (2.2.1)] of the isomorphism [Ber3, 2.5.2]. The details
are left to the reader.

1In [Ca5], the essential image is denoted by Isoc††(X/K).
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(iii) The identification of (ii) shows that the commutation isomorphisms F !◦f+ ∼=
f+ ◦ F !, defined by the lemma and by [Ber4, 4.3.9], coincide.

1.1.4. We also have the duality formalism. Let p : X → Spec(k) be the structural
morphism of a realizable scheme. We put Kω

X := p!(K) and call it the dualizing
complex. We put DX := Hom(−,Kω

X) and call it the dual functor. For F ∈
Db

hol(X/K), we have

Hom(DXF ,DXF ) ∼= Hom(DXF ⊗ F ,Kω
X)(�)

∼= Hom(F ⊗ DXF ,Kω
X) ∼= Hom(F ,DXDXF ).

The identity in the abelian group on the left-hand side induces a homomorphism
F → DXDXF .

Lemma. The induced homomorphism of functors id → DX ◦ DX is an isomor-
phism.

Proof. We already know that id ∼= DX ◦ DX by [V2, II.3.5], even though the iso-
morphism may not be equal to the one in the claim. Let us show that the given
homomorphism in the lemma is actually an isomorphism using this Virrion’s iso-
morphism. By dévissage, it suffices to check the equivalence for holonomic modules.
We recall that objects of Hol(X/K) have finite length by [AC2, 1.5]. Thus, we only
need to show the lemma for irreducible modules F . By Virrion’s result, DXDX(F )
is irreducible as well, and it remains to show that the homomorphism is not 0. If
this were 0, the corresponding element of the left-hand side of (�) should also be 0,
which is a contradiction. �

This isomorphism induces a canonical isomorphism Hom(F ,G ) ∼=
DX

(
F ⊗ DX(G )

)
for F ,G in Db

hol(X/K). This can be seen by a similar argu-
ment to [Ha, V.2.6].

1.1.5. Let f : X → Y be a morphism between realizable schemes, and
F ,F ′ ∈ Db

hol(X). Since f+ is monoidal, we have the canonical isomorphism
f+
(
(−) ⊗ (−)

) ∼= f+(−) ⊗ f+(−). By taking the adjoint, we have the homomor-

phism f+(−)⊗ f+(−) → f+
(
(−)⊗ (−)

)
. This induces a homomorphism

f+ HomX(F ,F ′)⊗ f+(F ) → f+
(
HomX(F ,F ′)⊗ F

)
→ f+(F

′),

where the second homomorphism is the evaluation map. Taking the adjoint, we
have the homomorphism

f+ HomX(F ,F ′) → HomY

(
f+(F ), f+(F

′)
)
.

Now, let G ∈ Db
hol(Y ). When f is proper, 1.1.3 (5) and the adjointness of the pair

(f!, f
!) induce a homomorphism

(�) f+ HomX

(
F , f !G

)
→ HomY

(
f+F ,G

)
.

Proposition. This homomorphism is an isomorphism.

Proof. For an open subscheme U of X, we denote by jU : U ↪→ X the open immer-
sion. Let pZ be the structural morphism of a scheme Z, and let M ∈ Db

hol(X).
Assume that pU+(j

+
U M ) = 0 for any U . Then M = 0. Indeed, for any closed point

ix : x ↪→ X, put Ux := X \ {x}, and we have the localization triangle

i!x(M ) → pX+(M ) → pUx+j
+
Ux

(M )
+1−−→ .
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By assumption, we have i!x(M ) = 0. By [AC1, 1.3.11], M = 0.
By the construction, the homomorphism in question is compatible with restric-

tion to open subschemes. Thus, the observation above reduces to checking that
the induced homomorphism pY+f+ HomX

(
F , f !G

)
→ pY+HomY

(
f+F ,G

)
is iso-

morphic. Via the isomorphism 1.1.3 (7), this homomorphism is nothing but the
canonical homomorphism HomX

(
F , f !G

)
→ HomY

(
f+F ,G

)
of the adjoint pair

(f+, f
!). �

Let j : U → X be an open immersion. Then there exists a unique homomorphism

(��) Hom
(
j!F ,G

)
→ j+ Hom

(
F , j!G

)
such that its restriction to U is the identity. This is an isomorphism since we know
that these two objects are isomorphic abstractly by [AC1, A.7]. Let f : X → Y be
a morphism between realizable schemes. This morphism factorizes in Real(k/R) as

X
j−→ X

f−→ Y, where j is an open immersion and f is proper. We define

f+ HomX

(
F , f !G

) ∼−−→
(�)

j+ Hom
(
f+F , j!G

) ∼←−−−
(��)

HomY

(
f!F ,G

)
.

It is standard to check that this does not depend on the choice of the factorization.
Using this isomorphism, we may prove the following two more isomorphisms, which
we record here for future use:

Hom(F , f+G ) ∼= f+ Hom(f+F ,G ), f ! Hom(F ,G ) ∼= Hom(f+F , f !G ).

1.1.6. Consider the cartesian diagram (1.1.3.1). We assume that the schemes are
realizable. Then we define the base change homomorphism g′+ ◦ f ! → f ′! ◦ g+ to
be the adjunction of the following composition:

f ′
! ◦ g′+ ◦ f ! ∼←− g+ ◦ f! ◦ f ! adjf′

−−−→ g+.

By definition, the following diagram is commutative, which we will use later:

g+f!f
!

adjf

��

∼ �� f ′
! g

′+f ! �� f ′
! f

′!g+

adjf′

��
g+ g+.

1.1.7. For realizable schemes X1, X2 and M1 ∈ Db
hol(X1), M2 ∈ Db

hol(X2), we
put M1 � M2 := p+1 (M1) ⊗ p+2 (M2), where pi : X1 × X2 → Xi denotes the i-th
projection. This functor is called the exterior tensor product.

Now, let f (′) : X(′) → Y (′) be a morphism of realizable schemes, and take an
object M (′) in Db

hol(X
(′)/K). We have the canonical isomorphism

(f × f ′)+
(
(−)� (−)

) ∼= f+(−)� f ′+(−)

since f+ and f ′+ are monoidal. By taking the adjoint, we have a homomorphism

f+(M )� f ′
+(M

′) → (f × f ′)+
(
M � M ′).

Proposition. This homomorphism is an isomorphism.
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Proof. When f and f ′ are immersions, the proposition is essentially contained in
the proof of [AC1, 1.3.3 (i)]. Thus, we may assume f and f ′ to be smooth proper
and X(′), Y (′) can be lifted to proper smooth formal schemes X (′), Y (′). In this
situation, we have the canonical isomorphism

f !(−)� f ′!(−) ∼= (f × f ′)!
(
(−)� (−)

)
,

and by taking the adjunction of [V1], we have the homomorphism

ρ : (f × f ′)+
(
M � M ′)→ f+(M )� f ′

+(M
′).

The homomorphism in the statement is the dual of this homomorphism. Thus,

it suffices to show that ρ is an isomorphism. Let f
(′)
n : X

(′)
n → Y

(′)
n be a smooth

morphism of relative dimension d(′) between proper smooth schemes over R/πn+1

where π is a uniformizer of R. For perfect D (m)-complexes on X
(′)
n and Y

(′)
n ,

we have the homomorphism ρn : (fn × f ′
n)+

(
(−) � (−)

)
→ fn+(−) � f ′

n+(−) by
similar construction to ρ, and it suffices to show that ρn is an isomorphism since

Db
coh(D̂

(m)
X ) = Dperf(D̂

(m)
X ) by [Ber3, 4.4.8]. By [Ha, VII.4.1], the following diagram

commutes:

Rdf∗(ωXn/Yn
)�Rd′

f ′
∗(ωX′

n/Y
′
n
) ��

��

OYn
�OY ′

n

∼

��
Rd+d′

(fn × f ′
n)∗(ωXn×X′

n/Yn×Y ′
n
) �� OYn×Y ′

n
,

where the vertical homomorphisms are trace maps, and ω denotes the canonical
bundle sheaf. The commutativity shows that ρn is nothing but the homomorphism
induced by the isomorphism

D
(m)
Yn×Y ′

n←Xn×X′
n

∼= D
(m)
Yn←Xn

� D
(m)
Y ′
n←X′

n

(cf. [A1, Lemma 4.5 (ii)]), and we get the proposition by using the Künneth formula
for quasi-coherent sheaves. �

1.1.8. Finally, we recall the following result:

Theorem ([AC2]). Let X be a realizable scheme. Then the canonical functor
Db(Hol(X/K)) → Db

hol(X/K) induces an equivalence of triangulated categories.

In the current formalism, the cycle class map is missing. We shall construct trace
maps and a cycle class formalism in the coming subsections, which are important
tools in showing the �-independence type result.

1.2. Ind-categories.

1.2.1. Lemma. Let A, B be abelian categories, and assume A has enough injective
objects. Let F : A → B be a left exact functor, and assume that we have an adjoint
pair (G,F ) such that G is exact. Then for M ∈ D+(A) and N ∈ D(B), we have

HomD(A)(G(N),M) ∼= HomD(B)(N,RF (M)).

Proof. By the exactness of G, F sends injective objects to injective objects. Thus,
for a complex of injective objects I• ∈ C+(A) and a complex N• ∈ C(B), it suffices
to show that

HomK(A)(G(N•), I•) ∼= HomK(B)(N
•, F (I•)).
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By the adjointness, we have Hom•(G(N•), I•) ∼= Hom•(N•, F (I•)) in C(Ab) where
Hom• is the functor defined in [Ha, I.6]. Since HomK(A) = H 0Hom•, we get the
isomorphism. �

Remark. The proof also shows that if moreover B has enough injectives, we have

RHomD(A)

(
G(N),M

) ∼= RHomD(B)

(
N,RF (M)

)
.

1.2.2. Let us collect some facts on Ind-categories. Let A be a category. Let A∧ be
the category of presheaves on A, and let hA : A → A∧ be the canonical embedding.
Then Ind(A) is the full subcategory of A∧ consisting of objects which can be written
as a filtrant small inductive limit of the image of hA. By definition, hA induces
a functor ιA : A → Ind(A). We sometimes abbreviate this as ι. Since hA is fully
faithful by the Yoneda lemma [KSc, 1.4.4], ιA is fully faithful as well. For details
see [KSc, §6].

Now, we assume that A is an abelian category. We have the following properties:

(1) The category Ind(A) is abelian, and the functor ιA is exact. Moreover,
Ind(A) admits small inductive limits, and small filtrant inductive limits are
exact (cf. [KSc, 8.6.5]).

(2) Assume A to be essentially small. Then Ind(A) is a Grothendieck category,
and in particular, it possesses enough injectives and admits small projective
limits (cf. [KSc, 8.6.5, 9.6.2, 8.3.27]).

(3) The category A is a thick subcategory of Ind(A) by [KSc, 8.6.11]. This in
particular shows that any direct factor of objects of A is in A, since a direct
factor is the kernel of a projector.

(4) Let X• : I → A be an inductive system. Since ιA is fully faithful, if
lim−→ ιA(Xi) is in the essential image of ιA, then lim−→Xi exists in A and

lim−→ ιA(Xi)
∼−→ ιA(lim−→Xi).

Now, let F : A → B be an additive functor between abelian categories. Then
it extends uniquely to an additive functor IF : Ind(A) → Ind(B) such that IF
commutes with arbitrary small filtrant inductive limits by [KSc, 6.1.9]. Since a small
direct sum can be written as a filtrant inductive limit of finite sums, IF commutes
with small direct sums as well. We have the following additional properties:

(5) If F is left (resp. right) exact, IF is also (cf. [KSc, 8.6.8]).
(6) Let G : B → C be another additive functor between abelian categories.

Then I(G ◦ F ) ∼= IG ◦ IF (cf. [KSc, 6.1.11]).

If there is nothing to be confused, by abuse of notation, we denote IF simply by F .

Remark. In general ιA does not commute with inductive limits (cf. [KSc, 6.1.20]),
and in [KSc], inductive limits in Ind(A) are distinguished by using “ lim−→ ”. In this

paper, we simply denote this limit by lim−→ if no confusion can arise, and when we use

inductive limits, it is understood to be taken in Ind(A), not in A, unless otherwise
stated.

1.2.3. Lemma. Let A, B be abelian categories, and assume that B admits
small filtrant inductive limits. Then the restriction functor yields an equivalence
Fctil,add(Ind(A),B) ∼−→ Fctadd(A,B), where the target (resp. source) is the category
of additive functors (resp. of additive functors which commute with small filtrant
inductive limits).
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Proof. This is a reorganization of [KSc, 6.3.2]; see also [SGA4, I, 8.7.3]. The quasi-
inverse is the functor sending F to σB ◦ IF, where σB : Ind(B) → B is the functor
taking the inductive limit (cf. [KSc, 6.3.1]). �

1.2.4. Let A, B be abelian categories, and assume moreover that A is a noether-
ian category (i.e., an essentially small category whose objects are noetherian, cf.
[Ga, II.4]). Let f∗ : A → B be a left exact functor. Recall that Ind(A) has enough
injectives (cf. 1.2.2 (2)). Thus, If∗ can be derived to get Rf∗ : D

+(Ind(A)) →
D+(Ind(B)), by abuse of notation. We also recall that the canonical functor
ιA : Db(A) → Db

A(Ind(A)) gives an equivalence by [KSc, 15.3.1], and the same
for B.

Lemma. Let f∗ : A → B be a left exact functor as above. Then for any integer
i ≥ 0, Rif∗ : Ind(A) → Ind(B) commutes with an arbitrary small filtrant inductive
limit.

Proof. Since we are assuming A to be noetherian, Ind(A) is a locally noetherian
category (cf. [Ga, II.4]), and by [Ga, II.4, Cor 1 of Thm 1], small filtrant inductive
limits of injective objects in Ind(A) remain to be injective. Thus, we may apply
[KSc, 15.3.3] to conclude the proof. �

1.2.5. Recall that a δ-functor {f i} between abelian categories is called the right
satellite of f0 if f i = 0 for i < 0, and it is universal among them (cf. [Gr, 2.2]).

Lemma. The composition functor {Rif∗ ◦ ι} : A → Ind(A) → Ind(B) is the right
satellite functor of If∗ ◦ ιA ∼= ιB ◦ f∗.

Proof. Since {Rif∗◦ι} is a right δ-functor, it remains to show that it is universal. Let
{Gi} : A → Ind(B) be a right δ-functor with a morphism of functors ιB ◦ f∗ → G0.

By Lemma 1.2.3, {Gi} extends uniquely to a collection of functors {G̃i} : Ind(A) →
Ind(B). Then {G̃i} is a right δ-functor as well by [KSc, 8.6.6], with a morphism

If∗ → G̃0. By the universal property of {Rif∗}, we get a morphism {Rif∗} → {G̃i},
which induces the morphism ϕ : {Rif∗ ◦ ι} → {Gi}. Now, any morphism Rif∗ ◦ ι →
Gi extends uniquely to Rif∗ → G̃i by Lemmas 1.2.4 and 1.2.3. Using [KSc, 8.6.6]

again, {Rif∗} → {G̃i} is a morphism of δ-functors if ϕ is. Thus the uniqueness of
ϕ follows, and we conclude that the δ-functor in question is universal. �

1.2.6. Lemma. Let f∗ : B → A be an exact functor such that (f∗, f∗) is an adjoint
pair. Assume we are given a functor f+ : Db(A) → Db(B) such that (f∗, f+) is an
adjoint pair. Then f+ ∼= Rf∗ ◦ ι on Db(A).

Proof. First, let us show that for X ∈ A, H if+(X) = 0 for i < 0. If f+(X) �= 0,
by the boundedness condition, there exists an integer d such that H df+(X) �= 0
and H if+(X) = 0 for i < d. Assume d < 0. Then for any Y ∈ B, we have

HomB
(
Y,H df+(X)

) ∼= HomD(B)

(
Y, f+(X)[d]

) ∼= HomD(A)

(
f∗(Y ), X[d]

)
= 0,

where the last equality holds since H i(X[d]) = 0 for i ≤ 0. This contradicts the
assumption, and thus, H if+(X) = 0 for i < 0. In the same way, we get that
(f∗,H 0f+) is an adjoint pair, and in particular, H 0f+ ∼= f∗.

This shows that the collection of functors {H if+} is a (right) δ-functor. Since
{H if+} is a δ-functor from A to B with the isomorphism f∗ ∼= H 0f+, Lemma
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1.2.5 yields a homomorphism {Rif∗ ◦ ι} → {H if+} of δ-functors. For X ∈ A,
we have

HomD(Ind(B))

(
f+(X),Rf∗(X)

) ∼= HomD(Ind(A))

(
f∗f+(X), X

)
∼= HomD(A)

(
f∗f+(X), X

) ∼= HomD(B)

(
f+(X), f+(X)

)
,

where we used the canonical equivalence Db(A)
∼−→ Db

A(Ind(A)) recalled in 1.2.4.
Thus, the identity of f+(X) defines a homomorphism ρ : f+(X) → Rf∗(X), which
induces the isomorphism on H 0. By the universal property of a satellite functor,

the composition {Rif∗(X)} → {H if+(X)} ρ−→ {Rif∗(X)} is the identity, which
shows that Rif∗(X) is a direct factor of H if+(X). This shows that Rif∗(X) is
in B by 1.2.2 (3) and Rif∗(X) = 0 for i � 0, which means that Rf∗(X) is in

Db
B(Ind(B))

∼←− Db(B). Thus Rf∗ induces a functor from Db(A) to Db(B). For
any Y ∈ Db(B), we have

HomD(B)(Y,Rf∗(X)) ∼= HomD(A)(f
∗(Y ), X) ∼= HomD(B)(Y, f+(X)).

Thus Rf∗(X)
∼−→ f+(X) by the Yoneda lemma, as required. �

1.2.7. Now, let us apply the preceding general results to the theory of arithmetic
D-modules. We use the notation of §1.1. First, we need:

Lemma. For a realizable scheme X, the category Hol(X/K) is noetherian and
artinian.

Proof. Let X be a realizable variety. Then the category Hol(X/K) is essentially
small. Indeed, to check this, it suffices to show that for a smooth formal scheme

X , the category of coherent D†
X ,Q-modules is essentially small. The verification is

standard. Now, any object of Hol(X/K) is noetherian and artinian by [AC2, 1.5].
�

Definition. For a realizable scheme X, we put M(X/K) := Ind(Hol(X/K)).
This is a Grothendieck category by 1.2.2 (2) and the lemma above.

1.2.8. Let φ : X → Y be a smooth morphism equidimensional of relative dimension
d between realizable schemes. We have the following functors via the equivalence
of Theorem 1.1.8 compatible with Frobenius pullbacks:

φ+[−d] : Db(Hol(X/K)) � Db(Hol(Y/K)) : φ+[d].

Lemma. We have an adjoint pair (φ+[d], φ+[−d]), and φ+[d] is exact. The
adjunction map is compatible with Frobenius pullbacks.

Proof. Since (φ+, φ+) is an adjoint pair, the adjointness follows. The exactness is
by [AC1, 1.3.2 (i)]. �

We put φ∗ := H 0(φ+[−d]), φ∗ := H 0(φ+[d]). We have the right derived
functor Rφ∗ : D

+(M(X/K)) → D+(M(Y/K)). By Lemma 1.2.6 together with the
lemma above, φ+[−d] is the right derived functor of φ∗, namely, φ+[−d] ∼= Rφ∗ on
Db(Hol(X/K)), which is a full subcategory of D+(M(X/K)).

Now, let φ : X → Y be a smooth morphism which may not be equidimensional.
Then there exists a decomposition X =

∐
Xi where Xi is an open subscheme

of X such that the induced morphism φi : Xi → Y is equidimensional. We put
φ∗ :=

∑
φi∗ and φ∗ :=

∑
φ∗
i . Note that when φ is an open immersion, then we

have Rφ∗ ∼= φ+.
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1.2.9. Let f : X → Y be a finite morphism between realizable schemes. Consider
the functors

f!
∼−→ f+ : Db(Hol(X/K)) � Db(Hol(Y/K)) : f !.

We have the following:

Lemma. The functors f!
∼−→ f+ are exact and (f+, f

!) is an adjoint pair compat-
ible with Frobenius pullbacks.

Proof. The exactness is by [AC1, 1.3.13], and the other claims follow by 1.1.3. �
Now, we have the associated right derived functor R(H 0f !) : D+(M(X/K)) →

D+(M(Y/K)). By Lemma 1.2.6 together with the lemma above, we have f ! ∼=
R(H 0f !) on Db(Hol(Y/K)).

1.2.10. LetX, Y be realizable schemes, and consider the projections p : X×Y → Y ,
q : X × Y → X. Let A be an object in Hol(X/K). We have the functors:

pA+(−) := p+ Hom(q+A ,−) : Db(Hol(X × Y/K))

� Db(Hol(Y/K)) : A � (−) =: p+A .

Now, assume that A is endowed with Frobenius structure A
∼−→ F ∗A . Then we

have an isomorphism of functors F ∗ ◦ pA+
∼= pA + ◦ F ∗, and F ∗ ◦ p+A ∼= p+A ◦ F ∗.

Thus, pA + and p+A are compatible with Frobenius pullbacks. We have:

Lemma. The functor p+A is exact, and (p+A , pA+) is an adjoint pair. Moreover,
if A is endowed with Frobenius structure, the pair is compatible with Frobenius
pullbacks.

Proof. The exactness of p+A follows from [AC1, 1.3.3 (ii)]. By definition (cf. [AC1,
1.1.8 (i)]), we have q+A ⊗ p+(−) ∼= A � (−). Thus, we get

HomX×Y

(
p+A (−),−

) ∼= HomX×Y

(
q+A ⊗ p+(−),−

)
∼= HomX×Y

(
p+(−),Hom(q+A ,−)

)
∼= HomY

(
−, p+ Hom(q+A ,−)

)
,

where the second and the last isomorphism holds by the adjunction properties
(cf. 1.1.3). �

We put pA ∗ := H 0pA+, p
∗
A := H 0p+A . Once again, we get pA +

∼= RpA ∗ on

Db(Hol(X × Y/K)).

1.2.11. Lemma. Let X be a realizable scheme, let j : U ↪→ X be an open immer-
sion, and let i : Z ↪→ X be its complement. For an injective object I in M(X/K),
we have an exact sequence

0 → H 0i+i
!(I ) → I → H 0j+j

+(I ) → 0.

Proof. Since H 0i+i
! is a left exact functor, we may take its right derived functor,

and this is denoted by R(H 0i+i
!). Let us put

F := Coker
(
id → H 0(j+j

+)
)
: Hol(X/K) → Hol(X/K).

We show that R1(H 0i+i
!)(M ) ∼= IF (M ) for M ∈ M(X/K). Since H 0i! is left

exact and i+ is exact, we have R1(H 0i+i
!) ∼= i+R

1(H 0i!). When M ∈ Hol(X/K),
we have the isomorphism by Lemma 1.2.9 and the localization triangle. Lemma
1.2.7 and Lemma 1.2.4 show that the functor R1(H 0i+i

!) commutes with small
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filtrant inductive limits. Thus, by Lemma 1.2.3, this isomorphism uniquely extends
to the isomorphism we want. This shows that for an injective object I , IF (I ) = 0,
and we get the short exact sequence in the statement of the lemma. �

1.3. Constructible t-structures. We need to introduce a t-structure on the tri-
angulated category Db

hol(X/K) whose heart corresponds to the category of con-
structible sheaves in the philosophy of the Riemann–Hilbert correspondence. We
keep the notation from §1.1.

1.3.1. Let X be a realizable scheme. For M ∈ Hol(X/K), we define the support,
denoted by Supp(M ), to be the smallest closed subset Z ⊂ X such that M is 0 if
we pull back to X \Z. When Xred is smooth of dimension d, we say that a complex
M ∈ Db

hol(X/K) is smooth if H i(M )[−d] is in Sm(X/K) for any i (cf. 1.1.3 (12)).
Now, we define the following two full subcategories of Db

hol(X/K):

• cD≥0 consists of complexes M such that dim
(
Supp(H n(M ))

)
≤ n for any

n ≥ 0, and H n(M ) = 0 for any n < 0.
• cD≤0 consists of complexes M such that H ki+W (M ) = 0 for any closed
subscheme iW : W ↪→ X and k > dim(W ).

We note that the extension property holds, namely, for a triangle M ′ → M →
M ′′ +1−−→, if M ′ and M ′′ are in cD�(X) (� ∈ {≥ 0,≤ 0}), then M is also.

Example. Let X be a smooth curve. Then cD≥0 consists of complexes M such
that H i(M ) = 0 for i < 0, and H 0(M ) is supported on a finite union of points.
The category cD≤0 consists of complexes N such that H i(N ) = 0 for i > 1,
and H 0i+x H 1(M ) = 0 for any closed point x. For example, ix+(K) and KX

(∼= sp+(OX,Q)[−1] where OX,Q denotes the constant overconvergent isocrystal) are

in both cD≥0 and cD≤0. For a smooth realizable schemeX, any object of Sm(X/K)
(cf. 1.1.3 (12)) is in both D≥0 and D≤0. This can be checked by the right exactness
of i+ (cf. [AC1, 1.3.2 (ii)]).

1.3.2. Lemma. Let i : Z ↪→ X be a closed immersion, and let j : U ↪→ X be its
complement. Then i+, j!, i+, j

+ all preserve both cD≥0 and cD≤0.

Proof. Since i! ∼= i+ and j+ are exact by [AC1, 1.3.2], the verification is easy. Let
us show the preservation for i+. Since the verification is Zariski local with respect
to X, we may assume that X is affine. Then the verification is reduced to the
case where Z is defined by a function f ∈ OX . In this case, we know that for any
M ∈ Hol(X), H ki+M = 0 for i �= 0,−1.

Since i+W is right exact by [AC1, 1.3.2 (ii)], the preservation for cD≤0 is easy. Let
us show the preservation for cD≥0. By the extension property, it suffices to check
for M of the form M = N [−n] such that N ∈ Hol(X) and dim

(
Supp(N )

)
≤ n.

By using the extension property again, this is reduced even to the case where
N is irreducible. In particular, we may assume that the support of N is irre-
ducible. In this case, we have two possibilities: Supp(N ) ⊂ Z or Supp(N ) �⊂ Z.
When Supp(N ) ⊂ Z, we get H −1i+(M ) = 0, and the other case follows since
dim

(
Supp(N ) ∩ Z

)
< dim

(
Supp(N )

)
.

Let us show the lemma for j! by using the induction on the dimension of X.
When j is affine, the claim follows easily since j! is exact by [AC1, 1.3.13]. In
general, take M ∈ cD�(U). Let j′ : V ↪→ U be an affine open dense subscheme,
and let i′ be the closed immersion into U defined by the complement. Consider
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the triangle j′!j
′+M → M → i′+i

′+M
+1−−→. Since j ◦ j′ is affine, j!j

′
!j

′+M is in
cD�(X), and j!i

′
+i

′+M is in cD�(X) as well by the induction hypothesis together
with the lemma for i′+ we have already treated. Using the extension property, we
conclude. �

1.3.3. Proposition. The categories cD≥0 and cD≤0 define a t-structure on
Db

hol(X/K).

Proof. We put D(X) := Db
hol(X/K). Let U be an open subset of X, and let Z

be its complement. Put i : Z ↪→ X and j : U ↪→ X. For � ∈ {≥ 0,≤ 0}, M is in
cD�(X) if and only if i+(M ) and j+(M ) are in cD�(Z) and cD�(U), respectively.
This follows by the extension property and Lemma 1.3.2.

Now, we proceed as [KW, p.143]. We use the induction on the dimension of X.
We may assume X to be reduced by Lemma 1.1.3. It suffices to check, for a smooth
open affine subscheme j : U ↪→ X equidimensional of dimension dim(X), that the
restriction of cD≥0 and cD≤0 to the subcategory

T (X,U) :=
{
E ∈ D(X) | H i(j+E ) is smooth on U for any i

}
defines a t-structure, since

⋃
U T (X,U) = D(X). Let i : Z ↪→ X be the complement

of U . By the observation above, M ∈ T (X,U) is in cD�(X) if and only if j+(M )
and i+(M ) are in cD�(U) and cD�(Z), respectively. We note that cD�(Z) defines
a t-structure on D(Z) by induction hypothesis.

Let us check the axioms of the t-structure [BBD, 1.3.1]. Axiom (ii) is obvious,
and axiom (iii) can be shown by a similar argument to [KW, pp.140, 141] using the
t-structures of D(Z). Let us check (i). By dévissage using the localization triangle

j!j
+ → id → i+i

+ +1−−→ twice and by the induction hypothesis, we only have to show
that Hom(i+B, j!C ) = 0 when B ∈ cD<0(Z) and C ∈ cD≥0(U) such that H i(C )
is smooth for any i. Then, H k−1(i+B) = 0 for k > dim(Z). On the other hand,
j! is exact by [AC1, 1.3.13] since j is affine, and thus H k(j!C ) = 0 for k < dim(U)
by the smoothness of H i(C ), so the claim follows. �

Definition. The t-structure on Db
hol(X/K) defined in the proposition is called

the constructible t-structure, and briefly, c-t-structure. The heart of the t-structure
is denoted by Con(X/K), and it is called the category of constructible modules.
The cohomology functor for this t-structure is denoted by cH ∗.

Remark. Our constructible t-structure can be regarded as a generalization of per-
verse t-structure introduced in [Le] and also as a p-adic analogue of the t-structure
defined in [Ka].

1.3.4. Lemma. Let f : X → Y be a morphism between realizable schemes.
(i) The functor f+ is c-t-exact, and f+ is left c-t-exact. Moreover, the pair

(cH 0f+, cH 0f+) is an adjoint pair.
(ii) When f =: i is a closed immersion, i+ is c-t-exact and cH 0i! is left c-t-exact.

Moreover, (i+,
cH 0i!) is an adjoint pair.

(iii) When f =: j is an open immersion, j! is c-t-exact, and (j!, j
+) is an adjoint

pair.

Proof. Claims (ii) and (iii) are nothing but Lemma 1.3.2, and we reproduced these
for the record.
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Let us show (i). We only need to show the exactness of f+. The verification is
Zariski local, so we may assume X and Y to be realizable. Thus we can take the
following commutative diagram:

X � � i′ ��

f

��

P

f̃

��
Y � �

i
�� Q,

where horizontal morphisms are closed immersions, Q is smooth, and f̃ is smooth.
By (ii), which we have already verified, it suffices to show the claim for (i ◦ f)+.
By Lemma 1.3.2, we already know that i′+ is c-t-exact. Thus, it remains to show
that f̃+ is c-t-exact, which we can check easily using [AC1, 1.3.2 (i)]. �

1.3.5. Lemma. Let X be an irreducible realizable scheme. Let M be a con-
structible module on X such that Supp(M ) = X. Then there exists an open dense
subscheme j : U ↪→ X such that j+M is in Sm(U/K). The rank of j+M is called
the generic rank of M .

Proof. For any complex in Db
hol(X), there exists an open dense subscheme j : U ↪→

X such that the cohomology modules of j+M is smooth. �

1.3.6. Lemma. Let X be a realizable scheme. Then the category Con(X/K) is
noetherian.

Proof. Since Hol(X/K) is essentially small by Lemma 1.2.7, so is Db(Hol(X)).
Since Con(X) is a full subcategory, it is also essentially small.

Let us show that the category is noetherian. It suffices to show the claim for
each irreducible component of X, so we may assume X to be irreducible. Assume
X is smooth, and let M be a smooth constructible module on X. We claim that
for any submodule N of M , there exists an open dense subscheme U such that
N is a nonzero smooth constructible module on U . Assume the contrary. Then
there exists a nowhere dense closed subset i : Z ↪→ X such that we have the nonzero
homomorphism i+i

+(N ) → M . Shrinking X if necessary, we may assume that
both X and Z are smooth and i+N is smooth on Z. Taking the adjoint, we get a
nonzero homomorphism i+N → i!M . By [A1, 5.6], we have i!M ∼= i+M (−d)[−2d]
where d is the codimension of Z in X, which is impossible.

We use noetherian induction on the support of M . We may assume that X is
reduced. Moreover, we may assume Supp(M ) = X, otherwise, we can conclude
by the induction hypothesis. Let M be a constructible module, and let {Mi}i∈N

be an ascending chain of submodules of M . There exists N such that the generic
rank (cf. Lemma 1.3.5) of Mi is the same for any i ≥ N . Since it suffices to show
that the ascending chain {Mi/MN}i≥N is stationary in M /MN , we may assume
that Supp(Mi) ⊂ Supp(M ) is nowhere dense. Let U be an open dense smooth
subscheme of X such that M is smooth on U . By what we have shown, Mi is 0 on
U . Let i : Z ↪→ X be the complement. Then by the c-t-exactness of i+ and i+ and
the induction hypothesis, Mi

∼= i+i
+Mi is stationary in i+i

+M , as required. �

Remark. Contrary to Hol(X/K), Con(X/K) is not artinian. Indeed, let X be
a smooth realizable scheme, and take a descending sequence of open subschemes
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X ⊃ U1 � U2 � · · · . Denote by ji : Ui ↪→ X the inclusion. For any M ∈ Sm(X/K),
we have M ⊃ j1!j

+
1 (M ) � j2!j

+
2 (M ) � · · · , and the claim follows.

1.3.7. Lemma. Let X be a realizable scheme. For a closed point x ∈ X, denote
by ix : {x} → X the closed immersion.

(i) For F ∈ Con(X), F = 0 if and only if i+x (F ) = 0 for any closed point x.
In particular, a homomorphism φ in Con(X) is 0 if and only if i+x (φ) = 0 for any
closed point x.

(ii) Let f : s′ → s be a morphism of points (i.e., connected schemes of dimension
0 of finite type over k). Then f+ is faithful and conservative.

Proof. For (i), use [AC1, 1.3.11], and (ii) is left to the reader. �

1.3.8. Lemma. Let f : X → Y be a morphism of realizable schemes such that for
any y ∈ Y , the dimension of the fiber f−1(y) is ≤ d. Then for any M ∈ Con(X),
cH if!(M ) = 0 for i > 2d and i < 0.

Proof. By Lemma 1.3.7, it suffices to show that for any closed point y ∈ Y ,
i+y

cH if!(M ) = 0 for i �∈ [0, 2d]. By the c-t-exactness of i+y and base change, it is

reduced to showing that cH ify!(M ) = 0 for i �∈ [0, 2d] where fy : X ×Y {y} → {y}.
Since over a point, c-t-structure and the usual t-structure coincide, it remains to
show that if X is a realizable scheme of dimension d, and M ∈ Con(X), then
H if!M = 0 for i �∈ [0, 2d]. We use the induction on the dimension of X. When
the dimension of X is 0, then the verification is easy. This in particular implies
that f! is c-t-exact when f is quasi-finite. Let us assume that the lemma holds for
d < N . By Lemma 1.1.3, we may assume that X is reduced. By the c-t-exactness
of Lemma 1.3.4 and the induction hypothesis, we may shrink X by its open dense
subscheme. Thus, we may assume that there exists a finite morphism g : X → AN .
Since g!M is constructible by the c-t-exactness of g! that we have already verified,
it suffices to check the claim for X = AN . Shrinking X further, we may assume
that there exists a divisor Z of P := PN such that X = P \ Z and M = N [−N ]
where N ∈ Hol(X) by Lemma 1.3.5. Then the lemma follows by the definition of
f! as well as [Hu, 5.4.1]. �

1.3.9. Lemma. Let M ∈ Con(X), and let
{
ui : Ui ↪→ X

}
be a finite open covering

of X. Let uij : Ui∩Uj ↪→ X be the immersion. Then the following sequence is exact
in Con(X): ⊕

i,j

uij!u
+
ijM →

⊕
i

ui!u
+
i M → M → 0.

Proof. To check the exactness, it suffices to check it after taking i+x for each closed
point x ∈ X by Lemma 1.3.7. By the commutativity of i+x and u�!, the verification
is just a combinatorial problem. �

1.3.10. We use the category Ind(Con(X)) later. Let us prepare some properties of
this category. Let f : X → Y be a morphism between realizable schemes. Since f+

is c-t-exact, we have a functor f+ : Ind(Con(Y )) → Ind(Con(X)).

Lemma. We use the notation of Lemma 1.3.7.
(i) Let F ∈ Ind(Con(X)). Assume that i+x F = 0 for any closed point x of X.

Then F = 0.
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(ii) Let g : s′ → s be a morphism of points. Then for F ∈ Ind(Con(s)), F = 0
if and only if g+(F ) = 0. In particular, a homomorphism φ in Ind(Con(s)) is an
isomorphism if and only if g+(φ) is also.

Proof. Let us show (i). Write F = lim−→i∈I
Fi where I is a small filtrant category

and Fi ∈ Con(X). Fix i ∈ I, and let Ej := Ker(Fi → Fj). Since Con(X) is
noetherian by Lemma 1.3.6, there exists j0 ∈ I such that Ej0 = Ej for any j ≥ j0.
Now, we have i+x (Fi/Ej0) = i+x lim−→j

(Fi/Ej) ↪→ i+x F = 0, thus Ej0 = Fi by Lemma

1.3.7. This shows that the homomorphism Fi → Fj0 is 0, and the claim follows.
Let us show (ii). Let F = lim−→Fi where I is a small filtrant and Fi ∈ Con(s).

For each i ∈ I, there exists j ∈ I such that g+Fi → g+Fj is 0. Thus, by Lemma
1.3.7, we get that Fi → Fj is 0 as well. �

1.4. Extension of scalars and Frobenius structures. So far, the coefficient
categories we have treated (e.g., Hol(X/K) or Db

hol(X/K)) are K-additive. For the
Langlands correspondence, we need to consider L-coefficients with Frobenius struc-
ture where L is an algebraic field extension of K. We introduce such categories in
this subsection when the extension is finite. Scalar extended categories of isocrys-
tals have already been introduced in [AM, 7.3], and the idea of our construction is
essentially the same, but we hope that the usability is improved.

Extension of scalars.

1.4.1. Let K be an arbitrary field, and let A be a K-additive category. We take
a finite field extension L of K. We define the category AL as follows. The ob-
jects consist of pairs (X, ρ) such that X ∈ Ob(A), and a K-algebra homomorphism
ρ : L → End(X), called the L-structure (cf. [DM, after Remark 3.10]). The mor-
phisms are morphisms in A compatible with L-structures, or more precisely,

HomAL

(
(X, ρ), (X ′, ρ′)

)
=
{
f ∈ HomA(X,X ′) | f ◦ ρ(x) = ρ′(x) ◦ f for any x ∈ L

}
.

We have the forgetful functor forL : AL → A. Let X ∈ A. Then we define
X ⊗K L ∈ AL as follows: Take a basis x1, . . . , xd of L over K. Then X ⊗K L :=

(
⊕d

i=1 X ⊗ xi, ρ
′) such that for x ∈ L, write x · xk =

∑
aixi with ai ∈ K, and

ρ′(x)|X⊗xk
:=

∑
ρ(ai)⊗ xi, where ρ(ai) denotes the structural action of ai ∈ K on

X. We can check easily that this does not depend on the choice of the basis of L
up to canonical isomorphism. We denote by ιL := (−)⊗K L : A → AL. Moreover,
if A is abelian, then AL is abelian as well, and ιL is exact.

For X ∈ A and Y ∈ AL, we have

HomA(X, forL(Y )) ∼= HomAL
(ιL(X), Y ),

in other words, we have an adjoint pair (ιL, forL). Thus, if A is an abelian category,
the functor forL sends injective objects in AL to injective objects in A.

Let f : A → B be a K-additive functor between K-additive categories. Then
there exists a unique functor fL : AL → BL which is compatible with both ιL and
forL. If A and B are abelian, fL is left (resp. right) exact, if f is also.
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1.4.2. Let A be a K-additive category. Let X,Y ∈ AL. On the abelian group
Hom(forL(X), forL(Y )), we endow with L ⊗K L-module structure as follows: we
define the left L-structure by (a · φ)(x) := a(φ(x)) and the right L-structure by
(φ · a)(x) = φ(ax). For a ∈ K, both L-structures are compatible, and we get the
L ⊗K L-module structure. This L ⊗K L-module is denoted by HomK(X,Y ). By
definition, we have

Hom(X,Y ) ∼=
{
φ ∈ HomK(X,Y ) | (a⊗ 1)φ = (1⊗ a)φ = 0 for any a ∈ L

}
.

Note that if L/K is a separable extension, then L⊗K L is a product of fields, and
any L⊗K L-module is flat.

Lemma. Let L/K be a separable extension, and let M be an L ⊗K L-module.
Put I := Ker(L⊗K L → L). Then we have a canonical isomorphism

M0 :=
{
m ∈ M | a ·m = 0 for any a ∈ I

} ∼−→ M/IM.

Proof. This follows from the following more general fact: Let i : Z ↪→ X be a
closed immersion of schemes, and let M be a quasi-coherent OX -module. Then the
composition ΓZ(M) → M → i∗i

∗(M) is an isomorphism if X = Z � (X \ Z) as
schemes. �

Corollary. Let L/K be a separable extension. Then, for X,Y ∈ AL, we have a
canonical isomorphism

Hom(X,Y )
∼−→ L⊗L⊗KL HomK(X,Y ).

1.4.3. Now, let A be a K-abelian category. Assume L/K is a separable extension,
and consider the derived category D(AL). We have the following functor

Hom•
K : C(AL)

◦ × C(AL) → C(L⊗K L), (X•, Y •) �→
∏
i∈Z

HomK

(
Xi, Y i+•),

and the differential is defined as in [Ha, I.6]. Since forL sends injective objects to
injective objects, we can take the associated derive functor and get RHom•

K(−,−)
as in [Ha, II.3]. We have the following:

Lemma. Let X ∈ D(AL), Y ∈ D+(AL). Then we have an isomorphism

RHom(X,Y )
∼−→ L⊗L⊗KL RHom•

K(X,Y ).

Proof. Use Corollary 1.4.2. �

Corollary. The functor Db(AL) → Db(A)L is fully faithful.

Proof. For X ∈ D(AL), let us denote by X ′ the image in D(A)L. We have

RiHom•
K(X,Y ) ∼= HomK(X ′, Y ′[i])

as L ⊗K L-modules. This shows that the functor is fully faithful by the lemma
above and Corollary 1.4.2. �

Remark. This corollary shows that if X,Y ∈ Db(AL) are isomorphic in Db(A)L,
then they are isomorphic in Db(AL). For example, assume we are given two K-
additive functors F,G : Db(A) → Db(B) and a K-additive morphism α : F →
G of functors. Furthermore, assume that these functors have L-additive liftings

F̃ , G̃ : Db(AL) → Db(BL). Then the full faithfulness implies that α can be lifted

to α̃ : F̃ → G̃ and that α̃ is an isomorphism if α is also.



LANGLANDS CORRESPONDENCE FOR ISOCRYSTALS 943

1.4.4. Lemma. Let A be a K-additive noetherian category. Then we have a
canonical equivalence Ind(AL)

∼−→ Ind(A)L.

Proof. It is easy to check that it is fully faithful. Let (X, ρ) be an object in Ind(A)L.
We may write X = lim−→i∈I

Xi where Xi ∈ A and Xi ⊂ X by [De2, 4.2.1 (ii)]. Let

x ∈ L such that K[x] = L, and let [L : K] =: d. Put X ′
i :=

∑d−1
j=0 ρ(x

j)(Xi) where

the sum is taken in X. Then X ′
i is stable under the action of L, and it defines an

object in AL. The limit lim−→i∈I
(X ′

i, ρ) is sent to (X, ρ). �

1.4.5. Let F : A → B be a K-additive functor between K-abelian categories. As-
sume that F is left exact and that AL has enough injectives. Note that A also has
enough injectives since id ↪→ forL ◦ ιL and forL preserves injective objects. Since,
again, forL preserves injective objects and commutes with F , the functors RF and
forL commute. Moreover, RF and ιL commute. Indeed, since F and ιL commute,
it suffices to show that for an injective object I in A, RiF (ιL(I)) = 0 for i > 0. For
this, it suffices to show that forL ◦ (RiF ) ◦ ιL(I) = 0. We have

forL ◦ (RiF ) ◦ ιL(I) ∼= (RiF ) ◦ forL ◦ ιL(I) = 0,

where the second equality holds by the fact that forL ◦ ιL(I) is a finite direct sum
of copies of I and thus injective.

Frobenius structure.

1.4.6. Now, let us consider the Frobenius structure. We fix an automorphism
σ : K → K, and put K0 := Kσ=1. Let A be a K-additive category, and let
F ∗ : A → A be a σ-semilinear functor; namely, for X,Y ∈ A the homomorphism
Hom(X,Y ) → Hom(F ∗X,F ∗Y ) is σ-semilinear. We define the category F -A to
be the category of pairs (X ′,Φ) such that X ′ ∈ Ob(A), and an isomorphism

Φ: F ∗X ′ ∼−→ X ′ called the Frobenius structure.2 Morphisms in F -A are morphisms
in A respecting Φ. Then the category F -A is K0-additive.

There exists the forgetful functor

forF : F -A → A; (X ′,Φ) �→ X ′.

This functor is faithful. For X, Y in F -A, we have a K0-linear endomorphism

F : Hom
(
forF (X), forF (Y )

)
→Hom

(
forF (F

∗X), forF (F
∗Y )

)
(1.4.6.1)

∼=Hom
(
forF (X), forF (Y )

)
,

where the last isomorphism is induced by the Frobenius structures of X and Y .
Now, assume that A is abelian. Then F -A is abelian as well. Indeed, assume

we are given a morphism f : X → Y in F -A. Then the Frobenius structure on
X induces a Frobenius structure on Ker(forF (f)), which is the kernel of f . This
construction shows that forF (Ker(f)) ∼= forF (Ker(f)). Replacing Ker by Coker, we
get the same result. Thus, we get the claim.

2In [Ber3, 4.5.1], Frobenius structure is defined to be an isomorphism with the opposite di-

rection Ψ: X′ ∼−→ F ∗X′. To be compatible with that of rigid cohomology, we choose the other
convention. See footnote (1) in 2.7 of [A1].
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The construction shows that forF is an exact functor, and the following diagram
is commutative:

D(F -A)
H i

��

forF

��

F -A

forF

��
D(A)

H i

�� A.

Moreover, if forF (X) = 0, then X = 0. This implies that a sequence C in F -A is
exact if and only if the sequence forF (C) is exact.

Finally, let (A, F ) and (B, G) be K-additive categories with a semilinear endo-
functor. Assume we are given a functor f : A → B and an equivalence f ◦F ∼= G◦f .
Then we have a canonical functor f̃ : F -A → G-B such that f ◦ forF ∼= forG ◦ f̃ .

1.4.7. Now, assume further that F ∗ is an equivalence of categories and that A is a
Grothendieck category. We define

(−)F : A → F -A; X �→ XF :=
⊕
n∈Z

(F ∗)nX.

Then it can be checked easily that ((−)F , forF ) is an adjoint pair. Furthermore,
(−)F is exact, since the functor forF ◦ (−)F is exact. Thus forF sends injective
objects to injective objects. Filtrant inductive limits are representable in F -A and
commute with forF . Let G be a generator of A. Then GF is a generator of F -A.
Indeed, assume given two morphisms f, g : X → Y in F -A. Then there exists
φ : G → forF (X) such that φ ◦ forF (f) �= φ ◦ forF (g). By taking the adjoint, we
have φF : GF → X. Then φF ◦ f �= φF ◦ g as required. This shows that F -A is a
Grothendieck category as well.

In the following, we often assume:

(*) F ∗ is an equivalence, and A is a noetherian category.

This assumption implies that Ind(A) is a Grothendieck category endowed with
semilinear autofunctor F ∗. Thus by the result above, the category F -Ind(A) is a
Grothendieck category.

1.4.8. We retain the assumption (*) in 1.4.7. Take X,Y in F -Ind(A). Then the
homomorphism F in (1.4.6.1) is an isomorphism, and Hom

(
forF (X), forF (Y )

)
is a

K0[F
±1]-module. Here the K0[F

±1]-module structure is defined so that F · ϕ :=
F ◦ ϕ ◦ F−1 for ϕ : forF (X) → forF (Y ). This module is denoted by Homρ(X,Y ).
On the other hand, for a K0[F

±]-module M and X = (X ′,Φ) ∈ F -Ind(A), we
define M ⊗K0

X in F -Ind(A) as follows: Write M = lim−→Mi as K0-vector spaces

such that Mi is finite dimensional. As an object in Ind(A), it is lim−→(Mi ⊗K0
X ′).

The Frobenius structure is defined as

M ⊗K0
X ′ (F ·)⊗Φ−−−−−→

∼
M ⊗K0

F ∗X ′ ∼= F ∗(M ⊗K0
X ′),

where the last isomorphism follows since F ∗ is an exact functor and thus commutes
with the functor Mi⊗K0

. The functor M⊗K0
is exact. Now, for any K0[F

±1]-
module M , we have

HomF -Ind(A)(M ⊗K0
X,Y )

∼−→ HomK0[F±1]

(
M,Homρ(X,Y )

)
.

This shows that if Y is an injective object, Homρ(X,Y ) is an injective K0[F
±1]-

module.
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As in [Ha, I.6], forX,Y ∈ C(F -Ind(A)), we define a complex ofK0[F
±1]-modules

Hom•
ρ(X,Y ). We can take the derived functor, and we get

RHom•
ρ : D(F -Ind(A))◦ ×D+(F -Ind(A)) → D(K0[F

±1]).

Abusing notation, we write Homρ := R0Hom•
ρ. Let ϕ : Spec(K0[F

±1]) → Spec(K0)
be the canonical morphism. We have the canonical isomorphism ϕ∗Homρ(X,Y ) ∼=
Hom(forF (X), forF (Y )) as K0-vector spaces.

Lemma. We regard K0 as a K0[F
±]-module such that F acts trivially. For

X,Y ∈ D(F -Ind(A)) such that X ∈ D−, Y ∈ D+, we have

RHomK0[F±1]

(
K0,RHom•

ρ(X,Y )
) ∼= RHom(X,Y ).

Proof. We have a canonical isomorphism

HomK0[F±1]

(
K0,Homρ(X,Y )

) ∼= Hom(X,Y ).

Since the functor Homρ(X,−) preserves injective objects, we get the lemma. �

For a K0[F
±]-module M , we put

MF := HomK0[F±](K0,M), MF := Ext1K0[F±](K0,M).

Corollary. Let X,Y ∈ D(F -Ind(A)) such that X ∈ D− and Y ∈ D+. Then
there exists the short exact sequence

0 → Homρ(X,Y [−1])F → Hom(X,Y ) → Homρ(X,Y )F → 0.

1.4.9. Let A be a K-additive category, and let F ∗ : A → A be a σ-semilinear
functor. We fix a finite field extension L and an isomorphism σL : L → L compatible
with σ. Put L0 := Lσ=1. We define F ∗

L : AL → AL as follows: Let ρ : L → End(X)

be an object ofAL. We have a σ-semilinear homomorphism F ∗(ρ) : L
ρ−→ End(X) →

End(F ∗X). We put

F ∗
L(ρ) := F ∗(ρ) ◦ σ−1

L : L → End(F ∗X).

This is a homomorphism of K-algebras. We define F ∗
L : AL → AL by sending

(X, ρ) to (F ∗X,F ∗
L(ρ)). The L0-additive category FL-AL is sometimes denoted

by F -AL. The K-additive functors ιL : A → AL and forL : AL → A induce the
functors F -A → FL-AL and FL-AL → F -A which are denoted abusively by ιL and
forL, respectively. We can check that (ιL, forL) is an adjoint pair, and ιL is exact.
In particular, forL preserves injective objects.

Let B be another K-additive category endowed with an σ-semilinear endofunctor
G∗. Let f : A → B be a K-additive functor between K-additive categories com-
patible with F ∗ and G∗. Then there exists a unique functor fL : F -AL → G-BL

compatible with forL and ιL.

Remark. Assume that σ and σL are identity. Then F -A is a K-additive category,
and it makes sense to consider the category (F -A)L. We leave the reader to check
that there exists a canonical equivalence (F -A)L ∼= F -AL.
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Application of the theory.

1.4.10. To work with p-adic cohomology theory, we often need to fix a base as in
§1.1. Let R be a complete discrete valuation ring with residue field k which is
assumed perfect, and let K = Frac(R). We assume that there exists a positive

integer s such that σ : K
∼−→ K is the extension of a lifting R

∼−→ R of the s-th
absolute Frobenius automorphism of k. Now, we consider the following two types
of data.

Geometric case: We fix a finite field extension L of K, and put T∅ :=
(k,R,K,L). This is called a geometric base tuple. We put L0 := L in
this case.

Arithmetic case: We fix a finite field extension L and an automorphism
σ : L → L such that σ(K) = K and σ|K is a lifting of the s-th Frobenius
automorphism of k. We put TF := (k,R,K,L, s, σ) and call this an arith-
metic base tuple. We put L0 := Lσ=1. We call the geometric base tuple
(k,R,K,L) the associated geometric base tuple.

By “base tuple”, we mean either geometric or arithmetic base tuple. For a geometric
base tuple, we sometimes put an index ·∅, and for arithmetic base tuple, ·F .

Definition. Let X be a realizable scheme over k. The category Hol(X/K)
(cf. 1.1.1) is endowed with the (s-th) Frobenius pullback F ∗ (cf. Remark 1.1.3).
Moreover, F ∗ induces an auto-equivalence of Hol(X/K). Thus, we can apply the
general results and constructions developed in the preceding paragraphs.

Geometric case: Let T∅ be a geometric base tuple as above. In this case,
we put

Hol(X/T∅) := Hol(X/K)L, Isoc†(X/T∅) := Isoc†(X/K)L,

M(X/T∅) := Ind(Hol(X/T∅)), D(X/T∅) := D(M(X/T∅)).

Arithmetic case: Let TF be an arithmetic base tuple, and let T∅ be the
associated geometric tuple. In this case, we put

Hol(X/TF ) := F -Hol(X/K)L, Isoc†(X/TF ) := F -Isoc†(X/K)L,

M(X/TF ) := FL-Ind(Hol(X/T∅)), D(X/TF ) := D(M(X/TF )).

If there is nothing to be confused, we sometimes omit the base tuple /T∅ or /TF . We
also denote Hol(X/T∅) (resp. Hol(X/TF )), etc., by Hol(X/L∅) (resp. Hol(X/LF )),
etc.

Remark. (i) For a realizable scheme over k, recall that Isoc†(X/K) is slightly
smaller than the category of overconvergent isocrystals (cf. 1.1.3). However, our

category Isoc†(X/KF ) coincides with the category of overconvergent F -isocrystals

F -Isoc†(X/K) defined in [Ber1, 2.3.7].
(ii) For a scheme X over a field, let us denote by Db

c (X) the category of con-
structible Q�-complexes. Let k be a finite field, let k be its algebraic closure, and
let X be a scheme of finite type over k. Put X := X ⊗k k. Under the philosophy
of the Riemann–Hilbert correspondence, Db

hol(X/L∅) (resp. D
b
hol(X/LF )) plays the

role of Db
c (X) (resp. Db

c (X)) in p-adic cohomology theory.
Now, note that Db

c (X) does not depend on the base field k. On the other hand,
a priori, Db

hol(X/LF ) depends on TF . However, we show in Corollary 1.4.11 that
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the category, in fact, does not depend on the choice of the base tuple under some
conditions, which reinforces the justification of the analogy.

1.4.11. Lemma. (i) Let T′
∅ = (k′, R′,K ′,K ′) be a geometric base tuple over a

tuple T∅ := (k,R,K,K ′), namely K ′/K is a finite extension. Then, there exists a

canonical equivalence Hol(X ⊗k k
′/T′

∅)
∼−→ Hol(X/T∅).

(ii) Let T′
F = (k′, R′,K ′,K ′, s, σ) be an arithmetic base tuple over a tuple TF :=

(k,R,K,K ′, s, σ). Then there exists a canonical equivalence Hol(X ⊗k k′/T′
F )

∼−→
Hol(X/TF ).

Proof. We may reduce to the case where X can be lifted to a smooth formal scheme
X over R. Let X ′ := X ⊗R R′. There exists the functor

M(D†
X ′/R′,Q) → M(D†

X /R,Q)K′ ,

where M(A ) denotes the category of A -modules. It is straightforward to show
that this functor induces an equivalence of categories. By Remark 1.1.2, we get (i).
Now, the following diagram is commutative:

M(D†
X ′/R′,Q)

∼ ��

F∗

��

M(D†
X /R,Q)K′

F∗

��
M(D†

X ′/R′,Q) ∼
�� M(D†

X /R,Q)K′ .

This diagram implies (ii). �

Corollary. Assume k is a finite field with q = ps-elements. Let K ′ be a finite
extension of K, and put TF := (k,R,K,K ′, s, id), TK′,F := (k′, R′,K ′,K ′, s′ :=
[k′ : k]·s, id). Let X be a scheme over k′. Then, we have an equivalence of categories

Hol(X/TF )
∼−→ Hol(X/TK′,F ).

Proof. When the extension K ′/K is totally ramified, the claim follows from (ii) of
the lemma. Thus, we may assume that the extension is unramified. In this case,
the verification is essentially the same as [De1, 1.1.10], so we only sketch the proof.
Since K ′/K is assumed unramified, we have K ′ ∼= K ⊗W (k) W (k′). As a scheme
over k, we have a canonical isomorphism X ⊗k k′ ∼=

∐
σ∈Gal(k′/k)X

σ, where each

Xσ is canonically isomorphic to X, and the Galois action on k′ is compatible in
an obvious sense. Put T′

F := (k′, R′,K ′,K ′, s, id). Then by the lemma, we get

Hol(X ⊗k k′/T′
F )

∼−→ Hol(X/TF ). There exists ϕ ∈ Gal(k′/k) such that, by F ,
each Xσ is sent to Xσ·ϕ. Assume we are given (M ,Φ) ∈ Hol(X/TK′,F ). For

0 ≤ i < [k′ : k], we put (F ∗)i(M ) on Xϕi

, which defines N in Hol(X ′ ⊗k k′/K ′).
The s′-th Frobenius structure Φ defines an s-th Frobenius structure on N , and
defines an object of Hol(X/TF ). It is easy to check that this correspondence yields
the equivalence of categories. �

1.4.12. Remark. (i) Let T := (k,R,K,L) and T0 := (k,W (k),Frac(W (k)), L).
Then Lemma 1.4.11 implies that there exists an equivalence D(X/T0) ∼= D(X/T).
This implies that the datum K (and R) is unnecessary in defining the category
D(X/L∅). Similarly, we do not need K in the definition of D(X/LF ).
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(ii) In the proof of the Langlands correspondence, it is convenient to work with
Qp-coefficient. For this, we use the 2-inductive limit method as in [De1, 1.1.3] to
construct the theory. The details will be explained in 2.4.14.

1.4.13. Definition. Assume we are in the situation of 1.4.9, and let X := (X ′,Φ)
be an object of F -AL. Assume we are given an arithmetic tuple as in 1.4.10. For
an integer n, we define X(n) :=

(
X ′, p−sn ·Φ

)
and call it the n-th Tate twist of X.

1.4.14. Let � ∈ {∅, F}. Let L := ιL(K) in Hol(Spec(k)/L�). We have the left exact
functor

Γ: M(Spec(k)/L�) → VecL0
; M �→ Hom(L,M ).

We can take the associated derived functor RΓ: D+(Spec(k)/L�) → D+(VecL0
).

1.5. Trace map. In order to establish a cycle class formalism, we need the trace
map in the style of [SGA4]. In [A1, 5.5], we constructed an isomorphism f ! ∼=
f+(d)[2d] for a smooth morphism f of relative dimension d. However, the con-
struction of this homomorphism is ad hoc, and it does not seem to be easy to
check the properties that the trace map should satisfy, for example, transitivity.
Furthermore, we need the trace maps for flat morphisms to define the cycle class
map.

1.5.1. We fix � ∈ {∅, F}, and we fix a base tuple T := T� using the notation of
1.4.10 in this subsection. Let X be a realizable scheme over k. We only treat the
L = K case in this subsection. This will be generalized in Theorem 2.3.34. When
� = ∅, we denote Db(X/K∅) simply by Db(X), in which case the Tate twist (n)
is the identity functor. When � = F , we denote Db(X/KF ) by Db(X). The main
result of this subsection is the following theorem on the existence of the trace map:

Theorem. Let f : X → Y be a morphism between realizable schemes over k. Let
Md be the following set of morphisms of realizable schemes, and let M :=

⋃
d≥0 Md.

There exists an open subscheme U ⊂ Y such that X ×Y U → U is
flat of relative dimension d, and for each x ∈ Y \U , the dimension
of f−1(x) is < d.

Then there exists a unique homomorphism Trf : f!f
+F (d)[2d] → F for any F in

Db
hol(Y ), called the trace map, satisfying the following conditions.
(Var 1) Trf is functorial with respect to F .
(Var 2) Consider the cartesian diagram (1.1.3.1) of realizable schemes. Assume

f ∈ Md. Then the following diagram is commutative:

g+f!f
+(d)[2d]

g+Trf
��

∼ �� f ′
! g

′+f+(d)[2d] f ′
! f

′+g+(d)[2d]

Trf′

��
g+ g+.
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(Var 3) Let X
g−→ Y

f−→ Z be morphisms of realizable schemes such that f ∈ Md

and g ∈ Me. Then the following diagram is commutative:

f!g!g
+f+(d+ e)[2(d+ e)]

Trg ��
��

∼
��

f!f
+(d)[2d]

Trf

��
(f ◦ g)!(f ◦ g)+(d+ e)[2(d+ e)]

Trf◦g
�� id.

(Var 4-I) Let f ∈ M0 be a finite locally free morphism of rank n. Then the
composition

F → f+f
+F

∼←− f!f
+F

Trf−−→ F

is the multiplication by n.
(Var 4-II) When X and Y can be lifted to a proper smooth formal scheme and f

can be lifted to a smooth morphism of relative dimension 1 between them, then the
trace map is the one defined in 1.5.11 below.

(Var 5) The following diagram is commutative:

f!f
+(F ⊗ G )(d)[2d]

Trf

��

∼ �� (f!f+F (d)[2d])⊗ G

Trf⊗id

��
F ⊗ G F ⊗ G .

where the upper horizontal homomorphism is the projection formula 1.1.3 (9).

1.5.2. Even though there are many technical differences, the idea of the construction
of a trace map is essentially the same as that in [SGA4, XVIII]. Let us start to
construct the trace map. First, we list direct consequences from the requested
properties.

(1) By (Var 5), it suffices to construct the trace map for F = KY .
(2) By assumption, for F ∈ Con(X), we have cH if!f

+F = 0 for i > 2d by
Lemma 1.3.8. Thus, we have an isomorphism Hom(f!f

+F (d)[2d],F ) ∼=
Hom(cH 2df!f

+F (d),F ).
(3) Assume that we have already constructed the trace map when Y is a point.

Then by (1), (2) above, Lemma 1.3.7 (i) and the base change property,
extensions of this trace map to the general situation are unique, if they
exist.

(4) Assume f = f � f ′ : X ′∐X ′′ → Y , and assume Trf and Trf ′ have already
been constructed. Then, by the same argument as [SGA4, XVII, 6.2.3.1],
Trf = Trf ′ +Trf ′′ .

(5) If f is a universal homeomorphism, then the canonical homomorphism

α : F → f+f
+F

∼←− f!f
+F

is an isomorphism by Lemma 1.1.3. By (Var 4-I), we have Trf := deg(f) ·
α−1.
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(6) Consider the cartesian diagram (1.1.3.1) of realizable schemes. Then the
compatibility (Var 2) is equivalent to the commutativity of one of the fol-
lowing diagrams:

(1.5.2.1)

g′+f+F (d)[2d]
g′+Tradf ��

∼
��

g′+f !F

��
f ′+g+F (d)[2d]

Trad
f′ g

+

�� f ′!g+F ,

f ′+g!F (d)[2d]
Trad

f′ g
!

��

��

f ′!g!F

∼
��

g′!f+F (d)[2d]
g′!Tradf

�� g′!f !F ,

where Trad denotes the adjoint of the trace map, and the vertical arrows
are the base change homomorphisms. The verification is standard using
the diagram of 1.1.6.

1.5.3. Lemma. Let f : X → Y be a morphism of realizable schemes of relative
dimension ≤ d. Let {Ui} be a finite open covering of X, and let Uij := Ui∩Uj. For

� ∈ {i, ij}, we put u� : U� → X, and f� : U� ↪→ X
f−→ Y . Then for F ∈ Con(X),

the following sequence is exact:⊕
i,j

cH 2dfij!u
+
ijF ⇒

⊕
i

cH 2dfi!u
+
i F → cH 2df!F → 0.

Proof. By Lemma 1.3.8, cH 2df! is right exact, and the claim of the lemma follows
by applying this functor to the exact sequence in Lemma 1.3.9. �

1.5.4. First, let Met be the set of étale morphisms between realizable schemes. We
show the theorem for Met instead of M. By 1.5.2 (3), combining with 1.5.2 (4),
(5), and Lemma 1.3.7 (ii), if the trace maps exist for morphisms in Met, then they
are unique. We show the following lemma:

Lemma. For f ∈ Met, there exists a unique trace map f!f
+M → M for

M ∈ Db
hol(Y ) satisfying the properties (Var 1, 2, 3, 4-I, 5) if we replace M by Met.

Moreover, the homomorphism f+(M ) → f !(M ) defined by taking the adjoint is an
isomorphism.

The proof is divided into several parts, and it is given in 1.5.7.

1.5.5. Lemma (Smooth base change for open immersion). Consider the following
cartesian diagram:

U ′

g′

��

j′ ��

�

X ′

g

��
�

Z ′i′��

g′′

��
U

j
�� X Z.

i
��

Assume g is smooth, j is an open immersion, and i is the closed immersion defined
by the complement. Then the base change homomorphisms g+j+(M ) → j′+g

′+(M )

and g′′+i!(M ) → i′!g+(M ) are isomorphisms for any M in Db
hol(U).

Proof. By the localization triangle i+i
! → id → j+j

+ +1−−→, it suffices to show only
the first isomorphism. Obviously, if we restrict the base change homomorphism
to U ′, the homomorphism is an isomorphism. Thus, by the localization triangle,
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it suffices to show that i′!g+j+M = 0. Since the verification is Zariski local with
respect to X ′, we may assume that g is factored into an étale morphism followed by
the projection An

X → X. We can treat étale and projection cases separately. Thus,
using [EGAIV, 18.4.6], we may assume that there is a smooth morphism P ′ → P of
smooth formal schemes and a closed embedding X ↪→ P such that X ′ ∼= X×P P ′.
Then we may use [Ber2, 4.3.12] and [A1, Theorem 5.5] to conclude. �

Corollary (Smooth base change). Consider the diagram of realizable schemes
(1.1.3.1). Assume that g is smooth. Then the base change homomorphism g+◦f+ →
f ′
+ ◦ g′+ is an isomorphism.

Proof. We may factor f as X
j−→ X

p−→ Y, where j is an open immersion and p is
proper. The base change for p is the proper base change theorem (cf. 1.1.3 (8)),
and that for j is the lemma above. �

1.5.6. First, suppose that Y is smooth liftable purely of dimension d, and suppose
f is affine. In this case let us construct an isomorphism f+KY

∼−→ f !KY . By taking
the dual, it is equivalent to constructing f+Kω

Y
∼−→ f !Kω

Y (cf. 1.1.4 for Kω
� ). Let

Y be a smooth lifting of Y . Since the étale site of Y and Y are equivalent, there
exists the following cartesian diagram where X and Y are smooth formal schemes
and X and Y are special fibers:

X ��

f

��
�

X

f̃
��

Y �� Y .

By [Ca3, 4.1.8, 4.1.9, 4.3.5] and [A1, 3.12], we have canonical isomorphisms

DX ◦ f̃ ! ◦ DY (sp+(OYK
)) ∼= sp+

(
(f̃∗(O∨

YK
(−d)))∨(−d)

) ∼= sp+(OXK
).

This gives us a canonical isomorphism

ρf : f̃
+OY ,Q

∼−→ OX ,Q
∼= f̃ !OY ,Q.

By Kedlaya’s full faithfulness [Ke1], ρf extends to the desired isomorphism. Taking
the adjoint, we get a homomorphism tY : Kω

Y → f+f
!Kω

Y . We need the lemma
below to show that tY , in fact, does not depend on the choice of Y .

Remark. We remark that for an isocrystal M , the following diagram is commu-
tative:

sp+((M
∨)∨)

∼sp+(M)

��������������

		�����
������

D ◦ D(sp+(M)).

To check this, by definition (cf. [Ca1, 2.2.12]), it suffices to check the commutativity
for M ∼= OY ,Q. Then it is reduced to the commutativity of the following diagram
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of complexes, whose verification is easy:

D†
Y ,Q ⊗

∧
TY ⊗HomO

(
HomO(OY ,OY ),OY

)
∼

��
D†

Y ,Q ⊗
∧

TY



������������

�����
����

��

HomD

(
HomD(D†

Y ,Q ⊗
∧

TY ,D†
Y ,Q ⊗ ω−1

Y ),D†
Y ,Q ⊗ ω−1

Y

)
.

Let M be a holonomic module on Y . By definition, there exists a smooth proper

formal scheme P such that M can be realized as a D†
P,Q-module MP . There exists

an immersion (not necessarily closed) i : Y ↪→ P. Then the D†
Y ,Q-module i!(MP)

(which is overholonomic and canonically isomorphic to i+(MP)) is denoted by
M ‖Y for a moment. This module does not depend on the auxiliary choices up to
canonical equivalence.

Lemma. The following diagram is commutative:

Kω
Y ‖Y

tY �� f+f !Kω
Y ‖Y� �

��
OY ,Q

adjf

�� f̃∗f̃∗OY ,Q.

Proof. First, let us show the lemma when f is finite étale of rank n. Since f̃ is

finite étale, we can identify f̃+ and f̃ ! by f̃∗ and f̃∗, respectively, if we consider the
underlying OY ,Q-module structure. In the following, for simplicity, we do not make

any difference between f̃ and f . In this case, the right vertical homomorphism is,
in fact, isomorphic. Let F be an OY ,Q-module, and let ι : f∗(f

∗F )∨ → (f∗f
∗F )∨

be the homomorphism sending ϕ to Trf ◦ ϕ, where Trf : f∗f
∗OY → OY is the

classical trace map. If F is a locally free OY ,Q-module, ι is an isomorphism. We
have the following diagram, where we omit sp+ and the subscripts Q:

OY
��

��

f!f
+OY ∼

��

��

f+f
+OY ∼

ρf ��

��

f+f
!OY

��
(O∨

Y )∨
(Trf )

∨
�� (f∗f∗O∨

Y )∨
ι−1

∼ �� f∗(f∗O∨
Y )∨

∼ �� f∗f∗OY .

Here the vertical morphisms are isomorphic. This diagram is commutative. The
commutativity of the left and right square immediately follows by definition. To
check the commutativity for the middle one, we need to go back to the definition,
which is [V1, IV.1.3]. We note that since f is finite étale, the trace map f+OX ,Q →
OY ,Q defined in [V1, III.5.1] is equal to Trf via the identification f+OX ,Q

∼=
f∗OX ,Q. Since the commutativity is standard routine work, we leave the details to
the reader. Now, the verification of the lemma in the finite étale case is reduced to
showing the composition of the lower row is the adjunction homomorphism. This
is easy.

In general, there exists an open dense formal subscheme j : U ⊂ Y such that
f ′ : X ′ := X ×Y U → U is finite étale. Put j′ : X ′ ↪→ X . Then by [Ber2, 4.3.10],
we have an injection Kω

X ↪→ j′+K
ω
X′ where X ′ is the special fiber of X ′. Since f
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is affine, f+ is exact, and the homomorphism f+f
!Kω

Y → j+f
′
+f

′!Kω
U is injective.

Consider the following diagram where we omit ‖Y :

j+K
ω
U

��

��

j+f
′
+f

′!Kω
U

∼

��

Kω
Y

��������
��

∼

��

f+f
!Kω

Y

� �

							

��

j∗OU ,Q
�� j∗f ′

∗f
′∗OU ,Q

OY ,Q
��

��






f∗f

∗OY ,Q.
� � �

��								

The diagram is known to be commutative except for the forehead square diagram.
By the injectivity of �, the desired commutativity follows by the commutativity of
other faces. �

The trace map satisfies the base change property; namely, considering the carte-
sian diagram of (1.1.3.1) such that Y and Y ′ possess liftings Y , Y ′, then the dia-
gram of (Var 2) is commutative if we replace Trf(′) by the dual of tY (′) . To check

this, it suffices to check the dual of the base change property for tY : Kω
Y → f+f

!Kω
Y .

By using [Ber2, 4.3.10], it suffices to show the base change property after taking
‖Y . The lemma above reduces the verification to the base change property for the
adjunction homomorphism OY ,Q → f∗f

∗OY ,Q which follows by the base change
property of coherent OY ,Q-modules. The transitivity can also be checked by a
similar argument.

This implies that tY does not depend on the choice of Y . Indeed, when Y
is a point, all smooth liftings of Y are canonically isomorphic, and tY does not
depend on the choice. In general, by the base change property and the uniqueness
mentioned at the beginning of 1.5.4 shows that tY depends only on Y . This justifies
denoting the dual of tY by Trf : f!f

+KY → KY .

1.5.7. Proof of Lemma 1.5.4. Let us construct the trace map for a general étale
morphism. Assume that we have the following cartesian diagram D :

X � � i′ ��

f

��
�

X̃

g

��
Y � �

i
�� Ỹ ,

where Ỹ is smooth liftable, g is affine étale, and the horizontal morphisms are closed
immersions. We have the following uncompleted diagram of solid arrows:

i′+g+KỸ ∼
Trg ��

∼
��

i′+g!KỸ

��
f+i+KỸ

�� f !i+KỸ .

The left vertical homomorphism is an isomorphism by transitivity, and the dotted
homomorphism is defined so that the diagram commutes. By taking the adjoint,



954 TOMOYUKI ABE

the dotted arrow gives us a homomorphism TrD : f!f
+KY → KY . Let us check

that TrD does not depend on the choice of D. If Y is liftable, TrD coincides with
the trace map Trf (for liftable schemes) by the base change property of the trace
map for liftable schemes we have already checked. In particular, for a closed point
is : s ↪→ Y , i+s TrD coincides with the trace map for the liftable schemes X×Y s → s.
By the uniqueness at the beginning of 1.5.4, TrD does not depend on the choice of
diagram D, and we are allowed to denote TrD by Trf . This also shows the base
change and transitivity property of Trf when the homomorphisms in the diagrams
of (Var 2) and (Var 3) are defined.

In general, we can take a diagram D locally on X and Y . By using Lemma
1.5.3, we can glue, and get the desired trace map f!f

+KY → KY similarly to
[SGA4, XVIII, 2.9 c)], and check that this is the desired trace map. The details are
left to the reader.

Finally, let us show that f+(F ) ∼= f !(F ) for F ∈ Db
hol(Y ). By (Var 5), the

trace map for F should be

f!f
+F ∼= f!f

+KY ⊗ F
Trf−−→ F .

This map satisfies (Var 1)–(Var 4) since they hold for F = KY . Taking the
adjunction, we have a homomorphism f+(F ) → f !(F ). When Y is a point, this
is easy. Let s ∈ Y be a closed point, and consider the following diagram:

Xs

i′s ��

fs

��
�

X

f

��
s

is
�� Y.

By the compatibility of trace map by base change, the following diagram is com-
mutative:

i′+s f+(F ) ��

∼
��

i′+s f !F

��
f+
s i+s (F ) �� f !

si
+
s (F ).

By (the dual of) smooth base change in Corollary 1.5.5, the right vertical homo-
morphism is an isomorphism and, by the point case, the bottom horizontal homo-
morphism is an isomorphism as well. Thus by [AC1, 1.3.11], the claim follows. �

1.5.8. Let us construct the trace map for quasi-finite flat morphism. We follow the
construction of [SGA4, XVII, 6.2]. Let f : X → Y be a quasi-finite flat morphism.
For an étale morphism U → Y , we consider the category Ψf (U) defined as follows:
objects consist of collections (Vi)i∈I , where I is a pointed finite set with the marked
point 0 ∈ I and a decomposition X ×Y U =

∐
i∈I Vi such that Vi → U is finite for

i �= 0. We denote by I∗ := I \ {0}. A morphism from ϕ = (Vi)i∈I to ϕ′ = (V ′
i )i∈I′

is a map σ : I → I ′ such that σ(0) = 0 and Vi =
⋃

j∈σ−1(i) V
′
j . For a morphism

U → V in Yet, there exists the obvious functor Ψf (V ) → Ψf (U), and Ψf (U) is a
fibered category over Yet. This category is denoted by Ψf , and an object of the
fiber over U ∈ Yet is denoted by

{
U ; (Vi)i∈I

}
. We refer to [SGA4] for details.
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Lemma. Let F ∈ Con(Y ). Then there exists a canonical isomorphism

τf : lim−→
{U ;ϕ}∈Ψf

jU !j
+
U F I∗ ∼−→ f!f

+F ,

where jU : U → Y is the étale morphism.

Remark. Before proving the lemma, we remark that the inductive system is not
filtrant.

Proof. The verification is essentially the same as [SGA4]. Let us construct the
homomorphism. Take ϕ =

{
U ; (Vi)i∈I

}
. Let ji : Vi → X be the étale morphism.

Since fi : Vi → U is assumed finite for i ∈ I∗, we have the following homomorphism
for G ∈ Con(U):

G → fi+f
+
i (G )

∼←− fi!f
+
i (G ).

By using the trace map in Lemma 1.5.4, we get the homomorphism

jU !j
+
U (F ) → jU !fi!f

+
i j+U (F ) ∼= f!ji!j

+
i f+(F )

Trji−−−→ f!f
+(F ),

which induces the homomorphism in the statement.
Now, by 1.2.2 (4), it suffices to show that the homomorphism is an isomorphism

in Ind(Con(X)). When f is a universal homeomorphism, the canonical homomor-
phism F → f!f

+F is an isomorphism by Lemma 1.1.3. Assume Y =: s is a point.
There is a separable extension s′ → s such that X × s′ → s′ is disjoint union of
universal homeomorphisms. Thus, the lemma follows by Lemma 1.3.10 (ii).

Let s be a closed point of Y . Put is : s → Y to be closed immersion. Since
i+s is an exact functor and commutes with direct sum, it commutes with arbitrary
inductive limits. Thus, we have

i+s
(
lim−→
Ψf

jU !F
I∗) ∼= lim−→

Ψf

i+s jU !F
I∗
.

Let fs : X ×Y s → s. There exists a functor Ψf → Ψfs . This functor is cofinal
by [EGAIV, 18.12.1]. Then by Lemma 1.5.4, i+s τf

∼= τfs , and by the proven case
where Y is a point, i+s τf is an isomorphism. By Lemma 1.3.10 (i), this implies that
τf is an isomorphism, as required. �

1.5.9. Let f : X → Y be a quasi-finite flat morphism between realizable schemes.
Let us construct the unique trace map f!f

+KY → KY satisfying (Var 1,2,3,4-I).
When f is étale, we remark that this trace map coincides with that of Lemma
1.5.4 by uniqueness. The construction is the same as [SGA4, XVII, 6.2], so we only
sketch the proof.

Let Ψ′
f be the full subcategory of Ψf consisting of

{
U ; (Vi)i∈I

}
such that Vi is

locally free of constant rank over U for any i �= 0. This category is cofinal in Ψf .
For each

{
U ; (Vi)i∈I

}
∈ Ψ′

f , we have a homomorphism∑
i∈I∗

deg(Vi/U) · TrjU : jU !j
+
U (KI∗

Y ) → KY .

Since the compatibility follows by that of Lemma 1.5.4, this homomorphism induces

f!f
+KY

∼←− lim−→
ϕ∈Ψ′

f

jU !j
+
UKI∗

Y → KY .

It is easy to check that this is what we are looking for.
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1.5.10. Lemma. Let f : X → Y be the special fiber of a finite étale morphism

between smooth formal curves f̃ : X → Y . By taking the dual of the trace map,
we get Kω

Y → f+K
ω
X . When we restrict this homomorphism to Y (i.e., taking ‖Y

of 1.5.6), this dual of trace map is nothing but the homomorphism induced by the

adjunction homomorphism φf̃ : OY ,Q → f̃∗OX ,Q with the identification f̃∗OX ,Q
∼=

f̃+OX ,Q.

Proof. We may assume X and Y to be connected. Let LX , LX be the largest

finite extension of K in X , Y . If LX �= LY , then f̃ factors as

X
α−→ Y ⊗RY RX

β−→ Y ,

where R� denotes the ring of integers of L�, and it suffices to show the lemma for
α and β separately. The verification for β is easy. Let us show that for α. In this
case, we let LX = LY =: L.

Since the formal schemes are curves, by Kedlaya’s full faithfulness theorem [Ke1],

the homomorphism OY ,Q → f̃+OX ,Q induced by φf̃ extends uniquely to the ho-

momorphism φ : Kω
Y → f+K

ω
X . We have

Hom(Kω
Y , f+f

!Kω
Y )

∼= Hom(f+Kω
Y , f

!Kω
Y ) ∼ Hom(Kω

X ,Kω
X) ∼= L,

where ∼ is the isomorphism induced by [A1, Theorem 5.5] since X and Y are
smooth. Thus, there exists c ∈ L such that c ·φ = D(Trf ). It remains to show that

c = 1. By definition, the composition KY → f!f
+KY

Trf−−→ KY is the multiplication
by n := deg(f). Take the dual of this homomorphism, and we get

n : Kω
Y

D(Trf )−−−−→ f+f
!Kω

Y

TrVir
f−−−→ Kω

Y ,

where the second homomorphism is the trace map of [V1]. On the other hand,

by property of TrVir
f (cf. [V1, III.5.4]), we get TrVir

f ◦ φ = n. Thus c = 1 since
Hom(Kω

Y ,K
ω
Y )

∼= L. �

1.5.11. Let f : X → Y be a proper smooth morphism of relative dimension 1
between smooth proper formal schemes. The homomorphism of rings OY ,Q →
f∗OX ,Q induces the homomorphism

(1.5.11.1) OY ,Q → Rf∗
[
0 → OX ,Q → Ω1

X /Y ,Q → 0
]

in D(D†
Y ,Q). Since the target of the homomorphism is canonically isomorphic to

f+OX ,Q[−1], we have a homomorphism αf : OY ,Q(1)[2] → f+f
!OY ,Q. By [A1,

3.14] and Remark 1.1.3 (iii), this homomorphism is compatible with the Frobenius
structure when � = F . This trace map only depends on the special fibers because
the unit element is sent to the unit element by a ring homomorphism. Thus, we
have a homomorphism Kω

Y (1)[2] → f+f
!Kω

Y . By construction, this homomorphism
is compatible with base change; namely, given a morphism of proper smooth formal
schemes g : Y ′ → Y such that d := dim(Y ′)− dim(Y ), let f ′ : X ′ := X ×Y Y ′.
Then the following diagram is commutative:

OY ′,Q(1)[2]
∼ ��

αf′

��

g!OY ,Q(1)[2− d]

g!αf

��
f ′
+f

′!OY ′,Q ∼
�� g!f+f !OY ,Q[−d],
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where the horizontal homomorphisms are canonical homomorphisms. By taking the
dual, we get the trace map Trf : f!f

+KY (1)[2] → KY . This trace map is compatible
with pullback g+ where g is a morphism between liftable proper smooth schemes.

Let us consider the case where Y is a point. Consider a commutative diagram:

U � � ��

g ����
���

�� X

f�����
���

�

Spf(R),

where U is dense open in X . Put Z := X \ U where X, U are the special fibers
of X , U , and assume Z is a divisor of X. Then we have an injection

(1.5.11.2) H −2g+g
!K ∼= H −1f+OX ,Q(

†Z) ↪→ H −1g+OU ,Q.

1.5.12. Proof of Theorem 1.5.1. Now, we construct the trace map. We need several
steps for the construction.

(i) Absolute curve case. Let f : X → Spec(k) be a realizable variety. We put
Hi

c(X) := Hom
(
K, f!(KX)[i]

)
. Now, assume X to be a curve, and let us construct

the trace map. First, let us construct the trace map when Xred is smooth and
irreducible. Let ι : Xred ↪→ X be the closed immersion, and let f ′ : Xred → Spec(k)
be the smooth compactification of Xred. We have already defined Trf ′ in 1.5.11.
We define

Trf : H
2
c (X)(1)

lg(OX,η)·ι∗−−−−−−−→ H2
c (Xred)(1)

∼−→ H2
c (Xred)(1)

Trf′
−−−→ K.

In general, we may take an open dense subscheme U ⊂ X such that Ured is smooth.
Then we have the canonical isomorphism H2

c (U)
∼−→ H2

c (X) by Lemma 1.3.8. Let
U =

∐
i∈I Ui be the decomposition into connected components. Then we define

Trf : H
2
c (X)(1)

∼−→ H2
c (U)(1) ∼=

⊕
i∈I

H2
c (Ui)(1)

∑
Trf|Ui−−−−−−→ K.

Lemma. Let X
f−→ Y

g−→ Spec(k) be a morphism of realizable schemes such that
f is a quasi-finite flat morphism and g is of relative dimension 1. Then we have

Trg◦f = Trg ◦ g!(Trf ) : (g ◦ f)!KX(1)[2] → K.

Proof. Arguing as [SGA4, XVIII, 1.1.5], we may assume that X and Y are con-

nected smooth affine, and f factors as X
F−→ X ′ f ′

−→ Y, where F is an iterated
relative Frobenius endomorphism and f ′ is a finite étale morphism. It suffices to
check the equality for F and f ′ individually. For F , the claim follows since Trg◦f is
compatible with Frobenius structure. It remains to check the lemma when f is finite
and étale. Since X and Y are assumed to be smooth and affine, there exist smooth

liftings X
f̃−→ Y → Spf(R) such that f̃ is finite flat. In this case, it suffices to

check the transitivity after removing the boundary by the injectivity of (1.5.11.2),
and the lemma follows by Lemma 1.5.10 and the definition of (1.5.11.1). �

(ii) Relative affine space case. Let Y be a realizable scheme, and consider
the projection f : X := P1

Y → Y . There exists a proper smooth formal scheme P
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such that Y ↪→ P. Then f can be lifted to the following cartesian diagram:

P1
Y
� � ��

f

��
�

P̂1
P

f̃

��
Y � �

i
�� P.

We define the trace map

Trf : f!f
+KY (1)[2] ∼= i+f̃!f̃

+KP(1)[2]
i+Tr

f̃−−−−→ i+KP
∼= KY ,

where Trf̃ is the one defined in 1.5.11. This map does not depend on the choice of

P by the base change property of Trf̃ .

When f : A1
X → X is the projection, then we have the factorization A1

X

j−→ P1
X

p−→
X, and the trace map Trf is defined to be the composition Trp ◦ p!(Trj). The base
change property can be checked by the base change property for j and p. Now, let
f : X := Ad

Y → Y . In this case, we define by iteration as in [SGA4, XVIII, 2.8].
(iii) Factorization case. Let f : X → Y be a morphism which possesses a

factorization X
u−→ Ad

Y
ad

−→ Y such that u is a quasi-finite flat morphism. Then we
define t(f, u) := Trad ◦ ad! (Tru). We need to check that t(f, u) does not depend on
the choice of the factorization. By using the lemma in (i), the verification is the
same as [SGA4, XVIII, 2.9 b)].

(iv) General case. The construction is the same as [SGA4, 2.9 c), d), e)]. We
sketch the construction. When f is a Cohen–Macaulay morphism, then there exists
a finite covering of {Ui} of X such that the compositions Ui → X → Y possess
factorizations considered in case (iii). By gluing lemma 1.5.3, we have the trace
map in this case. In general, we shrink X suitably, so that f is Cohen–Macaulay.
Thus the trace map is constructed, and we conclude the proof of Theorem 1.5.1. �

1.5.13. Theorem (Poincaré duality). Let X → Y be a smooth morphism of
relative dimension d between realizable schemes. Then for F ∈ Db

hol(Y ), the adjoint
of the trace map φF : f+F (d)[2d] → f !F is an isomorphism.

Proof. Since the verification is local on X, it suffices to treat the case where f is
étale and is the projection A1

Y → Y separately. The étale case has already been
treated in Lemma 1.5.4.

Let us treat the projection case. We may shrink Y . Then we can embed Y
into a proper smooth formal scheme. By using [A1, Theorem 5.5], we have an
isomorphism f+F (d)[2d] ∼ f !F , where ∼ is the isomorphism induced by [A1] and
may not be the same as the one defined by the trace map. It suffices to show
the theorem for F ∈ Hol(Y ). For this, we may assume F to be irreducible. Let
k′ be a finite extension of k. It suffices to show that φF is an isomorphism after
pulling back to X ⊗k k

′. Thus, we may assume moreover that F is irreducible also
on X ⊗k k′ for any extension k′ of k. For a closed point a ∈ A1, we denote by
ia : Y ⊗k k(a) → A1

Y the closed immersion defined by a. We claim that f+(F ) is
irreducible. Indeed, first, let us assume Y is smooth and F is smooth. Assume
f+(F ) were not irreducible. Then there would exist a smooth object N ⊂ f+(F )
and a closed point a of A1(k) such that i+a N and i+a

(
f+(F )/N

)
are nonzero.

This is a contradiction. In general, F can be written as j!+ of a smooth irreducible



LANGLANDS CORRESPONDENCE FOR ISOCRYSTALS 959

object by [AC1, 1.4.9] where j is an open immersion of Y . Since f is smooth, f+

and j!+ commute, and f+(F ) is irreducible.
Now, we know that

Hom(f+F (d)[2d], f !F ) ∼ Hom(f+F (d)[2d], f+F (d)[2d]).

Since f+F is irreducible, the Hom group is a division algebra, and it remains
to show that φF is not 0. For this, it suffices to check that the trace map
f!f

+F (d)[2d] → F is nonzero. By the base change property of a trace map,
we may assume Y to be a point, in which case, the trace map is nonzero by con-
struction. �

Corollary. Let f : X → Y be a flat morphism of relative dimension d between
smooth realizable schemes. Then the adjoint of trace map f+KY (d)[2d] → f !KY is
an isomorphism.

Proof. This follows by the transitivity of the trace map and the Poincaré duality
for both X and Y . �

1.5.14. Let i : Z ↪→ X be a closed immersion of codimension c between smooth
realizable schemes. By using the Poincaré duality, we have a canonical isomorphism
i+Kω

X(−c)[−2c]
∼−→ i!Kω

X . Let us denote by (−)⊗̃(−) := D
(
D(−) ⊗ D(−)

)
. The

projection formula yields the homomorphism i+
(
N ⊗̃M

)
→ i+(N )⊗̃i!(M ) for M ,

N in Db
hol(X/K). Using this homomorphism, we get a homomorphism

i+(M )(−c)[−2c] ∼= i+
(
Kω

X⊗̃M
)
(−c)[−2c] → i+(Kω

X)(−c)[−2c]⊗̃i!(M )
∼−→ i!Kω

X⊗̃i!(M ) ∼= i!(M ).(1.5.14.1)

Theorem. If M is smooth, then the canonical homomorphism (1.5.14.1) is an
isomorphism.

Proof. It suffices to show that when M is a smooth holonomic module, the canonical
homomorphism i+

(
N ⊗̃M

)
→ i+(N )⊗̃i!(M ) is an isomorphism for any N ∈

Db
hol(X/K). Since i+ is conservative, it suffices to show that the homomorphism

ρ : i+i
+
(
N ⊗̃M

)
→ i+

(
i+(N )⊗̃i!(M )

) ∼= i+i
+(N )⊗̃M

is an isomorphism. By definition, this is the unique homomorphism which makes
the following diagram commutative:

i+i
+
(
N ⊗̃M

)
ρ

��
N ⊗̃M

β 		������
�����

α �������������

i+i
+(N )⊗̃M .

where α := adji and β := adji ⊗ id. Now, since the verification is local, we may
assume that Z and X can be lifted to smooth formal schemes Z and X . It suffices
to show the claim after removing the boundaries by [Ber2, 4.3.10]. In this situation,

recall that (−)⊗̃(−) ∼= (−)⊗†
OX ,Q

(−)[− dim(X )] (cf. [AC1, 1.1.6]). Since M is a

coherent OX ,Q-module, we have a canonical isomorphism

RHomDX

(
N ⊗OX M ,DX ⊗ ω−1

X

) ∼= RHomDX (N ,DX ⊗ ω−1
X )⊗OX M∨,



960 TOMOYUKI ABE

where DX denotes D†
X ,Q. This yields an isomorphism γ : D(N ⊗OX M ) ∼=

D(N )⊗OX M∨. Consider the following diagram.

D
(
i+i

+(N ⊗OX M )
) ∼

Dα

		
i+i

!
(
D(N ⊗OX M )

)
��

∼γ

adji

�� D(N ⊗OX M )

∼γ

i+i
!
(
D(N )⊗OX M∨)

∼

��adji ��

♥

D(N )⊗OX M∨

D
(
i+i

+(N )⊗OX M
)

∼
γ

�

��

Dβ
��

i+i
!D(N )⊗OX M∨ adji

��

adji��
D(N ⊗OX M ) ∼

γ
D(N )⊗OX M∨

where adji is the homomorphism induced by the adjunction homomorphisms of i.
The diagram ♥ is commutative by [Ca4, 2.2.7], and the other diagrams formed by
solid arrows are commutative as well. We define the isomorphism � so that the
diagram is commutative. By the characterization of ρ, the isomorphism � is the
dual of ρ, which implies that ρ is an isomorphism. �

2. Arithmetic D-modules for algebraic stacks

This section is devoted to constructing a p-adic cohomology theory for algebraic
stacks. Even though we do not try to axiomatize, the ideas of this section work also
for any rational cohomology theories with standard six functor formalism without
essential changes (e.g., algebraic D-module theory, étale cohomology theory with
perverse t-structures over a separably closed field with rational coefficients, etc.).

2.0.1. In this section, � ∈ {∅, F} is fixed. Throughout this section, we also fix a
base tuple either T∅ := (k,R,K,L) or TF := (k,R,K,L, s, σ) (cf. 1.4.10) depending
on which � we take. We often denote D(X/T�) by D(X/L�) or even D(X/L) or
D(X) if no confusion may arise. When � = ∅, Tate twists (n) are understood to
be the identity functors as usual. All algebraic stacks are understood to be over k
unless otherwise specified.

2.0.2. To construct a theory for general algebraic stacks, we will first need to con-
struct a theory for algebraic spaces. Then using the theory for algebraic spaces,
we shall construct a theory for all algebraic stacks. Since the process for gener-
alizing the construction from the case of realizable schemes to algebraic spaces is
the same as generalizing from algebraic spaces to algebraic stacks, we shall present
the processes at the same time. In order to obtain the theory for general algebraic
spaces, the reader should read §2.1 and §2.2 as follows. First, when reading §2.1
and §2.2, replace the word “space” (resp. “good stack”, resp. “good presentation”)
by “quasi-projective scheme” (resp. . . . ), the corresponding terminology indicated
in the first block of the table below. The reader should then reread §2.1 and §2.2,
this time using the second block of the table below instead of the first block.
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1st read space: quasi-projective scheme

good stack: algebraic stack of finite type whose diagonal
morphism is quasi-projective

good presentation: smooth surjective morphism from a quasi-
projective scheme

2nd read space: separated algebraic space of finite type

good stack: algebraic stack of finite type

good presentation: smooth surjective morphism from a separated
quasi-compact algebraic space

Note that since good stacks are of finite type, they are in particular quasi-
compact. See paragraphs 2.2.26–2.2.28 for additional explanation. Finally, we
remark that admissible stacks defined in §2.3 are good stacks in the sense of first
read, and a second read is not really necessary if the reader is only interested in six
functor formalism for schemes or Deligne–Mumford stacks.

2.1. Definition of the derived category of D†-modules for stacks.

2.1.1. We first need basic cohomological operations for spaces. Let X be a space
over k. In the first read case, we have already defined M(X/L) and D(X/L) in
1.4.10, and in the second read case, see 2.2.26.

Smooth morphism. Let f : X → Y be a smooth morphism between spaces
over k. The exact functor f∗ : Hol(Y/K) → Hol(X/K) (cf. 1.2.8 or 2.2.7) can
be extended canonically to M(Y/L) → M(X/L) by 1.2.2 and 1.4.9, f∗ remains
to be exact. The derived functor is also denoted by f∗. Similarly, we have the
left exact functor f∗ : M(X/L) → M(Y/L), and we can take the derived functor
Rf∗ : D

+(X/L) → D+(Y/L). By 1.2.1, (f∗,Rf∗) is an adjoint pair. Since forL and
forF commute with f∗ and Rf∗ by 1.4.1 and 1.4.6, f∗ and Rf∗ preserve holonomicity
and induce functors between D+

hol(X/L) and D+
hol(Y/L).

Finite morphism. Let f : X → Y be a finite morphism between spaces over k.
Just as in the smooth morphism case, we can define functors

f+ : D�(X/L) � D�(Y/L) : f !,

where � = ∅ for f+ and + for f !. The pair (f+, f
!) is an adjoint pair. These functors

commute with forL and forF , and they preserve boundedness and holonomicity.
External tensor product. Let X, Y be spaces over k. Extending the scalar of

the external tensor product functor, we have the bifunctor� : M(X/L)×M(Y/L) →
M(X × Y/L), which is exact. Thus, we can take the derived functor. This derived
functor preserves boundedness and holonomicity as well.

Dual functor. Let X be a space over k. The dual functor extends canonically
to DX : Hol(X/L)◦ → Hol(X/L). This induces the functor

DX : Db(Hol(X/L))◦ → Db(Hol(X/L)).

Lemma. (i) Consider the cartesian diagram (1.1.3.1) of spaces such that f is
smooth and g is finite. Then the base change homomorphisms f ′∗ ◦ H 0(g!) →
H 0(g′!) ◦ f∗ : M(Y/L) → M(X ′/L) and f∗ ◦ g+ → g′+ ◦ f ′∗ : M(Y ′/L) → M(X/L)

are isomorphisms. Moreover, we have H 0(g!) ◦ f∗ ∼= f ′
∗ ◦ H 0(g′)! : M(X/L) →

M(Y ′/L).
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(ii) For a smooth morphism f : X → Y of spaces of relative dimension d, we
have the canonical isomorphism(

f∗ ◦ DY

)
(d) ∼= DX ◦ f∗ : Hol(Y )◦ → Hol(X).

Remark. These equalities also hold on the level of Db
hol(−/L), which we show

later.

Proof. In the second read case, this can easily be reduced to the first read case, so
we assume we are in the first read case. When � = ∅ and L = K, we only need
to show the equality for Hol(−/K), and these are consequences of Corollary 1.5.5,
Theorem 1.5.13, and 1.1.3 (8). Since these equalities are on the level of modules,
the results can be extended automatically to � = F and general L. �

2.1.2. Now, let us fix some terminologies on simplicial spaces.

Definition. For an integer i ≥ 0, let [i] = {0, . . . , n} be the ordered set, and put
[−1] := ∅. Let Δ+ be the category of those objects, and morphisms are increasing
injective maps.

(i) An admissible simplicial space is a contravariant functor (Δ+)◦ → Spsm(k),
where Spsm(k) denotes the category of spaces over k whose morphisms are smooth.
Let X• be an admissible simplicial space. For i ≥ 0, we often denote X•([i]) by Xi.
This can be described as follows:

X• :
[
X0 X1���� X2����

�� · · ·�� ��
����

]
.

For a space S, let S• be the constant admissible simplicial space. A morphism of
an admissible simplicial space to a space X• → S is a morphism X• → S•. The
morphism is said to be smooth if X0 → S is.

(ii) A morphism of simplicial spaces f : X• → Y• is said to be cartesian if for
any φ : [i] → [j], the following diagram is cartesian:

Xj

fj ��

X(φ)

��
�

Yj

Y (φ)

��
Xi

fi

�� Yi.

(iii) An admissible double simplicial space X•• is a functor ((Δ+)2)◦ → Spsm(k).
An admissible simplicial space S• yields the constant admissible double simplicial
space S•• by setting S•i := S•. A morphism from an admissible double simplicial
space to an admissible simplicial space X•• → S• is defined to be X•• → S••. This
is a collection of morphisms Xn• → Sn satisfying the compatibility conditions.

Remark. Note that we do not consider degeneracy maps, only face maps. These
types of objects are sometimes called strictly simplicial schemes (e.g., [LO]).

2.1.3. Definition. Let X be an algebraic stack over k, and let X → X be a
presentation (cf. 0.0.2). Put X• := cosk0(X → X) (i.e., the simplicial space such
that Xn := X ×X × · · · ×X X︸ ︷︷ ︸

n

and the face morphisms are projections). We say

that X• is a simplicial algebraic space presentation of X. Let P be a set of algebraic
spaces. A simplicial P presentation is a simplicial algebraic space presentation X•



LANGLANDS CORRESPONDENCE FOR ISOCRYSTALS 963

consisting of algebraic spaces belonging to P (e.g., simplicial realizable schemes
presentation, etc.).

Now, let X be a good stack, and let X → X be a good presentation. Since X is a
good stack, cosk0(X → X) is an admissible simplicial space. In particular, for any
good stack, we may take a simplicial space presentation.

2.1.4. Definition. Let X• be an admissible simplicial space. For a morphism
φ : [i] → [j], since X(φ) is smooth, the pullback

X(φ)∗ : M(Xi/L) → M(Xj/L),

which is exact, is defined (cf. 2.1.1). This defines a cofibered category M(X•/L)•
over Δ+.

(i) We put M(X•/L) := sec+(M(X•/L)•) (see §A.1 for the notation). We often
denote M(X•/L) by M(X•). For M• or M in M(X•/L), the fiber over [i] is
denoted by Mi. For φ : [i] → [j], the homomorphism X(φ)∗Mi → Mj is called the
gluing homomorphism.

(ii) We denote by Hol(X•/L), or simply by Hol(X•), the full subcategory of
M(X•/L)•,tot consisting of M• such that Mi ∈ Hol(Xi/L) for any i ≥ 0.

(iii) We denote byD�
hol(X•/L) orD

�
hol(X•) the full subcategory ofD�(M(X•/L))

whose cohomology objects are in Hol(X•/L). We denote D�
tot(M(X•/L)•) by

D�
tot(X•/L) or D

�
tot(X•).

2.1.5. Let M• and N• be in Db
tot(X•/L). Then by (A.1.2.1), we have the following

spectral sequence:

(2.1.5.1) Ep,q
1 := ExtqD(Xp)

(Mp,Np) ⇒ Extp+q
D(X•)

(M•,N•).

We have kernels, cokernels, and inductive limits in M(X•), and they can be cal-
culated termwise; namely, these functors commute with the functor sending M• to
Mi for any i ≥ 0. This is because, for any φ : [i] → [j], the functors Ker, Coker,
lim−→ commute with X(φ)∗. In particular, M(X•) is an abelian category. Moreover,

projective limits are representable in M(X•) and they can be calculated termwise
as well by using the canonical homomorphism X(φ)∗ ◦ lim←− → lim←−◦X(φ)∗.

2.1.6. Let us define three basic functors. Take i ≥ 0. We define a functor
ρ∗i : M(X•) → M(Xi) by sending M• ∈ M(X•) to Mi. Obviously, this is an
exact functor. Now, take N ∈ M(Xi). We define

ρi∗(N ) :=

⎧⎨⎩ ∏
φ : [k]→[i]

X(φ)∗(N )

⎫⎬⎭
k

, ρi!(N ) :=

⎧⎨⎩ ⊕
φ : [i]→[k]

X(φ)∗(N )

⎫⎬⎭
k

,

and the gluing homomorphisms are defined as follows: for ψ : [k] → [k′], the map
X(ψ)∗ρi∗(N )k → ρi∗(N )k′ (resp. X(ψ)∗ρi!(N )k → ρi!(N )k′) is the product
(resp. direct sum) of the adjunction (resp. canonical) homomorphisms

X(ψ)∗X(φ)∗(N ) → X(φ′)∗(N )
(
resp. X(ψ)∗X(φ)∗(N ) → X(φ′)∗(N )

)
,

where φ : [k]
ψ−→ [k′]

φ′

−→ [i] and 0 if φ cannot be factored through ψ (resp. φ′ : [i]
φ−→

[k]
ψ−→ [k′]). These data define functors ρi∗, ρi! : M(Xi) → M(X•).
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Lemma. (i) We have adjoint pairs (ρ∗i , ρi∗) and (ρi!, ρ
∗
i ).

(ii) The functors ρ∗i and ρi! are exact. In particular ρ∗i and ρi∗ preserve injective
objects.

(iii) The category M(X•) is a Grothendieck category.

Proof. Since the verification of (i) is standard, we leave the details to the reader.
The first claim of (ii) follows from the exactness of X(φ)∗. Let us check (iii). We
have an arbitrary inductive limit as observed in 2.1.5, and filtrant inductive limits
are exact. We need to show that it has a generator. Let Gi be a generator of M(Xi).
Then

{
ρi!(Gi)

}
i≥0

is a set of generators. Indeed, let M ∈ M(X•), and assume

Hom(ρi!(Gi),M ) = 0 for any i ≥ 0. Then by (i), we have Hom(Gi, ρ
∗
i (M )) = 0,

and thus Mi = 0. Thus by definition, M = 0. �

2.1.7. Let X• be an admissible simplicial space. Let k be a nonnegative integer.
Given M• ∈ M(skk(X•)), we get an object in M(skk−1(X•)) denoted by σ∗

k(M•) ∈
M(X•) by putting

(
σ∗
k(M•)

)
i
∼= Mi for i < k. Let us construct the left adjoint

functor of σ∗
k.

Let Dk be the category of homomorphisms φ : [i] → [k] such that the morphism
from φ to ψ : [j] → [k] is a morphism α : [i] → [j] such that ψ ◦ α = φ. Now, given
M• in M(skk−1(X•)), we can construct an object in M(skk(X•)) as follows: Put

Mk := lim−→
φ∈Dk

X(φ)∗(Mi).

Then
{
Mi

}
i≤k

with an obvious gluing homomorphism defines the desired object.

The functor is denoted by σk!. We can check easily that (σk!, σ
∗
k) is an adjoint pair.

2.1.8. Remark. The functors defined in the last two paragraphs have natural
interpretation in terms of the language of topos. Let X• be a (strictly) simplicial

topos (cf. [SGA4, Vbis]). Since sheaves F on X• can be described as data {Fi, φij}
where Fi is a sheaf on Xi and φij is a gluing homomorphism, we have a functor
sending a sheaf F on X• to the sheaf Fi on Xi. This functor defines a morphism
of topos ei : Xi → X•. The functors ρi!, ρ∗i , ρi∗ are nothing but analogues of
the functors ei!, e

∗
i , ei∗ (cf. [SGA4, 1.2.8–1.2.12]). The interpretation of σi!, σ

∗
i is

similar.

2.1.9. Lemma. Let us denote by Hol(X•)• the cofibered category over Δ+ such
that the fiber over [i] is Hol(Xi). Let D

b
tot(Hol(X•)•) be the derived category defined

in §A.1. The canonical functor Db
tot(Hol(X•)•) → Db

hol(X•) is an equivalence of
categories.

Proof. We can argue as [KSc, 15.3.1]. It suffices to show that the functor

Db(Hol(X•)•) → Db(X•)

is fully faithful. By [KSc, 13.2.8], it suffices to show the following: given a surjection
A → M such that M ∈ sec+Hol(X•)• and A ∈ M(X•), there exists a homomor-
phism N → A such that N ∈ sec+Hol(X•)• and the composition N → M is
surjective. To check this, it suffices to construct, for each k ≥ 0, the following N(k)

in M(skk(X•)): 1. σ
∗
k(N(k)) ∼= N(k−1); 2. we have a homomorphism N(k) → σ∗

k(A )
such that the composition N(k) → σ∗

k(A ) → σ∗
k(M ) is surjective.

We use the induction on k. For N(0), take one as in [KSc, 15.3.1]. Assume
we have constructed N(k−1). Take N ′ → Ak such that N ′ ∈ Hol(Xk) and the
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composition with Ak → Mk is surjective, as in [KSc, 15.3.1]. Given φ : [i] → [k],
we have the following diagram:

X(φ)∗N(k−1),i
��

?

��

X(φ)∗Ai
��

��

X(φ)∗Mi

��
N ′ �� Ak

�� Mk.

We need to construct the dotted homomorphism making the diagram commutative,
for which we modify N ′. We put

(N(k))i :=

{
(N(k−1))i for i < k,

N ′ ⊕ (σk!(N(k−1)))k for i = k.

With the obvious gluing homomorphisms, these data define an object N(k) in
M(skk(X•)), which is what we are looking for. �

2.1.10. Let f• : X• → Y• be a cartesian morphism of admissible simplicial spaces
such that fi is finite for any i ≥ 0. We call such a morphism a cartesian finite
morphism for short. For a morphism φ : [j] → [k], we have the following cartesian
diagram:

Xk
fk ��

X(φ)

��
�

Yk

Y (φ)

��
Xj

fj

�� Yj ,

where fj and fk are finite. Let M• be an object in M(Y•). For a finite mor-
phism g, we denote H 0g! by g◦, which is left exact by 1.2.9. We have a canonical
homomorphism

X(φ)∗f◦
j (Mj) ∼= f◦

kY (φ)∗(Mj) → f◦
k (Mk)

by Lemma 2.1.1. Using this homomorphism,
{
f◦
k (Mk)

}
defines an object inM(X•),

and it defines a functor f◦ : M(Y•) → M(X•). Since f
◦
k is left exact, f◦ is left exact

as well. We can take the associated derived functor to get

f ! := Rf◦ : D+(M(Y•)) → D+(M(X•)).

On the other hand, the functor fk+ is exact. For N ∈ M(X•), using Lemma 2.1.1,
we have a homomorphism

Y (φ)∗fj+(Nj) ∼= fk+X(φ)∗(Nj) → fk+(Nk),

which defines an object
{
fk+(Nk)

}
in M(Y•). The functor is denoted by f+. Since

this functor is exact, we can take the derived functor

f+ : D(M(X•)) → D(M(Y•)).

Lemma. Let X•
f−→ Y•

g−→ Z• be cartesian finite morphisms of admissible simpli-
cial spaces.

(i) We have a canonical isomorphism ρ∗k ◦ f ! ∼= f !
k ◦ ρ∗k. In particular, f ! sends

D�
hol(Y•) into D�

hol(X•) for � ∈
{
+, b

}
.

(ii) We have an adjoint pair (f+, f
!), and f+ is exact. In particular, f◦ preserves

injective objects.
(iii) We have a canonical isomorphism f ! ◦ g! ∼= (g ◦ f)!.
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Proof. Let us show (i). Since ρ∗k is exact and preserves injective objects by Lemma
2.1.6, the first isomorphism follows by definition. Let us check the second one. The
functor f ! preserves total complexes by Lemma 2.1.1 (i). It remains to show that
it preserves holonomicity and boundedness. These are immediate consequences of
the isomorphism ρ∗k ◦ f ! ∼= f !

k ◦ ρ∗k.
The verification of (ii) is easy. To show (iii), by (ii), it suffices to show that

f◦ ◦ g◦ ∼= (g◦ ◦ f◦). This follows by definition and the corresponding statement for
spaces. �

2.1.11. Now, we use the notation of 2.1.1. Let f : X• → S be a smooth morphism
(cf. 2.1.2) from an admissible simplicial space to a space. In this situation, let us de-
fine an adjoint pair of functors (f∗,Rf∗). Let fi : Xi → S be the induced morphism.
The pullback is easy to define: Let N ∈ M(S). We put Ni := f∗

i (N ) which is de-
fined in M(Xi). Let φ : [i] → [j] be a map. Then we define a homomorphism, which
is in fact an isomorphism, X(φ)∗Ni → Nj to be the gluing homomorphism. The
object we constructed in M(X•) is denoted by f∗(N ). Thus, we have a functor

f∗ : M(S) → M(X•).

The functor f∗ is exact since each f∗
i is.

Let us define its right adjoint. Take M• in M(X•). For φ : [i] → [j], we have the
homomorphism

αφ : fi∗(Mi) → fj∗(Mj).

We put

f∗(M•) := Ker
(
f0∗(M0) ⇒ f1∗(M1)

)
.

Since f0∗ and f1∗ are left exact, the functor f∗ is left exact as well. Thus we may
take the associated derived functor to get

Rf∗ : D
+(X•) → D+(S).

These constructions can be generalized to a smooth morphism f : X•• → S• from
a double simplicial space to a simplicial space: Pullback is defined in an obvious
manner. Let M•• in M(X••). Recall that f is a collection of fn• : Xn• → Sn satis-
fying the compatibility conditions. We get fn•∗(Mn•) in M(Sn). The transition ho-
momorphism is defined by adjunction, and we have f••∗ : M(X••) → M(S•). This
is a left exact functor, and we get the derived functor Rf∗ : D

+(X••) → D+(S•).

Lemma. We have an adjoint pair (f∗, f∗). Thus, the pair (f∗,Rf∗) is also, and
the obvious analogue holds for the double simplicial case.

Proof. The adjointness of (f∗,Rf∗) follows by the first one using Lemma 1.2.1. Let
S• be the constant simplicial space. We have the morphism f• : X• → S•, and the
adjoint pair (f∗

i , fi∗) defines a pair of functors (f∗
• , f•∗) between M(X•) and M(S•).

It is straightforward to check that this is an adjoint pair. Thus, it suffices to check
the lemma for the morphism S• → S. This follows from the following general fact:
Let A be an abelian category, and let Δ+A be the category of cosimplicial objects,
namely the abelian category of functors Δ+ → A. Let ρ∗ : A → Δ+A be functor
assigning the constant object, and let ρ∗ : Δ

+A → A be the functor associating
Ker(M0 ⇒ M1) to {Mi}. Then (ρ∗, ρ∗) is an adjoint pair. The verification is
straightforward. The double simplicial case is similar. �
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2.1.12. The following spectral sequence is one of the keys to show the cohomological
descent.

Lemma. Let M ∈ D+(X•). Then we have the following spectral sequence:

Ep,q
1 := Rqfp∗(Mp) ⇒ Rp+qf∗(M ).

Proof. The construction is essentially the same as [O3, Corollary 2.7]. Since we use
a similar argument again later, we sketch the proof. Let N ∈ M(Xi). We have
a homomorphism f0∗

(
ρi∗(N )0

) ∼=
∏

[0]→[i] fi∗(N ) → fi∗(N ) where the second

homomorphism is the projection to the component of the map α : [0] → [i] such
that the image is 0 ∈ [i]. This induces a homomorphism from the Čech type
complex:

C•
i (N ) :=

[
0 → f0∗

(
ρ∗0ρi∗(N )

)
→ f1∗

(
ρ∗1ρi∗(N )

)
→ f2∗

(
ρ∗2ρi∗(N )

)
→ · · ·

]
to fi∗(N ). This homomorphism is in fact a homotopy equivalence. Indeed, the

cohomologies of the complex T̃ := [0 →
∏

[0]→[i] L →
∏

[1]→[i] L → · · · ], which is

isomorphic to that of the i-simplex, vanish except for degree 0, and sinceK(VecL) ∼=
D(VecL), the homomorphism T̃ → L of the projection to the α-component is a

homotopy equivalence. Since C•
i (N ) ∼= T̃ ⊗L fi∗(N ), we get the claim.

Now, for any N ∈ M(X•), there exists an embedding N ↪→ I into an injective
object in M(X•) such that the complex

(�) 0 → f0∗(ρ
∗
0(I )) → f1∗(ρ

∗
1(I )) → f2∗(ρ

∗
2(I )) → · · ·

is exact away from the degree 0 part. For this, take an embedding ρ∗i N ↪→ I(i)

into an injective object in M(Xi), and put I :=
∏

i ρi∗(I(i)). Note that products
can be calculated termwise by 2.1.5. Moreover, small products and fi∗ commute by
[KSc, 2.1.10] since fi∗ admits a left adjoint f∗

i . This implies that (�) is isomorphic
to
∏

iC
•
i (I(i)). Now, each C•

i (I(i)) is homotopic to fi∗(I(i)) by the observation
above. Since homotopy equivalence is preserved even after taking product, we get
that (�) is homotopic to

∏
i fi∗I(i); in particular, the complex is exact away from

0. Since ρi∗ preserves injective objects by Lemma 2.1.6 and the product of injective
objects remains to be injective, I is a desired object.

Finally, let M → I • be a resolution of M consisting of the complex as above.
We consider the double complex

{
fp∗ρ

∗
p(I

q)
}
p,q≥0

. The acyclicity of (�) except for

degree 0 shows that the total complex is Rf∗(M ), and thus the associated spectral
sequence is the one we want. �

Recall that by Lemma 1.2.8, or by 2.2.7 in the second read case, Rfi∗ preserves
holonomicity. Thus, we have the following corollary:

Corollary. The functor Rf∗ preserves holonomicity and induces a functor
D+

hol(X•) → D+
hol(S).

2.1.13. Proposition. Let X → S be a smooth surjective morphism between spaces,
and put f : X• := cosk0(X/S) → S. The adjoint pair of functors (f∗,Rf∗) induces
an equivalence between D�

tot(X•) and D�(S) for � ∈ {+, b}. Moreover, it induces
an equivalence between D�

hol(X•) and D�
hol(S).

Proof. The second claim follows by the first one since f∗ and Rf∗ preserve the
holonomicity by Corollary 2.1.12. Thus, it suffices to show that the canonical
homomorphisms id → Rf∗f

∗ and f∗Rf∗ → id are isomorphisms. For the first one,
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it suffices to show the equalities after taking i!s where s is a closed point of S and
is : {s} ↪→ S. By taking the fiber product, it induces a morphism of simplicial
spaces iX,s : Xs• ↪→ X•. Using Lemma 2.1.1, we have Rfs∗ ◦ i!X,s

∼= i!s ◦ Rf∗
where fs : Xs• → s. Thus, by considering Lemma 1.3.7 (ii), this can be reduced
to the situation where we have a section s : S → X0 of f0. In this case, the
verification for the first homomorphism is the same as [Co1, Thm 7.2]. Let us
recall the argument briefly. By using Lemma 2.1.12, we have the spectral sequence
Ep,q

1 = Rqfp∗(Mp) ⇒ Rp+qf∗(M ). Put E−1,q
1 := Rqid∗(M ), which is M if q = 0

and 0 otherwise. We claim that the complex defined by adjunction 0 → E−1,q
1 →

E•,q
1 → 0 where E−1,q

1 is placed at degree −1, is acyclic. To check this, we construct

a concrete homotopy Ep,q
1 → Ep−1,q

1 using the section s. For example, E0,q
1 → E−1,q

1

is constructed as follows: We have an isomorphism s+f+
0 M

∼−→ M , which induces
f+
0 (M ) → s+(M ) by adjunction. By taking f0+ and using the isomorphisms
f0+s+ ∼= id and f0+f

+
0

∼= f0∗f
∗
0 , we obtain the desired homotopy. See [Co1] for

details.
Let us show the second one. It suffices to show that the homomorphism of

functors, before taking the derived functors, f∗f∗ → id is an isomorphism. Indeed,
if this is shown, we get that for M ∈ M(X•), we have

Rf∗(M )
∼←− Rf∗

(
f∗f∗(M )

) ∼←− f∗(M ),

where the second quasi-isomorphism follows by the the first part of the proof.
Thus we have Rif∗(M ) = 0 for i �= 0. Finally, let us show f∗f∗(M ) → M is an
isomorphism. As the proof of the first isomorphism, it suffices to show the claim
when S is a point, and in particular there is a section S → X. In this case, it
suffices to show that there exists N ∈ M(S) such that f∗(N ) ∼= M , namely, M
is effective descent. Because of the existence of the section, this is automatic (for
example, see [Gir, right after 6.15]). �

2.1.14. Let f : X• → S be a smooth morphism from an admissible simplicial space
to a space, and let g : S′ → S be a smooth morphism between spaces. Consider the
following cartesian diagram:

X ′
•

g′
��

f ′

��
�

X•

f

��
S′

g
�� S.

For M ∈ M(X•), the system
{
g′∗i (Mi)

}
i
defines an object of M(X ′

•), denoted by

g′∗(M ). This functor g′∗ is exact and preserves holonomicity. We can take the
derived functor g′∗ : Db

hol(X•) → Db
hol(X

′
•). Similarly, for N ∈ M(X ′

•), the system{
g′i∗(Ni)

}
defines an object of M(X•) by Corollary 1.5.5, or by the following lemma

in the second read case, and the assumption that g′ is cartesian. This functor is
left exact, and we have the right derived functor Rg′∗. The couple (g′∗,Rg′∗) is an
adjoint pair.

Lemma. The canonical homomorphism g∗ ◦Rf∗ → Rf ′
∗ ◦ g′∗ is an isomorphism.

Proof. By using the spectral sequence of Lemma 2.1.12, the verification is reduced
to Corollary 1.5.5 or to the present lemma of the first read case in the second
read. �
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2.1.15. Proposition. Let X be a good stack, and let X• → X be a simplicial
space presentation. Then for � ∈ {b,+}, the categories D�

tot(X•) and D�
hol(X•) do

not depend on the choice of the presentation up to canonical equivalence, and the
t-structure as well.

Proof. Let X• → X and X ′
• → X be two presentations. Let Zn,n′ := Xn ×X X ′

n′ .
This defines a double simplicial space Z•• with projections Z•• → X•, and Z•• →
X ′

•. Thus, it suffices to show the following: given a smooth morphism f : Z•• → X•
such that (Zi• → Xi) = cosk0(Zi0 → Xi), the functors Rf∗ and f∗ induce an equiv-
alence of categories. First, the functors Rf∗ and f∗ preserve holonomicity. Indeed,
the preservation of holonomicity for f∗ is easy, and for Rf∗ use (the double simpli-
cial analogue of) Lemma 2.1.6 (ii), Lemma 2.1.14, and Corollary 2.1.12. If f∗, Rf∗
yield an equivalence between D�(X•) and D�(Z••), since they preserve holonomic-
ity, they induce the equivalence of D�

hol(X•) and D�
hol(Z••), and the proposition

follows.
Now, it remains to show that for N ∈ M(X•) and M ∈ M(Z••), the homomor-

phisms
f∗Rf∗(M ) → M , N → Rf∗f

∗(N )

are isomorphisms. Since it suffices to show the isomorphism for each Xi, this follows
from Proposition 2.1.13. �
2.1.16. Definition. Let X be a good stack. Take a simplicial space presentation
X• → X. By the proposition above, for � ∈ {b,+}, the categories D�

tot(X•/L�)
and D�

hol(X•/L�) do not depend on the choice of the presentation. We denote
these categories by D�(X/L�) and D�

hol(X/L�), or more precisely D�(X/T�) and
D�

hol(X/T�). We often omit (·)� as usual. These categories are endowed with t-
structure, and their hearts are denoted by M(X/L) and Hol(X/L), respectively.
Objects of Hol(X/L) are called holonomic modules on X. As usual, we often even
omit “/L” from the notation of categories.

Remark. (i) When X is a realizable scheme, Db
hol(X) is equivalent to the one

defined in 1.1.1 by Proposition 2.1.13.
(ii) Let X• → X be a simplicial space presentation. Then ρ∗0 is conservative,

namely, ρ∗0(M ) = 0 for M ∈ D+
hol(X) if and only if M = 0. Indeed, ρ∗0(M ) = 0

implies ρ∗i (M ) = 0, so the only if part holds.

2.1.17. Definition. (i) Let X be a good stack. Assume further that the associated
reduced algebraic stack Xred is smooth. Let X• → X be a simplicial space presen-
tation. The category of smooth objects denoted by Sm(X/L) is the full subcategory
of Db

hol(X/L) consisting of M such that, for any i, forL(ρ
∗
i M ) ∈ Db

hol(Xi/K) is
in Sm(Xi/K)[di], where di denotes the relative dimension function (cf. 0.0.3) of
X → X, and see 1.1.3 (12) for the notation of Sm(X/K). It is straightforward to
check that the category does not depend on the choice of the presentation.

(ii) Let X be a good stack, and let M ∈ Hol(X). The support of M is the mini-
mum closed subset Z ⊂ X such that the restriction of M to X\Z is 0. The support is
denoted by Supp(M ). For M ∈ Db

hol(X/L), we put Supp(M ) :=
⋃

i Supp(H
iM ).

2.1.18. Let X• be an admissible simplicial space. Since M(X•) has enough injec-
tives, we have the bifunctor RHomD(X•)(−,−) : D(X•)

◦×D+(X•) → D(VecL) (cf.
[Ha, I, §6]). This induces the bifunctor

RHomD(X)(−,−) : D+(X)◦ ×D+(X) → D+(VecL).
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Indeed, RHomD(X•) does not depend on the choice of simplicial space presenta-
tion X• → X. To check this, let f : Z•• → X• be as in the proof of Propo-
sition 2.1.15. Then we have a canonical homomorphism RHomD(X•)(M ,N ) →
RHomD(Z••)

(
f∗(M ), f∗(N )

)
for M ∈ D(X•), N ∈ D+(X•). It suffices to show

that this homomorphism is a quasi-isomorphism when M ,N ∈ D+
tot(X•). This

follows since the pair (f∗,Rf∗) is an equivalence of categories.

In the following, for simplicity, we use particularly D�
hol(X/L) even

when we can generalize statements or constructions to D�(X/L)
easily.

2.1.19. We conclude this subsection with the following lemma that we use later,
whose proof is similar to the proof of Proposition 2.1.15.

Lemma. Let X and Y be good stacks, and let X• and Y• be simplicial space
presentations. Let (X × Y )n,n′ := Xn × Yn′ , which forms a double simplicial space
denoted by (X × Y )••. Then we have a canonical equivalence

D+
hol(X×Y)

∼−→ D+
hol((X × Y )••).

2.2. Cohomological functors. In this subsection, we define some cohomological
functors for algebraic stacks. Even though six functor formalism is expected for
algebraic stacks, unfortunately, at this moment, we can obtain full formalism only
for admissible stacks (cf. Definition 2.3.1), which is enough for our purposes. In
this subsection, we define functors that we can define for general algebraic stacks.

Finite morphism case.

2.2.1. First, we will define the adjoint pair (f+, f
!) when f is a finite morphism

between good stacks. To do this, we only need to translate the functor constructed
in 2.1.10 in the language of algebraic stacks.

Let f : X → Y be a finite morphism between good stacks. Let us define f !

and f+. Take a simplicial space presentation Y• → Y. By pulling back, we get
a simplicial space presentation X• → X. Let f• : X• → Y• be the finite cartesian
morphism. Let � ∈ {b,+}. We define

f+ : D�
hol(X)

∼= D�
hol(X•) � D�

hol(Y•) ∼= D�
hol(Y) : f !.

We need to check the well-definedness, namely independence of the presentation.
By the adjointness property, it suffices to show the independence for f+. As in the
proof of Proposition 2.1.15, it suffices to show the following: Consider the cartesian
diagram

Z••
g• ��

p

��
�

W••

q

��
X•

f•
�� Y•.

Then q∗ ◦ f•+ ∼= g•+ ◦ p∗ : M(X•) → M(W••). The verification is straightforward
and is left to the reader. We have the pair (f+, f

!) of adjoint functors between
D�

hol(X) and D�
hol(Y).

Now, let X
f−→ Y

g−→ Z be finite morphisms of good stacks. We have canonical
isomorphisms

c(g,f) : f
! ◦ g! ∼−→ (g ◦ f)!, c(g,f) : (g ◦ f)+ ∼−→ g+ ◦ f+.
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These isomorphisms are subject to the following two conditions: 1. we have c(f,id) =

c(id,f) = id, c(f,id) = c(id,f) = id; 2. given homomorphisms X
f−→ Y

g−→ Z
h−→ W, we

have

c(h,g◦f)◦c(g,f)(h!) = c(h◦g,f)◦f !(c(h,g)), h+c
(g,f) ◦c(h,g◦f) = c(h,g)(f+)◦c(h◦g,f).

These results can be rephrased by using the language of (co)fibered categories

(cf. [SGA1, Exp. VII, end of 7]) as follows. Let Stfin(k) the be the category of
good stacks (we do not consider the 2-morphisms) over k such that the morphisms
are finite morphisms between good stacks. To a good stack X, we associate the
triangulated category D�

hol(X). For a finite morphism X → Y, we consider the

functor f !, and c(f,g). Then these data form a fibered category F ! → Stfin(k).

Considering f+ and c(f,g), we get a cofibered category F⊕ → Stfin(k).

Dual functors.

2.2.2. Let f : X → Y be a smooth morphism of relative dimension d between
spaces. Then we have a canonical isomorphism

(
f∗ ◦DY

)
(d)

∼−→ DX ◦f∗ by Lemma
2.1.1. Now, let X• be an admissible simplicial space, and assume we are given a
smooth morphism X• → X to an algebraic stack. We have the dual autofunctor

DXi
: Hol(Xi)

◦ ∼−→ Hol(Xi). We modify this functor by putting D̃i := (dXi/X)◦DXi
,

where dXi/X denotes the relative dimension function (cf. 0.0.3).
Now, we use the notation of Lemma 2.1.9 and §A.1. Let M• ∈ sec+(Hol(X•)•).

For a morphism φ : [i] → [j], let αφ : X(φ)∗Mi → Mj be the gluing homomorphism.
Let

βφ : D̃j(Mj) → D̃j

(
X(φ)∗(Mi)

) ∼←− X(φ)∗D̃i(Mi).

The data
{
D̃i(Mi), βφ

}
defines an object in sec−(Hol(X•)•) and defines a functor

DX•/X− : sec+(Hol(X•)•)
◦ → sec−(Hol(X•)•).

Similarly, we can define the functor DX•/X+ : sec−(Hol(X•)•)
◦ → sec+(Hol(X•)•),

and we have canonical isomorphisms c∓ ◦ DX•/X± ∼= DX•/X∓ ◦ c± by definition of

c± (cf. [BD, 7.4.2]). These functors are exact since D̃i is. Then we have

Dtot(sec±(Hol(X•)•))
◦

DX•/X∓
��

∼
Dtot(Hol(X•)•)

◦ ∼ �� Dhol(X•)
◦

D′
X•

��
Dtot(sec∓(Hol(X•)•)) ∼ Dtot(Hol(X•)•) ∼

�� Dhol(X•),

where the left horizontal isomorphism follows by §A.1 and the right horizontal
isomorphisms follow by Lemma 2.1.9. We define the dotted functor so that the
square is commutative. The dotted functor is called the dual functor on D(X•).
By construction, the functor is exact. Moreover, we have a canonical isomorphism
D′

X•
◦ D′

X•
∼= id.

Let X be a good stack. Take a simplicial space presentation X• → X. We can
check that DX•/X does not depend on the choice of presentation. Thus, we get a
functor

D′
X : Db

hol(X)
◦ → Db

hol(X).

We have a canonical isomorphism of functors D′
X ◦ D′

X
∼= id.
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Remark. Later, in 2.3.13, we define another dual functor D. This is because D′

is not suited to show some fundamental properties of dual functors. The reason
we introduced D′ at this point is to show the existence of the left adjoint of f+ for
finite morphism f .

2.2.3. Lemma. Let f : X → Y be a finite morphism between good stacks. Then
there exists a canonical isomorphism

D′
Y ◦ f+ ∼−→ f+ ◦ D′

X : Db
hol(X)

◦ → Db
hol(Y).

Proof. Take a simplicial space presentation Y• → Y, and let X• → X be the
pullback. We denote by fk : Xk → Yk the finite morphism induced by f . Since
fk+(M ) is in Hol(Yk) when M ∈ Hol(Xk) and fk+ andX(φ)∗ commute canonically,
we can define the push-forward functors f±∗ : sec±(Hol(X•)•) → sec±(Hol(Y•)•) by
sending {Mi} to {fi+Mi} with an obvious gluing homomorphism. By the definition
of the functors c±, the following diagrams are commutative:

sec+(Hol(X•)•)
f+∗ ��

��

sec+(Hol(Y•)•)

��
M(X•)

f+

�� M(Y•),

sec−(Hol(X•)•)
f−∗ ��

c+

��

sec−(Hol(Y•)•)

c+

��
C(M(X•))

f+

�� C(M(Y•)).

Thus, it is reduced to constructing an isomorphism DY•/Y ◦ f+∗ ∼= f−∗ ◦ DX•/X.
Since all the functors we used are exact, the verification is easy. �
Definition. The lemma shows that f+ has a left adjoint functor

D′
X ◦ f ! ◦ D′

Y : Db
hol(Y) → Db

hol(X).

This right adjoint functor is denoted by f+. Since f ! is left exact, f+ is right exact.
Summing up, when f is finite, we have two pairs of adjoint functors (f+, f+) and

(f+, f
!). By taking the dual to 2.2.1, f+ yields a fibered category F⊕ → Stfin(k).

2.2.4. Lemma. Let f : C → C′ be a finite morphism in Stfin(k).
(i) Assume f is surjective radicial morphism. Then f+ and f+ define an equiv-

alence of categories between Db
hol(C

′) and Db
hol(C), and Hol(C′) and Hol(C).

(ii) Assume f is an étale morphism. Then for any M ∈ Hol(C), it is a direct
factor of f+f+(M ).

(iii) If f is a flat morphism, then for any M ∈ Db
hol(C

′), M is a direct factor of
f+f

+(M ).

Proof. For (i), it suffices to show the claim when C and C′ are schemes. This
is nothing but Lemma 1.1.3 in the first read case, and the second read case can
be reduced to the first one immediately. For (iii), we can define homomorphisms
f+f

+(M ) → M using the trace map of realizable schemes, and the claim follows
easily.

For (ii), let C ′
• → C′ be a simplicial space presentation. Put Mi := ρ∗i (M ),

and fi : C ×C′ C ′
i → C ′

i. We have the morphisms Mi → f+
i fi+(Mi) → Mi. Here

the first morphism is defined by the trace map in the first read case and, in the
second read case, we use the homomorphism defined in the first read case for first
morphism. The composition is an isomorphism. Indeed, by [AC1, 1.3.11], it is
reduced to checking the claim when fi is

∐
j∈J Spec(k′) → Spec(k′), where k′ is

a finite extension of k and J is a finite set. In this case, the verification is easy.
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Moreover, these homomorphisms are compatible with gluing homomorphisms, so
they define homomorphisms α : M → f+f+M and β : f+f+M → M , and the
composition β ◦ α is an isomorphism, thus the claim follows. �

Exterior tensor product.

2.2.5. Let us define the exterior tensor product. Let X• and Y• be admissible sim-
plicial spaces. Given M• and N• in M(X•) and M(Y•), respectively, the collection{
Mi � Ni

}
i
defines an object in M(X• × Y•). This is denoted by M � N . The

functor is exact, and we can take the derived functor to get

(−)� (−) : D(M(X•))×D(M(Y•)) → D(M(X• × Y•)).

We can check easily that this preserves holonomicity and boundedness.
Let X and Y be good stacks, and take simplicial space presentations X• → X

and Y• → Y. Then X• × Y• is a simplicial space presentation of the good stack
X×Y. Since � does not depend on the choice of presentation, we get the exterior
tensor product for good stacks.

2.2.6. Lemma. Let f : X → Y, g : X′ → Y′ be finite morphisms between good
stacks. Then we have canonical isomorphisms f+(−)�g+(−) ∼= (f×g)+

(
(−)�(−)

)
,

f�(−) � g�(−) ∼= (f × g)�
(
(−) � (−)

)
where � ∈

{
+, !

}
, and D′((−) � (−)

) ∼=
D′(−)� D′(−).

Proof. For the commutation of external tensor product and dual functors, see
[AC1, 1.3.3], and for the pushforward, use Proposition 1.1.7. Since the proofs
are straightforward, we leave the details to the reader. �

Smooth morphism case.

2.2.7. Let f : X → Y be a smooth morphism between good stacks. Take simplicial
space presentations Y• → Y and X• → X. Let Xn,m := Xn×Y Ym, which defines a

double simplicial spaceX•• with obvious face morphisms, and morphisms f̃ : X•• →
Y• and g : X•• → X•. By (the double simplicial analogue of) Proposition 2.1.13,
g∗ and Rg∗ induce an equivalence between D+(X••) and D+(X•) ∼= D+(X). Thus,
we have functors

Rf∗ : D
+(X) ∼= D+(X••) � D+(Y•) ∼= D+(Y) : f∗,

where the middle functors are induced by Rf̃∗ and f̃∗. These functors preserve
holonomicity by Corollary 2.1.12. We need to check that these functors do not
depend on the choice of the presentations. By the adjointness property, it suffices
to check it for f∗. The verification is easy and is left to the reader. It is also
straightforward to check that f∗ is an exact functor and satisfies the transitivity,

namely given smooth morphisms X
f−→ Y

g−→ Z between good stacks, we have a
canonical isomorphism (g ◦ f)∗ ∼= f∗ ◦ g∗.

Lemma. Assume f is of relative dimension d. We have a canonical isomorphism
D′

X ◦ f∗ ∼= (d) ◦ f∗ ◦ D′
Y.

Proof. The proof is similar to Lemma 2.2.3, using Lemma 2.1.1 (ii). �
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2.2.8. Now, assume that f is an open immersion of good stacks. Then X• :=
Y• ×Y X is a simplicial space presentation of X. The canonical morphism X• → Y•
is denoted by h. Then we have the commutative diagram of double simplicial spaces

X••
f̃ ��

g ��


Y•

X•.
h

���������

This implies that the composition D+(X) ∼= D+(X•)
Rh∗−−→ D+(Y•) ∼= D+(Y) is

canonically isomorphic to Rf∗, and similarly for f∗. Now we have:

Lemma. The functor Rf∗ sends Db
hol(X) to Db

hol(Y).

Proof. It suffices to show that Rh∗ preserves the boundedness. This can be seen
similarly to Lemma 2.1.10 (i). �

Changing the notation, we put j := f and j+ := j∗ : Db
hol(Y) → Db

hol(X),
j+ := Rj∗ : D

b
hol(X) → Db

hol(Y). We define the functor j! so that (j!, j
+) is an

adjoint pair. Such a functor exists since by the above lemma and Lemma 2.2.7, and
D′

Y ◦ j+ ◦D′
X is left adjoint to j+. Thus, we have pairs of adjoint functors (j+, j+)

and (j!, j
+). Now, since j+j+ ∼= id, we have a canonical homomorphism of functors

j! → j+. In particular, this induces a functor

j!+ := Im
(
H 0j! → H 0j+

)
: Hol(X) → Hol(Y),

called the intermediate extension functor.

2.2.9. Lemma. Let j : U ↪→ X be an open immersion between good stacks, and let
i : Z ↪→ X be its complement. Then, we have the following exact triangles:

i+i
! → id → j+j

+ +1−−→, j!j
+ → id → i+i

+ +1−−→,

where the homomorphisms are defined by adjunctions.

Proof. Let us check the left one. Let X• → X be a simplicial realizable scheme
presentation, and let I • be a complex of injective objects in C(X•). By abuse of
notation, we denote the open and closed immersions U×XXk ↪→ Xk and Z×XXk ↪→
Xk by j and i, respectively. By construction and Lemma 2.1.10, i+ and i! commute
with ρ∗k. By definition, j+ commutes also with ρ∗k. Moreover, j+ commutes with ρk!
as well, which implies that their right adjoint functors j+ and ρ∗k commute. Thus,
it suffices to show that the sequence

0 → i+i
!(ρ∗k(I

l)) → ρ∗k(I
j) → j+j

+(ρ∗k(I
l)) → 0

is exact. This follows by Lemma 1.2.11. The right triangle is exact by duality. �
Projection case.

2.2.10. We define the push-forward functor for a projection X × Y → Y. The
method here is close to the definition of Rf ! in [SGA4, XVIII, 3.1]. We start with
the following lemma:

Lemma. Let X• and Y• be admissible simplicial spaces, and let A be an object
in M(X•). Let

p∗A := A � (−) : M(Y•) → M((X × Y )••),

where we use the notation of Lemma 2.1.19. Then there exists a right adjoint
denoted by pA ∗.
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Proof. Since the functor p∗A is exact and commutes with direct sums by defini-
tion, it commutes with arbitrary inductive limits by [KSc, 2.2.9]. Since M(Y•)
is a Grothendieck category and p∗A commutes with inductive limits, the existence
follows from the adjoint functor theorem (cf. [KSc, 8.3.27 (iii)]). �

Given a homomorphism A → B in M(X•), we have a natural homomorphism
of functors

p∗A pB∗ → p∗BpB∗ → id,

where the last homomorphism is the adjunction. Taking the adjoint, we get a
homomorphism pB∗ → pA ∗. Obviously, if the homomorphism A → B is 0, the
induced morphism of functors is 0 as well. Thus, for a complex A • ∈ C(M(X•)),
we have a complex of functors

pA •∗ : [· · · → pA i+1∗ → pA i∗ → · · · ] ,
where pA i∗ is placed at the degree −i term.

2.2.11. Lemma. Let I be an injective object in M((X × Y )••). Then the con-
travariant functor

p−∗(I ) : M(X•)
◦ → M(Y•)

sending A to pA ∗(I ) is exact.

Proof. Let 0 → A ′ → A → A ′′ → 0 be a short exact sequence. It suffices to show
that, for any N in M(Y•), the complex

0 → Hom(N , pA ′′∗(I )) → Hom(N , pA ∗(I )) → Hom(N , pA ′∗(I )) → 0

is exact, which implies in fact that the sequence 0 → pA ′′∗(I ) → pA ∗(I ) →
pA ′∗(I ) → 0 is split exact. This follows by definition. �

2.2.12. Corollary. Let C be in C(M(X•)), and let M ∈ C((X×Y )••). We have
the spectral sequence

Ep,q
2 := RppH −q(C )∗(M ) ⇒ Rp+qpC∗(M ).

Proof. The lemma shows that if I is an injective object in M((X×Y )••), we have

H −i
(
[· · · → pA i+1∗(I ) → pA i∗(I ) → pA i−1∗(I ) → · · · ]

) ∼= pH i(A •)∗(I ).

Let I • be an injective resolution of M . Then the spectral sequence associated to
the double complex pA •∗(I

•) is the desired one. �

2.2.13. Corollary. If a homomorphism of complexes A • → B• in C(M(X•))
is a quasi-isomorphism, the induced homomorphism of derived functors RpB•∗ →
RpA •∗ is a quasi-isomorphism as well.

Proof. The homomorphism of functors RpB•∗ → RpA •∗ induces the homomor-
phism of spectral sequences

IEp,q
2 = RppH −q(B)∗ ��

��

Rp+qpB∗

��
IIEp,q

2 = RppH −q(A )∗ �� Rp+qpA ∗.

Since the left vertical homomorphism is an isomorphism, so is the right. �
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2.2.14. Definition. Let � ∈ {∅, b,+,−}, and let C ∈ C�(M(X•)). We can take
the derived functor of pC∗ to get

pC+ := RpC∗ : D
+((X×Y )••) → D(Y•), p+C := p∗C : D�(Y•) → D�((X×Y )••).

By Corollary 2.2.13, we may even take C in D(X•). By definition, the pair
(p+C , pC+) is an adjoint pair.

Remark. Assume C ∈ M(X•). Then by definition, for M ∈ M((X × Y )••),
H ipC+(M ) = 0 for i < 0, and in particular, it sends D+ to D+. Now, let
C ∈ D(X•) such that there exists an integer a with H iC = 0 for a < i. Then by
Corollary 2.2.13, for M ∈ M((X × Y )••), we have H ipC+(M ) = 0 for i < −a. In
particular, the functor sends D+ to D+ as well.

2.2.15. Let us compute pA ∗ more concretely when A• ∈ Hol(X•). Let X• be an
admissible simplicial space, and let Y be a space. Let p : X• × Y → Y be the
projection. Let A• ∈ Hol(X•). Take M• ∈ M(X• × Y ). For φ : [i] → [j], we have
the commutative diagram

Xj × Y pj

�������
������

(X×Y )(φ)
��

Y.

Xi × Y
pi

�������������

Recall 1.2.10. Since
(
(X×Y )(φ)∗ ◦p∗iAi

, piAi∗ ◦ (X×Y )(φ)∗
)
is an adjoint pair and

we have the canonical isomorphism (X × Y )(φ)∗ ◦ p∗iAi

∼= p∗jAj
, we have

piAi∗ ◦ (X × Y )(φ)∗ ∼= pjAj∗.

This isomorphism together with the gluing homomorphism of M• for φ induces a
homomorphism αφ : piAi∗(Mi) → pjAj∗(Mj). With this homomorphism, we define

pA •×(M•) := Ker
(
p0A0∗(M0) ⇒ p1A1∗(M1)

)
.

Now, recall the notation of 2.1.19, and let Y• be an admissible simplicial space,
and let M•• be in M((X × Y )••). Given a morphism ψ : [k] → [l], consider the
following diagram:

(2.2.15.1) X• × Yl
pl

��

(X×Y )(ψ)

��
�

Yl

Y (ψ)

��
X• × Yk

pk

�� Yk.

Then we have canonical homomorphisms in M(Yl),

Y (ψ)∗pkA•×(M•k)
∼−→ plA•×

(
(X × Y )(ψ)∗(M•k)

)
→ plA•×(M•l).

With this gluing homomorphism, we get a left exact functor

pA•× := p•A•× : M((X × Y )••) → M(Y•).

Lemma. The pair (p∗A•
, pA•×) is an adjoint pair. Thus, we have an isomorphism

pA•×
∼= pA•∗

Proof. The proof is essentially the same as that of Lemma 2.1.11, and we do not
repeat it here. �
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2.2.16. Lemma. Assume A• ∈ Hol(X•). Then, there exists the following spectral
sequence

Ei,j
1 = RjpiAi∗(Mi) ⇒ H i+jpA +(M ),

where pi : Xi × Y• → Y• is the projection.

Proof. By Lemma 2.2.15, it suffices to construct the spectral sequence for pA•×.
The construction is the same as that of Lemma 2.1.12, which is analogous to [O3,
Corollary 2.7]. �

2.2.17. Now, we use these computations to show finiteness results of the functor
defined in Definition 2.2.14:

Proposition. Let A be an object of Db
hol(X•).

(i) The functors pA + and p+A induce functors between D+
hol((X × Y )••) and

D+
hol(Y•).

(ii) We have an adjoint pair (p+A , pA +) between D+
hol(Y•) and D+

hol((X × Y )••).

Proof. Let us show (i). First, let us check that for M ∈ Db
hol((X × Y )••) and for

integers i ≥ 0 and n,
(
H npA+(M )

)
i
is in Hol(Yi). By combining the spectral se-

quences of Corollary 2.2.12 and Lemma 2.2.16, it suffices to check the holonomicity
of RqpiH p(A )∗(Mi) for any integers p, q, i. This follows from 2.1.1 or 2.2.7. It
remains to show that H npA +(M ) is a total complex, namely for ψ : [k] → [l], the
homomorphism

Y (ψ)∗pkA +(M•k) → plA +(M•l)

is a quasi-isomorphism. We may assume A ∈ Hol(X•). In this case, this follows by
smooth base change (cf. Corollary 1.5.5) and Lemma 2.2.16. Using (i), (ii) follows
immediately by construction. �

Remark. Unfortunately, the boundedness is not preserved as we can see from
the standard example [LM, 18.3.3]. Thus, to get six functor formalism for algebraic
stacks, dealing with unbounded derived category is essential as in [LO]. However,
we only construct a complete formalism for admissible stacks (cf. Definition 2.3.1),
and for a morphism between admissible stacks, the boundedness is preserved, so
we do not use unbounded category.

2.2.18. As one can expect, these functors define functors for good stacks. Let X and
Y be good stacks, and A ∈ Db

hol(X). Take simplicial space presentations X• → X

and Y• → Y. Then we have a functor

D+
hol(X×Y) ∼= D+

hol((X × Y )••)
pA+−−−→ D+

hol(Y•) ∼= D+
hol(Y),

and the same for p+A : D�
hol(Y) → D�

hol(X ×Y). The pair (p+A , pA +) is an adjoint
pair. Now, we have:

Lemma. The functors do not depend on the choice of presentation.

Proof. By the adjointness property, it suffices to show the lemma for p+A , in which
case the verification is easy. �

Remark. When X and Y are realizable schemes, then pA+ coincides with the
functor defined in 1.2.10, which justifies the notation. This follows since both
functors are right adjoint to p+A .
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2.2.19. Proposition. Let p : X → Spec(k) be the structural morphism of a good
stack. Let A be an object in Db

hol(X). For any M in D+
hol(X), we have a canonical

isomorphism (recall 1.4.14 and 2.1.18 for the notation)

RΓ ◦ pA +(M ) ∼= RHomD(X)(A ,M ).

Proof. Take a simplicial space presentation X• → X. For A ∈ Cb(X•) and M ∈
M(X•), we have

Γ ◦ pA ∗(M ) ∼= HomM(Spec(k))

(
L, pA ∗(M )

) ∼= HomM(X•)(A ,M ).

Now, pA i∗ preserves injective objects since the left adjoint functor p∗A i is exact.

This shows that R
(
Γ ◦ pA ∗

) ∼= RΓ ◦ RpA ∗. Thus by the definition of pA+, the
proposition follows. �

2.2.20. We have defined a pair of adjoint functors (p+A , pA+), which depends on
the choice of the complex A . For the construction of normal pushforward and
pullback, we need a canonical choice of A , which is nothing but the unit object LX

when X is a smooth realizable scheme. To construct this complex for good stacks,
we need the following theorem of [BBD], as in the construction of [LO].

Theorem ([BBD, 3.2.4]). Let X• be an admissible simplicial space. Assume

given data
{
Ci, αφ

}
where Ci ∈ Db(X•) and for φ : [i] → [j], αφ : X(φ)∗Ci

∼−→ Cj

satisfying the cocycle condition. Assume moreover that

RiHomD(Xi)(Ci,Ci) = 0

for any i < 0. Then there exists a unique C ∈ Db
tot(X•) such that ρ∗i (C ) ∼= Ci (cf.

2.1.6) and the gluing isomorphism is equal to αφ via this isomorphism.

Proof. For the uniqueness, use the spectral sequence (2.1.5.1). The existence is
more difficult. We use a construction of Beilinson and Drinfeld. In [BD, 7.4.10],
they define an abelian category hot+(M(X•)). This category is nothing but tot(A+)
in the notation of [BBD, 3.2.7] by taking A(n) to be M(Xn). In [BD], they con-

struct an equivalence of categories s+ : Dsec+(M(X•))
∼−→ Dhot+(M(X•)) and

characterize Dtot(X•) in terms of Dhot . Even though the appearance is slightly
different, this is the statement corresponding to [BBD, 3.2.17]. Thus, our task is
to construct an object in K(hot+(M(X•))). For this, we can copy the argument of
[BBD, 3.2.9]. �

2.2.21. Lemma. Let p : X → Spec(k) be a morphism of spaces. Let LX := p+(L).
Then we have RiHomD(X)(LX , LX) = 0 for i < 0.

Proof. Consider the first read case, namely the case where X is a realizable scheme.
Since forL is conservative, we may assume that L = K. We have isomorphisms

RHomD(X)(LX , LX) ∼= RΓ p+Hom(LX , LX) ∼= RΓ p+p
+(L),

where we used Proposition 2.2.19 for the first isomorphism, and the second one
follows since p+ is monoidal and LX is the unit object. Now the lemma follows by
the left c-t-exactness of p+ (cf. Lemma 1.3.4) and RΓ. For the second read case,
this can be reduced to the first read case by using (2.1.5.1). �
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2.2.22. Let X be a good stack, and let X• → X be a simplicial space presentation.
Let us construct the unit complex on X•. The unit complex LXi

in Db
hol(Xi/L)

has already been defined. Let φ : [i] → [j]. Recall the notation in sections 0.0.3 and
0.0.4. We have a canonical isomorphism

X(φ)∗
(
LXi

[dXi/X]
) ∼= LXj

[dXj/X].

By Lemma 2.2.21, the conditions in Theorem 2.2.20 are satisfied. Thus the data{
LXi

[dXi/X]
}
i
yield an object LX•/X in Db

hol(X•).

Lemma. The object LX•/X does not depend on the choice of simplicial presenta-
tion up to canonical isomorphism.

Proof. The proof is straightforward. �

Definition. (i) We define the unit complex LX to be the object in Db
hol(X) defined

by LX•/X thanks to the lemma above.
(ii) We define the dualizing complex Lω

X to be D′
X(LX).

Remark. We can construct Lω
X similarly to LX, without using the functor D′

X.

2.2.23. Lemma. (i) Let X and Y be good stacks. Then we have LX×Y
∼= LX�LY,

and Lω
X×Y

∼= Lω
X � Lω

Y.

(ii) Let f : X → Y be a finite morphism between good stacks. Then we have an
isomorphism ιf : f

+(LY) ∼= LX such that given another finite morphism g : Y → Z,
the isomorphism is compatible with composition: the composition (g ◦ f)+(LZ) ∼=
g+(f+(LZ))

ιf−→
∼

g+LY

ιg−→
∼

LX is equal to ιg◦f .

Proof. For (i), the first claim follows from the corresponding statement for spaces
and the second by Lemma 2.2.6. Verification of (ii) is left to the reader. �

2.2.24. Definition. Let X and Y be good stacks. We put

p+ := pLX+ : D+
hol(X×Y) → D+

hol(Y), p+ := p+LX
: Db

hol(Y) → Db
hol(X×Y).

Let X×Y×Z
f−→ Y×Z

g−→ Z be projections. By using the canonical isomorphism
in Lemma 2.2.23, we have a canonical isomorphisms

(2.2.24.1) f+ ◦ g+ ∼= LX �
(
LY � (−)

) ∼= LX×Y � (−) ∼= (g ◦ f)+.
By taking the adjoint, we also get a canonical isomorphism (g ◦ f)+ ∼= g+ ◦ f+.

2.2.25. Let X(′), Y(′) be good stacks, and take A (′) ∈ Db
hol(X

(′)). Let p(′) : X(′) ×
Y(′) → Y(′). Let q : (X×X′)× (Y×Y′) → Y×Y′ be the projection. By definition,
we have a canonical isomorphism

(2.2.25.1) p+A (−)� p′+A ′(−) ∼= q+A �A ′

(
−�−

)
.

Now, we have

(2.2.25.2) q+A �A ′

(
pA +(−)�p′A ′+(−)

) ∼= p+A pA+(−)�p′+A ′p
′
A ′+(−) → (−)� (−),

where we used (2.2.25.1) for the first isomorphism.

Lemma. The homomorphism pA +(−)�p′A ′+(−) → qA �A ′+

(
(−)�(−)

)
, defined

by taking an adjoint to (2.2.25.2), is an isomorphism.
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Proof. This can easily be reduced to the case where X(′) and Y(′) are spaces using
the spectral sequences of Corollary 2.2.12 and Lemma 2.2.16. Using the same
spectral sequences, we may assume further that X(′) and Y(′) are realizable schemes
in the second read case. Now, for realizable schemes X and X ′ and M (′), N (′) in
Db

hol(X
(′)), we have

Hom
(
M � M ′,N � N ′) ∼= Hom(M ,N )�Hom(M ′,N ′).

This follows by the isomorphism Hom(M ,N ) ∼= D
(
M ⊗ D(N )

)
(cf. 1.1.4) and

the commutativity of D and � (cf. [AC1, 1.3.3 (i)]). Using the Künneth formula
for realizable schemes in 1.1.7, the lemma follows. �

Before the second read.

2.2.26. Before moving on to the second read (cf. 2.0.2) to establish the theory
for more general algebraic stacks, we need the following proposition, which is an
analogue of Beilinson’s equivalence [AC2] for Deligne–Mumford stacks.

Proposition. Let X be a Deligne–Mumford stack of finite type. Moreover, assume
that X is separated. Then the canonical functor Db(Hol(X)) → Db

hol(X) is an
equivalence.

Proof. First, we note that since the Deligne–Mumford stack is separated and of
finite type, the diagonal morphism is finite, and in particular, schematic. Full
faithfulness is the only problem. Thus, since the canonical functors Db(Hol(X)) →
Db

hol(Ind(Hol(X))) → D+
hol(Ind(Hol(X))) are fully faithful, it suffices to show that

the canonical functor D+(Ind(Hol(X))) → D+(X) is fully faithful. Let f : X → Y
be an affine étale morphism of realizable schemes. Then the pair (f!, f

∗) of functors
between M(X/L) and M(Y/L) is an adjoint pair, and f! is exact by [AC1, 1.3.13].
In particular, f∗ sends injective objects to injective objects. Now, let f : X → X

be a smooth morphism from an affine scheme. The functors in 2.2.7 define a pair
of adjoint functors (f∗, f∗) between Hol(X/L) and Hol(X/L). By passing to the
Ind-categories, these functors induce a pair of adjoint functors (f�, f�) between
M(X/L) and Ind(Hol(X/L)). Then we can define functors

Rf� : D+(X/L) � D+(Ind(Hol(X/L))) : f�,

as in the scheme case. Consider the following cartesian diagram:

Y ′

g′

��

f ′
��

�

Y

g

��
X

f
�� X,

where X, Y are affine schemes, and f , g are étale. We can easily check that the
canonical homomorphism g∗ ◦ f∗ → f ′

∗ ◦ g′∗ is an isomorphism. This extends to an

isomorphism g� ◦ f� ∼−→ f ′
∗ ◦ g′∗. Since X is assumed separated, g′ is an affine étale

morphism, and thus g′∗ preserves injective objects. This implies that the canonical
homomorphism

(�) g� ◦ Rf� → Rf ′
∗ ◦ g′∗ : D+(X/L) → D+(Y/L)

is an isomorphism.
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Now, let f : X• → X be a simplicial realizable scheme presentation such that
X0 → X is étale. Then we can define a pair of adjoint functors

Rf� : D+(X•/L) � D+(Ind(Hol(X/L))) : f�

similarly to 2.1.11. To conclude the proof, we need to show an analogue of Propo-
sition 2.1.13 in this context. For this, take an étale presentation Y → X, use the
base change (�) above, and this is reduced to the realizable scheme situation we
have already treated. �

Remark. The proposition is false for general algebraic stacks. For example, if
G is a geometrically connected algebraic group over k, the category Hol(BG) is
equivalent to the category of finite-dimensional L-vector spaces (cf. Lemma 2.4.7).
However, extension computed in the category Db

hol(BG) is not trivial. For example,
we can compute as in the classical case (cf. [LM, 18.3.3]) that Hi(BGm, L) ∼=
Hi(Pi, L) for i ≥ 0.

2.2.27. For an algebraic stack of finite type over k, we may take a presentation
X → X such that X is a separated algebraic space of finite type (or even affine
scheme of finite type). Then cosk0(X → X) consists of separated algebraic spaces of
finite type, since X is assumed to be quasi-separated. In the first read, the starting
point of the construction was Theorem 1.1.8. In the second read, Proposition
2.2.26 plays the role of the theorem. Replacing the definitions of the terminologies
according to the table in 2.0.2, we can construct the theory for quasi-separated
algebraic stacks of finite type over k.

2.2.28. Remark. (i) As one can see from the construction of the cohomology the-
ory explained in 2.2.27, quasi-separatedness is important. Otherwise, nonseparated
algebraic spaces appear in the simplicial space cosk0(X → X), and we are not able
to apply Proposition 2.2.26. Non-quasi-separated stacks naturally appear in the
work of [O1].

(ii) We may treat the non-quasi-compact case without much effort. For a sepa-
rated scheme X locally of finite type over k, we take an affine covering {Ui}, and
define M(X/L) by gluing M(Ui/L). Note that this category is not equivalent to
Ind(Hol(X/L)) in general. Even though we need to care about finiteness and so
on, the constructions in §2.1 and §2.2 can be carried out similarly.

2.2.29. Question. Let X be a separated scheme of finite type over k. We may
construct a functor Db(Con(X/L)) → Db

hol(X/L) as in [Bei]. We ask if this is an
equivalence of categories.

Remark. (i) If we have a positive answer to this problem, we can define the
six functor formalism exactly as in [LO], or more precisely, we may define the
pushforward to be the derived functor of cH 0f+. If the proof of the question is
motivic, then suitable six functor formalisms for schemes can be extended to that
for algebraic stacks automatically.

(ii) The problem is solved by Nori [N] when k = C and Hol(X/L) is replaced by
the category of perverse sheaves.



982 TOMOYUKI ABE

Theory of weights.

2.2.30. Let k be a finite field with q = ps elements, and we consider the arithmetic
situation where the base tuple (cf. 1.4.10) is TF := (k,R,K,L, s, σ = id). We fix
an isomorphism ι : Qp

∼= C. Let X be a realizable scheme over k. We say that

M ∈ Db
hol(X/LF ) is ι-mixed (resp. ι-mixed of weight ≤ w, ι-mixed of weight ≥ w)

if forL(M ) ∈ Db
hol(X/KF ) is also. The results [AC1, 4.1.3, 4.2.3] are automatically

true also forDb
hol(−/LF ) since cohomological operators commute with forL by 1.4.9.

The same holds for [AC1, 4.3].

Remark. For (V, ϕ) ∈ F -VecL, if fϕ(x) is the characteristic polynomial of ϕ and
{αi} is the set of eigenvalues, then the set of eigenvalues for forL((V, ϕ)) ∈ F -VecK is{

x ∈ Qp | σ(fϕ)(x) = 0
}
σ∈HomK(L,Qp)

= {σ(αi)}σ∈HomK(L,Qp)
.

2.2.31. Let X be an algebraic stack over k. We say that M ∈ Hol(X/LF ) is ι-pure
of weight w (resp. ι-mixed, ι-mixed of weight ≤ w, ι-mixed of weight ≥ w) if for
any f : X → X in Xsm (cf. 0.0.2) of relative dimension d, f∗(M ) is ι-pure of weight
w + d (resp. ι-mixed, ι-mixed of weight ≤ w + d, ι-mixed of weight ≥ w + d). By
the existence of weight filtration [AC1, 4.3.4], if M is ι-mixed, then there exists
an increasing filtration W such that grWi (M ) is ι-pure of weight i. A complex
C ∈ Db

hol(X/LF ) is said to be ι-mixed complex of weight � ∈ {≤ w,≥ w, ∅}, if
H iC is ι-mixed of weight �+ i. We say that the complex C is ι-pure of weight w if
it is ι-mixed of weight both ≤ w and ≥ w. We can check that ι-mixedness or other
relevant notions defined here are compatible with those for the realizable scheme
case in 2.2.30.

2.2.32. Let f : X → Y be a morphism of algebraic stacks of finite type over k. We
have the following properties:

(1) For any algebraic stack X, the functor D′
X preserves ι-mixed complexes and

exchanges ι-mixed complexes of weight ≤ w and that of weight ≥ −w.
(2) Assume f is finite. Then f+, f

! preserve ι-mixedness. Moreover, f+ pre-
serves weights, and f ! preserves complexes of weight ≥ w.

(3) Let M and N be ι-mixed complexes in Db
hol(X/LF ) and Db

hol(Y/LF ),
respectively. Then M �N is ι-mixed as well. Moreover, if M and N are
of weight ≥ w and ≥ w′ (resp. ≤ w and ≤ w′), then M � N is of weight
≥ w + w′ (resp. ≤ w + w′).

(4) The complex Lω
X (resp. LX) is ι-mixed of weight ≥ 0 (resp. ≤ 0).

(5) Assume f =: j is an open immersion, and let M ∈ Hol(X/LF ) be ι-pure.
Then j!+(M ) (cf. 2.2.8) is ι-pure with the same weight (cf. [AC1, 4.2.4]).

(6) Assume f is a projection X×Y → Y, and let A be an ι-mixed complex of
weight ≤ w′ on X. Then fA + sends ι-mixed complexes of weight ≥ w to
that of weight ≥ w − w′.

We think only the last property needs a proof. Let M ∈ Hol(X × Y) be ι-mixed
of weight ≥ w. We may assume A ∈ Hol(X). Let us use the notation of 2.2.15.
We denote by di (resp. d

′
j) the relative dimension of Xi → X (resp. Yj → Y). By

definition, Mi,j is ι-mixed of weight ≥ w + di + d′j , and Ai is of weight ≤ w′ + di.
Recall that

RpiAi∗(Mi,j) ∼= pi+ Hom(q+i Ai,Mi,j),
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where qi : Xi × Yj → Yj is the projection. Using [AC1, 4.1.3], RpiAi∗(Mi,j) is of
weight ≥ (w + di + d′j) − (di + w′) = w − w′ + d′j . Now, by the spectral sequence
of Lemma 2.2.16, the claim follows.

2.3. Six functor formalism for admissible stacks. In this subsection, we con-
struct six functor formalism for admissible stacks, namely algebraic stacks of finite
type with finite diagonal morphism.

2.3.1. Definition. A morphism f : X → Y between algebraic stacks is said to be
admissible if it is of finite type and the diagonal morphism Δf : X → X ×Y X is
finite. An admissible stack (over k) is an algebraic stack over k whose structural
morphism is admissible.

Remark. (i) An admissible morphism is quasi-compact and separated by defini-
tion.

(ii) For an admissible stack X, there exists a finite covering {Ui} such that Ui

possesses a quasi-finite flat morphism Vi → Ui from a scheme. This is possible by
[SGA3, V, 7.2].3 In particular, there is a dense open substack U of X such that
there exists a finite locally free morphism V → U from a scheme.

2.3.2. Lemma. Let X
f−→ Y

g−→ Z be morphisms between algebraic stacks.
(i) If f and g are admissible, g ◦ f is also.
(ii) Let Y′ → Y be a morphism between algebraic stacks. If f is admissible, then

the base change X×Y Y′ → Y′ is admissible as well.
(iii) If g ◦ f is admissible, f is also.
(iv) Separated representable morphisms of finite type between algebraic stacks are

admissible. In particular, immersions are admissible.
(v) Any morphism X → Y from a scheme to an admissible stack is schematic.

Proof. The proofs for (i) and (ii) are the same as [EGAI, 5.5.1]. Let us show (iii).
Consider the factorization of Δg◦f into morphisms

X
Δf−−→ X×Y X

p−→ X×Z X.

These morphisms are representable and separated by [LM, 7.7]. We need to show
that Δf is finite. By the definition of an algebraic stack, Y → Y×Y is representable
and separated. Thus, by [EGAI, 5.5.1 (v)], Δg is separated as well. This implies
that p is separated since it is the base change of Δg. Since the composition p◦Δf is
assumed finite and the morphisms are representable, we conclude that Δf is finite
by [EGAII, 6.1.5 (v)].

For (iv), assume f is representable and separated. Then [LM, 8.1.2] shows that
the diagonal X → X×Y X is a monomorphism, and since f is assumed separated,
it is a closed immersion. For the latter assertion, use [EGAI, 5.5.1 (i)].

For (v), factorize the morphism into X → X ×Y → Y. The first morphism is
finite since Y is admissible, so it is schematic. The second one is schematic as well
since X is a scheme. �

3See also [Co2, 2.1].



984 TOMOYUKI ABE

2.3.3. The following variant of Chow’s lemma for an admissible stack is important
for showing fundamental properties of cohomological operations:

Proposition. Let X be an admissible stack. Then there exists a morphism
p : X → X such that X is a scheme and p is a surjective generically finite proper
morphism.

Proof. We modify slightly the proof of [O2, (1.1)]. From [O2, 2.1–2.4], the argument
is the same. In [O2, 2.5], he replaces X by the closure of U ↪→ X × P(V ). This
replacement is not finite, but birational over U, so this replacement is harmless in
our situation. In [O2, 2.6], it suffices to take P ′ such that dim(P ′) = dim(X) in
addition to the conditions there. If we have a surjective morphism a : P ′ → X,
then this is generically finite. Indeed, let q : Q → X be a smooth presentation, and
P ′
Q := P ′ ×X Q. By generic finiteness and some standard limit argument, there

exists an open dense subscheme V ⊂ Q such that P ′
Q ×Q V → V is finite. By fpqc

descent, a is finite over q(V ) ⊂ X.
We do not need [O2, 2.7, 2,8]. Take a quasi-finite flat covering

{
Vi → X

}
as

in Remark 2.3.1 (ii). Put P ′ = Pr
P where r := dim(X) − dim(P ). By copying

the argument of [O2, 2.9] (taking P1 to be P ′), we can shrink Vi and may assume
that there exist morphisms Vi → P ′ factoring Vi → X → P and the morphism∐

Vi → P ′ is surjective. Indeed, in [O2, 2.9], he uses only the fact that Vi → P
has equidimensional fibers. In our case, since Vi → X and X → P are flat, the
equidimensionality holds. For [O2, 2.10–2.13], we just copy word by word. Since
he only takes normalizations and blowups of P ′, the dimension does not change,
and we get the desired morphism. �
Remark. We are not able to take p to be generically étale in general. Indeed, let k
be an algebraically closed field of characteristic p, and let G be a connected finite flat
group scheme of dimension 0 over k which is not étale (e.g., αp := Spec(k[T ])/(T p)).
Consider the admissible stack X := BG := [Spec(k)/G]. Assume there exists
a generically finite étale proper surjective morphism p : X → BG. Then since
dim(BG) = 0, the dimension of X would be 0 as well. Since BG is smooth over
Spec(k) by [Beh, 5.1.2], X is étale over Spec(k). Thus by taking a connected com-
ponent, we may assume that X = Spec(k), since k is assumed algebraically closed.
Since any G-torsor on Spec(k) splits, the category BG(Spec(k)) is a singleton, and
p would be nothing but the universal torsor. The morphism p cannot be étale, since
if it were, G would be étale.

2.3.4. Corollary. Let X be an admissible stack. Then there exists a generically
finite proper surjective morphism X → X such that X is a smooth quasi-projective
scheme.

Proof. Use Chow’s lemma above, and then use de Jong’s alteration theorem. �
2.3.5. Let f : X → Y be a morphism of admissible stacks. When f is a finite
morphism (resp. projection), we denote by f⊕ and f⊕ the functors f+ and f+

defined in 2.2.1 (resp. 2.2.24) for clarification.

Consider the canonical factorization X
i−→ X×Y

p−→ Y. Since Y is admissible, i
is finite, and the following definitions make sense:

f+ := p⊕ ◦ i⊕ : D+
hol(X) → D+

hol(Y), f+ := i⊕ ◦ p⊕ : Db
hol(Y) → Db

hol(X).

We have the adjoint pair (f+, f+).
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2.3.6. Lemma. Let f : X → Y be a finite morphism between admissible stacks.
Then there are canonical isomorphisms f⊕ ∼= f+ and f⊕ ∼= f+.

Proof. Let X
i−→ X × Y

p−→ Y be the standard factorization. By the adjointness
property, it suffices to construct the isomorphism for the pullback. We construct the
isomorphism for their duals, namely f ! and i!◦p! where p! := Lω

X�(−) (cf. Definition
2.2.22). Let Y• → Y be a simplicial realizable scheme presentation, and let X• → X

be its pullback. We may assume thatX0 → X and Y0 → Y are equidimensional. For
M ∈ M(Y•), let us construct an isomorphism α : H 0f !(M )

∼−→ H 0
(
i!(Lω

X•
�M )

)
.

Put Y = Yn for n ≥ 0, and X := X ×Y Y . We have the following commutative
diagram:

X

g

��

i′ �� X × Y

g′

��

p′
�� Y

g′′

��
X

i
�� X×Y p

�� Y.

Let d := dg′ − dg′′ where d� denotes the relative dimension of �. We have canonical
isomorphisms

g∗f !(M ) ∼= (p′ ◦ i′)!g′′∗(M ) ∼= i′!(Lω
X � g′′∗M )

∼= i′!g′∗(Lω
X• � M )(d)[d] ∼= g∗i!(Lω

X• � M ).

Apply H 0 to this isomorphism, and since it satisfies the cocycle condition, we have
the desired isomorphism α. Moreover, this isomorphism implies that

(�) H n
(
i!(Lω

X• � I )
)
= 0 for n �= 0

if I is an injective object in M(Y•). Now, for M ∈ D+(X•), take an injective
resolution M → I •. We denote by H 0

(
i!(Lω

X•
� I •)

)
the complex whose term

in degree n is H 0
(
i!(Lω

X•
� I n)

)
. Recall the notation f◦ := H 0f ! in 2.1.10. We

have quasi-isomorphisms

f !(M ) ∼= f◦(I •)
∼−→ H 0

(
i!(Lω

X• � I •)
) ∼←− i!(Lω

X• � M ),

where the first isomorphism holds since f ! := Rf◦, the second one is induced by α,
and the third one follows by the vanishing (�). Thus, the lemma follows. �

2.3.7. Lemma. Let X
f−→ Y

g−→ Z be morphisms of admissible stacks. Then we
have canonical isomorphisms of functors

α : id+
∼−→ id, β : id

∼−→ id+,

cg,f : f
+ ◦ g+ ∼−→ (g ◦ f)+, dg,f : (g ◦ f)+ ∼−→ g+ ◦ f+.

These homomorphisms are subject to the following conditions: 1. We have iden-
tities cf,id = α(f+), cid,f = f+α. 2. Assume we are given another morphism of
admissible stacks h : Z → W. Then we have the equality

ch,g◦f ◦ cg,f (h+) = ch◦g,f ◦ f+(ch,g).

We have the similar equalities for β and dg,f .
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Proof. By the adjointness property, it suffices to show the lemma for the pullback.
First, we define α to be the isomorphism of Lemma 2.3.6. Consider the following
diagram:

X
c ��

a

��
1©

X× Z

��

d�����
���

���
�

4©

X×Y
b

��

��
3©

X×Y× Z

����
���

���
���

��

2©

Y �� Y× Z �� Z.

For a morphism a, we denote by Γa the graph morphism. The transitivity isomor-
phism for 1©, namely the isomorphism a⊕ ◦ b⊕ ∼= c⊕ ◦ d⊕, is defined by 2.2.1. For
4©, use Lemma 2.2.23, and for 3©, use Lemma 2.2.6 for finite morphisms id : X → X

and Γg : Y → Y× Z. Finally, for the transitivity isomorphism for 2©, it suffices to

construct Γ+
f (LX×Y) ∼= LX. This follows by Lemma 2.2.23. The verification of the

compatibility conditions is straightforward, so we leave it as an exercise. �

Let Stadm(k) be the full subcategory of the category of algebraic stacks (we do
not consider the 2-morphisms) consisting of admissible stacks. For an admissible
stack X, we associate the triangulated category D+

hol(X) (resp. Db
hol(X)). By the

data of the lemma above, we have a cofibered category F+ → Stadm by considering

f+ (resp. a fibered category F+ → Stadm by considering f+). Recall the notation
of 2.2.1 and Definition 2.2.3. The isomorphisms of Lemma 2.3.6 yield isomorphisms
of fibered and cofibered categories F⊕ ∼= F+ and F⊕ ∼= F+ over the category of

an admissible stack with finite morphism Stadm,fin.

2.3.8. Lemma. Let f : X → Y be a smooth morphism of admissible stacks, and let
d be the relative dimension of f . Then f∗ ∼= f+[d], and Rf∗ ∼= f+[−d] (cf. 2.2.7).

Proof. By adjointness, it suffices to prove f∗ ∼= f+[d]. Since the proof is similar to
that of Lemma 2.3.6, we only sketch the proof. As the proof of the lemma, we also
show the dual claim: f∗(d) ∼= f ![−d] (cf. Lemma 2.2.7). We may take X••, Y• as
in 2.2.7. Let Y := Yi and X := Xi,j . Consider the following cartesian diagram:

X ×Y Y ��

α

��
�

X × Y ��

��

Y

��
X �� X×Y �� Y.

For M ∈ M(Y•), we have α∗f∗(M )(d) ∼= α∗f ![−d](M ). This follows by using the
fact that if g is a smooth morphism of relative dimension dg between realizable
schemes, then g∗(d) ∼= g![−dg] by definition. We finish the proof by the descent
argument. �

For a smooth morphism ρ : X → X from a realizable scheme to an admissible
scheme and M ∈ Db

hol(X), we often denote ρ∗(M ) by MX . When f is an open
immersion, this lemma justifies the notation of 2.2.8. Recall that in such a case,
we have an adjoint pair (f!, f

+) as well as (f+, f+).
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2.3.9. Proposition (Smooth base change). Consider the following cartesian dia-
gram of admissible stacks:

X′ g′
��

f ′

��
�

X

f

��
Y′

g
�� Y,

where g is smooth. Then the base change homomorphism of functors g+f+ →
f ′
+g

′+ : D+
hol(X) → D+

hol(Y
′) is an isomorphism.

Proof. In the verification, it suffices to replace g+ and g′+ by g∗ and g′∗ by Lemma
2.3.8. We use the standard factorization of f into a finite morphism and a projec-
tion, and the verification is reduced to these cases separately. In both cases, the
verification is straightforward from the definition, so we leave the details to the
reader. �

2.3.10. Proposition. Let f : X → Y be a morphism between admissible stacks.
Then f+ preserves boundedness, namely it induces a functor Db

hol(X) → Db
hol(Y).

Proof. It suffices to show that f+(M ) is bounded for M ∈ Hol(X). Let us show
by the induction on the dimension of the support of M . We may assume that
the support of M is equal to X. Now, we may shrink X. Indeed, consider the

localization triangle i+i
! → id → j+j

+ +1−−→ (cf. Lemma 2.2.9). We know that i+i
!

and j+j
+ preserve boundedness. By the induction hypothesis, we are reduced to

showing the proposition for f+j+ ∼= (f ◦ j)+, and the claim follows. By shrinking
X, we may assume that there exists a finite locally free morphism X → X from an
affine scheme X by Remark 2.3.1 (ii). In this situation, since M is a direct factor
of h+h

+(M ) by Lemma 2.2.4, we may assume that X is an affine scheme. Finally,
let g : Y → Y be a smooth presentation from an affine scheme. Since the functor g∗

is conservative by Remark 2.1.16 (ii), it suffices to show the claim for the morphism
X ×Y Y → Y . Since X is assumed to be an affine scheme, this is a morphism of
realizable schemes, and the boundedness is already known. �

2.3.11. Let X be an admissible stack. Then the diagonal morphism Δ: X → X×X

is finite. For i = 1, 2, let pi : X × X → X be the i-th projection. We define the
internal Hom functor by

Hom(M ,N ) := p1M+

(
Δ+(N )

)
: Db

hol(X)
◦ ×Db

hol(X) → Db
hol(X).

Let L ∈ Db
hol(X). Since (p+1M , p1M+) is an adjoint pair, with Remark 1.2.1, we

have

RHomD(X)

(
L ,Hom(M ,N )

) ∼= RHomD(X×X)

(
L � M ,Δ+N

)
.

We can check easily that when X is a realizable scheme, Hom coincides with that
in 1.1.3. Now, let f : X → Y, g : X′ → Y′ be morphisms of admissible stacks. Then,
we have an isomorphism (f × g)+

(
(−) � (−)

) ∼= f+(−) � g+(−). This follows by
combining Lemma 2.2.6 and (2.2.25.1). Using this, we have

Hom
(
L , f+ Hom(f+M ,N )

) ∼= Hom
(
f+(L )� f+(M ),ΔX∗(N )

)
∼= Hom

(
(f × f)+(L � M ),ΔX∗(N )

)
∼= Hom

(
L ,Hom(M , f+N )

)
.
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Thus, we get an isomorphism

f+ Hom(f+M ,N ) ∼= Hom(M , f+N ).

2.3.12. Lemma. Let M and N be objects of Db
hol(X). For a presentation ρ : X →

X from a realizable scheme, there is a canonical isomorphism

ρ∗ Hom(M ,N ) ∼= Hom
(
ρ∗(M ), ρ∗(N )

)
[d],

and d denotes the relative dimension function of ρ.

Proof. Consider the following commutative diagram:

X

δ

�����
���

���
���

Δ′

�� ���
���

���
���

���
���

���
���

X ×X
ρ×id

�� X×X
q

�� X
ρ

�� X,

where δ is the diagonal morphism, Δ′ := (ρ, id), and q is the second projection.
Put N ′ := ρ∗(N ). By the definition of the functor qM+, we have

(�) ρ∗ Hom(M ,N ) ∼= qM+(Δ
′
+(N

′)).

Let L be an object in Db
hol(X). For an algebraic stack Y, we denote HomD(Y) by

HomY. We have

HomX

(
L , qM+(Δ

′
+(N

′))
) ∼= HomX×X

(
M � L ,Δ′

+(N
′)
)

∼= HomX

(
δ+(ρ× id)+(M � L ),N ′) ∼= HomX

(
ρ+(M )⊗ L ,N ′)

∼= HomX

(
L ,Hom(ρ+(M ),N ′)

)
,

where the first isomorphism follows by the adjunction (q+M , qM+), the second by the
adjunction (Δ′+,Δ′

+), the third by Lemma 2.2.6, and the last by the adjointness
property of ⊗ and Hom for realizable schemes. Thus, we have a canonical isomor-
phism Hom

(
ρ+(M ),N ′) ∼= qM+

(
Δ′

+(N
′)
)
. Combining with the isomorphism

ρ+ ∼= ρ∗[−d] and (�), the lemma follows. �
2.3.13. Recalling Definition 2.2.22, we define the dual functor to be

DX(M ) := Hom(M , Lω
X) : D

b
hol(X)

◦ → Db
hol(X).

If no confusion may arise, we often omit the subscript X from DX.

Proposition (Biduality). There exists a canonical isomorphism of functors

γ : id
∼−→ DX ◦ DX : Db

hol(X) → Db
hol(X).

Proof. We have isomorphisms

Hom
(
D(M ),D(M )

) ∼= Hom
(
D(M )� M ,Δ+(L

ω
X)
)(2.3.13.1)

∼= Hom
(
M � D(M ),Δ+(L

ω
X)
) ∼= Hom(M ,DD(M )),

where the second isomorphism is induced by the morphism X × X
∼−→ X × X ex-

changing the first and second factor. The image of the identity homomorphism
induces γ in the claim. Let ρ : X → X be a presentation from a realizable scheme.
By Remark 2.1.16 (ii), it suffices to show that ρ∗(γ) is an isomorphism. Since the
dual functor is compatible with ρ∗ by Lemma 2.3.12, this is reduced to checking
the biduality in the realizable scheme case, which is Lemma 1.1.4. �
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Remark. (i) We have a canonical isomorphism H iDX
∼= H iD′

X for any i. Indeed,
for any presentation ρ : X → X, we can check that ρ∗DX and ρ∗D′

X are canonically
isomorphic to DXρ∗, thus we get the claim by gluing. However, even though there
is no doubt that DX and D′

X coincide, we do not know how to construct a morphism
DX → D′

X in Db
hol(X) compatible with the isomorphisms of i-th cohomologies.

(ii) We have a canonical isomorphism Lω
X
∼= DX(LX). This follows since for any

X ∈ Xsm, we have (L
ω)X ∼= D(L)X , and we have the uniqueness of Theorem 2.2.20.

(iii) When j is an open immersion, we have j+◦D ∼= D◦j+. Thus, j! ∼= D◦j+◦D.
(iv) When f is a finite morphism, we prove in Lemma 2.3.17 that we have an

isomorphism f+ ∼= D ◦ f ! ◦ D.
2.3.14. We define the tensor product by

(−)⊗ (−) := Δ+
(
(−)� (−)

)
: Db

hol(X)×Db
hol(X) → Db

hol(X).

Let M , N , L be objects in Db
hol(X). We have

RHom
(
M ,Hom(N ,L )

)
:= RHom

(
M , p1N +(Δ+L )

) ∼= RHom
(
M � N ,Δ+L

)
∼= RHom

(
Δ+(M � N ),L

)
=: RHom

(
M ⊗ N ,L

)
.(2.3.14.1)

The identity homomorphism of Hom(M ,N ) induces the evaluation homomor-
phism

Hom(M ,N )⊗ M → N .

Now, let p : X → Spec(k) denote the structural morphism. Since p2 ◦Δ ∼= id, we
have

LX ⊗ M = Δ+
(
LX � M

) ∼= Δ+(p+2 (M )) ∼= (p2 ◦Δ)+(M ) ∼= M ,

where the isomorphisms hold by the definition and results in 2.2.24. Using these,
we have

RΓ ◦ p+ Hom(M ,N ) ∼= RHomD(X)

(
LX,Hom(M ,N )

) ∼= RHomD(X)(M ,N ),

where the first isomorphism holds by Proposition 2.2.19, and the second by what
we have just proven.

2.3.15. Proposition. Let f : X → X′, g : Y → Y′ be morphisms of admissible
stacks.

(1) We have an isomorphism (f × g)+
(
(−)� (−)

) ∼= f+(−)� g+(−).

(2) We have D
(
(−)� (−)

) ∼= D(−)� D(−).

(3) We have f+
(
(−)⊗ (−)

) ∼= f+(−)⊗ f+(−).

(4) We have Hom(M ⊗ N ,L ) ∼= Hom
(
M ,Hom(N ,L )

)
.

(5) We have Hom
(
D(M ),D(N )

) ∼= Hom(N ,M ).

(6) We have Hom(M ,N ) ∼= D
(
M ⊗ D(N )

)
.

Proof. The first one is just a reproduction from 2.3.11. The second claim follows
by combining Lemma 2.2.6 (the commutativity of f+ and �), Lemma 2.2.25, and
Lemma 2.2.23 (i). Let us show (3). Let M ′, N ′ be objects in Db

hol(X
′). Consider

the following commutative diagram:

X
ΔX ��

f

��

X× X

f×f

��
X′

ΔX′
�� X′ × X′.
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Using this diagram, we have

f+
(
M ′⊗N ′) ∼= f+Δ+

X′

(
M ′�N ′) ∼= Δ+

X
(f×f)+

(
M ′�N ′) ∼= f+(M ′)⊗f+(N ′).

Let us show (4). For any Q ∈ Db(X), we have a canonical isomorphism

Hom
(
Q,Hom(M ⊗ N ,L )

) ∼= Hom
(
Q,Hom(M ,Hom(N ,L ))

)
by using (2.3.14.1) twice, thus the claim follows. To show (5), the isomorphisms
(2.3.13.1) remain to hold even if we replace Hom by Hom. For the last claim
(6), it suffices to construct a canonical isomorphism Hom

(
Q,Hom(M ,N )

) ∼=
Hom

(
Q,D(M ⊗ D(N ))

)
. This can be shown by using (4) and (5). �

2.3.16. Let f : X → Y be a morphism of admissible stacks, and let M , N be objects
in Db

hol(X). The adjunction homomorphism f+f+ → id induces a homomorphism

f+
(
f+(M )⊗ f+(N )

) ∼= f+f+(M )⊗ f+f+(N ) → M ⊗ N ,

where the first isomorphism follows by Proposition 2.3.15. This induces the homo-
morphism

(2.3.16.1) f+(M )⊗ f+(N ) → f+
(
M ⊗ N

)
.

Using this, we have a homomorphism

f+ Hom(M ,N )⊗ f+(M ) → f+
(
Hom(M ,N )⊗ M

)
→ f+(N ),

where the second homomorphism is induced by the evaluation homomorphism.
Taking the adjunction (2.3.14.1), we get a canonical homomorphism

(2.3.16.2) f+ Hom
(
M ,N

)
→ Hom(f+M , f+N ).

Duality results.

2.3.17. First, let us construct the trace map for projective morphisms. Let f : X →
Y be a projective morphism between admissible stacks. Let Y• → Y be a simplicial
quasi-projective scheme presentation, and since f is assumed projective, the carte-
sian product X• := X×Y Y• is an admissible simplicial quasi-projective scheme as
well. Since f+L

ω
X•

, Lω
Y•

are in Db
hol(Y•), we have a spectral sequence

Ep,q
1 = ExtqD(Yp)

(fp+L
ω
Xp

, Lω
Yp
) ⇒ Extp+q

D(Y•)
(f+L

ω
X• , L

ω
Y•)

by (2.1.5.1). The usual trace map defines Trfp ∈ HomD(Xp)(fp+L
ω
Xp

, Lω
Yp
) for each

p. By this spectral sequence, the trace map for p = 1 yields the desired trace map
Trf . We note that (Trf )p is nothing but Trfp by the compatibility of the trace
map.

Now, using this trace map, we define

f+ ◦ DX
∼= f+ Hom(−, Lω

X)
�−→ Hom(f+(−), f+L

ω
X)

Trf−−→ Hom(f+(−), Lω
Y) ∼= DY ◦ f+,

where � is induced by (2.3.16.2). This homomorphism is in fact an isomorphism.
To check this, since the verification is local, this may easily be reduced to the
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realizable scheme case, and this case follows by Lemma 1.1.5. Summing up, we
have the following:

Lemma. Let f : X → Y be a projective morphism between admissible stacks.
Then we have the canonical isomorphism DY ◦ f+

∼←− f+ ◦ DX. In particular,
putting f ! := DX ◦ f+ ◦DY, the pair (f+, f

!) is an adjoint pair. Moreover, consider
the following cartesian diagram of admissible stacks:

(2.3.17.1) X′ g′
��

f ′

��
�

X

f

��
Y′

g
�� Y.

Under the assumption that f is projective, the canonical homomorphism g+f+ →
f ′
+g

′+ is an isomorphism. If, moreover, g is an open immersion, we have the
canonical isomorphism g! ◦ f ′

+
∼= f+ ◦ g′!.

2.3.18. Proposition (Proper base change). Consider the cartesian diagram of ad-
missible stacks (2.3.17.1). Assume that f is proper (where we do not assume f to be
projective). Then the canonical homomorphism g+f+ → f ′

+g
′+ is an isomorphism.

Proof. It suffices to show that g+f+(M )
∼−→ f ′

+g
′+(M ) for M ∈ Hol(X). We may

assume X to be reduced by Lemma 2.2.4 and Lemma 2.3.17. By the smooth base
change theorem, Proposition 2.3.9, we may replace Y by its smooth presentation.
In particular, we may assume Y =: Y to be a realizable scheme. Now, we use the
induction on the dimension of the support of M . We may assume Supp(M ) = X.
By the induction hypothesis, it suffices to show the equality for M = j!(N ),
where j : U ↪→ X which is open dense. By Corollary 2.3.4, there is a smooth
quasi-projective scheme X that is projective and generically finite over X, and
projective over Y . Since h : X → X is projective, we already know the base change
by Lemma 2.3.17. We may shrink U so that h is finite flat over U since X is
assumed reduced. We denote h−1(U) → U by h, abusing the notation. Then we
have h+j

′
!h

+(N ) ∼= j!h+h
+(N ), where j′ : h−1(U) → X, and this contains j!(N )

as a direct factor by Lemma 2.2.4. Thus, the verification is reduced to the case
M = j′!(h

+(N )). Indeed, let F ∈ Db
hol(X), and let E be a direct factor of F . For

any integer i, we have the following commutative diagram:

H ig+f+E ��

��

H ig+f+F ��

�

��

H ig+f+E

��
H if ′

+g
′+E �� H if ′

+g
′+F �� H if ′

+g
′+E ,

where the compositions of the horizontal homomorphisms are the identities. If the
homomorphism � is an injection (resp. surjection), the left (resp. right) vertical
homomorphism is also, so it suffices to show that � is an isomorphism.

Thus we may replace X by X. In this case, the verification is local with respect to
Y , and we may assume it to be an affine scheme. In this situation, X is realizable as
well since X is projective over Y , and the proper base change theorem has already
been known (cf. 1.1.3 (8)). �
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2.3.19. Definition. A morphism of admissible stacks f : X → Y is said to be
compactifiable if it can be factorized as

X
j−→ X

f ′

−→ Y,

where X is admissible, j is an open immersion, and f ′ is proper. We say that X → X

is a compactification of f . An admissible stack X is said to be compactifiable if the
structural morphism is compactifiable. We abbreviate compactifiable admissible
stack as c-admissible stack.

2.3.20. In this subsection, we fix a subcategory Sadm of the category of admis-
sible stacks satisfying the following conditions: 1. open immersions and proper
morphisms are morphisms in Sadm; 2. any morphism f : X → Y in Sadm is com-
pactifiable by an object in Sadm; and 3. for a proper morphism X → Y and any
morphism Y′ → Y in Sadm, the fiber product X ×Y Y′ → Y′ is in Sadm. An
example of such a category is the following:

Lemma. The full subcategory of c-admissible stacks satisfies the conditions.

Proof. We need to show that any morphism between c-admissible stacks is com-
pactifiable. Let f : X → Y be a morphism between c-admissible stacks, and let
X be a compactification of the structural morphism of X. Then f is factorized as

X
Γ−→ X×Y

p−→ Y where Γ is the graph morphism and p is the projection. Since X

is assumed proper, p is proper. Thus, it suffices to show that Γ is compactifiable.
Since Y is admissible, Γ is a quasi-finite morphism. By [LM, 16.5], any quasi-finite
morphism between admissible stacks is compactifiable, and the claim follows. �
Remark. Any algebraic space separated of finite type over k is known to be
c-admissible by [CLO].

2.3.21. An advantage of considering the category Sadm is that it satisfies the condi-
tions of [SGA4, XVII, 3.2.4] if we take (S) to be Sadm, (S, i) to be the subcategory
consisting of open immersions, and (S, p) to be the subcategory consisting of proper
morphisms.

Now, for X ∈ Sadm, we associate the category Db
hol(X). We shall further en-

dow this with data which satisfy the conditions of [SGA4, XVII, 3.3.1]. For a
proper morphism p, we consider the pushforward p+ and the canonical isomorphism
(q ◦ p)+ ∼= q+ ◦ p+ for composable morphisms p, q. For an open immersion j, we
consider j! with canonical isomorphisms for compositions. These are the data of
[SGA4, (i), (i’), (ii), (ii’)]. These functors are subject to the conditions [SGA4, (a),
(a’), (b), (b’)]. Finally, for [SGA4, (iii)], we use the proper base change 2.3.18
and localization exact triangle 2.2.9. This isomorphism is subject to the conditions
[SGA4, (c), (c’)]. Thus, we may apply [SGA4, Proposition 3.3.2]. Summing up, we
get the following definition.

Definition. Let f : X → Y be a morphism in Sadm. Take a compactification
j : X ↪→ X, and let g : X → Y be the proper morphism. Then the functor g+ ◦ j!
does not depend on the choice of the factorization up to canonical equivalence. This
functor is denoted by f!. Given composable morphisms f and g in Sadm, we have
a canonical equivalence (f ◦ g)! ∼= f! ◦ g!.
2.3.22. Proposition. Consider the cartesian diagram (2.3.17.1) (where we do not
assume f to be projective). We assume that the diagram is in Sadm. Then there
exists a canonical isomorphism g+ ◦ f! ∼= f ′

! ◦ g′+.
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Proof. By definition of f!, it suffices to treat the case where f is proper and an
open immersion separately. When f is proper, this is nothing but the proper base
change theorem, Proposition 2.3.18. When f =: j is an open immersion, we have the
canonical homomorphism j′! ◦g′+ → g+◦j!. By definition, this homomorphism is an
isomorphism if we take j′+. Thus by the localization triangle (cf. Lemma 2.2.9), we
get the isomorphism. Finally, we need to show that the resulting isomorphism does
not depend on the choice of the factorization. Since the verification is standard, we
leave it to the reader. �

2.3.23. Let us construct a trace map, namely a map f!L
ω
X → Lω

Y for any morphism
f : X → Y in Sadm. This will be achieved in Theorem 2.3.30. For this, we need to
introduce a new t-structure.

Definition. Let X be a realizable scheme over k. For � ∈ {≥ 0,≤ 0}, let
cD� be the full subcategory of Db

hol(X/L∅) consisting of C such that forL(C ) ∈
cD�

hol(X/K∅), using 1.3.1. The pair (
cD≤, cD≥) defines a t-structure onDb

hol(X/L∅)
called the constructible t-structure. We define dcD≤ := D(cD≥) and dcD≥ :=
D(cD≤). Then (dcD≤, dcD≥) defines a t-structure on Db

hol. This is called the dual
constructible t-structure. We also define t-structures (cD≤, cD≥) and (dcD≤, dcD≥)
on Db

hol(X/LF ) such that C is in one of the full subcategories if and only if forF (C )
is in the corresponding one of Db

hol(X/L∅).

2.3.24. Definition. Let X be an algebraic stack. Let X• → X be a simplicial
realizable scheme presentation, and let M ∈ Db

hol(X•). Put di := dXi/X (cf. 0.0.3).

(1) A complex M ∈ Db
hol(X) is in cD� (� ∈ ≤ 0,≥ 0) if and only if ρ∗i (M ) ∈

cD�−di .
(2) A complex N ∈ Db

hol(X) is in
dcD� (� ∈ ≤ 0,≥ 0) if and only if ρ∗i (N ) ∈

dcD�+di .

We leave the reader to check that (cD≤0, cD≥0) and (dcD≤0, dcD≥0) define t-
structures, and that they do not depend on the choice of the simplicial schemes.
These t-structures are called the constructible t-structure and dual constructible t-
structure, and are abbreviated as c-t-structure and dc-t-structure, respectively. We
denote the cohomology functor for the c-t-structure (resp. dc-t-structure) by cH ∗

(resp. dcH ∗), and objects in the heart are called c-modules (resp. dc-modules).

2.3.25. Lemma. (i) We have dcH i ∼= D◦cH −i◦D. In particular, M ∈ Db
hol(X) is

a c-module if and only if D(M ) is a dc-module, and a homomorphism f : M → N
of c-modules is c-injective (resp. c-surjective) if and only if D(f) is dc-surjective
(resp. dc-injective).

(ii) Let f : X → Y be a smooth morphism. Then the functor f+ is c-t-exact.

Proof. For (ii), see Lemma 1.3.4. The details are left to the reader. �

2.3.26. Lemma. (i) For an admissible stack X, Lω
X is a dc-module.

(ii) Let f : X → Y be a morphism in Sadm. Then f! is right dc-t-exact.

Proof. To check (i), it suffices to show that D(Lω
X)

∼= LX is a c-module. This follows
from Lemma 1.3.4 (i). Let us check (ii). First we may assume Y =: Y to be a
realizable scheme. For a dc-module M on X, we need to show that dcH if!(M ) = 0
for i > 0. We use induction on the support of M . We may assume Supp(M ) = X.
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For an open dense substack j : U ↪→ X, it suffices to check that dcH if!(j!j
+M ) = 0

for i > 0. Indeed, consider the localization triangle (cf. 2.2.9),

j!j
+M → M → i+i

+M
+1−−→,

where i is the closed immersion of the complement of U. Since i+i
+ is right dc-t-

exact by Lemma 1.3.4 and i+i
+M is supported on the complement of U, we know

that dcH if!(i+i
+M ) = 0 for i > 0 by the induction hypothesis. Thus, if we know

the vanishing for j!j
+(M ), we do for M also. By shrinking X, we can take a finite

flat morphism h : X → X from a realizable scheme. By Lemma 2.2.4, M is a direct
factor of Dh+h

+D(M ) ∼= h!h
!(M ) (cf. Lemma 2.3.17). Since h! is dc-t-exact, it

remains to prove the right dc-t-exactness of f ◦ h : X → Y . Since D ◦ f! ◦ D ∼= f+
is left c-t-exact by Lemma 1.3.4, we get the result. �

2.3.27. Lemma. Let X• → X be an admissible simplicial scheme. Assume we
are given

{
Mi, αφ

}
, where Mi is a dc-module on Xi, and αφ : X(φ)∗(Mi) ∼= Mj

for φ : [i] → [j] satisfying the cocycle condition. Then there exists a unique dc-
module M on X, the descent, such that ρ∗i (M ) ∼= Mi. Moreover, given other data{
Ni, βφ

}
and its descent N on X, homomorphisms M → N correspond bijectively

to systems of homomorphisms Mi → Ni compatible in the obvious sense. We also
have similar results for c-modules.

Proof. To check this, it suffices to show that RkHom(Mi,Mi) = 0 for k < 0 by
Theorem 2.2.20. By the definition of dc-t-structure and biduality (cf. Proposition
2.3.13), we may assume that Mi is a c-module. In this case, since RHom(−,−) is
left c-t-exact, the claim follows. �

2.3.28. Lemma. Let f : X → Y be a smooth morphism of realizable schemes. Let
M ′ be a complex in Db

hol(Y ), and put M := f+(M ′). Then there exists an open
dense subscheme V ⊂ Y such that Supp(M ′)∩V is dense in Supp(M ′), and for any
closed immersion from a point g : {y} → V ↪→ Y , the base change homomorphism
g+f+(M ) → f ′

+g
′+(M ) is an isomorphism, where f ′ : X ′ := X ×Y {y} → {y} and

g′ : X ′ → X are the base changes of f and g.

Proof. We may assume M ∈ Hol(X/L). By replacing Y by the support of M , we
may assume that the support of M is equal to Y . We may assume Y to be reduced,
and by shrinking Y , we may moreover assume that Y is smooth and M ′ is smooth
on Y . We may take V such that each cohomology of f+(M ) is smooth. Let c be
the codimension of {y} in Y . In this case, we have g+f+(M ) ∼= g!f+(M )(c)[2c]
and f ′

+g
′+(M ) ∼= f ′

+g
′!(M )(c)[2c] by Theorem 1.5.14, and the claim follows by

1.1.3 (8). �

2.3.29. Lemma. Let X• → X be a simplicial realizable scheme presentation of a
c-admissible stack X. Let pi : Xi → X be the induced morphism. We put p0i+ :=
cH 0pi+ (resp. p0i+ := dcH 0pi+), and similarly for p0i!. For a c-module M (resp.
dc-module N ), we denote by Mi (resp. Ni) the object ρ∗i M (resp. ρ∗i N ) on Xi.
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We have the following exact sequences of c-modules (resp. dc-modules):

0 → M → p00+(M0[−d0]) → p01+(M1[−d1])

(resp. 0 → N → p00+(N0[−d0]) → p01+(N1[−d1])),

p01!(M1[d1](d1)) → p00!(M0[d0](d0)) → M → 0

(resp. p01!(N1[d1](d1)) → p00!(N0[d0](d0)) → N → 0).

Proof. Let us prove the first sequence for M . The sequence is defined by the
adjunction. We only need to show that it is exact. Thus, we may assume X =: X
to be a scheme. First, let us show that there exists an open subscheme j : U ↪→
X which is dense in the support of M such that j+M |U satisfies the exactness
property. We may take U such that p0 and p1 possess the base change property by
Lemma 2.3.28. Indeed, it suffices to show the exactness after restricting to U since
j+ is left c-t-exact by Lemma 1.3.4. Then, we are reduced to the case where X is a
point by the base change. Then c-t-structure coincides with the usual t-structure,
and the exactness follows by Proposition 2.1.13.

We show the exactness by the induction on the dimension of the support of M .
Take an open dense subscheme U of the support of M such that the sequence is
exact for j+M |U where j : U ↪→ X. Consider the following diagram of c-modules
where we omit shifts and twists:

0

��

0

��

0

��

0

��
0 �� C ��

��

M ��

��

j+M ��

��

C ′

��

�� 0

0 �� p00+C0
��

��

p00+M0
��

��

p00+j+M0

��

�� p00+C ′
0

��
0 �� p01+C1

�� p01+M1
�� p01+j+M1

�� p01+C ′
1.

The horizontal sequences are complexes, and the ones with solid arrows are exact.
By the induction hypothesis, the vertical sequences are known to be exact except
for the one starting from M . Then by diagram chasing, we get that the vertical
sequence starting from M is exact as well, and we get the lemma.

Now, for the exactness of the second sequence for N , we just argue dually.
For the second sequence for M , the argument is similar and even simpler: We
may assume X to be a scheme. We can check the exactness by taking the stalk,
and reduce to the case where X is a point immediately, in which case we get the
exactness by Proposition 2.1.13. We can show dually for the first sequence for N ,
and we may finish the proof. �

2.3.30. Theorem. Let f : X → Y be a morphism in Sadm. Then there exists a
unique homomorphism Trpf : f!L

ω
X → Lω

Y satisfying the following conditions.

(I) Transitivity. Given X
f−→ Y

g−→ Z in Sadm, the composition of the following
homomorphisms is equal to Trpg◦f :

(g ◦ f)!Lω
X
∼= g!(f!L

ω
X)

g!Tr
p
f−−−→ g!L

ω
Y

Trpg−−→ Kω
Z .
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(II) When X =: X and Y =: Y are realizable schemes and L = K, then Trpf is

the adjunction homomorphism f!K
ω
X

∼= f!f
!Kω

Y → Kω
Y . Moreover, Trpf commutes

with forL.
(III) The trace map is compatible with smooth pullback on Y. Namely, con-

sider (2.3.17.1) in Sadm such that g is smooth of relative dimension d. Then the
composition

f ′
!L

ω
X′ ∼= f ′

! g
′∗Lω

X(d)[d] → g∗f!L
ω
X(d)[d]

g∗Trpf−−−−→ g∗Lω
Y(d)[d] ∼= Lω

Y′ ,

where the second map is the base change homomorphism, coincides with Trpf ′ .

Proof. We put the dc-t-structure on Db
hol(X) and Db

hol(Y). Since f! is right dc-t-
exact by Lemma 2.3.26, it suffices to construct a morphism of dc-t-modules f0

! L
ω
X →

Lω
Y where f0

! := dcH 0f!. When X and Y are realizable schemes, the trace map

for L = K extends uniquely to general L by (II). Let us construct this in the
case where Y =: Y is a realizable scheme. Let X0 → X be a presentation from a
quasi-projective scheme, let X1 := X0 ×X X0, let p0, p1 : X1 → X0 be the first and

second projection, and put fi : Xi → X
f−→ Y. By the property of the adjunction

homomorphism, we have the following commutative diagram:

f0
1!L

ω
X1

p∗
0

��
p∗
1

��

Trpf1

�������
������

��

Lω
Y .

f0
0!L

ω
X0

Trpf0

���������������

Thus by the second exact sequence for N in Lemma 2.3.29, we have a homo-
morphism Trpf : f

0
! L

ω
X → Lω

Y as required. By condition (I), this map is uniquely
determined. It is straightforward to check that this map does not depend on the
choice of the smooth presentation and satisfies (II).

Finally consider the case where Y is not a realizable scheme. Take a simplicial
realizable scheme presentation Y• → Y. By Lemma 2.3.27, it suffices to construct
a homomorphism (f0

! L
ω
X)Yi

→ Lω
Yi

with compatibility conditions. By condition
(III), this map should be the one we have already constructed, and we conclude the
proof. �

2.3.31. Let f : X → Y be a proper morphism between admissible stacks. Then

we have the homomorphism f+L
ω
X

∼←− f!L
ω
X

Trpf−−→ Lω
Y. This homomorphism induces

f+◦DX → DY◦f+ as in 2.3.17. Now, let f be a morphism inSadm. Let X
j−→ X

f−→ Y

be a compactification of f in Sadm. We have the homomorphism

(�) f+ ◦ DX
∼= f+ ◦ j+ ◦ DX

∼←− f+ ◦ DX′ ◦ j! → DY ◦ f+ ◦ j! ∼= DY ◦ f!,
where the second isomorphism follows by Remark 2.3.13 (iii). We may check that
this homomorphism does not depend on the choice of the factorization up to canon-
ical equivalence.

Theorem (Duality). For any morphism f in Sadm, the homomorphism (�) is,
in fact, an isomorphism.

Proof. First, we may assume Y is a scheme by (III) of Theorem 2.3.30. Let us show
the isomorphism for M ∈ Hol(X). We use induction on dimSupp(M ). Assume the
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theorem holds for dimSupp(M ) < k. Let Z be the support of M . We may shrink
X so that Z is shrunk by its open dense subscheme. Indeed, let j : U ↪→ X be an
open immersion such that Z∩U is dense in Z, and let i : W ↪→ X be its complement.
The proposition holds for i+i

+(M ) by the induction hypothesis. Thus, it suffices
to show the theorem only for M = j!j

+(M ). Since the theorem holds for f = j,
we may replace X by U.

Shrinking X by its open dense substack, we may assume that there exists a finite
flat morphism g : X → X from a realizable scheme. Since M is a direct factor of
g+g

+M , by arguing as in the proof of Proposition 2.3.18, it suffices to show that
the homomorphism f+ ◦ DX(g+g

+M ) → DY ◦ f!(g+g+M ) is an isomorphism. By
Lemma 2.3.17, it is reduced to the realizable scheme case. �
2.3.32. Definition. Let f : X → Y be a morphism in Sadm. We define f ! :=
DX ◦ f+ ◦ DY. The couple (f!, f

!) is an adjoint pair. Transitivity holds since it
holds for f+.

2.3.33. Lemma. Let f : X → Spec(k) be the structural morphism of a c-admissible
stack of dimension d. Then for M ∈ Con(X), we have H if!(M ) = 0 for i > 2d.

Proof. We may use induction on the dimension of M . By standard dévissage using
the induction hypothesis, we may shrink X by its open dense substack. By shrinking
X and taking a finite flat morphism from a realizable scheme, we may assume that
X is a realizable scheme. Then the proposition is reduced to Lemma 1.3.8. �
2.3.34. Theorem (Relative Poincaré duality). Let Mst

d be the set of morphisms
f : X → Y of Sadm such that there exists an open substack U ⊂ Y such that
X×Y U → U is flat of relative dimension d, and the dimension of any fiber of Y\U
is < d. Then for f ∈ Mst

d there is a unique trace map Trsmf : f!f
+(d)[2d] → id

satisfying the following properties.
(I) When X and Y are realizable schemes and L = K, then it coincides with the

trace map in Theorem 1.5.1. Moreover, it commutes with forL.
(II) It commutes with base change in the sense of (Var 2) of 1.5.1 if we replace

the diagram of realizable schemes by that in Sadm and f ∈ Mst
d .

(III) It is transitive with respect to the composition of morphisms in Mst
d in the

sense of (Var 3) of 1.5.1.
Taking the adjoint, we have a homomorphism f+(d)[2d] → f !, which is an iso-

morphism when f is smooth.

Remark. The superscript of Trsm stands for “smooth”. This is because the trace
map is used to show that f+(d)[2d] ∼= f ! for smooth morphisms. On the other hand,
the superscript for the trace map Trp in Theorem 2.3.30 stands for “proper”, since
this trace map is related to the isomorphism f!

∼−→ f+ when f is proper. These
two trace maps have a priori no relation. Finally, the superscript of Mst

d stands for
“stack”.

Proof. First, we need to construct the trace map Trsmf : f!f
+LY(d)[2d] → LY. Put

c-t-structure on Db
hol(X). By Lemma 2.3.33, it suffices to construct a homomor-

phism cH 2df!f
+LY(d) → LY of c-modules. When X and Y =: Y are schemes,

this is the trace map of Theorem 1.5.1 when L = K, and in general it is defined
by extending the scalar. For the careful reader, we remark that, when � = F , in
Theorem 1.5.1, we used the category F -Db

hol(Y/K) to define the trace map. How-
ever, the isomorphism defining the Frobenius structure in Db

hol(Y/K) induces an
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isomorphism in Con(Y/K), which defines an object in Con(Y/TF ), so Theorem
1.5.1 is enough to get a trace map in Db(Y/TF ).

For the construction of a trace map in the general case, let Y• → Y be an
admissible simplicial scheme. By Lemma 2.3.27, it suffices to construct the trace
map for X×Y Yi → Yi for each i compatible with each other. The construction is
similar to that of Theorem 2.3.30 using Lemma 2.3.29, so we leave the details to
the reader.

The trace map defines a morphism f+(d)[2d] → f !. Let us show that this is
an isomorphism when f is smooth. By the base change property, we may assume
Y to be a scheme. Moreover, it suffices to show the identity after pulling back to
schemes which are smooth over X. Then we are reduced to the scheme case that
we have already treated in Theorem 1.5.13. �

2.3.35. Finally, we have the projection formula, whose proof is similar to the proper
base change theorem, and is left to the reader:

Proposition. Let f : X → Y be a morphism in Sadm. Then for M ∈ Db
hol(X)

and N ∈ Db
hol(Y), we have a canonical isomorphism:

f!M ⊗ N ∼= f!
(
M ⊗ f+N

)
.

The Künneth formula.

2.3.36. Proposition. Consider morphisms of admissible stacks f : X → X′ and
g : Y → Y′. Let M ∈ Db

hol(X) and N ∈ Db
hol(Y). Then there exists a canonical

isomorphism

f+(M )� g+(N )
∼−→ (f × g)+

(
M � N

)
.

Moreover, if f and g are in Sadm, we get an isomorphism

f!(M )� g!(N )
∼−→ (f × g)!

(
M � N

)
.

Proof. Let us construct the first homomorphism. We have the following homomor-
phism

(f × g)+
(
f+(M )� g+(N )

) ∼= f+f+(M )� g+g+(N ) → M � N ,

where the first isomorphism follows by Proposition 2.3.15 and the second homo-
morphism is by adjunction. By taking the adjunction, we get the homomorphism
we are looking for. To check that this homomorphism is an isomorphism, it suffices
to treat the finite morphism case and the projection case separately. The finite
morphism case follows by Lemma 2.2.6, and the projection case follows by Lemma
2.2.25 and Lemma 2.2.23 (i). By Theorem 2.3.31, we get that f! ∼= DX′ ◦ f+ ◦ DX.
Thus, the second isomorphism holds by the first one and the commutativity of �
and D by Proposition 2.3.15. �

2.3.37. Let f : X → Y and g : X′ → Y be morphisms between admissible stacks.
Consider the following cartesian diagram:

X×Y X′ i ��

h

��
�

X× X′

f×g

��
Y

ΔY

�� Y×Y.
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For M ∈ Db
hol(X), N ∈ Db

hol(X
′), we put

M �Y N := i+
(
M � N

)
.

When f and g are the identities, (−)�Y (−) is nothing but (−)⊗ (−).

Corollary. Assume f and g are Sadm. Then, we have a canonical isomorphism

f!(M )⊗ g!(N ) ∼= h!

(
M �Y N

)
.

Proof. Use Proposition 2.3.22. �
Theory of weights revisited.

2.3.38. The theory of six functors for c-admissible stacks fits perfectly with the
theory of weights. Consider the situation in 2.2.30. The following is a direct
consequence of 2.2.32:

Theorem. Let f : X → Y be a morphism between admissible stacks.
(i) Then the functors f+, f

+, D, ⊗ preserve ι-mixed complexes. Moreover, f+
(resp. f+) preserves complexes of weight ≥ w (resp. ≤ w), D exchanges complexes
of weight ≤ w and ≥ −w, and ⊗ sends complexes of weight (≤ w,≤ w′) to ≤ w+w′.

(ii) Assume f =: j is an immersion, and M is ι-pure of weight w in Hol(X/LF ).
Then j!+(M ) is ι-pure of weight w.

In particular, by using the duality 2.3.31, if f is proper, f+ sends a pure complex
of weight w to a pure complex of weight w.

2.4. Miscellaneous results on cohomology theory. Before proceeding to the
next section, we pause a little and collect some miscellaneous results which are used
in the proof of the Langlands correspondence. So far, we have established the theory
for admissible stacks. However, in the proof of the Langlands correspondence, we
sometimes need to deal with nonadmissible stacks. For this, we employ ad hoc
constructions of cohomological operations and prove some basic properties. The
next theme of this subsection is to show smoothness results using, again, ad hoc
construction of the nearby cycle functor. Finally, we collect some properties of
Tannakian fundamental groups of isocrystals.

Cohomology theory for algebraic stacks.

2.4.1. We denote by Stlft(k) the category of algebraic stacks locally of finite type

over k. Let X be in Stlft(k). To X ∈ Xsm (cf. 0.0.2), we associate the category
Con(X/L). For f : X → Y in Xsm, we have the pull-back functor f+ : Con(Y/L) →
Con(X/L). This functor is exact by Lemma 2.3.25 (ii). With the isomorphism
(f ◦ g)+ ∼= g+ ◦ f+, these data form a fibered category ConX/L → Xsm. Now, we
have:

Lemma. When X is quasi-compact, the category of c-modules Con(X/L) (cf.
2.3.24) we have defined so far is equivalent to the category of cartesian sections of
the fibered category ConX/L over Xsm.

Proof. We denote by ΓConX/L the category of cartesian sections of the fibered
category ConX/L. We construct a functor F : Con(X/L) → ΓConX/L. Let M ∈
Con(X/L), and let X ∈ Xsm. Let ρ : X → X be the smooth morphism. Then
since X and X are both good stacks, in the sense of the second read case, the
functor ρ+ (which is isomorphic to ρ∗[−dX/X] by Lemma 2.3.8) is defined, and we
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put F (M )X := ρ+(M ) ∈ Con(X/L). Defining the gluing isomorphism by the
transitivity of pullbacks, we have F (M ) ∈ ΓConX/L.

Let X• → X be a simplicial algebraic space presentation. By associating the
category Con(Xi/L) to Xi and considering the pullback, we have the cofibered
category Con(X•/L)• over Δ+, similar to Definition 2.1.4. By the construction of
F , there exists the canonical functor Con(X/L) → (Con(X•/L)•)tot. This induces
an equivalence of categories: we can check the full faithfulness by using (2.1.5.1),
and it is essentially surjective by Theorem 2.2.20.

Let us construct the functor G : ΓConX/L → Con(X/L). First, let X =: X be
an algebraic space. Take X ∈ Xsm, and let X• := cosk0(X → X ). Then since
Xn ∈ Xsm, we have the restriction functor G : ΓConX/L → (Con(X•/L)•)tot ∼=
Con(X/L). This does not depend on auxiliary choices, and it is straightforward to
check that this is quasi-inverse to F , thus the lemma is shown when X is an algebraic
space. Now, for a smooth morphism f : X → Y of algebraic stacks, we have the

faithful functor Xsm → Ysm sending X → X to the composition X → X
f−→ Y.

This induces a functor f+ : ΓConY/L → ΓConX/L. Let ρ : X → X be a smooth

morphism. Then we have the functor ΓConX/L
ρ+

−−→ ΓConX/L
∼= Con(X/L). Take

a simplicial presentation X• of X, then Xn is an algebraic space so we argue as in
the case where X is an algebraic space to construct the quasi-inverse G of F . �

This lemma enables us to define Con(X/L), for X in Stlft(k) not necessarily
quasi-compact, to be the category of cartesian sections of ConX/L. We often de-
note Con(X/L) by Con(X) for simplicity. For a smooth morphism f : X → Y in

Stlft(k), we have a faithful functor Xsm → Ysm, which induces the pull-back func-
tor f+ : Con(Y/L) → Con(X/L). Assume X and Y are of finite type, and let d
be the relative dimension of f . Then f+ is canonically equivalent to f∗[−d] using
the functor in 2.2.7. For M ∈ Con(Y/L), we sometimes denote f+M ∈ Con(X/L)
by MX.

2.4.2. Let f : X → Y be a representable morphism of finite type in Stlft(k). Let us
construct f i

+ and f i
! . To construct these, let Y ∈ Ysm. This defines the morphisms

fY : XY := X×YY → Y , and ρ : XY → X. Note that XY is an algebraic space by as-
sumption, thus fY is compactifiable by Remark 2.3.20. Now, for M ∈ Con(X), put(
f i
+M

)
Y

:= cH ifY+ρ
∗(M ), and similarly for

(
f i
! M

)
Y
. For a smooth morphism

φ : Y ′ → Y in Ysm, the base change theorem (Proposition 2.3.9) and Proposition
2.3.22 give us the isomorphisms

φ+
(
f i
+M

)
Y
∼=
(
f i
+M

)
Y ′ , φ+

(
f i
! M

)
Y
∼=
(
f i
! M

)
Y ′ .

We can check the transitivity of these isomorphisms easily, and we define objects{
(f i

+M )Y
}
Y ∈Ysm

and
{
(f i

! M )Y
}
Y ∈Ysm

in Con(Y). We denote them by f i
+M and

f i
! M respectively. When f is an immersion, f0

! is c-t-exact and f i
! = 0 for i �= 0 by

Lemma 1.3.4. Moreover, f0
! coincides with that induced by 2.2.8; in this case, we

sometimes denote f0
! by f!.

2.4.3. Let Stlft,sm(k) be the subcategory of Stlft(k) such that the objects are the
same, and for morphisms, we only consider smooth morphisms. By associating
Con(X) to X ∈ Stlft,sm(k), and considering the pullback f∗ for smooth morphisms,
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we have the fibered category Con → Stlft,sm(k). Then we have the following descent
result:

Lemma. Smooth surjective representable morphisms are universal effective de-
scent morphisms in the fibered category Con → Stlft,sm(k).

Proof. Let Stlft,sm,rep(k) be the subcategory of Stlft,sm(k) such that the objects
are the same, and we only consider representable ones for morphisms between
algebraic stacks. We may consider Con as a fibered category over Stlft,sm,rep(k).
We already proved in the proof of Lemma 2.4.1 that a smooth surjective morphism
from an algebraic space is an effective descent morphism, thus it is a universal
effective descent morphism in Stlft,sm,rep(k). Let Y → X be a smooth surjective
representable morphism. Take a smooth representable morphism X → X from
an algebraic space. Then we know that X → X and Y ×X X → X are universal
effective descent morphisms. Universal effective descent morphisms form a topology
by [Gir, 6.23], Y → X is universal effective descent by caractère local (cf. [SGA4, II,
1.1]) of Grothendieck topology. �

2.4.4. We may extend the pull-back functor to an arbitrary morphism between
algebraic stacks. Let f : X → Y be a morphism in Stlft(k), and take Y ∈ Ysm.
Put f ′ : X′ := X ×Y Y → Y . Now, let X ′ ∈ X′

sm. Then we have the morphism
f ′
X′ : X ′ → Y . We put

f ′+(MY )X′ := f ′+
X′(MY ).

We can check easily that the collection of these modules satisfies the compatibility
condition, and it defines a cartesian section of the fibered category ConX′ , which
we define to be the module f ′+(MY ) in Con(X′). These modules yield a descent
data with respect to the representable smooth morphism X′ → X. By using Lemma
2.4.3, we get f+(M ) ∈ Con(X). The pullback is exact by Lemma 2.3.25 (ii), and

satisfies the transitivity property: for morphisms X
f−→ Y

g−→ Z in Stlft, we have a
canonical equivalence (g ◦ f)+ ∼= f+ ◦ g+.

Finally, let C(′) → D be a morphism in Stlft(k) between smooth stacks. Let M (′)

be in Sm(C(′)). Let Δ: C ×D C′ → C × C′ be the canonical morphism. We define
M �D M ′ := Δ+(M � M ′) for M (′) ∈ Con(C(′)).

2.4.5. Lemma. (i) If f : X → Y is a representable morphism in Sadm, then
cH if! ∼= f i

! .

(ii) Consider the following cartesian diagram in Stlft(k):

X′ g′
��

f ′

��
�

X

f

��
C′

g
�� C.

Assume f is representable. Then there exists a canonical isomorphism g+ ◦ f i
!
∼=

f ′i
! ◦ g′+.

Proof. The first claim follows from the definition, and the verification for (ii) is
easy from the base change, Proposition 2.3.22. �
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2.4.6. A morphism in Stlft(k) is said to be gerb-like if, locally with respect to
fppf-topology, the morphism can be written as the canonical morphism
B(G/X )(=: BG) → X (cf. [LM, 9.6]) for some flat group space G of finite pre-
sentation over X . Recall that such morphisms are smooth by [Beh, 5.1.3, 5.1.5].

Lemma. Let X be a algebraic space of finite type, and let G be a flat algebraic
group space finite radicial surjective over X . Let ρ : BG → X be the canonical
morphism. Note that ρ is proper and is in Sadm. Then ρ+ and ρ! ∼= H 0ρ! induce
the equivalence of categories between Con(X ) and Con(BG).

Proof. Note that ρ is a proper morphism between admissible stacks since G is finite,
thus ρ ∈ Sadm. We have the following commutative diagram:

X u
��

id

��
BG ρ

�� X ,

where u is the universal G-torsor, which is a universal homeomorphism by assump-
tion. Thus we can use Lemma 2.2.4 (i) to conclude. �

Corollary. Let f : X → Y be a gerb-like morphism in Stlft(k) whose structural
group is flat finite and radicial. Then f+ induces an equivalence of categories
Con(X) ∼= Con(Y). Moreover, when f ∈ Sadm,

cH if! = 0 for i �= 0, and cH 0f!
can be taken as a quasi-inverse to f+.

Proof. Since the structural group is flat, there exists a smooth surjective morphism
from an algebraic space P : Y0 → Y such that f0 : X0 := X×YY0 → Y0 is a neutral
gerb by Lemma A.2.1. Let Y1 := Y0 ×Y Y0, Y2 := Y0 ×Y Y0 ×Y Y0, and let
fi : Xi := Yi ×Y X → Yi be the projection. We have the following diagram:

Con(Y)
P+

��

f+

��

Con(Y0)
�� ��

f+
0

��

Con(Y1)

f+
1

��

������ Con(Y2)

f+
2

��
Con(X)

P+
�� Con(X0)

�� �� Con(X1) �� ���� Con(X2).

By the assumption on the structural group, f+
0 , f+

1 , f+
2 are equivalence of categories

by Lemma 2.4.6. Since P is a presentation, we may use Lemma 2.4.3 to conclude.
�

2.4.7. Lemma. Let X be an algebraic space of finite type over k such that Xred

is smooth, and let G be a smooth fiberwise connected algebraic group over X . Then
the pullback by the structural morphism induces Sm(X )

∼−→ Sm(BG).

Proof. We may replace X by Xred since the derived categories do not change, and
we may assume that X is smooth. The canonical morphism X → BG is a smooth
presentation and X ×BG X ∼= G such that the i-th projection pi : X ×BG X → BG
is the structural morphism p : G → X by [LM, 4.6.1]. By Lemma 2.4.3, taking an
object of Sm(BG) is equivalent to taking E ∈ Sm(X ) endowed with an isomorphism

α : p+E ∼−→ p+E that satisfies the cocycle condition. Let

K := Ker
(
α− id : p+E → p+E

)
.
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Since p+E ∈ Hol(G) is smooth, K is smooth as well. Let e : X → G be the unit
morphism. Since p+E is smooth, we get the exact sequence

0 → e+(K) → e+p+E e+(α−id)−−−−−−→ e+p+E .
By the cocycle condition, e+(α − id) is 0, and thus the rank of K is equal to that
of p+E since G is connected. Thus α is the identity, and we get the lemma. �

Remark. The assumption that Xred is smooth is made only for the simplicity. In
fact, with a little more argument on dévissage, the lemma remains true even if we
replace Sm by Con, but we do not need this much.

2.4.8. Lemma. Let f : X → Y be a diagonally connected gerb-like morphism
(cf. [Beh, 5.1.3]). Shrinking Y by its open dense substack if necessary, the functor
f+ : Sm(Y) → Sm(X) induces an equivalence.

Proof. Take a presentation P : Y → Y from a scheme. There exists an open dense
subscheme U ⊂ Y such that Ured is smooth. By replacing Y by P (U) ⊂ Y, we
may assume that Yred is smooth. Now, by using smooth descent, we may assume
that Y =: Y is a scheme and X = BG with a connected flat algebraic group space
G over Y . Since the category is stable under universal homeomorphism, we may
replace Y by Yred and assume that BG and Y are smooth.

When G is smooth, the lemma follows from Lemma 2.4.7. In the general case,
we use the argument of [Beh, 5.1.17]. Take the relative Frobenius G � G′ ↪→ G(p).
Then Ker(G → G′) is of height ≤ 1, so this is flat finite radicial by definition (cf.

[SGA3, VIIA, 4.1.3]). By Corollary 2.4.6, Sm(BG′)
∼−→ Sm(BG), so we may replace

G by G′. Repeating this, we come down to the case where G is smooth over a dense
open subscheme of Y by [SGA3, VIIA, 8.3]. Thus, by shrinking Y , we are reduced
to the case where G is smooth. �

A smoothness criterion.

2.4.9. In the proof of the Langlands correspondence, we need smoothness of certain
holonomic modules. For this, we need to use the functors of Beilinson. Let k′

be a finite extension of k, and put A1
k′(= A1) := Spec(k′[x]). Let f : X → A1

k′

be a morphism from a c-admissible stack. We put if : Zf := f−1(0) ↪→ X and
jf : Uf := X \ Zf ↪→ X. Then for any M ∈ Hol(Uf ) and integers a ≤ b, holonomic

modules Πa,b
!+ (M ),Φun

f (M ) ∈ Hol(Zf ) are defined in [AC2, §2] using a technique of

Beilinson. To clarify f , we denote it by Πa,b
f (M ). Put Π0,0

f := Ψun
f , the unipotent

nearby cycle functor.
Explicitly, we can compute using the notation of [AC2, 2.5] that

(2.4.9.1)
Ψun

f (M ) ∼= lim−→
s

Ker
(
jf !(M

−s,0) → jf+(M
−s,0)

) ∼= lim−→
s

H −1i+f jf+(M
−s,0).

2.4.10. Let us recall the local theory very briefly (see [AM, 2.1] for a more detailed
review and references of the theory). Let l be a complete discrete valuation field
over k. Then the Robba ring (with coefficients in K ⊗W (k) W (res(l))) denoted by
Rl is defined. When l = k((x)), then

Rl =

{
f =

∑
n∈Z

anx
n ∈ K�x, x−1�

⏐⏐⏐⏐⏐ there exists 0 ≤ ε < 1 such that f
converges on ε < |x| < 1

}
,
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where K�x, x−1� is the K-vector space of formal series. The Robba ring is endowed
with derivation. A differential module over l is a finite free Rl-module endowed
with connection. We have the notion of a solvable differential module which is an
analogue of an overconvergent isocrystal for differential modules, whose category
is denoted by Sol(Rl). We have the s-th Frobenius endomorphism of Rl, and the
pullback defines a functor F ∗ : Sol(Rl) → Sol(Rl), which is known to be an equiv-
alence of categories. Thus, we may apply the construction of §1.4. The category
F -Sol(Rl)L is denoted by Hol(l/TF ). As in §1.1, we denote by Hol(l/T∅) the thick
full subcategory of the category of differential modules over l generated by differen-
tial modules which can be endowed with s′-th Frobenius structure for some positive
integer s′ divisible by s (but we do not consider Frobenius structure). Since we only
use Hol(l/T∅) in the following, we denote this simply by Hol(l). We call the objects
of Hol(l) holonomic modules on l. For a separable finite extension l′/l, we are able
to define the push-forward functor Hol(l′) → Hol(l) (cf. [AM, at the end of 2.1.4]).

2.4.11. For a Galois extension l/k′((x)), we define Ψl,f (M ) as follows: Let us denote
by Ll the holonomic module on k′((x)) defined by taking the pushforward of the
trivial module on l along the extension l/k′((x)). Let Ll be the canonical extension
of Ll on Gm,k′ in the sense of Crew and Matsuda (cf. [AM, 2.1.9]). Then put
Ψl,f (M ) := Ψun

f (M ⊗f+Ll). We remark that M ⊗f+Ll, which is defined a priori

in Db
hol(X), is in Hol(X). Indeed, it suffices to check this when X =: X is a realizable

scheme. In this case, we may take a closed immersion i : X ↪→ P to a smooth
scheme. By shrinking X, we may assume that there exists g : P → A1 such that
g ◦ i = f . Now, by the projection formula i+(M ⊗ f+Ll) ∼= i+(M ) ⊗ g+Ll, and
the latter is in Hol(P ). Since we have the action of Gal(l/k′((x))) on Ll, it induces
the Galois action on Ψl,f .

Lemma. Let f : C → A1
k′ be an étale morphism from a curve such that f−1(0) =

{s} and k(s) = k′. Let M ∈ Hol(C). Assume that M is smooth outside of s.
If Φun

f (M ) = 0 and the actions of Gal(l/k′((x))) and the monodromy operator on

Ψl,f (M ) are trivial for any l, then M is smooth.

Proof. Since Φun
f (M ) = 0, we get that i+f (M )[−1] ∼= Ψun

f (M ). Since the rank of

i!f (M ) and i+f (M ) are the same, it suffices to show that the rank of Ψun
f (M ) is

equal to that of M by [AM, 4.1.4]. By (2.4.9.1) and [AC1, 1.5.9 (iii)], Ψl,f depends
only on the differential module on the Robba ring around s defined by restricting
M , and we can compute Ψl,f (M ) by using the local monodromy theorem. Since
the argument is standard, we leave the details to the reader. �

2.4.12. Lemma. Let f : X
h−→ Y

g−→ A1 be morphisms between c-admissible stacks.
Assume that h is proper. Then we have

Πa,b
g (H ih+M ) ∼= H ih+Π

a,b
f (M ).

The same isomorphism holds if we replace Πa,b
� by Ψl,� or Φun

� .

Proof. Since h is proper, we have h+jf� ∼= jg�h+ for � ∈ {!,+}. Thus, by the
projection formula, we have lim←→ jg�(H ih+M )•,• ∼= lim←→H ih+jf�(M •,•) where � ∈
{!,+}. Thus, by construction, we get the commutativity for Πa,b. Now, let us

define Kf (M ) := Ker
(
Ξf (M )⊕ M � jf+(M )

)
, where Ξf := Π0,1

f . Since Ξf and

jf+ commute with H ih+, we get that Kg(H ih+(M )) ∼= H ih+Kf (M ). Similarly,
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If (M ) := Im
(
jf !(M ) → Ξf (M )⊕ M

)
(∼= jf !(M )) commutes with H ih+ as well,

and the lemma for Φun := Kf/If follows by definition. �

2.4.13. Lemma ([La2, A.9 (i)]). Let pX : X → S be a proper morphism from a
c-admissible stack to a smooth scheme, and let Res: X → C be a morphism to an
algebraic stack locally of finite type over k. Assume that (pX,Res) : X → S × C is
smooth. Then for any M ∈ Con(C), the complex pX+Res

+(M ) is smooth.

Proof. We put H i
X := H ipX+Res

+(M ). Assume we are given a smooth morphism
f : S → A1. Put g := f ◦ pX. Since f and (pX,Res) are smooth, we get that
Φun

g (Res+(M )) = 0 and the Galois and monodromy action on Ψl,g(Res
+(M ))

are trivial. Now, since pX is assumed proper, Φun
f (H i

X) = 0 and the Galois and

monodromy action on Ψl,f (H i
X) are trivial by Lemma 2.4.12. This, in particular,

implies that jf !+(H i
X)

∼= H i
X. Moreover, when S is a curve, the lemma holds.

Indeed, take an open subscheme U ⊂ S such that H i
X is smooth on U . We may

replace S by S ⊗k k′, and we may assume that S \ U is k′-rational. Since the
verification is local, we may assume that we are given an étale morphism f : S → A1

k′

such that f−1(0) = S \ U consists of one point, and we then apply Lemma 2.4.11.
Let us treat the general case. By dévissage, we may assume that M has a

Frobenius structure. Let c : C ↪→ S be an immersion from a smooth curve C. By
base change and purity, we have c!(H i

X)
∼= H i

X×SC [−r] where r is the codimension
of C in S. By the curve case we have already treated, this is smooth. Let U ⊂ S
be an open dense subscheme on which pX+Res

+(M ) is smooth. By Shiho’s cut by
curve theorem [S, Thm 0.1]4 and [Ke4, 5.2.1], the smooth module H i

X|U on U can
be extended to a smooth module on S. Since we showed that jf !+(H i

X)
∼= H i

X for
any f , we get the lemma. �

Isocrystals and their Tannakian fundamental group.

2.4.14. Let us introduce Qp-coefficient cohomology theory. From now on, by saying
“a base tuple”, we also allow L to be an algebraic extension of K which may not be
finite, contrary to the definition in 1.4.10. In the definition of an arithmetic tuple,
σ : L → L should moreover satisfy the following:

the automorphism σ is an extension of a lifting of s-th Frobenius
automorphism on k to K, and there exists a sequence of finite
extensions Mn of K in L such that σ(Mn) ⊂ Mn and

⋃
n Mn = L.

We use the 2-inductive limit method of Deligne [De1, 1.1.3] to construct the L-
theory. For an algebraic stack X (resp. scheme X) of finite type over k, we define

Db(X/L�) := 2- lim−→
M⊃K

Db(X/M�), Sm(X/L�) := 2- lim−→
M⊃K

Sm(X/M�),

Isoc†(X/L�) := 2- lim−→
M⊃K

Isoc†(X/M�),

where M = Mn in the case of � = F . By taking limits, the results we get in this
paper can be generalized automatically to these categories, since the cohomological

4In [S], there is an assumption that k is uncountable. However, Shiho pointed out to the author

that this assumption is not needed if E in [S, Thm 0.1] is endowed with Frobenius structure. Indeed,
let us use the notation of the proof of the theorem in [S, §2.3]. By using [S, Thm 2.5] instead of
[S, Thm 2.10], the slope of EE,L is 0. Since we have a Frobenius structure, the exponents are in

Q, and we can use [S, Prop 1.20] to conclude.
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operators we have defined so far commute with ιL by 1.4.5. Further details are left
to the reader. Let f be the structural morphism of X. We denote f+(L) by LX as
usual.

2.4.15. We have often used the category Sm(X/L), but the category of overconver-

gent isocrystals Isoc†(X/L) is more standard in the literature. Let us clarify the
relation between these categories. Consider the situation of 2.0.1, or 2.4.14 if L/K
is not finite. Let X be a smooth scheme separated of finite type of dimension d
over k. Recall the functor sp+ in 1.1.3 (12). By extending the scalar and gluing,
we have the following functor

s̃p+ := sp+(−d)[−d] : Isoc†(X/L)
∼−→ Sm(X/L) ⊂ Db

hol(X/L).

For a morphism f : X → Y between smooth schemes separated of finite type, let
d := dim(X)−dim(Y ). Then, we have a canonical equivalence sp+◦f∗ ∼= (f ![−d])◦
sp+ compatible with the composition of morphisms between smooth schemes by
[Ca5, 6.1.9]. Thus, by Theorem 1.5.13 and Theorem 1.5.14, we have a canonical
equivalence s̃p+ ◦ f∗ ∼= f+ ◦ s̃p+. Via this equivalence, we identify f∗ and f+. We
also know that s̃p+ commutes with tensor products by [Ca6, 3.3.5]. By taking the
adjoint, the commutation of Hom follows as well. Finally, let f : X → Spec(k) be

the structural morphism of a smooth realizable scheme, and let M ∈ Isoc†(X/L∅)

(resp. M ∈ Isoc†(X/LF )). When X is a scheme which has a compactification X
such that X possesses a smooth lifting over R and that X \X is a divisor, then by
[A1, 5.9] we have canonical isomorphisms

H∗
rig(X,M) ∼= H ∗f+

(
s̃p+(M)

)
, H∗

rig,c(X,M) ∼= H ∗f!
(
s̃p+(M)

)
as objects in VecL (resp. F -VecL). Here, Hrig and Hrig,c denotes the rigid coho-
mology extended to L-coefficients in the obvious manner.

2.4.16. Question. Unify the rigid cohomology theory into the framework of arith-
metic D-modules. Namely, let X be a separated scheme. Define the category of
smooth objects Sm(X/L) in Con(X/L), and establish an equivalence of categories

Isoc†(X/L) → Sm(X/L). This equivalence should coincide with the one in 2.4.15
when X is smooth. Finally, compare the rigid cohomology and the pushforward in
the sense of D-modules in the style of 2.4.15.

2.4.17. In this paragraph, we fix an algebraic closure K of K. We denote by k
the residue field of K, which is an algebraic closure of k. Now, let X be a smooth
scheme of finite type over k, and assume it to be geometrically connected. Take a
geometric point x ∈ X(k). Let x be the closed point of X defined by x, and denote
by ix : x ↪→ X the closed immersion. We denote by Kx be the unramified extension
of K induced by the finite extension k(x) of k. Then we have the fiber functor

ωx : Isoc
†(X/K)

i+x−→ Isoc†(k(x)/K) ∼= VecKx
.

Let L be a finite extension of Kx. Since End(KX) ∼= K, by [DM, 3.10.1], ωx induces
the fiber functor

ωx/L : Isoc†(X/L) → VecL

by sending E to i+x (E)⊗i+x LX
L. This fiber functor ωx/L is compatible with extension

of scalar, and we may take the 2-inductive limit to define ωx/L for any algebraic

extension L of Kx. Now, the geometric point x determines the embedding Kx ↪→ K
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with which we may regard K as an extension of Kx, thus, the fiber functor ωx/K

makes sense. This fiber functor is denoted by ωx.
Let πisoc

1 (X, x) be the isocrystal fundamental group Aut⊗(ωx), which is an affine
group scheme over K. For an algebraic group G over K, denote by RepK(G) the
category of a finite-dimensional representation of G. By [DM, 3.11] and taking the
2-inductive limit, we have the following equivalence of tensor categories,

Isoc†(X/K)
∼−→ RepK(πisoc

1 (X, x)).

Remark. If X → Spec(k) is not geometrically connected, then Isoc†(X/K) is not
a Tannakian category over K. Indeed, KX is an unit object of the tensor category

Isoc†(X/K) but we have End(KX) ∼= K
×c

where c is the number of connected
components of X ⊗k k. Compare also with Lemma 1.4.11 (i).

2.4.18. From now until the end of this subsection, we consider the case where
k is a finite field with q = ps elements. We fix an arithmetic base tuple TF :=
(k,R := W (k),K := Frac(R),Qp, s, id), where Qp is an algebraic closure of K. Let

T∅ be the associated geometric base tuple. As in the last paragraph, k denotes the
residue field of Qp, which naturally contains k. To make the notation compatible
with [La2], we denote the relative s-th Frobenius endomorphism on X by FrobX
instead of FX . Let X be a geometrically connected smooth scheme of finite type
over k. Take a geometric point x ∈ X(k), and ix : x ↪→ X denotes the induced

closed immersion. Let E ∈ Isoc†(X/Qp,∅). Since Kx
∼= W (k(x))⊗W (k) K, the s-th

Frobenius automorphism on W (k(x)) induces the automorphism Frob∗x : Kx → Kx.
The fiber i+x E can be seen as an i+x Qp,X -module, where the latter ring is isomorphic

to Kx ⊗K Qp since X is geometrically connected. Thus, we have isomorphisms

ωx(Frob
∗
XE) ∼=

(
Kx ⊗Frob∗

x↖Kx
i+x E

)
⊗Kx⊗KQp

Qp
∼←−
α

i+x E ⊗Kx⊗KQp
Qp

∼= ωx(E),

where the homomorphism α sends e ⊗ a to 1 ⊗ e ⊗ a. Thus, we get the following
2-commutative diagram:

(2.4.18.1) Isoc†(X/Qp,∅)

Frob∗
X

��

ωx

		������
�������

��

VecQp
.

Isoc†(X/Qp,∅)
ωx

�����������������

This diagram induces a homomorphism Frob∗X : πisoc
1 (X, x) → πisoc

1 (X, x). This
homomorphism is in fact an isomorphism, since Frob∗X gives an equivalence of
categories by Remark 1.1.3. We define ρ : Z → Aut(πisoc

1 (X, x)) to be the homo-
morphism sending 1 to Frob∗X . Using this homomorphism, we put W isoc(X, x) :=
πisoc
1 (X, x) � Z, and call it the isocrystal Weil group of X. By construction, we

have the equivalence of tensor categories,

(2.4.18.2) Isoc†(X/Qp,F )
∼−→ RepQp

(W isoc(X, x)),

induced by ωx.
In general, let X → Spec(k) be a smooth connected scheme of finite type, which

may not be geometrically connected, and take a closed point x. The structural
morphism factors as X → Spec(k′) → Spec(k), where k′ is a finite field extension
of k of degree d and X is geometrically connected over k′. Consider the base tuple
T′
F := (k′, R′ := W (k′)⊗W (k) R,K ′,Qp, ds, id). Then we define W isoc(X, x) to be
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the isocrystal Weil group of X over T′
F . Despite the base tuple being changed, the

equivalence (2.4.18.2) remains true by Corollary 1.4.11. We note that, by definition,
W isoc(X, x) does not depend on the choice of the base field k.

Assume that X is geometrically connected, and let k′ be a Galois extension of
k. Take a geometric point x′ of X ⊗k k′, and let x be the projection to X. Then
we have the following exact sequence:

1 → W isoc(X ⊗k k
′, x′) → W isoc(X, x) → Gal(k′/k) → 1.

Remark. Let X be a geometrically connected smooth scheme of finite type over
k. Assume moreover that we have a k-rational point ix : Spec(k) → X for simplicity.

Since Isoc†(X/Qp,F ) is a neutral Tannakian category over Qp, by using the fiber

functor ω := i+x , we could have used Aut⊗(ω) as the fundamental group. However,
this algebraic group is complicated to handle, and we used the simpler substitute
W isoc following Crew [Cr].

2.4.19. Let X ′, X ′′ be smooth schemes of finite type and geometrically connected
over k. Put X := X ′ × X ′′ which is geometrically connected over k as well. Let
U ⊂ X be an open subscheme such that (FrobX′ × idX′′)(U) ⊂ U where FrobX′ ×
idX′′ : X ′×X ′′ → X ′×X ′′. Take a geometric point x ∈ U(k). Arguing as in 2.4.18,
the pullback (FrobX′ × id)+ induces an outer automorphism of W isoc(U, x), and it
yields a homomorphism Z → Out(W isoc(U, x)) sending 1 to (FrobX′ × id)+. We
put ZW isoc(U, x) := W isoc(U, x) � Z. Representations of ZW isoc(U, x) correspond

to pairs (E , α) where E ∈ Isoc†(U/Qp,F ) and α : (FrobX′ × id)+(E) ∼= E .
Lemma ([La2, VI.13]). Take geometric points x′ and x′′ of X ′ and X ′′, and put
x := (x′, x′′). Then the canonical homomorphism ZW isoc(X, x) → W isoc(X ′, x′)×
W isoc(X ′′, x′′) is surjective (or more precisely, faithfully flat).

Proof. Let x′ and x′′ be the closed points of X ′ and X ′′ induced by x′ and x′′.
Let k′ be a Galois extension of k, and put G := Gal(k′/k). Consider the following
diagram, where we omit the basepoints of the Weil groups and W isoc is abbreviated
as W :

1 �� W (X ′ ⊗ k′)×W (X ′′ ⊗ k′) ��

��

W (X ′)×W (X ′′) ��

��

G×G �� 1

1 �� ZW (X ⊗ k′) �� ZW (X) �� G×G �� 1.

Thus, we may replace k by k′ and may assume that x′ and x′′ are rational points
of X ′ and X ′′. These rational points define morphisms s′ : X ′ → X, s′′ : X ′′ → X.
Let us show that the canonical homomorphism α : πisoc

1 (X, x) → πisoc
1 (X ′, x′) ×

πisoc
1 (X ′′, x′′) is surjective. To check this, it suffices to show that for any K-

algebra A, the homomorphism of groups α(A) : πisoc
1 (X, x)(A) → πisoc

1 (X ′, x′)(A)×
πisoc
1 (X ′′, x′′)(A) is surjective. Now, the morphism s′ induces the homomorphism

s′∗ : π
isoc
1 (X ′, x′) → πisoc

1 (X, x), and the image of (α◦s′∗)(A) is πisoc
1 (X ′, x′)(A)×{1}.

Using s′′, the image of α(A) contains {1} × πisoc
1 (X ′′, x′′)(A) as well, and the sur-

jectivity of α(A) follows as required. Finally, by definition of the Weil groups, the
lemma follows. �
2.4.20. Lemma. Let X be a smooth connected scheme, and let U ⊂ X be an
open subscheme. Take a geometric point x ∈ U(k). Then the homomorphism
W isoc(U, x) → W isoc(X, x) is surjective.
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Proof. It suffices to show that the homomorphism πisoc
1 (U, x) → πisoc

1 (X, x) induced
by the open immersion is surjective. Let j : U ↪→ X be the open immersion. By
[DM, 2.21], this is equivalent to showing that j+ is fully faithful and any subobject
of j+E for an overconvergent isocrystal E on X is in the image of j+. The full
faithfulness follows by purity (cf. Theorem 1.5.14). It remains to show that if E is
an irreducible overconvergent isocrystal on X, then E|U is irreducible. This follows
by [AC1, 1.4.6]. �

3. Cycle classes, correspondences, and �-independence

The aim of this section is to prove an �-independence result. This is a key
tool for computing the trace of the action of Hecke algebra on the cohomology of
certain moduli spaces. In this section, we fix � ∈ {∅, F} and a base tuple as usual.
The algebraic extension L/K can be infinite as in 2.4.14. For simplicity, smooth
admissible stacks over k are assumed equidimensional.

3.1. Generalized cycles and correspondences.

3.1.1. Let p : X → Spec(k) be the structural morphism of a c-admissible stack
X (cf. Definition 2.3.19). If no confusion may arise, we denote LX,� by L. For
M ∈ Db

hol(X), we put

Hi(X,M ) := HomD(Spec(k)/L�)
(
L, p+(M )[i]

)
,

Hi
c(X,M ) := HomD(Spec(k)/L�)

(
L, p!(M )[i]

)
.

Note that when � = ∅, we have H∗(X,M ) ∼= H ∗p+(M ) and H∗
c (X,M ) ∼=

H ∗p!(M ) as vector spaces over L. For a morphism i : Z → X, we define the
local cohomology to be

Hi
Z(X,M ) := HomD(Spec(k)/L�)

(
L, p+i+i

!(M )[i]
)
.

Furthermore, we put H∗
♥(X) := H∗

♥(X, LX) where ♥ ∈ {∅, c,Z}.
Consider the following commutative diagram of c-admissible stacks:

Z
f ′

��

i′

��

W

i

��
X

f
�� Y.

If this diagram is cartesian, then we have the base change isomorphism i!f+ ∼= f ′
+i

′!

by (the dual of) Proposition 2.3.22, which induces the homomorphism H∗
W(Y) →

H∗
Z(X). By abuse of notation, we also denote this homomorphism by f∗. If the

diagram is merely commutative, f is the identity, and f ′ is proper, the adjunction
f ′
+f

′! → id induces the push-forward homomorphism H∗
Z(X) → H∗

W(X).
Finally, given a proper morphism of c-admissible stacks f : X → Y, we have a

homomorphism f∗ : H∗
c (Y) → H∗

c (X) induced by the adjunction homomorphism.

3.1.2. First, let S be a c-admissible stack. Let M , N be objects in Db
hol(S/L).

Denote by Δ: S → S × S the diagonal morphism, and denote by p the struc-
tural morphism of S. By identifying Spec(k) × S and S, we have a canonical
homomorphism

p+(M )� N ∼= (p× id)+
(
M � N

) adj−−→ (p× id)+Δ+Δ
+
(
M � N

) ∼= M ⊗ N ,
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where the first isomorphism is induced by Proposition 2.3.36, adj is the adjunction
homomorphism, and the last isomorphism follows since (p× id) ◦Δ = id.

Now, let f : X → S be a morphism of c-admissible stacks. We take a factorization

X
j−→ X

f−→ S in Sadm such that j is an open immersion and f is proper. We have

f+(M )⊗ f!(N ) ∼= f+j+(M )⊗ f+j!(N ) → f+

(
j+(M )⊗ j!(N )

)
∼←− f+j!(M ⊗ N ) ∼= f!(M ⊗ N ),

where the second homomorphism is (2.3.16.1). This homomorphism does not de-
pend on the choice of compactification.

Finally, let i : Z → X be a morphism of c-admissible stacks. Then we have the
homomorphism i!

(
i!M ⊗ i+N

) ∼= i!i
!M ⊗ N → M ⊗ N . Taking the adjoint, we

get a homomorphism

i!M ⊗ i+N → i!(M ⊗ N ).

3.1.3. Definition. (i) Let X be a c-admissible stack of dimension d. A generalized
cycle of codimension c is a proper morphism g : Γ → X between c-admissible stacks
such that dim(X)− dim(Γ) = c.

(ii) Let S be a scheme of finite type over k, let ϕ be a proper endomorphism of
S, and let f (′) : X(′) → S be a c-admissible S-stack. Let

cΓ : Γ → X×ϕ,S X′

be a morphism between c-admissible stacks, where the fiber product is taken for
ϕ ◦ f : X → S and f ′ : X′ → S. For i = 1, 2, put pi := πi ◦ cΓ where πi denotes
the i-th projection. The morphism cΓ is said to be a correspondence over ϕ if Γ is
equidimensional of dimension dim(X) and p2 is proper, or Γ is the empty stack. We
sometimes denote the correspondence by Γ: X � X′. Note that cΓ is a generalized
cycle of codimension dim(X′) of X×ϕ,S X′. From now on in this subsection, we fix
S and ϕ as above, and we use them freely without referring to this paragraph.

3.1.4. In this section, we denote Trsmf in Theorem 2.3.34 simply by Trf . Let α : X →
Spec(k) be the structural morphism of a c-admissible stack X. We often denote Trα
by TrX. Now, let f : Y → X be a morphism of c-admissible stacks, and assume that
X is smooth. We construct fTrf : f!f

+LX(d)[2d] → LX where d := dim(Y)−dim(X),
which is called the fake trace map of f , as follows. Let p : Y → Spec(k) be the
structural morphism. We have the isomorphisms

Hom(f!f
+LX(d)[2d], LX) ∼= Hom(f+LX(d)[2d], f

!LX)

∼= Hom(p+L(dY )[2dY ], p
!L) ∼= Hom(p!p

+L(dY )[2dY ], L),

where dY := dim(Y), and we used the Poincaré duality (Theorem 2.3.34) for the
second isomorphism. The trace map TrY is an element on the right-hand side of
the isomorphisms. We define fTrf to be the homomorphism defined by sending
this TrY to the left-hand side of the isomorphisms. This homomorphism induces a
homomorphism

(3.1.4.1) f∗ : H
∗+2d
c (Y)(d) → H∗

c (X).

(i) Let i : Z → X be a generalized cycle of codimension c on a smooth c-admissible
stack X. Then by taking the adjoint, fTri induces a homomorphism

cZ : i
+LX → i!LX(c)[2c].
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(ii) Let us construct a similar homomorphism when we are given a correspon-
dence. We use the notation of Definition 3.1.3 (ii). We assume further that X is
smooth. When Γ is nonempty, we have fTrp1

: p1!p
+
1 LX → LX, where we used the

assumption that dim(Γ) = dim(X). Thus, we have

ιΓ : p
+
2 LX′ ∼= p+1 LX → p!1LX,

where we used the adjoint of fTrp1
for the second homomorphism. When Γ is empty,

we simply put ιΓ := 0.

3.1.5. Let us characterize the fake trace map in the style of [SGA4 1
2 , Cycle]. Let

us consider the following diagram of c-admissible stacks:

Y
i ��

f ����
���

���
�� X

g
�����

���
���

�

S,

where X is smooth, and X and Y are of dimension N and d, respectively. Put
c := N − d. Combining homomorphisms in 3.1.2, we have

pY+i
!LX � f!i

+LX → f+i
!LX ⊗ f!i

+LX → f!
(
i!LX ⊗ i+LX

)
→ f!i

!LX

adji−−→ g!LX,

where pY is the structural morphism of Y, and adji : i!i
! → id is the adjunction

morphism. Since H kpY+i
!LX = 0 for k < 2c (cf. Lemma 2.3.33), this yields a

coupling called the cup product

∪ : H2c
Y (X)(c)⊗ f!LY(d)[2d] → g!LX(N)[2N ].

Now, by taking the adjoint, we may regard fTri as an element in H2c
Y (X)(c). We

put S = Spec(k), and we have the following characterization of the fake trace map:

Lemma. The class fTri ∈ H2c
Y (X)(c) is the unique element such that for any

u ∈ H2d
c (Y)(d),

Trf (u) = Trg
(
fTri ∪ u

)
.

Proof. As in [SGA41
2 , Cycle, 2.3], we have the following commutative diagram:

H2c
Y (X) ��

2©
���

��
��

��
��

Hom
(
f!LY(d)[2d], f!i

!LX(N)[2N ]
) 1©

��

adji

��

Hom
(
f!LY(d)[2d], LS

)

Hom
(
g!i!LY(d)[2d], g!LX(N)[2N ]

)
Trg

�� Hom
(
g!i!LY(d)[2d], LS

)
.

Here, 1© is the homomorphism induced by the adjunction using the assumption that

X is smooth. The homomorphism adji : i!i
! → id is the adjunction. The homomor-

phism 2© is induced by ∪ defined above. By the definition of fake trace map, the
upper horizontal homomorphism maps fTri to Trf . Moreover, the composition of
the upper horizontal maps is an isomorphism. Thus we can conclude the proof. �

Remark. The assumption that S = Spec(k) is used only for the existence of
the fake trace over S. It is not hard to generalize the definition of the fake trace
to relative situations as [SGA41

2 ], and we may prove the lemma in this generality,
although we are not sure if it is meaningful for our purposes.
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Corollary. Assume that f : X → Y is a flat morphism of c-admissible stacks such
that Y is smooth. Then Trf = fTrf .

Proof. This follows readily from the characterization lemma of fTrf above. �

3.1.6. (i) Consider the situation as in 3.1.4 (i). We have an isomorphism

Hom(i+LX, i
!LX(c)[2c]) ∼= Hom(LX, i+i

!LX(c)[2c]) =: H2c
Z (X)(c).

The image of cZ is denoted by clX(Z), and called the cycle class of Z. Since the
homomorphism Z → X is proper, we have the homomorphism H∗

Z(X) → H∗(X).

The image of clX(Z) in H2c(X)(c) is also called the cycle class. Note that if the
morphism Z → g(Z) is not generically finite, then H2c

g(Z)(X) = 0, and in particular

the cycle class in H2c(X)(c) is 0.
(ii) Consider the situation as in 3.1.4 (ii). Recall that ϕ is assumed proper. We

have the action of correspondence on the cohomology, which is the composition of
the homomorphisms

Γ∗ : f ′
!LX′ → f ′

! p2+p
+
2 LX′

∼←− (ϕ ◦ f ◦ p1)! p+2 LX′
ιΓ−→ ϕ+f!p1!p

!
1LX → ϕ+f!LX.

When S is a point, this is nothing but the following composition using (3.1.4.1):

H∗
c (X

′)
p∗
2−→ H∗

c (Γ)
p1∗−−→ H∗

c (X).

3.1.7. Lemma. Consider the following cartesian diagram of c-admissible stacks
on the left:

Y′

f ′

��

g′
��

�

Y

f

��
X′

g
�� X,

g′+f+LX(d)[2d]
g′+fTrf ��

∼
��

g′+f !LX

��
f ′+LX′(d)[2d]

fTrf′
�� f ′!LX′ ,

where X and X′ are smooth. Assume moreover that there exists an open sub-
stack V ⊂ Y such that the morphism V → X is flat of relative dimension d,
and g′−1(V) ⊂ Y′ is dense. Then the above diagram on the right is commutative.
In particular, if g is proper, we have an equality

g∗f∗ = f ′
∗g

′∗ : H∗
c (Y) → H∗−2d

c (X′)(−d).

Proof. Since the commutativity of the diagram on the right can be interpreted as
coincidence of two elements in H2a

c (Y′)(a)∨, where a denotes the dimension of Y′,
we may shrink Y′ by its open dense substack by Lemma 2.3.33. Thus we may
replace Y by V, and may assume that f is flat of relative dimension d. Now the
lemma follows by Corollary 3.1.5 and the base change property of the trace map
(cf. Theorem 2.3.34 (II)). �

Corollary (Projection formula). Let f : X → Y be a proper morphism of c-
admissible stacks, and Y is smooth. Assume that there exists an open dense substack
U ⊂ X such that the morphism U → Y is flat of relative dimension d. Then for
α ∈ Hi

c(X) and β ∈ Hj
c (Y), we have the following equality in Hi+j−2d

c (Y)(−d) :

f∗
(
α ∪ f∗β

)
= f∗α ∪ β.
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Proof. Consider the following commutative diagram of proper morphisms:

X ��

id

��
X×Y X ��

��
�

X
f ��

Δ′

��
�

Y

Δ

��
X× X �� X×Y

f×id
�� Y×Y.

By the hypothesis on f , we can apply the lemma above to the right cartesian
diagram (take f , g in the lemma to be id× f and Δ, respectively). We have

f∗α ∪ β = Δ∗((f × id)∗(α� β)
)
= f∗Δ

′∗(α� β),

where we used the lemma for the second equality. The diagram above and the
transitivity of the pullback show that Δ′∗(α � β) = α ∪ f∗β, and the corollary
follows. �
3.1.8. Lemma. Let S be a scheme of finite type over k, let X(′) be a c-admissible
stack, and let f (′) : X(′) → S be a morphism. Assume that ϕ = id. Let Γ: X � X′

over S. Assume there is an open substack Γ′ ⊂ Γ such that the first projection

Γ′ ⊂ Γ
p1−→ X is flat. For a closed point is : s ↪→ S, we denote by Xs, X

′
s, Γs, Γ

′
s

the fibers over s. If Γ′
s ⊂ Γs is dense, Γs is a correspondence Xs � X′

s, and the
following diagram is commutative:

i+s f
′
!LX′

Γ∗
��

��

i+s f!LX

��
f ′
s!LX′

s Γ∗
s

�� fs!LXs
.

Here the vertical homomorphisms are the base change maps.

Proof. Since Γ′ is flat over S, Γs is a correspondence for any s ∈ S. Now, to show
the commutativity, it suffices to show the commutativity of the following diagrams:

i+s p
+
1 LX

��

i+s (ιΓ)

��

p+1sLXs

ιΓs

��
i+s p

!
1LX

�� p!1sLXs
,

i+s LX′
∼ ��

��

LX′
s

��
i+s p2+p

+
2 LX′ ∼

�� p2s+p
+
2sLX′

s
.

The commutativity of the left diagram follows by Lemma 3.1.7. The commutativity
of the right one follows by the fact that (g+, g+) is an adjoint pair when g is a
morphism of admissible stacks. �
Remark. In general, there exists an open dense subscheme U ⊂ S such that the
condition of the lemma holds for any s ∈ U .

3.1.9. Lemma. Let ρ : X → X′ be a proper morphism over ϕ such that X is
smooth. Let Γρ denote the graph of ρ, and regard it as a correspondence X � X′.
Then ρ∗ = Γ∗

ρ.

Proof. We have X
p1←−
∼

Γρ
p2−→ X′. Via the identification p1!KΓρ

∼−→ KX, the fake

trace fTrp1
: p1!p

+
1 KX → KX is the identity. Thus the lemma follows. �
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3.1.10. Let X, Y be c-admissible stacks of dimension d. Let g : Y → Spec(k),
h : X → Y, and f := g ◦ h. Assume that h is proper. Then, we have the canon-
ical homomorphism (h∗)∨ : (H2d

c (X)(d))∨ → (H2d
c (Y)(d))∨, where (−)∨ denotes

Hom(−, L). Note that TrX ∈ H2d
c (X)(d)∨.

The morphism h is said to be generically locally free if there exists a dense open
substack V ⊂ Y such that the induced morphism h−1(V) → V is finite and locally
free. Furthermore, h is said to be generically of constant degree if all the degrees of
h|h−1(V) over irreducible components of V are the same.

Lemma. Assume that h is a generically locally free morphism of constant degree.
Then (h∗)∨ sends the trace map Trf to deg(h) · Trg.
Proof. We have the following diagram:

H2d
c (X)(d)∨

(h∗)∨ ��

��

H2d
c (Y)(d)∨

∼
��

H2d
c (h−1(V))(d)∨ �� H2d

c (V)(d)∨,

where the right vertical homomorphism is an isomorphism by Lemma 2.3.33. Thus,
we may replace Y by V, and in particular, we may assume that h is locally free.
We have the following commutative diagram:

g!h!h
+g+(L)(d)[2d]

Trh �� g!g+(L)(d)[2d]
Trg �� L.

g!g
+L(d)[2d]

deg(h)·

����������������
adjh

��

The composition of the first row is Trf . By definition, (h∗)∨(Trf ) = adjh ◦ Trf .
Thus the lemma follows. �
Corollary. Let X be a smooth c-admissible stack.

(i) Let Z, Z′ be generalized cycles of codimension c of X. Assume we are given
a generically locally free morphism of constant degree ρ : Z′ → Z over X. Then by
the push-forward homomorphism ρ∗ : H

2c
Z′ (X)(c) → H2c

Z (X)(c), clX(Z
′) is sent to

deg(ρ) · clX(Z).
(ii) Let Γ,Γ′ : X � X′ be correspondences. Assume that there exists a morphism

ρ : Γ → Γ′ such that cΓ′ ◦ρ = cΓ, and ρ is generically locally free of constant degree.
Then Γ′∗ ∼= deg(ρ)−1 · Γ∗.

Proof. They are straightforward from the lemma. �
3.1.11. Definition. We denote by Corrϕ(X,X

′) the Q-vector space freely gener-
ated by the set

{
Γ: X � X′ | correspondence over ϕ

}
. We denote Corrid(X,X

′)
by CorrS(X,X

′), and we denote Corr�(X,X) by Corr�(X) (� = ϕ, S) for short. We
have a homomorphism

Corrϕ(X,X
′) → HomS

(
ϕ+f ′

!LX′ , f!LX

)
by sending Γ to Γ∗. Let I be the Q-vector subspace of Corrϕ(X,X

′) generated by
(Γ′ − deg(ρ)−1 · Γ), where Γ, Γ′ are correspondences and ρ is a generically locally
free morphism of constant degree Γ → Γ′. When X is smooth, by Corollary 3.1.10
(ii), the homomorphism above factors through Corrϕ(X,X

′)/I.
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Let Corr�ϕ(X,X
′) for � = et (resp. fin) be the Q-vector subspace of Corrϕ(X,X

′)
generated by integral correspondences Γ (i.e., Γ is integral) such that the first
projection Γ → X is étale (resp. finite). There exists the composition map

◦ : Corretψ (X′,X′′)× Corretϕ (X,X′) → Corretψ◦ϕ(X,X
′′)

defined by sending (Γ′,Γ) to Γ′ ◦ Γ := Γ×X′ Γ′.

Lemma. Let Γ: X � X′, Γ′ : X′ � X′′ be correspondences over ϕ and ψ. Assume
further that the second projection of Γ or the first projection of Γ′ is smooth. When
X and X′ are smooth, we have (Γ′ ◦ Γ)∗ = Γ∗ ◦ Γ′∗.

Proof. The verification is standard. See, for example, [La2, A.7]. �

3.1.12. Given a correspondence, the results in this subsection hold in exactly the
same manner for �-adic étale cohomology. However, in [La2, §A], he uses slightly
different definition of the actions of correspondences on the cohomology, and we
need to compare these.

For a smooth admissible stack X, we denote by Xgr the associated coarse moduli
algebraic space of Keel and Mori (cf. [La2, A.2]). Now, let Γ: X � X′ be an integral
correspondence over ϕ such that the first projection p : Γ → X is generically finite

and dominant. Then the morphism ρ : Γ → Γ̃gr := Γgr×p↘XgrX is generically finite

locally free. Indeed, let P → X be a presentation. Then |Γ×X P | → |Γ̃gr ×X P | =
|Γgr|×|Xgr| |P | is surjective. The last equality holds since the fiber product is taken

in the category of algebraic spaces. Thus the morphism Γ ×X P → Γ̃gr ×X P is

surjective, and Γ → Γ̃gr is surjective. This implies that Γ̃gr is irreducible. Now,
since π∗OΓ

∼= OΓgr (cf. [Co2, 1.1]), Γgr is reduced. By [Beh, 5.1.12, 13, 14], the
morphism X → Xgr is a gerb generically over Xgr, thus the morphism is generically

smooth by [Beh, 5.1.5]. This implies that Γ̃gr → Γgr is smooth generically, and

thus Γ̃gr is reduced generically over X. Since Γ̃gr is irreducible and dominant over

X, we conclude that Γ̃gr is integral. Thus, ρ is generically flat. Since p is assumed
generically finite, ρ is generically finite as well, and thus generically finite locally
free.

The generic degree of ρ is denoted by dΓ. We put norm(Γ) := (dΓ)
−1 ·Γ. We can

check easily that for composable correspondences Γ, Γ′, we have dΓ′◦Γ = dΓ · dΓ′ .
Then we have a ring homomorphism

norm: Corrfin,etϕ (X) → Corrfin,etϕ (X); Γ �→ (dΓ)
−1 · Γ.

Now, let Y be a c-admissible stack, and let qY : Y → Ygr be the canonical mor-
phism, which is known to be proper (cf. [Co2, 1.1]). By [La2, A.3], the adjunction
homomorphism Q� → RqY∗q

∗
Y(Q�) is an isomorphism. For Γ ∈ Corrϕ(X,X

′), we
define

Γ∗Laf : H∗
c(X

′)
∼←− H∗

c(X
′gr)

Γgr∗
−−−→ H∗

c(X
gr)

∼−→ H∗
c(X),

where, for a c-admissible stack f : Y → S, H∗
c (Y) denotes H ∗f!Q�. This is nothing

but the action of correspondence defined in [La2, A.6].

Lemma. Let Γ be an element of Corrϕ(X,X
′), which is integral, and the first

projection Γ → X is generically finite. Then we have Γ∗Laf = (norm(Γ))∗.
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Proof. Consider the following commutative diagram on the left:

Γ ��

��

X′

��
X

��
�

Γ̃grp̃�� p̃′
��

q

��

X′gr

Xgr Γgr

pgr
��

p′gr
�� X′gr,

q∗p′gr∗Q�
ιΓgr ��

∼
��

q∗pgr!Q�

��
p̃′∗Q� ιΓ̃gr

�� p̃!Q�.

Then the right diagram is commutative by using Lemma 3.1.7. Thus, the lemma
follows by Lemma 3.1.10. Note that even though Xgr is not smooth, it is coho-
mologically smooth by [La2, A.5], and the arguments in 3.1.10 work without any
changes. �

3.2. Independence of �. We show an �-independence result of the trace of the
action of correspondence on the cohomology of a c-admissible stack. In the scheme
and �-adic case, the �-independence result is the one proven in [KS].

3.2.1. The main result of this subsection is as follows:

Theorem. Let X be a smooth c-admissible stack over a finite field k, and let
Γ ∈ CorrS(X). Then we have

Tr
(
Γ∗ : H∗

c (X⊗ k,Q�)
)
= Tr

(
Γ∗ : H∗

c (X, LX,∅)
)
.

Remark. We assumed k to be finite since some delicate arguments might be
needed in the p-adic situation to reduce to the finite field case as in the proof of
[KS, 2.3.6.1]. However, there is no reason to doubt that the theorem holds without
the assumption on the base field.

The idea of the proof is essentially the same as [KS, 2.3.6], and the proof takes
the whole subsection. In the application, we use the following form: Let k be a
finite field with q = ps elements, and let R = W (k) and σ = id. Let X be a
separated scheme of finite type over k, and let ix : x ↪→ X be a closed point of X.
We take an algebraic extension L of Kx := Frac(W (k(x))), and take σL := id for an
extension of σ. Put s′ := [k(x) : k] ·s, and let Tx,F := (k(x),W (k(x)),Kx, L, s

′, id).
We have the following functor

ιnx : D
b
hol(X/LF )

H ni+x−−−−→ Hol(k(x)/LF ) ∼= Hol(k(x)/Tx,F ),

where the last equivalence follows by Corollary 1.4.11. The last category is equiv-
alent to the category of finite-dimensional L-vector spaces with automorphism de-
noted by Fx. Let E ∈ Db

hol(X/LF ), and assume we are given an automorphism
α. This induces an automorphism on ιnx(E ) denoted by αx. Note that αx and Fx

commute. For n ∈ Z, we put

Tr
(
α× Fn

x : E
)
:=

∑
i

(−1)i · Tr
(
αx ◦ Fn

x : ιix(E )
)
.

Corollary. Let S be a smooth connected scheme of finite type over k, and let
f : X → S be a smooth morphism between c-admissible stacks. Assume we are
given Γ ∈ CorrS(X). For a closed point x ∈ S, let Xx and Γx denote the fibers over



LANGLANDS CORRESPONDENCE FOR ISOCRYSTALS 1017

x. Then there exists an open dense subscheme U ⊂ S such that for any closed point
x ∈ U such that L ⊃ Kx and any integer n, we have

Tr
(
Γ∗ × Fn

x : f!Q�

)
= Tr

(
Γ∗ × Fn

x : f!LX

)
.

Proof. Let fx denote the fiber of f on x. By Lemma 3.1.8 and its remark, we can
take U ⊂ S such that the action of Γ on f!Q� and f!LX at the fiber x ∈ U are
equal to the action of Γx on fx!Q� and fx!LXx

. Then we use our theorem to get
the corollary. �

3.2.2. We do not assume k to be finite here, and we fix � ∈ {∅, F}.

Lemma ([SGA41
2 , Cycle, 2.3.8 (ii)]). Consider the following cartesian diagram

of c-admissible stacks over k :

Γ′ g′
��

f ′

��
�

X′ h′
��

f

��
�

S′

��
Γ

g
�� X

h
�� S,

where X(′) is smooth (over k), S(′) is a scheme, g is a generalized cycle of codimen-
sion c, and h and h ◦ g are flat and equidimensional. Then g′ is a generalized cycle
of codimension c as well, and we have f∗cl(Γ) = cl(Γ′) ∈ H2c

Γ′ (X′)(c).

Proof. We have the following commutative diagram:

Hom(g+LX, g
!LX)

��

∼
H2c

Γ (X)(c)

f∗

��
Hom(g′+LX, g

′!LX) ∼ H2c
Γ′ (X′)(c),

where the dotted arrow can be described as follows: Let φ ∈ Hom(g+LX, g
!LX).

Then the image of φ is the unique dotted homomorphism in the following diagram
on the left, which makes the diagram commutative:

g′+LX′ �� g′!LX′(c)[2c]

f ′+g+LX
∼

f ′+(φ)

��

∼

��

f ′+g!LX(c)[2c],

��
g′+LX′ ∼

TrΓ′ �� g′!LX′(c)[2c]

f ′+g+LX
∼

f ′+TrΓ

��

∼

��

f ′+g!LX(c)[2c].

��

Here the right vertical homomorphism is the base change homomorphism. Thus, by
taking φ = TrΓ, the problem is reduced to showing the commutativity of the right
diagram above. Now, TrΓ and TrΓ′ can be regarded as Trh◦g and Trh′◦g′ by the
transitivity of trace. By the base change property of trace, we get the lemma. �

3.2.3. Lemma. Let X be a smooth scheme of dimension d over k, and let
Z → X be a generalized cycle. Then the cycle class map induces a homomorphism
clX : CHi(Z) → H2d−2i

Z (X)(d− i).

Proof. Let W be a closed integral subscheme of dimension i+ 1 of Z and W → P1

be a dominant morphism (hence flat by [EGAIV, 2.8.2]). Let Wi be the fiber of
i ∈ P1. By [Fu, Ch.I, Prop 1.6], it suffices to show that clX(W0) = clX(W1). Let
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W ◦ be the pullback of A1 ⊂ P1 by the morphism W → P1. Note that W ◦ → Z×A1

is a closed immersion. Consider the following commutative diagram:

W0
��

�� �

W ◦

�� �

W1
��

��
Z ��

�� �

Z × A1

�� �

Z��

��
{0} �� A1 {1}.��

This induces the commutative diagram

H2j
W0

(X)

��

H2j
W◦(X × A1)

1∗ ��0∗��

��

H2j
W1

(X)

��
H2j

Z (X) H2j
Z×A1(X × A1)

∼
0∗

�� ∼
1∗

�� H2j
Z (X),

where j := d − i, and we omit Tate twists. The bottom arrows are isomorphisms
since Hi(A1) = 0 for i �= 0 and H0(A1) ∼= L. By Lemma 3.2.2 and the flatness of
X◦ → A1, clX×A1(W ◦) on the top middle is sent to clX(W0) and clX(W1) via 0∗

and 1∗, so the lemma follows. �

Remark. When Z is a cycle in X, we believe that the method of [Gil] can be
applied to construct the cycle class map. However, the author does not know how
we define the Zariski sheaves Γ∗(i) in [Gil, 1.1].

3.2.4. Lemma ([KS, 2.1.1]). Let X be a c-admissible stack,5 let U be an open
substack of X which is smooth, and let Γ be a generalized cycle of codimension d on
U. Consider the following commutative diagram:

Γ
i

��

i′

��
U
� �

j
�� X,

where j is the open immersion, and i is the generalized cycle. Assume i′ is proper.
Recall the homomorphism (3.1.4.1). Using this homomorphism, the composition

c : H∗
c (X, j+LU)

i′∗−−→ H∗
c (Γ)

i∗−→ H∗+2d
c (U)(d)

sends u to u∪r(clU(Γ)) (cf. 3.1.2 for ∪). Here, r is the homomorphism H2d
Γ (U)(d) ∼=

H2d(X, j!i+i
!LU)(d) → H2d(X, j!LU(d)), where the first isomorphism follows since

i′ is assumed proper as well.

Proof. We can copy the proof of [KS]. �

5In the corresponding statement of [KS], they assume X to be smooth. We think that this is
a typo and, in fact, is too strong for their and our purposes. Indeed, in the proof of [KS, 2.3.2],
they apply [KS, 2.2.1] in the situation where X is not necessarily smooth.
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3.2.5. Let f : X → Y be a representable l.c.i. morphism from a scheme6 of finite
type purely of dimension n to a c-admissible stack purely of dimension m over k.
For example, a representable morphism between smooth c-admissible stacks is l.c.i.
We note that f is schematic since Y is admissible. Let Γ → Y be a generalized cycle
of codimension d which is a scheme, and put Γ′ := Γ×Y X, which is a generalized
cycle of X and is a scheme as well since f is schematic. Let us briefly recall the
construction of f !([Γ]) ∈ CHn−d(Γ

′) by Kresch [Kr].
Let f ′ : X′ → Y′ be a representable separated morphism between algebraic

stacks. In [Kr, 5.1], Kresch constructs7 ρ : M◦
X′Y

′ → A1, whose fiber over 0 is
called the normal cone denoted by CX′Y′ → X′, and the general fiber is just Y′.
When f ′ : X ′ ↪→ Y ′ is a closed immersion of schemes, M◦

X′Y ′ is nothing but the
one introduced in [Fu, Ch.5]. We remark that by construction, there is a canonical
morphism X′ ×A1 → M◦

X′Y
′ defined by the strict transform, and ρ is flat by using

[Fu, B.6.7]. When f ′ is l.c.i., CX′Y′ is known to be a vector bundle over X, in which
case we denote it by Nf ′ .

Now, assume that X and Y are smooth. In this situation, M◦
XY is smooth. We

put Γ′ := Γ×Y X. By definition, we have the diagram below on the left:

(�) M◦
Γ′Γ

� �

α
�� M◦

XY×Y Γ ��

��
�

M◦
XY

��
Γ �� Y,

Γ′ × A1 ��

��
�

X × A1

��
M◦

Γ′Γ �� M◦
XY.

This diagram induces the cartesian diagram on the right.
Let us define f !([Γ]) ∈ CHn−d(Γ

′). For the details, see [Fu, 3.1, 5.1]. By taking
the pullback by the morphism X → Y of the diagram above on the left, we have
the following diagram of schemes.

(3.2.5.1) CΓ′Γ �
� �� N ′ ��

��
�

Nf

��
Γ′ �� X

g

��

The closed immersion on the upper left is induced by α in (�). By definition, f !(Γ)
is the image of [CΓ′Γ] by the homomorphism

CHm−d(CΓ′Γ) → CHm−d(N
′)

g!

−→
∼

CHn−d(Γ
′),

where the last isomorphism8 follows by [Fu, Theorem 3.3].

3.2.6. Lemma ([KS, 2.1.2]). We preserve the notation. Let f∗ : H2d
Γ (Y) →

H2d
Γ′ (X) be the pullback. Then the class cl(f !([Γ])) ∈ H2d

Γ′ (X) is equal to f∗cl(Γ).

6This assumption is made for simplicity. In fact, with suitable changes, similar results can be
obtained when X is a c-admissible stack.

7In fact, he constructs over P1 instead of A1. However, for convenience, we restrict his con-
struction over A1 and, by abusing the notation, we still denote it by M◦

X′Y
′.

8This isomorphism holds even when X is an admissible stack. Indeed, by [Kr, 3.5.7], an
admissible stack admits “a stratification by global quotients”. Then by [Kr, 4.3.2], we have the
required homotopy invariance property.
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Proof. The verification is essentially the same as [KS]. We have the following com-
mutative diagram:

H2d
Γ (Y)(d)

f∗

��

H2d
Z (M◦

XY)(d)
0∗ ��1∗��

��

H2d
C′(Nf )(d)

g∗

��
H2d

Γ′ (X)(d) H2d
Γ′×A1(X × A1)(d)

0∗

∼
��1∗

∼
�� H2d

Γ′ (X)(d),

where Z := M◦
Γ′Γ, C ′ := CΓ′Γ, and the middle vertical homomorphism is induced

by the morphism X × A1 → M◦
XY defined by the strict transform. At the upper

row, the image of the cycle class cl(Z) is sent to cl(Γ) and cl(C ′) by 1∗ and 0∗,
respectively, by Lemma 3.2.2 and the flatness of Z → A1.

Recall the diagram of schemes (3.2.5.1). It is reduced to showing that cl(g![C ′]) =
g∗cl(C ′). Using Lemma 3.2.3, this amounts to proving the commutativity of the
following diagram on the left:

CHm−d(N
′)

g!

��

�� H2d
N ′(Nf )(d)

g∗

��
CHn−d(Γ

′) �� H2d
Γ′ (X)(d),

CHn−d(Γ
′) ��

p∗

��

H2d
Γ′ (X)(d)

p∗

��
CHm−d(N

′) �� H2d
N ′(Nf )(d).

Note that the stacks appearing in these diagrams are, in fact, schemes. Consider
the diagram on the right above, where p denotes the projection Nf → X. Since
g∗ ◦ p∗ is the identity on H2d

Γ′ (X)(d), and g! is an isomorphism whose inverse is p∗

on the Chow groups, the verification of the commutativity of the left diagram is
reduced to that of the right one. There exists an open dense subscheme U ⊂ X
such that U ∩ Γ′ ⊂ Γ′ is dense, and Nf ×X U → U is a trivial bundle so that we
can write Nf ×X U ∼= U × An. Since H2d

Γ′ (X)(d) ∼= H2d
Γ′∩U (U)(d), we may replace

X by U and Γ′ by Γ′ ∩ U . Thus, the claim follows by Lemma 3.2.2. �

3.2.7. Now, we only consider the case where � = ∅ (but k is still not necessarily
finite). Let us recall the construction of [KS, after Lemma 2.3.1]. Let U be a
smooth c-admissible stack of dimension d, and let Γ be a correspondence on U

(over Spec(k)). Let j : U ↪→ X be a compactification. Since the second projection
p2 : Γ → U is assumed proper, the morphism (j ◦ p1, p2) : Γ → X× U is proper, and
we have isomorphisms

H2d
Γ

(
X× U, (j × id)!L(d)

) ∼−→ H2d
Γ

(
X× U, L(d)

) ∼−→ H2d
Γ

(
U× U, L(d)

)
.

Thus, the cycle class cl(Γ) defined in H2d
Γ

(
U× U, L(d)

)
induces an element in

H2d
!,∗(U× U)(d) := H2d

(
X× U, (j × id)!L(d)

)
.

Since � = ∅, this cohomology is isomorphic to
∏

i End
(
Hi

c(U)
)
as in [KS] using

the Künneth formula (cf. Corollary 2.3.37) and the Poincaré duality (cf. Theorem
2.3.31).

Lemma ([KS, 2.3.2]). The action Γ∗ can be identified with the class cl(Γ) via this
isomorphism.

Proof. Using Lemma 3.2.4, the proof of [KS] works exactly in the same manner. �
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3.2.8. Proof of Theorem 3.2.1. By Corollary 2.3.4, we can take a proper generically
finite surjective morphism f : X → X such that X is a smooth scheme. Using the
same corollary and Corollary 3.1.10, we may assume Γ to be a scheme. Let H∗

c (X)
be H∗

c (X⊗k,Q�) or H
∗
c (X, LX). Using Lemma 3.2.7 and Corollary 3.1.7, by arguing

as [KS, 2.3.3], we have

(�) Tr
(
Γ∗ : H∗

c (X)
)
= deg(f)−1 · Tr

(
(f × f)∗clX×X(Γ) : H

∗
c (X)

)
,

where we regard classes in H2d
!,∗(X × X)(d) (d := dim(X)) as endomorphisms of

H∗
c (X) using Lemma 3.2.7. Consider the following commutative diagram:

Γ′ ��

�
��

X ×X
π2 ��

f×f

��

X

f

��
Γ �� X× X

π2

�� X.

Since the composition of the horizontal morphisms below is proper by assumption,
the composition morphism from Γ′ to X is proper. Thus the composition of the
horizontal morphisms of the first row is proper. By Lemma 3.2.6, (f ×f)∗clX×X(Γ)

is equal to clX×X

(
(f×f)!(Γ)

)
. Let Γ̃′ be the correspondence defined by (f×f)!(Γ).

By applying Lemma 3.2.7 once again, the trace of the right-hand side of (�) is equal

to Tr
(
Γ̃′ : H∗

c (X)
)
. This implies that it suffices to show the theorem in the case

where X =: X and Γ are schemes. By Corollary 3.1.10, we may replace Γ by its
image in X × X, and assume that Γ ⊂ X × X. In this case, we just repeat the
argument of [KS, Prop 2.3.6]. Further details are left to the reader. �

4. Langlands correspondence

In this final section, we establish the Langlands correspondence, and in particu-
lar, we prove the existence of petits camarades cristallins for curves. We wrote this
section to be as independent as possible.

4.1. Preliminaries. First, let us very briefly recall basic notions of the p-adic
cohomology theory and notation of this paper for the convenience of the reader.
We do not have new input, and those who have read the previous sections may skip
this.

4.1.1. Let k be a perfect field, let R be a complete discrete valuation ring whose
residue field is k, and let K be the field of fractions of R. We assume further
that the s-th Frobenius automorphism of k can be lifted to an automorphism
σ : R

∼−→ R. The induced automorphism between K is also denoted by σ. With
this setup, let X be a scheme of finite type over k. Berthelot defined the cate-
gory of overconvergent isocrystals (resp. overconvergent F -isocrystals) denoted by

Isoc†(X/K) (resp. F -Isoc†(X/K)). We do not try to recall the definition here,
but a standard reference is [Ber1], and we may find other references in [Ke3] and
[Ke6]. This category is a p-adic analogue of the category of smooth Q�-sheaves over

X ⊗k k (resp. over X). In this paper, we denote F -Isoc†(X/K) by Isoc†(X/KF ).
The description of these categories when X = Spec(k) is simple but important:

Isoc†(Spec(k)/K) is canonically equivalent to the category of finite-dimensional

K-vector spaces, and Isoc†(Spec(k)/KF ) is canonically equivalent to that of finite-

dimensional K-vector spaces V equipped with an isomorphism K ⊗σ,K V
∼−→ V .
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In particular, the trivial vector space K with trivial isomorphism determines an
object of Isoc†(Spec(k)/KF ), which is denoted by K, abusing the notation.

Let f : X → Y be a morphism between schemes of finite type over k. Then
the pull-back functor f+ : Isoc†(Y/K) → Isoc†(X/K) (resp. f+ : Isoc†(Y/KF ) →
Isoc†(X/KF )) is defined in [Ber1, 2.3.2 (iv)].9 If p is the structural morphism of
X, we put KX := p+K, which is also denoted by K. The category is equipped
with tensor product ⊗, with which Isoc†(X/K) (resp. Isoc†(X/KF )) forms a tensor
category (cf. [Ber1, 2.3.3 (iii)]). The unit object of the tensor category isKX . It also
possesses an internal hom functor Hom. Finally, we have the notion of ranks (cf.

[Ber1, 2.3.3 (ii)]). This implies that any object in Isoc†(X/K) (resp. Isoc†(X/KF ))
is of finite length.

Remark. The category Isoc†(X/K) used in §1–§3 is smaller than the one recalled

here, but the category with Frobenius Isoc†(X/KF ) is the same; see the paragraph

right after 1.1.3 (11). In the following, we only use Isoc†(X/KF ), so this does not
cause any problems.

4.1.2. In Langlands correspondence, we consider the case where k is a finite field
with q = ps elements, R := W (k), and σ : R

∼−→ R is the identity. Then we may

consider the category Isoc†(X/KF ) which is K-abelian. Note that this would be
Kσ=1-abelian if σ were not the identity. Now, we need to extend the scalar from K
to Qp. This was done in 1.4.10 and 2.4.14, and let us recall the idea briefly:10 For a

finite extension L/K, we define Isoc†(X/LF ) to be the category of pairs (E , ρ) where
E ∈ Isoc†(X/KF ), and we let ρ : L → End(E) be a homomorphism of K-algebras,

and the morphisms are defined in the obvious way. To define Isoc†(X/Qp,F ), we

take the 2-inductive limit of Isoc†(X/LF ) over all finite extensions L of K. We

have the scalar extension functor ⊗Qp : Isoc
†(X/KF ) → Isoc†(X/Qp,F ). We re-

mark that even though E ∈ Isoc†(X/KF ) is irreducible, E ⊗ Qp may not be irre-
ducible in general, and this is why we needed to extend the scalar. For a morphism
f : X → Y , the pull-back functor can formally be extended to f+ : Isoc†(Y/Qp,F ) →
Isoc†(X/Qp,F ), and similarly for ⊗, Hom. The data T := (k,R,K,L, s, σ = id)
(where σ is an extension to L of a lifting of s-th Frobenius automorphism on k to

K) we used to define Isoc†(X/LF ) is called the base tuple. To clarify the base, we

also use the notation Isoc†(X/T) for Isoc†(X/LF ). See 1.4.10 and 2.4.14 for details.

4.1.3. Before going to the next section, let us briefly recall what we have done so
far. Let X be a scheme, or more generally, an algebraic stack of finite type over
k. We constructed a triangulated category Db

hol(X/Qp,F ) over Qp with a natural
t-structure H in Definition 2.1.16. When X is a smooth separated scheme over
k, Isoc†(X/Qp,F ) is fully faithfully embedded into Db

hol(X/Qp,F ) by 2.4.15. There

is another t-structure on Db
hol(X/Qp,F ): the constructible t-structure cH defined

in Definition 2.3.24. Philosophically, H corresponds to the perverse t-structure in
the �-adic setting, and cH corresponds to the standard (constructible) t-structure.
In this section, we mostly use cH since its heart, denoted by Con(X/Qp,F ), con-

tains Isoc†(X/Qp,F ) when X is a smooth separated scheme. Objects of Con are
called constructible objects. Over the category of compactifiable admissible stacks

9The pull-back functor is denoted by f∗ in [Ber1].
10Actually the definition presented here is the one in Remark 1.4.9.
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(c-admissible stacks), we have six functor formalism: Db
hol(X/Qp,F ) is endowed with

tensor and dual functors. Given a morphism f : X → Y, we have

f+, f! : D
b
hol(X/Qp,F ) → Db

hol(Y/Qp,F ), f+, f ! : Db
hol(Y/Qp,F ) → Db

hol(X/Qp,F ),

and they satisfy standard properties. Here, f+ and f+ are analogues of f∗ and f∗ in
the �-adic theory, and we adopted these notation in order to follow the tradition of
the theory of D-modules. We do not need this much in the statement of Langlands
correspondence, but these techniques are required in the proof.

4.2. Langlands correspondence. The aim of this subsection is to state the main
theorem of this paper, namely the Langlands correspondence, and give an overview
of the strategy of the proof.

4.2.1. First of all, let us fix the basis (cf. 1.4.10, 2.4.14). We assume k to be a finite
field with q = ps elements. We fix an algebraic closure Qp of K, and we denote by k

the residue field of Qp which is algebraically closed as well. We define an arithmetic

base tuple Tk := (k,R := W (k),K := Frac(R),Qp, s, σ := id). Likewise, for a

finite extension k′ of k in k, we put Tk′ := (k′,W (k′),Frac(R′),Qp, [k
′ : k] · s, id).

With these data, we may consider the Qp-coefficient cohomology theory (cf. 2.4.14),

which we mainly use. For any finite extension k′ of k, the category Isoc†(k′/Tk′) is
equivalent to the category of finite-dimensional Qp-vector spaces V endowed with

the isomorphism id∗(V )
∼−→ V (cf. Definition 1.4.10). By identifying id∗(V ) with

V , we view the isomorphism as an automorphism of V .
Let X be a smooth scheme over k, and let ix : x ↪→ X be a closed point of X.

Then Tk(x) = (k(x),W (k(x)),Kx,Qp, s
′, id) where s′ := [k(x) : k] · s. Let us define

the linearized Frobenius automorphism at x. Choose a geometric point x ∈ X(k)
lying above x. This defines an embedding Kx ↪→ Qp, and we have the following
functor

ιx : Isoc
†(X/Tk)

i+x−→ Isoc†(k(x)/Tk) ∼= Isoc†(k(x)/Tk(x)),

where the equivalence follows by Corollary 1.4.11 using the embedding. For E ∈
Isoc†(X/Tk), the equipped automorphism on ιx(E) is called the linearized geomet-
ric Frobenius automorphism at x of E . The inverse of the linearized geometric
Frobenius automorphism is denoted by Frobx and is simply called the Frobenius
automorphism at x. The multiset of eigenvalues of Frobx acting on ιx(E) depends
only on the choice of x and not on x. By abuse of language, we call this multiset
the set of Frobenius eigenvalues at x.

Remark. We defined Frobx so that the notation is compatible with that of
Lafforgue. In �-adic theory, the corresponding automorphism is sometimes called
“arithmetic Frobenius”.

4.2.2. Theorem (Langlands correspondence for isocrystals). We fix an isomor-
phism Qp

∼= C. Let X be a geometrically connected proper smooth curve over k.
Denote by F the function field of X, and let AF be the ring of adèles. For an
integer r ≥ 1, consider the following two sets.
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Ir : The set of isomorphism classes of irreducible isocrystals of rank r in
2- lim−→ Isoc†(U/Tk), where the limit runs over open subschemes U ⊂ X,

such that the determinant is of finite order.
Ar : The set of isomorphism classes of cuspidal automorphic representations

π of GLr(AF ) such that the order of the central character of π is finite.

(1) There exist maps

E• : Ar � Ir : π•

with which Ar and Ir correspond in the sense of Langlands: for π ∈ Ar

(resp. E ∈ Ir), the sets of unramified places of π (resp. E) and Eπ (resp. πE)
coincide, which we denote by U , and for any x ∈ |U |, the set of Frobenius
eigenvalues of Eπ (resp. E) at x and that of Hecke eigenvalues of π (resp.
πE) at x coincide.

(2) Assume that π(′) ∈ Ar(′) and E(′) ∈ Ir(′) correspond in the sense of Lang-
lands. Then the local L-functions and local ε-factors of pairs (π, π′) and
(E , E ′) coincide for any point x ∈ |X| (cf. [A2] and [La2, VI.9 (ii)]).

Remark. The correspondence is unique if it exists.

4.2.3. For a proof of the theorem, we follow the program of Drinfeld and Lafforgue.
We briefly recall the outline of the proof to introduce some notation we use in the
next subsection. The idea is explained clearly and in detail in the introduction of
[La2], so we encourage the reader who is not familiar with Lafforgue’s proof to read
through it before entering our proof.

In [A2], with the help of the product formula proven in [AM], we have the
following theorem, which is nothing but the p-adic version of principe de récurrence
by Deligne:

Theorem ([A2, §5]). Let n be a positive integer, and assume Theorem 4.2.2
is known for r, r′ ≤ n. Then we have the map In+1 → An+1 in the sense of
Langlands such that the corresponding cuspidal representation is unramified at the
places where the isocrystal is. Moreover, if we have a map An+1 → In+1 in the
sense of Langlands such that the corresponding isocrystal is unramified at the places
where the cuspidal representation is, then Theorem 4.2.2 holds for r′, r ≤ n+1. In
other words, (2) of the theorem holds automatically once we prove (1).

4.2.4. Thanks to the theorem above, our task is only to construct a map Ar → Ir
such that the corresponding isocrystal is unramified at the places where the cuspidal
representation is. A rough idea is to realize this as the relative cohomologies of
moduli spaces of shtukas á la Drinfeld. Even though the moduli spaces we use
here are the same as that of Lafforgue, we take p-adic cohomologies that we have
developed in the preceding sections instead of �-adic cohomologies to carry this out.

In this paper, we use the following various types of moduli spaces of shtukas.
We remind the reader that the notation is the same as that of Lafforgue. Let r be
a positive integer. Let N be a level (i.e., a closed subscheme N = Spec(ON ) ↪→ X
which is not equal to X), let p : [0, r] → R be a convex polygon, and let a ∈ A×

F of
degree 1. Given these data, we have c-admissible stacks (cf. Definition 2.3.19) over
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the surface (X −N)× (X −N) as follows:

Moduli space smooth? proper? correspondence Reference

1© Chtr,p≤p
N /aZ © × �1 [La2, right after

Prop I.3]

2© Chtr,p≤p
N /aZ × © − [La2, Def III.8]

3© Chtr,p≤p
N

′
/aZ © × �2 [La2, Cor III.14,

Thm V,14]
1 We have the action of Hecke algebra only after taking the inductive limit over the convex
polygon p.
2 We have the action of Hecke algebra for each element, but the action may not be compatible
with the product structure.

In this table, the second column (resp. the third column) refers to the smoothness
(resp. properness) over (X − N) × (X − N) of the corresponding moduli spaces
in the first column, and definitions and proofs of the properties listed here can be
found in the References. These stacks are c-admissible by [La2, V.1]; more precisely,
in the first line of its proof, it is said that these stacks are quasi-projective over

Chtr,d,p≤p, and the last stack is serene (cf. [La2, Appendix A]) which is proper over
X ×X. The components of these spaces are indexed by integers 1 ≤ d ≤ r called

the degree. The component corresponding to d is denoted by Chtr,d,p≤p
N , Chtr,d,p≤p

N ,

Chtr,d,p≤p
N

′
.

4.2.5. Let f : X → (X − N) × (X − N) be one of the three moduli spaces of
shtukas. Then H∗

c := f!Qp,X contains the isocrystals which correspond to cuspidal
representations in the set {π}rN (cf. 4.3.7). However, it also contains a lot of “junk”
which has already appeared in the Langlands correspondence of lower ranks, and
we need to throw these away. The junk is called the r-negligible part , and the
part we need for the correspondence is called the essential part . We first need to
show that the essential part is concentrated at a certain degree of H∗

c . For this, we
need to use the purity of intersection cohomology, and we need the compact space
2©. Still, the essential part is a mixture of isocrystals corresponding to {π}rN , and
we need to extract the particular isocrystal which corresponds to a given cuspidal
representation π ∈ {π}rN . For this, we need to define an action of the Hecke
algebra Hr

N . We have ring homomorphism from Hr
N to the ring of correspondences

on the moduli space 1© if we pass to the limit of p. Since we are passing to the
limit to define the action, the resulting stack is not of finite type anymore. For
the calculation of the trace of the action of correspondences, we use 3©. We note
that even though we have the correspondences associated to elements of the Hecke
algebra on 3©, this map might not be a homomorphism of rings. Finally, we use the
�-independence result to calculate the trace, and we extract exactly the information
we need.

4.3. Proof of the theorem.

4.3.1. In this subsection, the base tuple Tk is fixed as in 4.2.1, and we also fix an
isomorphism ι : Qp

∼= C as in Theorem 4.2.2. Let Y be a smooth scheme of finite
type and which is geometrically connected over k. We usually omit “/Tk” (e.g.,
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Isoc†(Y ) instead of Isoc†(Y/Tk)). We denote the category Isoc†(Y ) of overcon-
vergent Qp-isocrystals with Frobenius structure by I(Y ) to shorten the notation.

We identify I(Y ) = Isoc†(Y ) and Sm(Y ) ⊂ Db
hol(Y ) via s̃p+, as defined in 2.4.15.

Because of this identification, we often say E ∈ Con(Y ) is smooth if it comes from
I(Y ). Let p : X → Spec(k) be the structural morphism of a c-admissible stack. For

E ∈ Isoc†(X) or more generally an object of Db
hol(X), we put H

∗(X, E) := H ∗p+(E)
and H∗

c (X, E) := H ∗p!(E) and regard these as Qp-vector spaces with automor-
phism. We abbreviate ι-pure (resp. ι-mixed, ι-weight, etc.) simply by pure (resp.
mixed, weight, etc.).

When we say �-adic sheaf, it refers to the �-adic Weil sheaf (cf. [De1, 1.1.10]).
The category of smooth Weil sheaves is denoted by W�(Y ). For a scheme X over
k, we denote by FrobX : X → X the absolute Frobenius endomorphism; f ∈ OX

is sent to fq. For an abelian category A, we denote by Gr(A) the Grothendieck
group of A, and QGr(A) := Gr(A)⊗ Q. For an object X ∈ A of finite length, we
denote by Xss the semisimplification of X, namely the direct sum of constituents
of X.

4.3.2. Let X be a smooth scheme of finite type over k, and let E be in I(X). Take
a closed point x ∈ |X|. We take a geometric point x ∈ X(k) which lies above x,
and recall the functor ιx defined in 4.2.1. The local L-function at x is defined to be

Lx(E , Z) := det
(
1− Zdeg(x)Frob−1

x ; ιx(E)
)−1

in Qp�Z�, which does not depend on the choice of x. Using the fixed isomorphism

Qp
∼= C, we usually consider this series as a series in C�Z�. The global L-function

is defined as

LX(E , Z) :=
∏

x∈|X|
Lx(E , Z).

Analogous to Grothendieck’s formula, this L-function has the following cohomolog-
ical interpretation:

(4.3.2.1) LX(E , Z) =

2 dim(X)∏
ν=0

det
(
1− Z · FrobX ;Hν

c (X, E)
)(−1)ν+1

,

which is an identity of formal power series (cf. Corollary A.3.3). We refer to §A.3
for further detail.

4.3.3. We use the theory of weights. We refer to 2.2.30–2.2.32, and 2.3.38 for more
detail. Let t ∈ C. Using ι, we may consider qt as an element in Qp. We have

the automorphism of Qp, considered as a Qp-vector space, sending 1 to q−t, which

defines an object in I(Spec(k)) denoted by Qp(t). This is of weight −2Re(t). When
t is an integer, the notation is compatible with Tate twists (cf. Definition 1.4.13).
The following standard consequences of the theory of weights are important tools
in the proof of Langlands correspondence:

Proposition ([La2, VI.3]). Let Y be a smooth geometrically connected scheme of
finite type over k. Let E ∈ I(Y ) be mixed of weight ≤ n, and let E ′ be an irreducible
object in I(Y ) pure of weight m.

(i) The rational function LY (E ⊗ E ′∨, Z) does not have zeros in the region |Z| <
q

m−n
2 −dim(Y )+ 1

2 .
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(ii) Let t ∈ C such that Re(t) = (m − n)/2, and assume that the multiplicity of
E ′(t) in the semisimplification of E is μ ≥ 0. Then the L-function appearing in (i)
has a pole of order μ at Z = qt−dim(Y ). Moreover, it does not have any pole in

|Z| < q
m−n

2 −dim(Y ).

Proof. Use Theorem 2.3.38 and (4.3.2.1) to show (i). We have

HomI(Y )(E , E ′(t)) ∼=
(
H0

(
Y, E∨ ⊗ E ′(t)

))FrobY

∼=
(
H2 dim(Y )

c

(
Y, E ⊗ (E ′(t))∨

)
(dim(Y ))

)FrobY
,

where (−)FrobY denotes the fixed part by the action of FrobY , and the first iso-
morphism is by 2.3.14, the second by Theorem 2.3.34. If E is semisimple, then the
action of FrobY on H0

(
Y, E∨ ⊗E ′(t)

)
is semisimple, thus the fixed part of FrobY is

equal to the generalized eigenspace of FrobY with eigenvalue 1, and we get (ii). �

We usually use this proposition in the following form:

Corollary. Let Y be as in the proposition. Let E be in Gr(I(Y )), and let E ′ be
an irreducible object in I(Y ). Assume that any component of E is mixed of weight
≤ n. For t ∈ C such that Re(t) = (m − n)/2, the multiplicity of E ′(−t) in E is
exactly the order of pole of LY (E ⊗ E ′∨, Z) at Z = qt−dim(Y ).

4.3.4. Definition. Let Y be a smooth scheme of finite type and geometrically
connected over k, and let U ⊂ Y ×Y such that (FrobY ×idY )(U) ⊂ U . We denote by
ZI(U) the category of overconvergent Qp-isocrystals on U with Frobenius structure

equipped with an isomorphism (FrobY × idY )
+E ∼−→ E . Let F be the function field

of Y . We put

I(F ) := 2- lim−→
U⊂Y

I(U), ZI(F 2) := 2- lim−→
U⊂Y ×Y

ZI(U).

Remark. Take a geometric point y ∈ Y (k). Using the notation of 2.4.18, I(Y )
is equivalent to RepQp

(W isoc(Y, y)), the category of finite-dimensional represen-

tations of the algebraic group W isoc(Y, y) over Qp. Similarly, we have ZI(U) ∼=
RepQp

(ZW isoc(U, y)) by 2.4.19. We often ignore the basepoints of W isoc and

ZW isoc.

4.3.5. We preserve the notation, and let q′, q′′ : Y × Y → Y be the first and second
projections, respectively.

Definition ([La2, VI.14]). Let r ≥ 1 be an integer. An object E ∈ I(F 2) (resp.
element of QGrI(F 2)) is said to be r-negligible if any of its subquotient (resp. any
of its component) is a direct factor of an object of the form q′+E ′ ⊗ q′′+E ′′ where
E ′ and E ′′ are objects of rank < r in I(F ). It is said to be essential if all the
subquotients are not r-negligible. A semisimple r-negligible object of I(F 2) (resp.
an r-negligible element of QGrI(F 2)) is said to be complete if it is a direct sum
(resp. sum) of objects of the form q′+E ′ ⊗ q′′+E ′′.

4.3.6. Lemma. (i) Let E ′, E ′′ be irreducible objects in I(F ). Then q′+E ′ ⊗ q′′+E ′′

is irreducible as an object in ZI(F 2).
(ii) A semisimple r-negligible object, or an r-negligible element of QGrI(F 2), E

is complete if it is invariant under the action of (FrobY × idY )
+, namely if there
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exists an isomorphism (FrobY × idY )
+(E) ∼= E . In particular, for a semisimple

r-negligible object E ,
⊕r2!

n=1(Frob
n
Y × idY )

+(E) is complete.

Proof. Let us prove (i). We may assume E ′ and E ′′ are defined on U ⊂ Y . By
Lemma 2.4.20, it suffices to show that q′+E ′ ⊗ q′′+E ′′ is irreducible as an object in
ZI(U × U). This follows by Lemma 2.4.19. Let us check (ii). There exists U ⊂ Y
such that E is an isocrystal on U × U . Since E is assumed negligible, there exists

a complete r-negligible object Ê ∈ ZI(U × U) such that E ⊂ Ê in I(U × U) by
definition. Since E is invariant under the pullback by FrobY × id, we may assume

that E is invariant under the equipped isomorphism α : (FrobY × idY )
+(Ê) ∼= Ê , by

changing the inclusion if necessary. Let ρÊ be the corresponding representation of

ZW isoc(U × U), and ρE be the subrepresentation of ρÊ corresponding to E defined
since E is invariant under the isomorphism α. Let

K := Ker
(
ZW isoc(U × U) → W isoc(U)×W isoc(U)

)
.

Then since Ê is assumed complete, ρÊ(K) = id. Thus, ρE(K) = id, which implies

that ρE is the pullback of a representation of W isoc(U) × W isoc(U), and the first
claim follows. To check the last claim, we note that, for any irreducible objects E ′,
E ′′ in I(F ) of rank r′ and r′′, respectively, q′+E ′ ⊗ q′′+E ′′ is semisimple in I(F 2)
by (i), and the number of constituents N of q′+E ′ ⊗ q′′+E ′′ is ≤ r′r′′. This implies
that for any constituent F of q′+E ′ ⊗ q′′+E ′′ and any integer k > 0,

kN⊕
n=1

(FrobnY × idY )
+(F)

is invariant by the action of (FrobY × idY )
+. Since N ≤ r′r′′ ≤ r2, N divides r2!,

and the claim follows by the first part of (ii). �

Remark. In (ii) of the corollary, we may take
⊕r!

n=1 as in [La2], but for our

purposes,
⊕r2!

n=1 is enough.

4.3.7. From now on, we use the notation of §4.2 freely. In the following, we fix
a ∈ A×

F of degree 1, and a level N = Spec(ON ) ↪→ X. Let p be a large enough
convex function. For π ∈ Ar(F ), we denote by χπ the central character of π. We
define a set by

{π}rN :=
{
π ∈ Ar(F ) | χπ(a) = 1 and π · 1N �= 0

}
,

where 1N is the quotient of the characteristic function of KN := Ker
(
GLr(AF ) →

GLr(ON )
)
by its volume. It suffices to construct isocrystals corresponding to the

cuspidal representations belonging to {π}rN . We put SN := (X −N)× (X −N).
Let q′, q′′ : X × X → X be the first and second projection, respectively. For a

morphism of c-admissible stacks f : X → SN , we denote the relative cohomology
cH νf!Qp,X,F by Hν

c (X), where Qp,X,F denotes the unit object in Con(X). This is
an object in Con(SN ). Assume f is proper. There exists an open dense substack
j : U ↪→ X such that Qp,U,F is pure of weight 0. Then we denote by IHν(X) :=
cH νf+j!+Qp,U,F , which is pure of weight ν.

We also use �-adic cohomologies. We denote by Hν
c (X,Q�) := H νf!Q� and

IHν(X,Q�) := H νf+j!+Q�, where H ν denotes the standard (constructible) t-
structure. In most cases in this paper, these �-sheaves are smooth, namely an
object of W�(SN ) (cf. [La2, p.165]).
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4.3.8. We start the proof of the theorem from here. We prove a slightly stronger
statement than the theorem. For an integer n ≥ 1, we call the following two
statements (S)n:

(1) Theorem 4.2.2 is true for r, r′ ≤ n. As a consequence, we have In+1 → An+1

as well by Theorem 4.2.3.

(2) For r′ ≤ n, the constructible objectHν
c (Cht

r′,p≤p
N /aZ) is smooth and (n+1)-

negligible for any ν, levelN : Spec(ON ) ↪→ X, a ∈ A×
F such that deg(a) = 1,

and convex polygon p large enough with respect to X and N .

We know that (S)1 holds. Indeed, (1) is nothing but the class field theory together
with the theorem of Tsuzuki [T, Thm 7.1.1]; see [A2, 6.5] for more details. Let us

check (2). We know that f : Cht1,p≤p
N = Cht1N/aZ → SN is an abelian covering and

f!Q� =
⊕

q′∗χ′ ⊗ q′′∗χ′′, where χ′ and χ′′ are smooth sheaf on X −N of rank 1 by
[La2, remark of VI.15]. Using (1), let χ′

p and χ′′
p be the corresponding isocrystals

of rank 1 in I(X − N). By Proposition 2.3.22 (or Theorem A.5.4 if one prefers),
f!Q� and f!Qp have the same Frobenius eigenvalues. Thus, by Čebotarev density

A.4.1, we get f!Qp
∼=
⊕

q′+χ′
p ⊗ q′′+χ′

p.
In the following, we fix an integer r > 1, and assume that (S)r−1 holds. Our

goal is to show (S)r under this assumption, which is attained at the very end of
this subsection.

4.3.9. Definition. Let k′ be the extension of k of degree d0 ≥ 1. For a smooth
scheme U over k′, we put Id0

(U) := Isoc†(U/Tk′) (cf. 4.2.1 for the notation of base
tuple). We denote by Fd0

and F 2
d0

the function fields of X⊗k k
′ and (X×X)⊗k k

′,

and we define Id0
(Fd0

), Id0
(F 2

d0
) accordingly. An irreducible object in I(F ) is said

to be r-negligible if it is of rank < r. An irreducible object E in Id0
(Fd0

) (resp.
Id0

(F 2
d0
)) is said to be r-negligible if there exists an irreducible r-negligible object E ′

in I(F ) (resp. I(F 2)) such that the pullback E ′⊗k′ contains E . Sums of r-negligible
objects are said to be r-negligible as well.

4.3.10. Lemma ([La2, VI.16]). Let d0 ≥ 1 be an integer. An irreducible object
E in I(F 2) (resp. I(F )) is r-negligible if E ⊗ k′ contains an r-negligible object in
Id0

(F 2
d0
) (resp. Id0

(Fd0
0)).

Proof. Let ϕ ∈ Gal(k′/k) be a generator, and let ϕ∗ : U ⊗ k′ → U ⊗ k′ be the auto-
morphism over k induced by ϕ for some smooth scheme U over k. Giving an object
in Id0

(U ⊗ k′) is equivalent to giving F ∈ I(U ⊗ k′) with isomorphism ϕ∗(F) ∼= F .
This observation implies that if E , E ′ ∈ I(F 2) (resp. I(F )) are irreducible objects
such that E ⊗ k′ ∼= E ′ ⊗ k′, then there exists a character χ of Gal(k′/k) ∼= Z/d0Z
(which can be seen as a rank 1 object of I(Spec(k))) such that E ⊗ χ ∼= E ′, thus
the lemma follows. �

4.3.11. We need to show the following technical proposition. In the statement and
the proof, the algebraic stack Cr,N and its variants11 are used. We remark that these
stacks are used only in this proposition and its corollary in 4.3.12. In [La2, III 3a)],

Lafforgue defined a morphism Res: Chtr,d,p≤p×X×X SN → Cr,N between algebraic
stacks locally of finite type over k. We remind the reader that all three stacks in the

table of 4.2.4 are defined over the source of Res. The open substack C
r,N
∅ of Cr,N

11In [La2], Lafforgue uses script fonts (e.g., Cr,N ).



1030 TOMOYUKI ABE

is defined in [La2] as well, and the complement Cr,N − C
r,N
∅ is called the boundary.

See Step 3 of the proof of the following proposition for some review of these stacks.

Proposition ([La2, VI.17]). Let p be a convex polygon large enough with respect
to X, N , and an integer 1 ≤ d ≤ r. Let C be an algebraic stack representable and
quasi-projective (cf. [LM, 14.3.4]) over Cr,N , and consider the following cartesian
diagram:

X
Res ��

g′

��
�

C

g

��
Chtr,d,p≤p ×X×X SN

Res
�� Cr,N .

We denote by pX : X → SN the projection.
(i) Let M ∈ Con(C). Then cH νpX!

(
Res+M

)
is smooth on SN for any ν.

(ii) Assume, moreover, that M is supported on the boundary of C, namely

g−1(Cr,N − C
r,N
∅ ). Then cH νpX!

(
Res+M

)
is r-negligible as an object in I(F 2)

for any ν.

Proof. Before beginning the proof, let us remark that X is c-admissible since it is

quasi-projective over the proper admissible stack Chtr,d,p≤p, thus we are able to
use full six functor formalism. However, C is locally of finite type but not even
admissible. Currently, we only have partial formalism in such a situation, so we
need to be slightly careful. Nevertheless, most of the cohomological functors are
available on the level of the category Con(−). See the first part of §2.4 for the
details. The proof is divided into several steps.

Step 1 (Proof of (i) and the first reduction of (ii)). The morphism (pX,Res) : X →
SN × C is known to be smooth by [La2, Prop III.7 (ii)], which implies that Res is
smooth as well since SN is smooth. Using Lemma 2.4.5, we have

cH νg′!Res
+(M ) ∼= Res+gν! (M ).

Since pX!
∼= pr2! ◦ g′! , for N ∈ Db

hol(X),
cH νpX!(N ) can be expressed as extensions

of subquotients of
⊕

i+j=ν
cH ipr2!

cH jg′!(N ). As a consequence, it suffices to

show (i) and (ii) for C = Cr,N . In this case, (i) is an easy consequence of Lemma

2.4.13: the algebraic stack Chtr,d,p≤p ×X×X SN is admissible by [La2, Prop V.I],
proper over SN by [La2, Prop III.7 (i)], and we already recalled that (pX,Res) is
smooth, so the lemma is applicable. We concentrate on proving (ii) from now on.
In the following, we initialize the notation C and use it for other stacks.

Step 2 (Induction hypothesis). Let c0 := sup
{
dim(Ix) | x ∈ |Res(X)|

}
, where

Ix is the inertia algebraic group space of Cr,N at x. By the quasi-compactness
of X, we have c0 > −∞, and the dimension of any locally closed substack of
Cr,N in the image of Res can be bounded below by −c0. We use induction on
k := c0 + dim(Supp(M )) (≥ 0) (cf. 2.1.17 for the definition of support). Assume
that the proposition holds for k = k0 ≥ −1. We will show the proposition for
modules whose support is of dimension k = k0 + 1. Now, we frequently use the
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following reduction, which follows by using the localization exact sequence Lemma
2.2.9 and the induction hypothesis:

(♣) Let j : U ⊂ S := Supp(M ) be an open substack such that
dim(S \ U) < dim(S) = k0 + 1. Let M ′ ∈ Con(S) such that
j+M ∼= j+M ′. Then proving the proposition for M and M ′ are
equivalent.

Step 3 (Recall of geometry of moduli spaces). Now, we put aside cohomology
theory for a while and summarize the complicated geometry of moduli spaces in
[La2] very briefly. Let Ar,1 := Ar−1 be the toric variety, and let Ar,1

∅ be the torus

Gr−1
m . Let r = (r1, . . . , rk) be a partition r1 + · · · + rk = r. We define Ar,1

r to be

the locally closed subscheme of Ar,1 consisting of points whose coordinates indexed
by r1 + · · ·+ re for 1 ≤ e < k are zero and invertible for other coordinates. These
are orbits of Ar,1

∅ ; see [La2, III 1a)] for more information on these schemes. Now,

in [La2, III 2a), 3a)], the sequence of algebraic stacks locally of finite type Cr,N ⊂
C̃r,N ⊂ C

r,N
and the morphism C

r,N → Ar,1/Ar,1
∅ are defined. For a partition r,

the pullbacks of Ar,1
r /Ar,1

∅ to the three stacks are denoted by Cr,N
r ⊂ C̃r,N

r ⊂ C
r,N

r ,

and similarly for Ar,1
∅ /Ar,1

∅ . These are stratifications of the boundary.

Let AN and GN
m be schemes induced from A1 and Gm by the Weil restriction

from ON to k. We also use a variant rC
N

∅ , and both rC
N

∅ and C
r,N

∅ have natural
morphisms to (AN/GN

m)2 (cf. [La2, II 1a)]). We have the finite surjective radicial

morphism sw: rC
N

∅ → C
r,N

∅ over the endomorphism id×Frob of (AN/GN
m)2 sending

(F ← F ′ → τF) to (F ′ → τF ← τF ′) using the notation of [La2].

We have the morphism Chtr,d,p≤p → C
r,N

, which factorizes through C̃r,N (cf.
[La2, III 3a)]). The morphism Res in the statement of the proposition is induced

by this. The pullback of Ar,1
r is denoted by Chtr,d,p≤p

r following the notation of

[La2, III 1c)].

Step 4 (Geometric construction of Lafforgue). Consider the following commutative
diagram of solid arrows (which appears in [La2, right before III.6]):

Chtr,d,p≤p
r

β ��

��

C̃r,N
r

γ

��

D�
���

γD

��

Chtr,d,p≤p �� C
r,N

(C
r,N

:=C
r1,N

∅ ×
AN/GN

m

r2C
N
∅ ×

AN/GN
m

···×
AN/GN

m

rkC
N
∅ ),

where γ is defined in [La2, III 2b)], Chtr,d,p≤p is defined in [La2, Prop III.3].
Lafforgue proved the following two claims in the proof of [La2, VI.17]:

(i) Assume that we are given a locally closed substack D of Im(β) in C̃r,N
r .

Then there exists an open dense substack D′ of D such that γD′ can be
written as the composition of the morphisms of the following three types: 1.
a gerb-like morphism whose structural group is flat fiberwise geometrically
connected; 2. a finite flat radicial morphism; 3. a finite étale morphism.
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(ii) Consider the compositions

(�) C
r,N
r

γ−→ C
r,N pr1−−→ C

r1,N

∅ , C
r,N
r

γ−→ C
r,N prk−−→ rkC

N

∅
sw−→ C

rk,N

∅ .

The images of these morphisms consist of finitely many points.

A proof of (i) is written at the end of [La2, p.171], and that for (ii) is in the
second paragraph of [La2, p.172]. Let us add a little explanation on the proof of (i).
By dimension counting, Lafforgue proves that the preimage of a point of Im(γ ◦ β)
by γ consists of finitely many points. To conclude, use Lemma A.2.4.

Step 5 (Cohomological reduction). Now, let us come back to the cohomologies.
Let j : C ↪→ S := Supp(M ) (⊂ Cr,N ) be a dense open immersion. By (♣) of Step
2, we may replace M by j!j

+(M ) (cf. see 2.4.2 for the definition of functors j! and
j+ in this situation). By shrinking C using (♣), we may assume C is of dimension
k0 +1 in the stratum Cr,N

r for some nontrivial partition r such that M ′ := j+M is

smooth. Using (i) above and shrinking C always using (♣), we may assume γ′ := γC
is the composition of morphisms of the three types. We may change M ′ by a smooth
object which contains M ′ as a direct factor, so by using Lemma 2.4.8, Corollary
2.4.6, and Lemma 2.2.4 (ii), we may assume that there exists a smooth object N ′

on a locally closed substack of C
r,N

such that M ′ = γ′+(N ′). By (ii), shrinking
C if needed, we may assume that the images of C by the two morphisms of (�)

consist of unique locally closed points B̃�
∼=
[
Spec(Fq0)/Aut(B̃�)

]
∈ C

r�,N

∅ , where

� = 1 or k, and Fq0 is the field extension of Fq of degree d0. We define the Galois

coverings B̃′
� of B̃� defined by the discrete part Aut(B̃�)/(Aut(B̃�))

◦ of Aut(B̃�).

We denote by α : C′ → C the Galois covering induced by B̃′
1 × B̃′

k → B̃1 × B̃k. We
may replace M ′ by α+α

+M ′.
Now, consider the finite surjective radicial morphism

(��)

id× sw× · · · × sw : C
r,N → C

r1,N

∅ ×AN/GN
m
C
r2,N

∅ ×AN/GN
m,Frob · · · ×AN/GN

m,Frob C
rk,N

∅ .

We may and do identify the holonomic modules on these stacks by Lemma 2.2.4. By
considering Lemma 2.4.8, we may assume that N ′∼=M1�AN/GN

m
M ′′�AN/GN

m,Frob

Mk (cf. 2.4.4 for the notation) where

• M� (� = 1, k) is the pushforward of the trivial smooth object on B̃′
� by the

finite étale covering B̃′
i → B̃i.

• M ′′ is a smooth object on a locally closed substack of C
r2,N

∅ ×AN/GN
m,Frob

· · · ×AN/GN
m,Frob C

rk−1,N

∅ .

Step 6. We denote by pri the i-th projection, and put

X2 := X ×X, Cht� := Chtr�,d�,p≤p� ,

(Cht)′ := Chtr2,d2,p≤p2 ×X,Frob · · · ×X,Frob Chtrk−1,dk−1,p≤pk−1 ,

(C
r′,N
∅ )′ := C

r2,N

∅ ×AN/GN
m,Frob · · · ×AN/GN

m,Frob C
rk−1,N

∅ .
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Consider the following commutative diagram.

Chtr,d,p≤p

Res

��
�

Chtr,d,p≤p
r

� ��� g ��

β

��

Cht1 ×X (Cht)′ ×X,Frob Chtk

q=q1×q′′×qk

��

β′

��

C
r,N

C̃r,N
r

g′
���� C

r1,N

∅ ×AN/GN
m
(C

r′,N
∅ )′ ×AN/GN

m,Frob C
rk,N

∅

X2 ×X2 X2 ×X X2 ×X,Frob X2
r=pr1×pr3

∼
��

Moreover, g′ is the composition of γ and (��), and the morphism g is the compo-
sition of a gerb-like morphism whose structural group is flat finite radicial and a
representable universal homeomorphism defined in [La2, Cor III.4]. Thus, we get
g!g

+ ∼= id by Lemma 2.2.4 (i) and Corollary 2.4.6. Put p′ := r ◦ q ◦ g, and we can
compute

cH νp′!β
+M ∼= cH νp′!g

+β′+(N ′)(���)

∼= cH νr!q! β
′+(M1 �AN/GN

m
M ′′ �AN/GN

m,Frob Mk

)
∼= cH νr!q!

(
Res+(M1)�X Res+(M ′′)�X,Frob Res+Mk

)
∼= cH νr!

(
q1!Res

+(M1)�X q′′! Res
+(M ′′)�X,Frob qk!Res

+Mk

)
(∵ by Künneth 2.3.36)

∼= cH ν
(
(q1!Res

+(M1)� qk!Res
+Mk)⊗ r′+(q′′! Res

+(M ′′))
)
,

where we identify N ′ and its zero extension, and similarly for other objects to
simplify the notation. Moreover, r′ is the composition

(X ×X)× (X ×X)
pr2×pr3−−−−−→ X ×X

pr1×pr4←−−−−−
∼

X ×X (X ×X)×X,Frob X

pr2×pr3−−−−−→ (X ×X).

Step 7. Let � = 1 or k. Let f� : Cht
r�,d�,p≤p� ×

C
r�,N
∅

B̃′
� → X×X be the canonical

morphism. By definition [La2, II 1a)], the image of this morphism is contained in

X × (X − N) ∪ (X − N) ×X. We say that B̃1 hits a zero (resp. B̃k hits a pole)
if the image of f1 (resp. fk) is contained in (X −N) × {0} for some 0 ∈ N (resp.
{∞} × (X −N) for some ∞ ∈ N), and it does not hit a zero (resp. does not hit a
pole) otherwise. This is reduced to the following two claims:

• If B̃1 hits a zero (resp. does not hit a zero), then the relative cohomology
H ν(pr1◦f1)!Qp (resp. H νf1!Qp) over the generic point of X (resp. X×X)

is r-negligible in Id0
(Fd0

) (resp. Id0
(F 2

d0
)).

• If B̃k hits a pole (resp. does not hit a pole), then the relative cohomology
H ν(pr2◦fk)!Qp (resp. H νfk!Qp) over the generic point of X (resp. X×X)

is r-negligible in Id0
(Fd0

) (resp. Id0
(F 2

d0
)).

Indeed, if these hold, any constituent of q�!Res
+(M�) is a direct factor of an object

of the form E� � F� such that E� and F� are irreducible of rank < r or supported
on a point. Since pX!Res

+M ∼= (pr1 × pr4)!p
′
!β

+M , using (���) and the Künneth
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formula again, we see that any constituent of H νpX!Res
+M is a direct factor of

(E1 � Fk)⊗Hν
(
X ×X, r′+q′′! Res

+(M ′′)⊗ (F1 � Ek)
)
.

Thus, by considering Lemma 4.3.10, the proposition follows.

Step 8 (Use of induction hypothesis). Let us show the claims in Step 7. We

only consider the � = 1 case. When B̃1 does not hit a zero, Chtr1,d1,p≤p1 ×
C

r1,N

∅

B̃′
1 and Chtr1,d1,p≤p1

N ⊗Fq
Fq0 are isomorphic as written in [La2, p.173]. Since

r1 < r, by the induction hypothesis 4.3.8 (2), we get the desired r-negligibility.

Let us treat the case where B̃1 hits a zero {0} ∈ N defined over Fq0 . We put

X
d1
1 := Chtr1,d1,p≤p1 ×X×X

(
(X −N)× {0}

)
. Let (p

X
d1
1
,Res1) : X

d1
1 → (X −N)×(

C
r1,N ×AN/GN

m
{0}

)
be the canonical morphism which is smooth by [La2, III.5].

Since Chtr1,d1,p≤p1×
C

r1,NC
r1,N

∅
∼= Chtr1,d1,p≤p1 by [La2, III.2], we have the following

cartesian diagram:

Chtr1,d1,p≤p1 ×
C

r1,N

∅
B̃′

1
��

��
�

B̃′
1

��

X
d1
1

Res1 �� C
r1,N ×AN/GN

m
{0}.

Step 9. This is now reduced to the following claim:

Claim ([La2, VI.18]). For any constructible object M1 on C
r1,N ×AN/GN

m
{0}, the

relative cohomology H νp
X

d1
1
Res+1 M1 is a smooth object and is r-negligible as an

object in Id0
(Fd0

) for any ν.

Proof. Since (p
X

d1
1
,Res1) is smooth, the relative cohomology is smooth by Lemma

2.4.13. We show the r-negligibility by the induction on r1 (called the rank) and
the dimension of the support of M1. Assume that the result is known for rank
< r1 and for the dimension of the support being < c. It suffices to show the claim
for M1 which is the zero extension of a smooth object defined on a locally closed

substack C in C
r1,N ×AN/GN

m
{0} of dimension c. By the induction hypothesis, we

may assume that C is in the stratification associated to a partition r1 of r1. When
r1 is nontrivial, we can reduce this to the claim for smaller ranks by arguments
similar to Steps 1–8. Thus, this case is true by the induction hypothesis, and we
only need to treat the case where r1 is trivial. In this case, we may assume that

C is a locally closed point B̃1 of C
r1,N

∅ ×AN/GN
m
{0}. Denote by B̃′

1 the finite étale

covering of B̃1 constructed as before, and let B̃′
1

α−→ B̃1
j−→ C

r1,N

∅ ×AN/GN
m

{0}.
Recalling the intermediate extension from 2.2.8, put M ′

1 := j!+α+(Qp), which is
pure of weight 0 by the result of the same paragraph. It suffices to show the claim
for M ′

1 by the induction hypothesis. Since Res1 is smooth and p
X

d1
1

is proper,
cH νp

X
d1
1 !

Res+1 (M
′
1) is pure of weight ν by Theorem 2.3.38. Thus, it suffices to

show that the alternating sum

(�)
∑

(−1)ν
[
cH νp

X
d1
1 !

Res+1 (M
′
1)
]ss
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as an object in GrId0
(Fd0

) is r-negligible. Let F ′
1 := j!+α+(Q�), the �-adic coun-

terpart. Since X1 is smooth over (X − N) ⊗Fq
{0} and admissible by [La2, II.4],

we can use Theorem 3.2.1 to see that the Frobenius eigenvalues of each point of
(X −N)⊗ 0 coincide with those of∑

(−1)ν
[
H νp

X
d1
1 !

Res∗1(F ′
1)
]ss

.

This sum is known to be r-negligible exactly by the corresponding claim for the
�-adic situation, namely [La2, VI.18]. Thus, there exists a finite collection {σ′

ι} in
W�((X −N) ⊗ {0}) such that σ′

ι is a constituent of the pullback of an irreducible
object σι ∈ W�(X −N) of rank < r and integers aι such that the sum is equal to∑

aισ
′
ι. By the induction hypothesis 4.3.8 (1), there exists E ′

ι ∈ I((X −N)⊗ {0})
which corresponds to σ′

ι in the sense of Langlands. By Čebotarev density A.4.1,
the sum (�) is equal to

∑
aιE ′

ι. Let Eι ∈ I(X −N), which corresponds to σι in the
sense of Langlands, whose existence is assured by using the induction hypothesis
once again. Since E ′

ι is a constituent of the pullback of Eι, we conclude that (�) is
r-negligible as required. �


4.3.12. Recall the notation of 4.3.7. The proposition is used in the following form:

Corollary. For any ν, consider the canonical homomorphisms

Hν
c (Cht

r,p≤p
N /aZ) → Hν

c (Cht
r,p≤p
N

′
/aZ), Hν

c (Cht
r,p≤p
N /aZ) → IHν(Chtr,p≤p

N /aZ).

These four objects are smooth on SN , and the kernels and cokernels of these homo-
morphisms are r-negligible.

Proof. To show the claim for the first homomorphism, take C := C′r
N (cf. [La2, III

3b)]) in Proposition 4.3.11, then X is Chtr,d,p≤p
N

′
by [La2, Cor III.14]. Taking M to

be the trivial object of the boundary, we get the claim for the first homomorphism
by the proposition and the localization sequence in 2.2.9. To check the second one,

we take C to be Cr
N , then X is Chtr,d,p≤p

N by [La2, Def III.8]. Take M to be the
intersection complex of Cr

N restricted to the boundary, and we get the claim. �

4.3.13. Let us extract the essential part from the relative cohomology object

H∗
c(Cht

r,p≤p
N /aZ). Note that this object is smooth on SN by Corollary 4.3.12.

We fix a prime number � �= p until the end of this subsection. Let H∗
N,ess,� be the

object in W�(SN ) denoted by H∗
N,ess in [La2, VI.19].

Lemma. There exists a unique element H∗
N,ess in QGrI(SN ) such that for any

closed point x ∈ SN ,

(4.3.13.1) TrH∗
N,ess

(
Frobsx

)
= TrH∗

N,ess,�

(
Frobsx

)
.

Now, put H∗
c

(
Chtr,p≤p

N /aZ
)ss

:=
∑

(−1)ν Hν
c

(
Chtr,p≤p

N /aZ
)ss

in GrI(SN ). Then,
the formal difference

(�) H∗
N,ess −

1

r2!

r2!∑
n=1

(
FrobnX × idX

)+ H∗
c

(
Chtr,p≤p

N /aZ
)ss

,

considered as an element of QGrI(F 2), is complete r-negligible.
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Proof. Since H∗
N,ess,� is pure by [La2, VI.20 (i)], H∗

N,ess is pure as well if it exists.

Thus, the uniqueness readily follows from the Čebotarev density in A.4.1. Let us
show the existence. Since H∗

N,ess,� is stable under the pullback by FrobX × idX (cf.

[La2, right after VI.22]) and using [La2, VI.19],

(r!)−1
r!∑

n=1

(
FrobnX × idX

)∗ H∗
c

(
Chtr,p≤p

N /aZ,Q�

)ss
is stable under the pullback as well. This implies that (r!)−1

∑r!
n=1(· · · ) =

(r2!)−1
∑r2!

n=1(· · · ). Thus, there exist complete r-negligible �-adic sheaves σι and
rational constants cι such that

H∗
N,ess,� −

1

r2!

r2!∑
n=1

(
FrobnX × idX

)∗ H∗
c

(
Chtr,p≤p

N /aZ,Q�

)ss
= −

∑
ι

cι · σι

by [La2, VI.19 (i)]. Since σι is complete r-negligible for any ι, there exist �-adic
sheaves σ′ and σ′′ on X−N of rank < r such that σι

∼= q′∗σ′⊗ q′′∗σ′′ by definition.
By the induction hypothesis in 4.3.8 (1), there exist E ′ and E ′′ in I(X −N) which
correspond to σ′ and σ′′ in the sense of Langlands. The object Eι := q′+E ′⊗ q′′+E ′′

in I(SN ) corresponds to σι in the sense of Langlands. Note that this Eι is complete
r-negligible by construction. Put

H∗
N,ess :=

1

r2!

r2!∑
n=1

(
FrobnX × idX

)+ H∗
c

(
Chtr,p≤p

N /aZ
)ss −∑

ι

cι · Eι.

Now, the difference (�) is
∑

ι cι · Eι, thus it is complete r-negligible. Since the c-

admissible stack Chtr,p≤p
N /aZ is smooth over SN (cf. 4.2.4), we may use the base

change 2.3.22 and Theorem 3.2.1 to show that it satisfies (4.3.13.1), and the element
meets our need. �

4.3.14. Proposition ([La2, VI.20]). (i) None of the irreducible components of
H∗

N,ess are r-negligible. All the components have positive multiplicity, and pure of
weight 2r − 2.

(ii) The object Hν
c

(
Chtr,p≤p

N /aZ
)ss

is r-negligible for ν �= 2r − 2. Moreover, the
following difference is r-negligible:

H∗
N,ess −

1

r2!

r2!∑
n=1

(
FrobnX × idX

)+ H2r−2
c

(
Chtr,p≤p

N /aZ
)ss

.

Proof. We have two proofs, both of which use Proposition 4.3.11 substantially. The
first one is just to copy the proof of [La2]. The details are left to the reader. The
second one is to make use of the Lafforgue’s �-adic result. First, we prove (i). For
an object A in QGrW�(SN ) or QGrI(SN ), let {A} be the set of constituents of
A, and let {A}neg be the subset consisting of r-negligible objects. Writing A =∑

B∈{A} cBB with cB ∈ Q, we put Aneg :=
∑

B∈{A}neg
cBB. For objects A and B

in QGrW�(SN ) or QGrI(SN ), we write A
Tr
= B if TrA(Frob

s
x) = TrB(Frob

s
x) for any
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integer s, x ∈ |SN |. Denoting Cht := Chtr,p≤p
N /aZ, we put

IHν :=
1

r2!

r2!∑
n=1

(FrobnX × idX)+IHν(Cht)ss,

IHν
� :=

1

r2!

r2!∑
n=1

(FrobnX × idX)∗IHν(Cht,Q�)
ss,

and IH∗
(�) :=

∑2(2r−2)
ν=1 (−1)νIHν

(�). Summarizing [La2, VI.15, 20], we already know
the following:

The difference IH2r−2
� − H∗

N,ess,� as well as IHν
� for ν �= 2r − 2

are r-negligible, and any irreducible component of H∗
N,ess,� is not

r-negligible.

This implies that

IH2r−2
� −H∗

N,ess,� = (IH2r−2
� )neg

in QGrW�(SN ). Now, let us show the following three equalities for any ν:

IHν
�

Tr
= IHν , (IH2r−2

� )neg
Tr
= (IH2r−2)neg,

IH2r−2
� −H∗

N,ess,�
Tr
= IH2r−2 −H∗

N,ess.

Indeed, by �-independence Theorem A.5.4, we know that IH∗
�

Tr
= IH∗. By purity

(cf. Theorem 2.3.38 (ii)), Hν
� and Hν are pure of weight ν, thus we get the first

equality. The third one follows by (4.3.13.1) and the first equality, and it remains
to show the second one. Let σ ∈ QGrW�(SN ) and E ∈ QGrI(SN ) such that both

are invariant under pullback by FrobX × idX , σ
Tr
= E , and both are positive and

pure. The second equality follows if we can show σneg
Tr
= Eneg. Let us check this.

Multiplying σ and E by some integer, we may assume that they are semisimple
objects in W�(SN ) and I(SN ). Let σ′ be an irreducible r-negligible constituent of
σ. Since σ is invariant under the pullback by FrobX × id, σ contains a complete
r-negligible sheaf σ̃′ which is the external tensor product of irreducible sheaves on
X−N and contains σ′ as a constituent. By the induction hypothesis 4.3.8 (1), there

exists an r-negligible object Ẽ ′ in I(SN ) such that σ̃′ Tr
= Ẽ ′. By Corollary 4.3.3, at

least one constituent of Ẽ ′ is contained in E , and since E is stable under pullback

by FrobX × id, E ′′ is contained in E . Similarly, if we are given Ẽ ′ which is complete
r-negligible and can be written as the external tensor product of irreducible objects

on X −N , there exists σ̃′ in σ such that Ẽ ′ Tr
= σ̃′. Thus the claim follows.

Combining all of these three equalities, we get

IH2r−2 −H∗
N,ess

Tr
= (IH2r−2)neg,

thus IH2r−2 −H∗
N,ess = (IH2r−2)neg in QGrI(SN ) by Čebotarev density A.4.1.

Now, let us prove (ii). Since IHν
� is r-negligible and IHν

�
Tr
= IHν as we have

already seen, IHν is r-negligible as well. Since we know that the difference of IHν

and Hν
c

(
Chtr,p≤p

N /aZ
)ss

is r-negligible for any ν by Corollary 4.3.12, (ii) follows
from (i). �
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4.3.15. Corollary ([La2, VI.21]). Let p ≤ q be large enough convex polygons. The
kernel and cokernel of the induced homomorphisms

α : H2r−2
c (Chtr,p≤p

N /aZ) → H2r−2
c (Chtr,p≤p

N

′
/aZ),

β : H2r−2
c (Chtr,p≤p

N /aZ) → H2r−2
c (Chtr,p≤q

N /aZ),

by the inclusions Chtr,p≤p
N /aZ ↪→ Chtr,p≤p

N

′
/aZ and Chtr,p≤p

N /aZ ↪→ Chtr,p≤q
N /aZ are

r-negligible.

Proof. Similarly to [La2], we may prove as follows: The claim for α is just a re-

production of Corollary 4.3.12. Let Γ be the correspondence from Chtr,p≤p
N

′
/aZ

to Chtr,p≤q
N

′
/aZ defined in [La2, V.14 (i)]. This yields the following commutative

diagram by Lemma 3.1.11:

H2r−2
c (Chtr,p≤q

N /aZ) �� H2r−2
c (Chtr,p≤q

N

′
/aZ)

Γ∗

��

H2r−2
c (Chtr,p≤p

N /aZ)

β

��

α
�� H2r−2

c (Chtr,p≤p
N

′
/aZ),

where Γ∗ is the action of Γ as in Definition 3.1.11, and the other three arrows
are defined by the inclusions. Thus, we have Ker(β) ⊂ Ker(α), and Ker(β) is r-
negligible since we already know that Ker(α) is. This implies that, to show the
r-negligibility of Coker(β), it suffices to show that the essential parts, namely the
set of constituents which are not r-negligible, of the source and the target of β are
the same. This follows by the previous proposition, which concludes the proof. �

4.3.16. We digress a little and recall some general nonsense. Let F be an alge-
braically closed field, and let A be an abelian category over F such that any object
in A has finite length. We assume, moreover, that for anyX,X ′ in A, HomA(X,X ′)
is a finite-dimensional F -vector space. We note that for an irreducible object X,
End(X) ∼= F . For X ∈ A, we have the functor

HomA(X,−) : A → VecfinF ,

where VecfinF is the category of finite-dimensional F -vector spaces. We can check
that it has a left adjoint, denoted by (−) � X. For an integer n > 0, we have
F⊕n �X ∼= X⊕n.

Let G be a group, and we denote by G-A the category of objects of A equipped
with G-action, namely couples (X, ρ) where X ∈ A and a group homomorphism
ρ : G → Aut(X). Let ρ : G → GL(V ) be a finite-dimensional F -representation of
G. Then V �X is equipped with action of G determined by ρ, and thus defines an
object of G-A. We sometimes denote this by ρ �X. The following lemma is well
known (cf. [EG, 4.15.8]):

Lemma. (i) For any irreducible F -representation ρ of G and irreducible object
X of A, ρ�X is an irreducible object of G-A.

(ii) Conversely, any irreducible object of G-A can be written in such a form.

In practice, we take A = I(SN ). Of course, in this case F = Qp. As we
have already recalled, any object of I(SN ) has finite length, and HomA is finite
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dimensional by the existence of six functor formalism. Thus, the results of this
paragraph are applicable to this category.

4.3.17. Next thing we need to do is define a Hecke action on H∗
N,ess. We put

(ChtrN/aZ)η = lim−→Chtr,p≤p
N /aZ ×SN

U, where the inductive limit runs over p and

open dense subschemes U ⊂ X × X. Lafforgue constructed a homomorphism of
algebras (cf. 3.1.11)

� : Hr
N/aZ → Corrfin,etη

(
(ChtrN/aZ)η

)
sending f to Γf , which is a finite étale correspondence on a certain open dense
subscheme of X × X (cf. [La2, I 1c), V 2a)] or [La1, I.4, Theorem 5]). To be
compatible with [La2], we consider �′ := norm ◦ � for the action on the relative co-
homology (cf. 3.1.12). Moreover, we have partial Frobenius endomorphisms Frob∞
and Frob0 on ChtrN/aZ over FrobX × idX and idX ×FrobX , respectively, such that
Frob0 ◦ Frob∞ = Frob∞ ◦ Frob0 = Frob (cf. [La2, I 1b)]). The action of correspon-
dence on H∗

N,ess commutes with Frob∞ and Frob0 (cf. [La2, I 1c)]). For any convex

polygon p, f ∈ Hr
N/aZ, s, u ∈ N, there exists a convex polygon q ≥ p such that the

correspondence f × Frobs∞ × Frobu0 sends Chtr,p≤p
N /aZ to Chtr,p≤q

N /aZ over some
open subscheme U ⊂ SN . Thus, via �′, we have a homomorphism

(f × Frobs∞ × Frobu0 )
∗ : (Frobs∞ × Frobu0 )

+H2r−2
c (Chtr,p≤q

N /aZ ×SN
U)

→ H2r−2
c (Chtr,p≤p

N /aZ ×SN
U)

compatible with compositions by Lemma 3.1.11. Note that since Frob∗ =
(Frob∞ × Frob0)

∗ is an isomorphism, (Frob∞ × id)∗ and (id × Frob0)
∗ are iso-

morphisms.
Let us define a filtration as in [La2, VI 3a)]. Let E ∈ I(SN ). Then we may

define a canonical filtration F • as follows: Put F 0E = 0. Assume F 2iE has al-
ready been constructed. We define F 2i+1E to be the largest submodule such that
F 2i+1E/F 2iE is r-negligible. Then, we put F 2i+2E to be the largest submodule
such that F 2i+2E/F 2i+1E is essential. This filtration is functorial, namely, given
a morphism E → E ′ in I(F 2), it induces a morphism F iE → F iE ′. We put the
essential part of E ,

Eeven :=
⊕
i≥0

F 2i+2/F 2i+1(E).

For a convex polygon p, we put H≤p := H2r−2
c (Chtr,p≤p

N /aZ), which is an object
in I(SN ). For a large enough convex polygon p and p′ ≥ p, Corollary 4.3.15 tells

us that the homomorphism induced by the canonical homomorphism H≤p → H≤p′

H≤p
even → H≤p′

even

is an isomorphism in I(SN ). Because of the functoriality of the filtration, the action
of the correspondence (f × Frobs∞ × Frobu0 )

∗ induces an action of Hr
N/aZ as well

as the invariance by the pullback (FrobX × idX)+ on H≤p
even as an object of I(F 2).

Summing up, H≤p
even, for large enough p, can be seen as an object of Hr

N/aZ-ZI(F 2)
(not only of I(F 2)!).

Now, the invariance by (FrobX × idX)+ shows that

1

r2!

r2!∑
n=1

(FrobnX × idX)+(H≤p
even) = H≤p

even
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in GrI(F 2). Thus by Proposition 4.3.14 (ii), it turns out that H≤p
even considered in

QGrI(F 2) coincides with H∗
N,ess. This implies that the coefficients of H∗

N,ess, which
are a priori rational numbers by construction, are positive integers. Now, recall that
for a smooth scheme Y over k and an open dense subscheme U ⊂ Y , the restriction
functor I(Y ) → I(U) is fully faithful (cf. [Ke4, Thm 5.2.1]). This implies that,
since H≤p

even ∈ I(SN ), the action of Hr
N/aZ and the invariance by (FrobX × idX)+ of

H≤p
even as an object of I(F 2) can be extended uniquely to an action of Hr

N/aZ and
an invariance by (FrobX × idX)+ as an object of I(SN ). Thus, H≤p

even can be seen
as an element of Hr

N/aZ-ZI(SN ). We denote by HN,ess the semisimplification of
H≤p

even (for p large enough, needless to say) as an object of Hr
N/aZ-ZI(SN ), which

is equal to H∗
N,ess considered as elements of GrI(SN ).

4.3.18. We need to calculate the trace of the Hecke action on HN,ess. Let f ∈
Hr

N/aZ. Recall that Γf is a correspondence

Chtr,p≤p
N /aZ ×SN

U � Chtr,p≤q
N /aZ ×SN

U

for some open dense subscheme U ⊂ SN and q ≥ p. We denote by Γ′
f the pullback

of Γf by the open immersion(
Chtr,p≤p

N /aZ × Chtr,p≤p
N /aZ

)
×(SN×SN ) (U × U)

↪→
(
Chtr,p≤p

N /aZ × Chtr,p≤q
N /aZ

)
×(SN×SN ) (U × U).

Now, we take the normalization of the morphism

Γ′
f → Chtr,p≤p

N /aZ × Chtr,p≤p
N /aZ ↪→ Chtr,p≤p

N /aZ × Chtr,p≤p
N /aZ.

This normalization certainly defines a correspondence on Chtr,p≤p
N /aZ. A marvelous

thing is that, in fact, the correspondence stabilizes Chtr,p≤p
N

′
/aZ as Lafforgue shows

in [La2, V.14], and it defines a correspondence on it. Using the filtration of 4.3.17,

the action Γ∗
f of the correspondence Γf on H∗

c

(
Chtr,p≤p

N

′
/aZ

)
induces an action on(

H∗
c

(
Chtr,p≤p

N

′
/aZ

))
even

.

Let us introduce a notation. Let Y be a smooth scheme over k, E ∈ I(Y ), and
let α be an endomorphism of E . For a closed point x of Y , take a geometric point
x above x. Recalling the notation of 4.2.1, α induces an endomorphism of ιx(E)
which commutes with Frobx. We denote Tr

(
α◦Frobnx : ιx(E)

)
by Tr(α×Frobnx : E)

or TrE(α× Frobnx), which does not depend on the choice of x. Using this notation,
we put

Tr≤p
H∗

N,ess
(f × Frobnx) := Tr

(
Γ∗
f × Frobnx :

(
H2r−2

c

(
Chtr,p≤p

N

′
/aZ

))
even

)
.

We need to compare the trace of the action of correspondences on HN,ess defined

using Cht in the previous paragraph and Tr≤p
H∗

N,ess
.

4.3.19. Lemma ([La2, VI.23, 24]). (i) Let E be a mixed object in I(SN ), and let
f be an endomorphism on E . Assume that E has a filtration F •E compatible with
f . Take I ⊂ Z, and put F :=

⊕
i∈I gr

i(E). Let {F} denote the set of irreducible
objects in I(SN ) appearing in F . Then there exists a unique set of complex numbers
{cE′} such that, for any x ∈ |SN | and n ∈ Z, we have

(�) TrF (f × Frobnx) =
∑

E′∈{F}
cE′ · TrE′(Frobnx).
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(ii) Let f ∈ Hr
N/aZ, and take a large enough convex polygon p. We have

TrHN,ess
(f × Frobnx) = Tr≤p

H∗
N,ess

(f × Frobnx),

where the action on the left-hand side is the one defined in 4.3.17.

Proof. Let us show (i). Since E is assumed to be mixed, any object in {F} is pure
by [AC1, 4.2.3, 4.3.4], thus the uniqueness follows by the Čebotarev density A.4.1.
We can see F as an object of Z-I(SN ) where the action of Z is defined by f . Let G
be an irreducible object in Z-I(SN ). Then by Lemma 4.3.16, it can be written as
V �G′ where V is an irreducible representation of Z and G′ is an irreducible object
in I(SN ). Since Z is abelian, dim(V ) = 1 and f act as multiplication by c. This
implies that TrG(f × Frobnx) = c · TrG′(Frobnx), and (�) follows.

For a proof of (ii), we copy the argument of [La2]. Let us sketch the proof.
The commutative diagram in the proof of Corollary 4.3.15 yields the following
commutative diagram for p′′ ≥ p′ sufficiently large (cf. [La2, p.185]):

H2r−2
c

(
Chtr,p≤p′′

N /aZ
)

�� H2r−2
c

(
Chtr,p≤p′′

N

′
/aZ

)
��

H2r−2
c

(
Chtr,p≤p

N /aZ
)f

��

�� H2r−2
c

(
Chtr,p≤p

N

′
/aZ

)
f

�� H2r−2
c

(
Chtr,p≤p

N

′
/aZ

)
,

where the homomorphisms marked as f are induced by the correspondence associ-
ated to f , and the others are canonical ones. Thus the claim follows by Corollary
4.3.15. �

4.3.20. For an unramified irreducible admissible representation π of GLr(Fx) at
some place x of F and t ∈ Z, we put

zt•(π) := z1(π)
t + · · ·+ zr(π)

t,

where zi(π) denotes the Hecke eigenvalue of π. Take a closed point x in X × X.
We denote by ∞x (resp. 0x) the image of x by the first (resp. second) projection.
We note that deg(x) = lcm

(
deg(∞x), deg(0x)

)
.

Lemma ([La2, VI.25]). Let f ∈ Hr
N/aZ. Then there exists an open dense sub-

scheme Uf ⊂ SN such that for any x ∈ Uf , we have

TrHN,ess

(
f × Frob−s/ deg(x)

x

)
= q(r−1)s

∑
π∈{π}r

N

Trπ(f) · z−s′

• (π∞x
) · zu′

• (π0x),

where s = deg(∞x)s
′ = deg(0x)u

′ ∈ Z · deg(x).

Proof. By Corollary 3.2.1, there exists an open dense subscheme U ′
f ⊂ SN such

that

Tr
(
f × Frob−s/ deg(x)

x : H∗
c

(
Chtr,p≤p

N

′
/aZ

))
(�)

= Tr
(
f × Frob−s/ deg(x)

x : H∗
c

(
Chtr,p≤p

N

′
/aZ,Q�

))
for any x ∈ U ′

f . Let HN,ess,� be HN,ess defined in [La2, after VI.22]. Note that since

H∗
c(Cht

r,p≤p
N

′
/aZ) is mixed by Theorem 2.3.38, Lemma 4.3.19 (i) is applicable. Let
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{E} (resp. {σ}) be the set of r-negligible objects in I(SN ) (resp. in W�(SN )). We
have

Tr
(
f × Frob−s/ deg(x)

x : HN,ess

)
= Tr≤p

(
f × Frob−s/ deg(x)

x : H∗
N,ess

)
=Tr

(
f × Frob−s/ deg(x)

x : H∗
c

(
Chtr,p≤p

N

′
/aZ

))
(��)

+ q(r−1)s
∑

E∈{E}
cE TrE(Frob

−s/ deg(x)
x )

=Tr
(
f × Frob−s/ deg(x)

x : H∗
c

(
Chtr,p≤p

N

′
/aZ,Q�

))
+ q(r−1)s

∑
E∈{E}

cE TrE(Frob
−s/ deg(x)
x )

=Tr
(
f × Frob−s/ deg(x)

x : HN,ess,�

)
+ q(r−1)s

∑
A∈{E}∪{σ}

cA TrA(Frob
−s/ deg(x)
x ),

where the first and second equality hold by Lemma 4.3.19 (ii) and (i), respectively,
the third by (�), and the last by repeating the corresponding argument in the �-adic
situation. Now, for G ∈ I(SN ), an endomorphism f of G, and an integer n, we put

Tr(f × Frobnx : G) := 1

r2!

r2!∑
k=1

Tr
(
f × Frobnx : (FrobkX × idX)+(G)

)
=

1

r2!

r2!∑
k=1

TrG
(
f × Frobn(Frobk

X×idX )(x)

)
,

and similarly for objects in W�(SN ). Note that when G ∈ {E}, there exist G′
ι and

G′′
ι of rank < r and pure of weight 0 in I(X −N), and constants cι, λι such that

Tr(Frobnx : G) =
∑
ι

cιλ
n
ι Trq′+G′

ι⊗q′′+G′′
ι
(Frobnx).

Put Uf :=
⋂r2!

n=0(Frob
n
X × idX)−1(U ′

f ). Since HN,ess and HN,ess,� are invariant

under the pullback by FrobX × idX , the computation (��) implies that for x ∈ Uf ,

Tr
(
f × Frob−s/ deg(x)

x : HN,ess

)
= Tr

(
f × Frob−s/ deg(x)

x : HN,ess

)
=Tr

(
f × Frob−s/ deg(x)

x : HN,ess,�

)
+ q(r−1)s

∑
A∈{E}∪{σ}

cATrA(Frob
−s/ deg(x)
x )

=Tr
(
f × Frob−s/ deg(x)

x : HN,ess,�

)
+ q(r−1)s

∑
ι

cιλ
s
ι Trq′+E′

ι⊗q′′+E′′
ι
(Frob−s/ deg(x)

x ),

where E ′
ι and E ′′

ι are irreducible isocrystals on X−N of rank < r and pure of weight
0, and we used Langlands correspondence for rank < r for the last equality. By
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[La2, VI.25], if we further shrink Uf , we finally obtain

q−(r−1)s Tr
(
f × Frobnx : HN,ess

)
−

∑
π∈{π}r

N

Trπ(f) · z−s′

• (π∞x
) · zu′

• (π0x)

(♥)

=
∑
ι

cιλ
s
ι Trq′+E′

ι⊗q′′+E′′
ι
(Frob−s/ deg(x)

x ).

Since HN,ess is pure of weight 2r − 2 and we know that |zi(π∞)| and |zj(π0)| are
1, we have |λι| = 1. We need to show that the right-hand side of (♥) is 0. The
argument is essentially the same as [La2], but for the reader, we recall it. Assume
otherwise. Then there would exist irreducible isocrystals E ′, E ′′ of rank < r and
pure of weight 0 such that the series∑

ι

cι
d

dZ
logLUf

(
(q′+E ′

ι ⊗ q′′+E ′′
ι )⊗ (q′+E ′∨ ⊗ q′′+E ′′∨), λιZ

)
has a pole on |Z| = q−2 by Corollary 4.3.3 since |λι| = 1. On the other hand, the
series

d

dZ
logLUf

(
H⊗ (q′+E ′∨ ⊗ q′′+E ′′∨), q1−rZ

)
does not have poles at |Z| = q−2 since H is essential. Now, let π′ and π′′ be the
automorphic cuspidal representations corresponding to E ′ and E ′′. For a locally
closed subscheme Y of (X − N) × (X − N), let us denote by Cs,Y the subset of
(x, s′, u′) ∈ |Y |×N×N such that s ·deg(∞x)

−1 = s′ ∈ N and s ·deg(0x)−1 = u′ ∈ N,
and put

SerY (Z) :=
∑
s≥1

Zs−1
∑

(x,s′,u′)∈Cs,Y

[(
deg(∞x)·z−s′

• (π∞x
) · zs′• (π′

∞x
)
)

×
(
deg(0x) · zu

′

• (π0x) · zu
′

• (π′′
0x)
)]
.

The series

d

dZ
logLX−N (π × π′∨, Z),

d

dZ
logLX−N (π∨ × π′′∨, Z)

do not have poles on |Z| ≤ q−1 by [La2, B.10]. Thus, the product series SerSN
does

not have poles at |Z| ≤ q−2. We claim that the series SerUf
does not have poles at

|Z| ≤ q−2 either. Indeed, putting W := SN \ Uf , we have SerW = SerSN
− SerUf

.
Since |zi(π)| = |zj(π′)| = |zk(π′′)| = 1, we have

|SerW (Z)| ≤
∑
s

|Z|s−1
∑

(x,s′,u′)∈CW

deg(∞x) · deg(0x).

Since W is of dimension 1, the latter series converges on |Z| < q−1, and thus SerW
converges absolutely on the same area, which implies the claim. Combining these,
if we put ∑

s

Zs−1
∑
Cs,Uf

deg(∞x) · deg(0x) · zs
′
(π′

∞′
x
) · zu′

(π′′
0x)

at the head of the both sides of (♥), the left-hand side does not have poles at |Z| =
q−2, whereas the right-hand side does at |Z| = q−2, which is a contradiction. �
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4.3.21. Lemma ([La2, VI.26]). As an object of Hr
N/aZ-ZI(SN ), we can write

HN,ess as ⊕
π∈{π}r

N

π �Hπ(1− r),

and there exists an open dense subscheme Uπ ⊂ SN for any π ∈ {π}rN such that the
following holds: the object Hπ is pure of weight 0, and for any closed point x ∈ Uπ

and s = deg(∞x)s
′ = deg(0x)u

′, we have

TrHπ

(
Frob−s/ deg(x)

x

)
= z−s′

• (π∞x
) · zu′

• (π0x).

Proof. This can be proven similarly to the �-adic case. By Lemma 4.3.16, there
exists a finite set of irreducible representations {π′} of Hr

N/aZ and semisimple
objects Hπ′ in ZI(SN ) for each π′ ∈ {π′} such that HN,ess =

⊕
π′∈{π′}r

N
π′ �

Hπ′(1−r). For π ∈ {π}rN ∪{π′}, we can choose fπ ∈ Hr
N/aZ such that Trπ(fπ) = 1

and Trπ′(fπ) = 0 for any π �= π′ ∈ {π}rN ∪ {π′} (cf. proof of [La2, VI.26]), and
apply Lemma 4.3.20 by taking f = fπ. Then the lemma holds with Uπ := Ufπ . �

4.3.22. Theorem ([La2, VI.27]). For any π ∈ {π}rN , we have

Hπ = q′+Eπ ⊗ q′′+E∨
π

as objects in I(SN ), where Eπ is an isocrystal of rank r on X −N pure of weight
0 corresponding to π in the sense of Langlands.

Proof. Take a closed point x ∈ Uπ, which lies over (∞, 0) ∈ |X − N | × |X − N |.
Let X0 := X × 0 ↪→ X × X be the closed immersion, and let (X − N)0 ⊂ X0

be the pullback of SN by the closed immersion. Let E0 be the semisimplification
in I((X − N)0) of the pullback of Hπ, which is pure of weight 0. Let H0

π be the
pullback on SN ⊗ k(0). Let χi be the character (i.e., rank 1 isocrystal on the point
0) corresponding to the Hecke eigenvalue zi(π0). Then the two semisimple objects
in I(SN ⊗ k(0))

q′+E0 ⊗ q′′+E0∨, H0
π ⊗

r⊕
i=1

χi ⊗
r⊕

i=1

χ∨
i

have the same Frobenius eigenvalues at each closed point of Uπ⊗k(0) by the explicit
description of the Frobenius trace in Lemma 4.3.21. Thus by the Čebotarev density
A.4.1, these two objects coincide.

Thus, there exist E ′ and E ′′ on X − N ⊂ X which are pure of weight 0 such
that q′+E ′ ⊗ q′′+E ′′ and Hπ have at least one constituent in common. We may
assume that E ′ and E ′′ are irreducible, and since Hπ is stable under the action of
(FrobX × id)+, we may assume that q′+E ′ ⊗ q′′+E ′′ is a subobject of Hπ.

Let us show that E ′ is of rank ≥ r. The argument is similar to the last part of the
proof of Lemma 4.3.20. If E ′ were of rank < r, there would exist an automorphic
cuspidal representation π′ corresponding to E ′. Consider the series

d

dZ
logLX−N (π × π′∨, Z),

d

dZ
logLX−N (π∨ × E ′′∨, Z).

The first one converges absolutely on |Z| < q−1+ε for some ε > 0 by [La2, Thm
B.10]. Since |zi(π)| = 1 and E ′′ is of weight 0, the second one converges absolutely



LANGLANDS CORRESPONDENCE FOR ISOCRYSTALS 1045

on |Z| < q−1. Thus the product series converges absolutely on |Z| < q−2+ε. On
the other hand, consider the series

(�)
d

dZ
logLUπ

(
Hπ ⊗ (q′+E ′∨ ⊗ q′′+E ′′∨)

)
.

Let C := SN \ Uπ. The difference with the product series is nothing but∑
s≥1

Zs−1
∑

(x,s′,u′)∈Cs

[(
deg(∞x)·z−s′

• (π∞x
) · zs′• (π′

∞x
)
)

(��)

×
(
deg(0x) · zu

′

• (π0x) · zu
′

• (E ′′
0x)
)]
,

where Cs ⊂ |C|×N×N such that s·deg(∞x)
−1 = s′ ∈ N and s·deg(0x)−1 = u′ ∈ N.

Since C is of dimension 1 and the complex absolute values of zi(πx), zi(π
′
x), zi(E ′′)

are 1, we get that the series (��) converges in |Z| < q−1. Thus, considering the
radius of convergence of the product series, (�) should converge on |Z| < q−2+ε.
However, since by Corollary 4.3.3, it should have a pole at |Z| = q−2, which is a
contradiction.

This shows that the rank of E ′ is ≥ r. By symmetry, the rank of E ′′ is ≥ r as
well. Since the rank of Hπ is r2, we get that the rank of E ′ and E ′′ are r, and
Hπ

∼= q′+E ′ ⊗ q′′+E ′′. By the induction hypothesis 4.3.8 (1), there exist cuspidal
automorphic representations π′, π′′ of GLr(A) corresponding to E ′ and E ′′. Now,
since dim(X −N) = 1 and |zi(π)| = |zj(π′)| = |zk(π′′)| = 1, the rational functions

d

dZ
logLX−N (π × π′∨, Z),

d

dZ
logLX−N (π∨ × π′′∨, Z)

do not have poles at |Z| < q−1. This implies that they have a pole at Z = q−1−s

and q−1+s, respectively, for some s ∈ C such that Re(s) = 0. Otherwise, the series

d

dZ
logLUπ

(
Hπ ⊗ (q′+E ′∨ ⊗ q′′+E ′′∨)

)
=

d

dZ
logLUπ

(
Hπ ⊗H∨

π

)
would not have a pole at q−2. This shows that E ′ ∼= E ′′∨, and Eπ = E ′(s) as
requested, and Hπ

∼= q′+Eπ ⊗ q′′+E∨
π . �

4.3.23. Conclusion of the proof. By Theorems 4.3.22 and 4.2.3, 4.3.8 (1) holds for
n = r. Let us check 4.3.8 (2). Theorem 4.3.22 combined with Proposition 4.3.14

(ii) shows that the average (r2!)−1
∑r2!

n=1(Frob
n
X × idX)+H2r−2

c (· · · )ss is (r + 1)-
negligible. Since the averaging involves only positive coefficients, H2r−2

c (· · · ) is
(r+1)-negligible. Combining with Proposition 4.3.14 (i), 4.3.8 (2) holds for n = r,
and (S)r is shown. Thus, we conclude the proof of Theorem 4.2.2 by induction. �

4.4. A few applications. To conclude this paper, let us collect some applications
of the Langlands correspondence.

4.4.1. Theorem ([De1, 1.2.10 (vi)]). Let X be a smooth curve over a finite field
k of characteristic p. Let � be a prime number different from p. Then for any
irreducible smooth Q�-sheaf whose determinant is of finite order, there exists a
petit camarade cristallin.

Proof. Use Lafforgue’s result and Theorem 4.2.2. �
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4.4.2. In p-adic cohomology theory, Bertini-type results do not seem to be known, as
pointed out in [Ke2]. We consider the situation and notation in 2.4.14 exclusively in
this paragraph. In particular, k does not need to be finite in the following conjecture.

Conjecture (Bertini-type conjecture). Let X be a smooth scheme over k, and
let E be an irreducible L-isocrystal. Then there exists a dense Zariski open subset
U of X such that the following holds: for any x ∈ |U |, there exists an immersion
(not necessarily closed) from a smooth curve i : C ↪→ U passing through x such that
i+E remains irreducible.

4.4.3. Theorem. Assume we are in the situation of 4.2.1. Let X be a scheme of
finite type over k. Then any complex in Db

hol(X/Qp,F ) is mixed if X is of dimension
1. If Conjecture 4.4.2 is true, we do not need to assume X to be of dimension 1.

Proof. See [A2, 6.3]. �

4.4.4. Corollary. The Čebotarev density theorem for smooth curves holds for
overconvergent F -isocrystals. If Conjecture 4.4.2 is true, it holds for any smooth
variety.

Proof. Apply Proposition A.4.1 and Theorem 4.4.3. �

4.4.5. Theorem. Let X be a smooth scheme of finite type over a finite field k.
Let E be an irreducible Qp-isocrystal with Frobenius structure on X such that the
determinant is of finite order. Assume that Conjecture 4.4.2 holds.

(i) There exists a number field E/Q such that, for any x ∈ |X|, all the coefficients
of the Frobenius eigenpolynomial of E at x are in E.

(ii) For any prime � �= p, there exists an Q�-adic smooth sheaf F corresponding
to E such that the sets of Frobenius eigenvalues coincide for any closed point of X.

Proof. Let us show (i). We denote by Ir(X) the set of Qp-isocrystals of rank r on
X up to isomorphism and semisimplification. We use the notation of [EK, §2]. We
prove this by induction on the dimension of X. Let X be a normal compactification
of X, and let X\X be a Cartier divisor. Then there exists a map Ir(X) → Vr(X)
using the Langlands correspondence. This is injective by the Čebotarev density.
We show the following: Let E ∈ Ir(X). Then there exists an dense open subscheme
U ⊂ X and Cartier divisor D of X contained in X \ U such that EU ∈ Vr(U,D)
where EU is the restriction of E on U . Once this is shown, Conjecture 4.4.2 implies
that EU is irreducible, and we get (i) of the theorem for EU by [EK, 8.2], and by
the induction hypothesis, we conclude.

When X is proper smooth, X \X is a simple normal crossing divisor, and E is
log-extendable to X, then we may take D = 0. Indeed, for a smooth curve, let E
be an Qp-isocrystal whose determinant is finite, and let F be its �-adic companion.
Then the ramification of E and F at the boundary are the same by Theorem 4.2.2
(2). In general, take a semistable reduction Y → X of E (cf. [Ke5]). We take
U ⊂ X so that p : V := U ×X Y → U is finite étale. There exists a Cartier divisor

D such that the ramification of p∗Q� is in Vd(U,D) where d = deg(V/U). Then we
can check easily that E ∈ Vr(X,D).

For (ii), copy the proof of Drinfeld [Dr, §2.3]. �

4.4.6. Remark. Using the main results of this paper, K. S. Kedlaya recently
proved Theorem 4.4.3 as well as Theorem 4.4.5 without assuming Conjecture 4.4.2
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in [Ke6]. His argument reduces to the curve case using an ingenious induction. By
proving Conjecture 4.4.2 when k is finite, Abe and H. Esnault gave another proof
of this Kedlaya’s result in [AE]. The existence of crystalline companions on smooth
schemes of finite type over k is still an open problem.

Appendix A

A.1. Beilinson–Drinfeld gluing of the derived category. In this subsection,
we briefly recall the construction and some results of Beilinson and Drinfeld [BD,
7.4], which are used in the main text.

A.1.1. Let M → Δ+ be a cofibered category such that its fiber Mi over [i] ∈ Δ+

is an abelian category, and for φ : [i] → [j], the pushforward φ∗ is exact. We
denote byMtot the abelian category of cartesian sections; the category of collections{
Mn, αφ

}
such that Mn ∈ Mn and for φ : [i] → [j], αφ : φ∗Mi

∼−→ Mj satisfying
the cocycle condition. Now, we want to construct a suitable triangulated category
associated to M whose heart is Mtot. For this, we consider the category sec+(M).
The objects consist of collections

{
Mn, αφ

}
where Mn ∈ Mn, and for φ : [i] → [j],

αφ : φ∗Mi → Mj , satisfying the condition αφ◦ψ = αφ ◦ φ∗(αψ) for composable
morphisms φ and ψ in Δ+, and αid = id. We put sec− := (sec+(M◦))◦. A
profound observation of Beilinson and Drinfeld is that there are functors

c+ : C(sec−(M)) → C(sec+(M)), c− : C(sec+(M)) → C(sec−(M))

such that (c+, c−) is an adjoint pair, and the adjunction homomorphisms c+c− → id
and id → c−c+ are quasi-isomorphisms (cf. [BD, 7.4.4]). With these functors, we
are able to identify D(sec+(M)) and D(sec−(M)). Now, let Ctot± ⊂ C(sec±(M))
be the full subcategory consisting of complexes M such that H i(M) ∈ Mtot.
We denote by Ktot±(M) and Dtot±(M) the corresponding homotopy and derived
categories. By means of c±, we are able to identify Dtot+(M) and Dtot−(M), and
we denote them by Dtot(M). The functors H i : Dtot± → Mtot induce Dtot(M) →
Mtot.

A.1.2. Now, an important aspect of the theory is the existence of a spectral sequence
connecting

{
Mn

}
and M. For N ∈ D−(sec−(M)) and M ∈ D+(sec+(M)), we

have the following spectral sequence by [BD, 7.4.8]:

Ep,q
1 = ExtqMp

(Np,Mp) ⇒HomD(M)

(
c+(N),M [p+ q]

)
(A.1.2.1)

∼=HomD(M)

(
N, c−(M)[p+ q]

)
.

Remark. Since the proof of [BD] is rather sketchy, it might be hard to follow
their argument in some cases. Let us add a short explanation. When sec+(M)
has enough injectives, then we can take the right derived functors of the func-
tor Hom(N,−) : K+sec+(M) → DF , where DF denotes the derived category of
filtered modules, in a usual way, and we get the spectral sequence as written in
[BD]. However, there might be a situation in which the functor does not admit
a right derived functor. Even in this case, we can define the derived functor
RHom(N,−) : D+(sec+(M)) → Ind(DF ) as in [SGA4, XVII, 1.2]. We have a
functor

H̃ i : Ind(DF )
H i

−−→ Ind(FAb)
lim−→−−→ FAb.

Using this, we have H̃ igrnFRHom(N,M) ∼= HomD(Mn)(Nn,Mn[i − n]). This fol-
lows from the fact that we have grnFHom(N,M) ∼= HomK(Mn)(Nn,Mn)[−n] by
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construction of the functor Hom(N,−), and the functor M �→ Mn has an exact
right adjoint as in 2.1.6 which implies the existence of g and h in [SGA4]. Since
the category of spectral sequences of abelian groups admits inductive limits, we get
the desired result.

A.2. Some properties of algebraic stacks. The results of this subsection are
used implicitly in Lafforgue’s proof of Langlands correspondence. Even though we
believe that the results are well known to experts, since we are not able to find
references, we decided to write down the details.

A.2.1. Lemma. Let f : X → Y be a gerb-like morphism [Beh, 5.1.3] such that
the structural group is flat. Then there exists a presentation Y → Y such that
X×Y Y → Y is a neutral gerb.

Proof. First, we note that f is smooth surjective. Indeed, since the verification is
fppf-local, we may assume that f is neutral, and thus Y =: Y is a scheme and
X = B(G/Y ). Since G is assumed flat, f is smooth by [Beh, 5.1.2].

Let P : Y → X be a presentation, and consider the smooth morphism Q :=
f ◦ P : Y → Y, which is a presentation of Y since f is smooth surjective. We have
the morphism (P, id) : Y → X×Y Y . This defines a section of the second projection
X×Y Y → Y . �
A.2.2. Lemma. Let f : X → Y be a representable morphism of algebraic stacks
over an integral scheme S. For the generic point η ∈ S, if fη is separated, then
there exists an open subscheme U ⊂ S such that fU : X×SU → Y×SU is separated.

Proof. Let Y → Y be a presentation, and let X → X be the induced presentation.
Let f ′ : X → Y be the induced morphism. The morphism f being separated is
equivalent to f ′ being separated, and thus by [EGAIV, 8.10.5], the lemma follows.

�
A.2.3. Lemma. Let f : X → Y be a representable morphism of locally noetherian
algebraic stacks. Then there exists an open dense substack U of X such that f |U is
separated.

Proof. By [EGAI, 5.5.1 (vi)], we may assume that X and Y are reduced. By
shrinking X and Y, we may assume that X → X and Y → Y are gerbs over
algebraic spaces by [LM, 11.5]. By shrinking X and Y, we may assume that X is a
separated scheme and X → Y is separated. Consider the following diagram:

X
α ��

��

X′ ��

��
�

X

��
Y �� Y .

Note that α is representable by [LM, 3.12 (c)]. Let η be a generic point of X . By
Lemma A.2.2, it suffices to show that αη is separated. So the statement is reduced
to the following special case of the lemma:

Claim. Let X and X′ be gerbs over Spec(K), and let α : X → X′ be a representable
morphism. Then this is separated.

Proof. Since there exists a scheme X → Spec(K) such that X and X′ are neutral
over X, by taking a closed point of X, X and X′ are neutral over a finite extension
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of K. Since the claim is stable under finite extension, we may assume that X and X′

are neutral gerbs over Spec(K). Thus, by taking the automorphism groups G and
G′ of X(K) and X′(K), we have a homomorphism of K-group spaces ρ : G → G′

over X , which induces α. We have the cartesian diagram

G
ρ ��

��
�

G′

��
BG

Δ
�� BG×BG′ BG.

Since the diagonal morphism Δ is quasi-compact by [LM, 7.7], ρ is quasi-compact.
By [SGA3, VIA, Cor 6.7], ρ decomposes as G � G/N ↪→ G′. This induces a
morphism BG → B(G/N) → BG′. Since α is assumed representable, the morphism
BG → B(G/N) is representable as well. This can only happen when N is trivial.
Thus, ρ is a closed immersion by the same corollary of [SGA3]. This shows that Δ
is a closed immersion, and thus α is separated. �


A.2.4. Lemma. Let f : X → Y be a morphism locally of finite type between
reduced algebraic stacks such that

dim
(
AutY X

)
= dim(Y)− dim(X).

Then there exists a dense open substack V ⊂ Y such that f |f−1(V) can be factor-

ized as X
p−→ X′ g−→ Z

h−→ Y, where p is a gerb-like morphism with the structure
group space AutY X, g is a representable universal homeomorphism, and h is a
representable finite étale morphism.

Proof. Locally on X, f factors as X
p−→ X′ α−→ Y such that p is gerb-like and α is a

representable morphism [Beh, 5.1.13, 5.1.14]. By the assumption on the dimension,
α is a representable quasi-finite morphism. By shrinking X, and by using Lemma
A.2.2, we may assume that α is separated. By using Zariski’s main theorem (cf.
[LM, 16.5]), by shrinking ifY necessary, we may assume that α is a finite morphism.

Let f : X → Y be a finite morphism between integral schemes such that X is
normal. The finite extension K(X)/K(Y ) of fields can be factorized canonically
as K(X)/M/K(Y ) such that K(X)/M is purely inseparable and M/K(Y ) is sep-
arable. Let Z be the normalization of Y in Spec(M). The morphism f factors as
the composition of finite morphisms X → Z → Y . This construction is compatible
with smooth base change Y ′ → Y by [LM, 16.2]. Thus, given a finite morphism
X → Y of reduced algebraic stacks, by shrinking Y if necessary, we have a factor-
ization X → Z → Y such that the first morphism is generically purely inseparable
and the second is generically finite étale by [LM, 14.2.4].

Apply this factorization to α, and we get a factorization X′ g−→ Z
h−→ Y satisfying

the condition above. Take a presentation Z → Z, and let X ′ → X′ be the pullback.
Then by construction, g̃ : X ′ → Z is generically purely inseparable. By [EGAIV,
1.8.7], by shrinking Z, we may assume that g̃ is radicial and surjective for any fiber
of Z. Thus g̃ is radicial and surjective as well, and moreover since g̃ is finite, it
is a universal homeomorphism by [EGAIV, 2.4.5]. By replacing Z by the image
of Z and X′ by the pullback of newly constructed Z, g can be made universally
homeomorphic. By removing the ramification locus of h from Y, we may assume
that h is finite étale. �
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A.3. Lefschetz fixed point theorem. In this subsection, we prove a Lefschetz
fixed point theorem for arithmetic D-modules. In the case of realizable schemes,
the theorem has already been proven in [AC1]. This can be generalized to the case
of a separated scheme of finite type in an obvious manner, but we present it here
for the convenience of the reader and for the future reference.

A.3.1. We consider a similar situation as in 4.2.1: Let k be a finite field with
q = ps elements, and fix an algebraic closure Qp of K. We denote by k the residue

field of Qp which is algebraically closed as well. We put Tk := (k,R := W (k),K :=
Frac(R), L, s, σ := id) to be an arithmetic base tuple (cf. 1.4.10, 2.4.14). Let X be a
scheme over k, and let ix : x ↪→ X be a closed point of X. Choose a geometric point
x ∈ X(k) lying above x. This defines an embedding Kx := Frac(W (k(x))) ↪→ Qp.

Let Lx be the field generated by Kx and L in Qp. Put Tx,k := (k,R,K,Lx, s, id),
Tk(x) := (k(x), Rx,Kx, Lx, [k(x) : k] · s, id), and we have the functor

ιx : D
b
hol(X/Tk)

i+x−→ Db
hol(k(x)/Tk)

⊗LLx−−−−→ Db
hol(k(x)/Tx,k) ∼= Db

hol(k(x)/Tk(x)),

where the equivalence follows by Corollary 1.4.11 using the embedding. For E ∈
Db

hol(X/Tk), the automorphism on ιx(E ) is denoted by Fx. We note that the
eigenpolynomial of Fx, which is a priori in Lx[t], only depends on x not on x and
belongs in fact to L[t]. Indeed, the independence of x follows from the construction
of the equivalence in Corollary 1.4.11. Let us check that the eigenpolynomial, which
we denote by χ(ιxE , t) for the moment, is in L[t]. We may replace Lx by the Galois
closure, and we may assume that Lx is a Galois extension. Take an automorphism γ
of Lx over L. This induces an endofunctor γ∗ onDb

hol(k(x)/Tk(x)), and χ(γ∗ιE , t) =
γ(χ(ιE , t)). However, we have a canonical isomorphism γ∗ιE ∼= ιE since we are
taking ⊗LLx in the definition of ιx, which implies that γ(χ(ιE , t)) = χ(ιE , t).

Let X be a separated scheme of finite type over k, and let E ∈ Db
hol(X/Tk). We

put RΓc(X, E ) := f!(E ) where f is the structural morphism of X, and Hν
c (X, E ) :=

H νRΓc(X, E ) as usual. The object RΓc(X, E ) is equipped with an automor-
phism, and we denote this automorphism by FrobX . For an extension L′ of K
and F ∈ Db

fin(VecL′) equipped with automorphism ϕ, we put TrL′(ϕ;F ) :=∑
ν∈Z(−1)νTrL′(ϕ;H ν(F )), and similarly for the determinant except that we take

an alternating product instead of sum. By using the same argument as [AC1, 4.3.9],
we have the following theorem:

A.3.2. Theorem (Essetially due to [EL]). Let X be a separated scheme of finite
type over k, and let E ∈ Db

hol(X/LF ). Let kn be the extension of k of degree n.

Then we have the following identity in Qp:

TrL
(
FrobnX ;RΓc(X, E )

)
=

∑
x∈X(kn)

TrLx
(Fn

x ; ιx(E )).

Proof. First of all, let us show the theorem in the case L = K. We argue by in-
duction on the dimension of X. Since both sides of the formula are multiplicative
with respect to exact triangles, we may assume that X is affine by using the local-
ization exact sequence 2.2.9. By the Noether normalization lemma, we may find a
finite dominant morphism f : X → Ad. Thus, we may assume that X = Ad. By
the induction hypothesis, we may shrink X and assume that X is affine and E is
smooth on X ⊂ Ad. In this case, we know that Hν

c (X, E ) is isomorphic to the rigid
cohomology by 2.4.15, thus the formula is a result of Etesse and Le Stum [EL].
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Now, we show the general case. We may assume that the extension L/K is finite.
By dévissage, we may assume that X(kn) = ∅, and we only need to show that the
left-hand side of the equality vanishes. Replacing L by its finite extension, we may
assume that an n-th root of α := TrL(Frob

n
X ;RΓc(X, E )) is contained in L. We

denote by β an n-th root. Our goal is to show α = 0. We assume the contrary, so
β �= 0. Let E = (F ,ΦF ), where F is the underlying object in Hol(X/L∅) and ΦF

is the Frobenius structure. We define E (1/β) to be an object in Hol(X/LF ) such
that the underlying object is the same as F , and the Frobenius structure is the
composition

F
·(1/β)−−−−→

∼
F

ΦF−−→
∼

F ∗F .

Then TrL(Frob
n
X ;RΓc(X, E (1/β))) = (1/β)n×TrL(Frob

n
X ;RΓc(X, E )) = 1. For any

L-vector space V with automorphism φ, we have TrL/K

(
TrL(φ;V )

)
= TrK(φ;V ),

where TrL/K denotes the field trace. Combining these, we have

0 = TrK(FrobX ;RΓc(X,F (1/β))) = TrL/K

(
TrL(FrobX ;RΓc(X, E (1/β)))

)
= TrL/K(1) = [L : K],

where the first equality holds by the case L = K. This is a contradiction and
implies that α = 0. �
A.3.3. Now, let E be an object in Db

hol(X/LF ). We define series in L�Z�

Lx(E , Z) := det
(
1− Zdeg(x)Fx; ιx(E )

)−1
, LX(E , Z) :=

∏
x∈|X|

Lx(E , Z).

Since the first one does not depend on the choice of x, these are well-defined. The
first one (resp. second one) is called the local L-function (resp. global L-function).
By a standard argument (cf. for example, [SGA41

2 , Rapport, §3]), we have a coho-
mological interpretation of an L-function as a consequence of the Lefschetz fixed
point theorem.

Corollary. Let X be a separated scheme of finite type over k, and let E ∈
Db

hol(X/LF ). Then we have an identity of formal power series:

LX(E , Z) =
∏
ν∈Z

det
(
1− Z · FrobX ;Hν

c (X, E )
)(−1)ν+1

.

A.4. Čebotarev density (after N. Tsuzuki). The Čebotarev density theorem
for curves and mixed isocrystals is proven in [A2]. We need the Čebotarev density
for surfaces and mixed isocrystals, which we show in this appendix. We could have
included it in the main text, but since the author learned the proof from N. Tsuzuki
before writing this paper, it has been kept separate. We consider the situation of
§A.3.

A.4.1. Proposition. Let X be a smooth variety over a finite field k. Let E and
E ′ be ι-mixed overconvergent F -isocrystals in Isoc†(X/LF ) such that the sets of
Frobenius eigenvalues are the same for any closed point of X. Then Ess = E ′ss

where the semisimplification is taken in Isoc†(X/LF ).

Proof. Since we have weight filtration on E and E ′ by [AC1, 4.3.4], we may assume
that E and E ′ are ι-pure. Let F be an irreducible overconvergent F -isocrystal.
Since Frobenius eigenvalues of E and E ′ are the same, we have

L(E ⊗ F∨, Z) = L(E ′ ⊗F∨, Z).
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If μ is the multiplicity of F in Ess, Proposition 4.3.3 implies that L(E ⊗ F , Z) has
a pole of order μ at Z = q− dim(X). The equality tells us that L(E ′ ⊗ F∨, Z) has
a pole of the same order at the same point, and using the proposition again, we
get that E ′ss contains F with multiplicity μ. Note that Proposition 4.3.3 is stated
for Qp-coefficients, but the proof goes through also for L-coefficients with obvious
changes. �
A.5. Gabber–Fujiwara �-independence. We generalize the Gabber–Fujiwara
�-independence results (cf. [F]) to admissible stacks. For a category C, we denote
by [C] the set of isomorphism classes of C.
A.5.1. Theorem (Trace formula). Let X be a c-admissible stack over finite
field Fq. Let M be a complex in Db

hol(X/Qp,F ). For x ∈ [X(Fq)], we denote by
ix : Spec(Fq) → X the corresponding morphism. Then, for any n > 0, we have∑

i∈Z

(−1)i · Tr
(
Fn : Hi

c(X,M )
)
=

∑
x∈[X(Fq)]

1

#Aut(x)
· Tr

(
Fn : i+x (M )

)
.

Remark. Note that both sides of the equality are finite sums since we are dealing
with c-admissible stacks, contrary to the case of more general algebraic stacks. This
prevents us from struggling with the convergence issues as in [Beh], which makes
it much easier to formulate and prove.

Proof. Since we can prove this similarly to [La2, A.14] or [Beh, 6.4.10], we only
sketch the proof here. Let us denote the right-hand side of the equality by L(X,M ).
For a morphism f : X → Y of c-admissible stacks, it suffices to show the equal-
ity L(X,M ) = L(Y, f!(M )) since the theorem is the particular case where Y =
Spec(Fq). When f is a morphism between schemes, then this equality is already
known by Theorem A.3.2. Now, by the localization triangle, the verification is
local with respect to X. By using [LM, 11.5] and some standard dévissage argu-
ment, it suffices to treat the case where f is gerb-like. By definition of L(−,−)
combining with [Beh, 6.4.2], it is reduced to showing the theorem in the case
X = BG with a finite flat group scheme G over Spec(Fq), and M is Qp. Since
the morphism BGred → BG is a representable universal homeomorphism, we have
Hi(BG,Qp)

∼−→ Hi(BGred,Qp), and we may assume G to be smooth. By con-
sidering the universal torsor Spec(Fq) → BG, which is finite since G is, we get

Hi(BG,Qp) = 0 for i �= 0. The calculation of H0 is left to the reader. �
A.5.2. Definition. Let X be an algebraic stack over Fq, and let E (resp. F)

be an object in Db
hol(X/Qp,F ) (resp. Db

c (X/Q�)). For x ∈ [X(Fqd)], we denote by
ix : Spec(Fqd) → X and ρ : Spec(Fqd) → Spec(Fq) the canonical morphisms. We say
that E and F are compatible if for any point x ∈ [X(Fqd)], the Frobenius trace of
ρ+ ◦ i+x (E ) and ρ∗ ◦ i∗x(F) are equal.

A.5.3. Lemma. The couple (E ,F) are compatible if and only if for any X ∈ Xsm,
the pullbacks EX and FX are compatible.

Proof. Use [LM, 6.3]. �
A.5.4. Theorem. (i) Let f : X → Y be a morphism between c-admissible stacks.
Then f+, f!, f

+, f !, D, and ⊗ preserve compatible systems.
(ii) When j : U ↪→ X is an immersion of c-admissible stacks, j!+ preserves com-

patible systems.
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Proof. By Lemma A.5.3, the theorem for f+, D, j!+ follows from [AC1, 4.3.11]. We
only need to show the theorem for f!. For this, use the trace formula A.5.1. �
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Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin–New
York, 1970, viii+529 pp. MR0274458; MR0274459; MR0274460
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