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ESSENTIAL SURFACES IN GRAPH PAIRS

HENRY WILTON

This paper addresses a well-known question about hyperbolic groups, usually
attributed to Gromov.

Question 0.1. Does every one-ended hyperbolic group contain a surface subgroup?

Here, a surface subgroup is a subgroup isomorphic to the fundamental group of a
closed surface of nonpositive Euler characteristic. Various motivations for Gromov’s
question can be given. It generalizes the famous Surface Subgroup conjecture for
hyperbolic 3-manifolds, but it is also a natural challenge when one considers that
the Ping-Pong lemma makes free subgroups very easy to construct in hyperbolic
groups, whereas a theorem of Gromov, Sela, and Delzant [17] asserts that a one-
ended group has at most finitely many images (up to conjugacy) in a hyperbolic
group. More recently, Markovic proposed finding surface subgroups as a route to
proving the Cannon conjecture [31].

Several important cases of Gromov’s question have recently been resolved. Most
famously, Kahn and Markovic proved the Surface Subgroup conjecture [23]. Ex-
tending their work has been the topic of a great deal of recent research (see [21], [28],
for instance). In another dramatic development, Calegari and Walker answered
Gromov’s question affirmatively for random groups [10], following similar results
for random ascending HNN extensions of free groups (Calegari and Walker [11]) and
random graphs of free groups with edge groups of rank at least two (by Calegari
and Wilton [12]).

In this paper we resolve Gromov’s question for a contrasting class of hyperbolic
groups—graphs of free groups with cyclic edge groups. Our main theorem answers
Gromov’s question affirmatively in this case.

Theorem A. Let Γ be the fundamental group of a graph of free groups with cyclic
edge groups. If Γ is one ended and hyperbolic, then Γ contains a quasi-convex
surface subgroup.

In fact, using a result of Wise, we are able to find surface subgroups in graphs
of virtually free groups with virtually cyclic edge groups; see Theorem 6.1 below.

Numerous special cases of this result are already known. Calegari used his work
on the rationality of stable commutator length in free groups [9] to show that surface
subgroups exist when H2(Γ;Q) �= 0 [7]. Infinite classes of examples were found by
the author in joint works with Gordon [18] and with Kim [27]. Kim and Oum found
surface subgroups in doubles of free groups of rank two [26]. The author answered
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a weaker version of Gromov’s question for this class of groups by showing that
every such Γ is either a surface group or contains a finitely generated, one-ended
subgroup of infinite index [42].

Although the class of hyperbolic groups covered by Theorem A is quite specific,
the theorem has wider consequences for Gromov’s question. We call a group rigid
if it does not admit a nontrivial splitting with a virtually cyclic edge group. Using
strong accessibility [29], we can, modulo a technical hypothesis on 2-torsion, reduce
Gromov’s question to the rigid case, using the following corollary.

Corollary B. Let Γ be a one-ended hyperbolic group without 2-torsion. Either Γ
contains a quasi-convex surface subgroup or Γ contains a quasi-convex rigid sub-
group.

See Corollary 6.4 for full details. By a theorem of Bowditch [4] a one-ended
hyperbolic group Γ is rigid if and only if its Gromov boundary does not contain
local cutpoints (unless Γ is a finite extension of a triangle group). Corollary B
should be useful in any attempt at a general answer to Gromov’s question, since
local cutpoints in the boundary present extra technical challenges for the ergodic
techniques of [23] and the probabilistic techniques of [10], as witnessed by the
difficulties resolved in Kahn and Markovic’s proof of the Ehrenpreis conjecture [24].

A limit group is a finitely generated, fully residually free group—that is, a finitely
generated group in which every finite subset can be mapped injectively into a free
group by a group homomorphism. Limit groups play a central role in the study of
algebraic geometry and logic over free groups; see [36, and others in this series], in
which they were defined, and also the parallel project [25, and others in this series].
Theorem A addresses the key case for the problem of finding surface subgroups of
limit groups, and so we can also answer Gromov’s question in that context.

Corollary C. Let Γ be a limit group. If Γ is one-ended, then Γ contains a surface
subgroup.

See Corollary 6.3 for details. Note that limit groups are not all hyperbolic, but
they are all toral relatively hyperbolic [1, 16]. In particular, nonhyperbolic limit
groups contain a Z2 subgroup, so the hyperbolic case is the one of interest.

These results have interesting applications to a different structural problem in

group theory. Recall that the profinite completion, Γ̂, of a group Γ is the closure
of the image of Γ in the direct product of its finite quotients (endowed with the
product topology). If two groups Γ1 and Γ2 have isomorphic profinite completions,
then it is natural to ask whether Γ1 and Γ2 must be isomorphic.

In general, the anwer is “no”. There are even examples of nonisomorphic pairs
of virtually cyclic groups with isomorphic profinite completions [2]. Nevertheless,
many important questions of this type remain open, of which the following question
of Remeslennikov is one of the most notable [32, Question 15].

Question 0.2 (Remeslennikov). Suppose that F is a finitely generated, nonabelian

free group and that Γ is finitely generated and residually finite. If Γ̂ ∼= F̂ , does it
follow that Γ ∼= F?

It is particularly natural to consider Question 0.2 when Γ is a limit group. Indeed,
limit groups are closely related to free groups (for instance, Remeslennikov showed
that they are precisely the existentially free groups [34]) and are frequently hard to
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distinguish from them. Bridson, Conder, and Reid [6] pointed out that Corollary C,
combined with the results of [41], would resolve Remeslennikov’s question in this
case.

Corollary D. If L is a limit group and not free, then the profinite completion L̂
is not isomorphic to the profinite completion of any free group.

The same ideas give a new proof of a theorem of Puder and Parzanchevski
[33, Corollary 1.5]. Recall that a word w in a free group F is called primitive if F
splits as a free product 〈w〉 ∗F1. Similarly, an element ŵ of the profinite free group

F̂ is called primitive if F̂ decomposes as a coproduct 〈ŵ〉
∐

F̂1 in the category of
profinite groups. Puder and Parzanchevski showed that an element w of F that is

primitive in the profinite completion F̂ is already primitive in F [33, Corollary 1.5].
This can be thought of as answering a relative version of Question 0.2.

In fact, we can generalize their result, from words to multiwords (i.e., finite
indexed sets of words). Let us call a multiword w = {w1, . . . , wn} in F primitive if
F splits as a free product 〈w1〉∗· · ·∗〈wn〉∗F1 for some F1 and make the corresponding

definition of a primitive multiword in F̂ .

Corollary E. Let F be a finitely generated free group. If a multiword w is primitive

in the profinite completion F̂ , then it is primitive in F .

It is interesting to contrast the techniques of this paper with those of [33]. Puder
and Parzanchevski deduce their result from their beautiful characterization of prim-
itive words in free groups as precisely the measure-preserving words [33, Theorem
1.1]. The proof given here is cohomological and goes via the fact that the virtual
second cohomology of the profinite completion of a nonfree limit group is nonzero.
Corollaries D and E follow quickly from Theorem 7.1. We refer the reader to that
theorem and the subsequent remarks for details.

Let us now turn to discuss the proof of Theorem A. Our main technical result
addresses a relative version of Gromov’s question, finding surfaces in free groups
relative to families of cyclic subgroups. To state it concisely, we need to introduce
some definitions.

Consider a graph of spaces X in the sense of Scott and Wall [35], and let v be a
vertex with incident edges e1, . . . , en. The vertex space Xv, together with the maps
of incident edge spaces wi : Xei → Xv, defines a space pair (Xv, w). In the case of
interest, the vertex space Xv will always be a graph (usually denoted by Γ), and
the edge spaces Xei will be circles S1

i ; such a (Γ, w) is called a graph pair.
Global properties of the graph of spaces X can be characterized locally, using

properties of the pairs associated to vertex spaces. For instance, X is called irre-
ducible if π1X does not split over a finite subgroup; we may correspondingly define
an irreducible pair (Γ, w) (see Definition 2.9), and a lemma of Shenitzer asserts that
if the pairs associated to the vertices are irreducible, then so is X [42, Theorem 18].
Corresponding to the notion of a π1-injective map of graphs of spaces Y → X, we
have an essential map of pairs (Λ, u) → (Γ, w), and indeed if a morphism of graphs
of spaces is essential on each space pair associated to a vertex, then the morphism
is itself π1-injective (see Proposition 1.7).

We are now ready to state the main technical result.

Theorem F. If (Γ, w) is an irreducible graph pair, then there is a compact surface
with boundary Σ and an essential map of pairs (Σ, ∂Σ) → (Γ, w).
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In fact, we obtain a bit more control than this—the surface is also admissible,
meaning that every point of the domain of w has the same number of preimages
in ∂Σ; see Theorem 5.11. It has been well known for a while that a result like
Theorem F would imply the existence of surface subgroups in graphs of free groups
with cyclic edge groups; see, for instance, [7] or [27].

Let us now briefly sketch the proof of Theorem F. It can be thought of as a
combination of the techniques of [9] and [42].

First, we study irreducible pairs (Λ, u) that map into the irreducible pair (Γ, w).
The irreducibility of the pairs (Γ, w) and (Λ, u) is characterized using Whitehead
graphs. We would like to study essential maps (Λ, u) → (Γ, w), but it turns out to be
difficult to simultaneously characterize both the fact that (Λ, u) is irreducible and
the fact that the map (Λ, u) → (Γ, w) is essential. In order to recognize both these
properties simultaneously, we work with ∂-immersions, which are compositions
(Λ, u) → (Δ, v) → (Γ, w). We can recognize if the pair (Λ, u) is locally irreducible,
and this guarantees that (Δ, v) is (weakly) irreducible.

The idea behind the proof of Theorem F is that, among all irreducible pairs
mapping to (Γ, w), the pairs of surface type should be the ones of most negative
Euler characteristic. To make this precise, we define a positive polyhedral cone CP
in a finite-dimensional vector space, such that the integer points in CP correspond
to admissible ∂-immersions of (weakly) irreducible pairs (Δ, v). We also define
the projective P-rank function ρP on the projectivization P(CP) as a quotient of
two linear functionals: the (negation of the) Euler characteristic of Δ and the
degree with which v covers w. In particular, ρP achieves its maximum value at
some vertex of the polyhedron P(CP), which is necessarily a rational line in CP .
Since this rational line contains an integer point, an admissible ∂-immersion of an
irreducible pair exists that maximizes ρP . We call such a pair maximal.

This approach is similar to the argument of [9], in which a polyhedral cone is
defined whose integer points correspond to certain maps of surfaces (Σ, ∂Σ) →
(Γ, w). The hypothesis in [7] that rational second homology is nonzero is needed
to ensure that this cone is nonzero. In contrast, the cone CP is guaranteed to
be nonzero since, whenever (Γ, w) is irreducible, the identity map (Γ, w) → (Γ, w)
leads to an admissible ∂-immersion of an irreducible pair.

The final step of the proof applies the ideas of [42] to the relative JSJ decomposi-
tion of a maximal pair (Δ, v). The conclusion is that any maximal pair has no rigid
vertices in its JSJ decomposition. It follows that the JSJ decomposition is built from
surface pieces, and one quickly concludes that a pair of surface type exists. Thus,
we deduce the existence of an admissible, ∂-essential surface (Σ, ∂Σ) → (Γ, w).

The paper is structured as follows. In Section 1 we define pairs of groups, spaces
and graphs, the natural notions of maps between them, and various properties of
those maps. In Section 2 we adapt the classical theory of Whitehead graphs to the
setting of a graph pair (Γ, w). The main result here is a converse to Whitehead’s
lemma (Lemma 2.11), which asserts that an irreducible pair can always be unfolded
to a locally irreducible pair, in which the irreducibility is recognized by the White-
head graphs at the vertices. In Section 3 we characterize admissible ∂-immersions
from locally irreducible graph pairs into (Γ, w) as precisely those maps that can be
built from a certain finite set P of pieces. We define the cone CP and note that there
is a surjective map from admissible ∂-immersions of locally irreducible pairs to the
integer points of CP . In Section 4 we define the projective P-rank function ρP and
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prove that it attains its extremal values at rational points of P(CP). We deduce
the existence of a maximal, admissible ∂-immersion from a locally irreducible pair.
In Section 5 we apply the results of [42] to study admissible ∂-immersions with
maximal projective P-rank. The main result is that there is such a maximal pair
of (weak) surface type (Theorem 5.6). Theorem 5.11, and hence Theorem F, follow
quickly. In Section 6 we deduce Theorem A and Corollaries B and C. Finally, in
Section 7 we deduce Corollaries D and E.

1. Pairs

We will make heavy use of graphs of groups and Bass–Serre theory, as detailed in
Serre’s standard work on the subject [37] to which the reader is referred for details.
To fix notation, we recall the definition of a graph.

Definition 1.1. A graph Γ consists of a vertex set V , an edge set E, a fixed-point
free involution E → E denoted by e �→ ē, and an origin map ι : E → V . The
terminus map τ : E → V is defined by τ (e) = ι(ē).

The edges of Γ are thus equipped with orientations, and the unoriented edges
are the pairs {e, ē}.

As well as using graphs of groups, we will also frequently adopt the topological
point of view, in which a graph of groups is viewed as the fundamental group of a
graph of spaces [35]. Graphs of spaces are not required to be connected, which will
present some technical advantages, although the attaching maps are required to be
injective on fundamental groups. Analogously, we may also work with disconnected
graphs of groups, as long as we are careful to choose a basepoint before talking about
the fundamental group.

1.1. Group pairs. It is particularly important for us to work with relative versions
of graphs of groups and spaces, which characterize the relationship between a vertex
group (or space) and its incident edge groups (or spaces). To this end we define
various notions of pairs. We start with pairs of groups.

Definition 1.2. A group pair is a pair (G,A), where G is a group and A is a
G-set. It is often convenient to choose a finite set of orbit representatives {ai}, to
let Hi = StabG(ai), and to specify the pair via the data (G, {Hi}). We will use
both the notations (G,A) and (G, {Hi}) to specify group pairs, without fear of
confusion.

The key example of a group pair arises when considering a vertex v of a graph
of groups G. Having fixed a lift ṽ of v to the Bass–Serre tree, one takes G to be the
vertex stabilizer Gṽ and A to be the set of edges incident at ṽ.

Definition 1.3. A morphism of graphs of groups is a morphism of the underlying
graphs, accompanied by associated maps of vertex groups and edge groups that
intertwine with the attaching maps. This is most easily thought of by passing to
the Bass–Serre tree. A morphism of graphs of groups induces a homomorphism of
fundamental groups and lifts to an equivariant map on Bass–Serre trees.
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This motivates the following definition for pairs.

Definition 1.4. A morphism of group pairs (f, φ) : (G,A) → (G′,A′) consists of
a set map φ : A → A′ and a homomorphism f : G → G′ that intertwines φ. That
is, we require that

φ(g.a) = f(g).φ(a)

for all g ∈ G and a ∈ A.

In particular, a morphism of graphs of groups defines morphisms of the group
pairs at each vertex, and, conversely, morphisms of pairs that satisfy an obvious
compatibility condition can be pieced together to give a morphism of a graph of
groups.

It is convenient if we can detect global properties of morphisms of graphs of
groups by looking at local properties of the induced maps on group pairs. We are
particularly concerned with π1-injectivity, and so we need to develop corresponding
notions for group pairs. Requiring that the map of groups f : G → G′ be injective
is clearly significant. The following condition is also important.

Definition 1.5. A morphism of group pairs (f, φ) : (G,A) → (G′,A′) is ∂-essential
if the map

ker f\A → A′

induced by φ is injective.

When applied to pairs associated to graphs of groups, this condition guarantees
that the induced map on Bass–Serre trees does not factor through a fold. Putting
this together with injectivity, we have the notion of an essential morphism.

Definition 1.6. A morphism of group pairs (f, φ) : (G,A) → (G′,A′) is essential
if the homomorphism f : G → G′ is injective and the morphism is also ∂-essential.

From this, one easily deduces a local criterion for morphisms of graphs of groups
to be π1-injective.

Proposition 1.7. Suppose that f is a morphism of graphs of groups. If f induces
essential morphisms on the group pairs corresponding to vertices, then f induces
an injective map on fundamental groups.

Proof. Suppose that a group element g is in the kernel of f . Since the map on Bass–
Serre trees does not factor through a fold, if g acts hyperbolically on the Bass–Serre
tree, then so does its image, contradicting the fact that g is in the kernel. Therefore
g is elliptic, but since f is injective on vertex stabilizers, it follows that g = 1. �

1.2. Space pairs. We next make analogous definitions for spaces.

Definition 1.8. A space pair consists of cell complexes X,Y together with a con-
tinuous map w : Y → X. We will frequently take π0Y to be an index set I, and we
let

wi : Yi → X

denote the restriction of w to Yi, the path component of Y corresponding to i ∈ I.
We will often use the notation (X,w) to denote such a space pair.
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In most of what follows, we will take X to be a graph and Y to be a disjoint
union of circles. However, it is useful to allow the extra flexibility of the general
definition.

If X is path connected, then a space pair (X,w) naturally defines a group pair

(G,A). Let p : X̃ → X be the universal cover, and consider the fiber product

Ỹ := X̃ ×X Y = {(x̃, y) | p(x̃) = w(y)}.
Taking G = π1X and A = π0Ỹ , we see that G acts naturally on A, and so (G,A)
is a group pair.

This definition is more transparent if one thinks of X as a vertex space of a

graph of spaces Z. The universal cover Z̃ of Z inherits a decomposition as a graph

of spaces; X̃ appears as a vertex space of Z̃, and the fiber product Ỹ is the disjoint

union of the edge spaces of Z̃ incident at X̃.
We next define morphisms of space pairs analogously to morphisms of group

pairs.

Definition 1.9. Let w : Y → X and w′ : Y ′ → X ′ define space pairs (X,w)
and (X,w′), respectively. A morphism of space pairs (X,w) → (X ′, w′) consists of
continuous maps φ : Y → Y ′ and f : X → X ′ so that f ◦ w = w′ ◦ φ.

As in the case of groups, compatible collections of maps of pairs can be glued
together to construct a map of graphs of spaces. Again, we will need a definition
of a ∂-essential morphism.

Definition 1.10. Consider a morphism of space pairs (X,w) → (X ′, w′). Let X̃ ′

be the universal cover of X ′ and let X̂ be the corresponding covering space of X,

obtained by pulling back the covering map X̃ ′ → X ′ along f . Consider the fiber
products

Ŷ = X̂ ×X Y, Ỹ ′ = X̃ ′ ×X′ Y ′,

and note that the map φ : Y → Y ′ lifts to a map φ̃ : Ŷ → Ỹ ′. The morphism

(X,w) → (X ′, w′) is called ∂-essential if φ̃ induces an injective map π0Ŷ → π0Ỹ
′.

Again, we combine this with injectivity on vertex groups to obtain a notion of
an essential morphism.

Definition 1.11. A morphism of space pairs f : (X,w) → (X ′, w′) is essential if
it is ∂-essential and f : X → X ′ is π1-injective.

Finally, we note that our two definitions of ∂-essential pairs coincide.

Lemma 1.12. Let (X,w) → (X ′, w′) be a morphism of space pairs, inducing the
corresponding morphism of pairs (G,A) → (G′,A′) on fundamental groups. The
morphism (X,w) → (X ′, w) is ∂-essential if and only if the morphism (G,A) →
(G′,A′) is ∂-essential. Hence, (X,w) → (X ′, w) is essential if and only if (G,A) →
(G′,A′) is essential.

Proof. The quotient of X̃ by the action of ker f is X̂, and the corresponding covering

map induces a map Ỹ → Ŷ .

We need to show that two path components Ỹ1 and Ỹ2 of Ỹ have the same image
under this map if and only if they are in the same orbit of ker f . The “if” direction

is clear. For the converse we choose compatible basepoints ∗i ∈ Ỹi and suppose

that Ỹ1 and Ỹ2 have the same image. Then the images of their basepoints in X̃ are



900 HENRY WILTON

joined by a concatenation of paths κ · η, where κ maps to a loop in X̂ and η is the

image of a lift of a loop from Y to Ỹ2. These define group elements k ∈ ker f and

y ∈ StabG(Ỹ2) so that gy translates Ỹ1 to Ỹ2, and so Ỹ1 and Ỹ2 are indeed in the
same orbit of ker f .

The lemma follows immediately. �

1.3. Graph pairs. In the setting of Theorem A, the groups G are finitely generated
free groups, so the spaces X can be taken to be graphs. We may therefore apply
the techniques of Stallings [38].

Definition 1.13. Let Γ be a graph. The star of a vertex v is the set StΓ(v) =
{e ∈ E | ι(e) = v}, the set of edges with initial vertex v. (We will also write St(v)
for StΓ(v) when there is no fear of confusion.) A morphism of graphs f : Γ → Δ
is an immersion if the induced maps on stars are injective. In this case, we write
f : Γ � Δ.

Stallings famously observed that immersions are π1-injective and that any mor-
phism of finite graphs Λ → Γ factors through a canonical immersion

Λ → Λ0 � Γ,

where the map Λ → Λ0 is a composition of finitely many folds [38, §§3.3].

Definition 1.14. A multicycle in a graph Γ is an immersion of graphs w : Sw → Γ,
where Sw is a disjoint union of graphs homeomorphic to circles. The components
of Sw are denoted by S1

i , and the restriction of w to S1
i is denoted by wi.

A graph pair is a space pair (Γ, w), where Γ is a finite graph without vertices of
valence one and w is a multicycle. Note that we do not require the graph Γ to be
connected.

Again, we will need a notion of morphism for graph pairs. As for Stallings, for
us a morphism of graphs takes vertices to vertices and edges to edges. Since we
insist that the maps w are immersions, we make a corresponding requirement for
morphisms of graph pairs.

Definition 1.15. Let (Γ, w) and (Λ, u) be graph pairs. A morphism of space pairs
(Λ, u) → (Γ, w) is a morphism of graph pairs if the map Λ → Γ is a morphism of
graphs and the map Su → Sw is an immersion.

The first advantage of this setting is that we can certify π1-injective maps using
immersions. Note that a morphism of graphs Λ → Γ is an immersion if and only if

the lift to universal covers Λ̃ → Γ̃ is injective. Similarly, we may define an immersion
of graph pairs.

Definition 1.16. A map of graphs pairs f : (Λ, u) → (Γ, w) is an immersion if the

lifts Λ̃ → Γ̃ and S̃u → S̃w are injective. In this case, we write f : (Λ, u) � (Γ, w).

A map of graph pairs factors through a canonical immersion, just as maps of
graphs do.

Lemma 1.17. A map of graphs pairs f : (Λ, u) → (Γ, w) factors through a canoni-
cal immersion f0 : (Λ0, u0) � (Γ, w). The immersion f0 has the universal property
that, whenever f factors through an immersion (Δ, v) � (Γ, w), f0 also factors
through (Δ, v) � (Γ, w).
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Proof. Let G be the image of π1Λ in π1Γ. We take Λ̃0 to be the image of Λ̃ in Γ̃;

likewise, we take S̃u0
to be the image of S̃u in S̃w. The group G acts naturally on

each of these, and we take Λ0 and Su0
to be the respective quotients by the action

of G. �
The next lemma provides a means of locally certifying that a map is ∂-essential.

Lemma 1.18. If a map of graph pairs f : (Λ, u) → (Γ, w) is ∂-essential and
(Λ0, u0) � (Γ, w) is the corresponding canonical immersion, then the induced map
Su → Su0

is injective. Conversely, if a map of graph pairs f : (Λ, u) → (Γ, w)
factors through an immersion as

(Λ, u) → (Δ, v) � (Γ, w)

and Su → Sv is injective, then f is ∂-essential.

Proof. By definition, if f is ∂-essential, then the corresponding map Ŝu → S̃w is

injective on π0. The components of these spaces are lines, so the map Ŝu → S̃w is

itself injective, and so Ŝu → S̃u0
is injective too. Finally, since Su → Su0

is obtained
by quotienting the domain and the range by f∗π1Λ, it is also injective.

For the converse, if f factors as hypothesized, then the lift of Su → Sw factors as

Ŝu → S̃v → S̃w.

The first map is a lift of an injection, hence an injection, and the second map is
a lift of an immersion, hence injective. The result follows since a composition of
injective maps is injective. �

Thus, we can use a map to an immersed pair as a certificate that a morphism of
pairs is ∂-essential. We call the data of this certificate a ∂-immersion.

Definition 1.19. A ∂-immersion is a concatenation

(Λ, u) → (Δ, v) � (Γ, w),

where Su → Sv is bijective.

2. Whitehead graphs and folds

Given a group pair (F, 〈w〉), where w is some nontrivial element of a free group
F , it is natural to ask ask whether or not 〈w〉 is a free factor of F . The standard
way of answering this question uses the Whitehead graph, which was defined by J.
H. C. Whitehead in his original paper on automorphisms of free groups [40]. (See
also [14] and the references therein for a modern account of Whitehead graphs.)
The definition of the Whitehead graph given in [40] implicitly involves representing
F as the fundamental group of a rose—a graph with a single vertex.

Here we develop the theory of Whitehead graphs for general graph pairs. We
are not aware that this approach has been taken in the literature before, but it is
similar to the approaches to Whitehead graphs given by Cashen and Macura [14]
and Manning [30].

Definition 2.1. Consider a graph pair (Γ, w) and a vertex x of Γ. The Whitehead
graph at x is denoted by Whx(w). Its set of vertices is the star StΓ(x). The
unoriented edges of Whx(w) are the vertices {xi} of Sw that map to x; the edge
corresponding to xi joins the vertices w(e1) and w(e2) of Whx(w), where e1 and e2
are the two edges of Sw with ι(ej) = xi.
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Figure 1. The Whitehead graph of the Baumslag–Solitar word b−1aba−2

Note that the requirement that the multicycle w is an immersion implies that
the endpoints of any edge of Whx(w) are distinct. However, each pair of vertices
may be joined by many edges.

We can collect together all the Whitehead graphs at the vertices of Γ into a global
Whitehead graph for the pair (Γ, w). Figure 1 shows an example of a Whitehead
graph.

Definition 2.2. The Whitehead graph of the pair (Γ, w) is the disjoint union

Wh(w) :=
∐
x∈V

Whx(w).

Note that Wh(w) comes equipped with two additional structures:

(i) the components of Wh(w) are naturally partitioned: two components are
equivalent if they are both components of some Whx(w);

(ii) the fixed-point free involution e �→ ē on the edges of Γ defines a fixed-
point free involution on the vertices of Wh(w) that extends to a bijection
ie : St(e) → St(ē).

We will always think of Wh(w) as equipped with these extra structures.

Remark 2.3. The partition on the components of Whx(w) and the involutions ie
are enough information to reconstruct the pair (Γ, w).

Stallings studied morphisms of graphs by observing that they always factor as
a composition of a sequence of folds followed by an immersion. Recall that a fold
identifies a pair of edges e1, e2 with ι(e1) = ι(e2). It is therefore natural to study
the effect that a fold has on Whitehead graphs.

Definition 2.4. Let W be a graph, and let v1, v2 be a pair of vertices. (When we
apply this, W will be a disjoint union of Whitehead graphs.) A wedge is a quotient
map W → W ′ that identifies v1 and v2 and leaves the rest of W unchanged. We
write W∧v1∼v2 for the quotient graph W ′. If W = W1 �W2 with vi ∈ Wi, then we
write W1 ∧v1∼v2 W2 for W∧v1∼v2 . The reverse move, which replaces W∧v1∼v2 by
W , is called an unwedge.

The following lemma shows that, at the level of Whitehead graphs, folds corre-
spond to wedges.
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Figure 2. The effect of a fold on Whitehead graphs. Note that
Whx′(w′) is obtained by wedging Whx(w), and Why′(w′) is ob-
tained by wedging Why1

(w) �Why2
(w).

Lemma 2.5. Let f : (Γ, w) → (Γ′, w′) be the morphism given by a fold Γ → Γ′

which identifies two edges e1, e2 of Γ with a common initial vertex x = ι(e1) = ι(e2)
to an edge e′ of Γ′. Let yi = ι(ēi), and let x′ = ι(e′) and y′ = τ (e′). Suppose further
that f : Γ → Γ′ is a homotopy equivalence, i.e., y1 �= y2. Then

Whx′(w′) ∪Why′(w′) = (Whx(w)∧e1∼e2) ∪ (Why1
(w) ∧ē1∼ē2 Why2

(w)).

(Note that the unions in this expression may not be disjoint, since x may equal yi
for at most one i, in which case x′ also equals y′.) In particular, ē′ is a cut vertex
of Why′(w′).

Proof. This follows immediately from the definitions. (The case in which x �= y1, y2
is illustrated in Figure 2.) �

Remark 2.6. In the above lemma the hypothesis that the map f : (Γ, w) → (Γ′, w′)
is a morphism of pairs is essential: if the induced map Sw → Sw′ were not an
immersion, then after folding one would need to tighten w′ to an immersion, which
might destroy the cutpoint structure of the Whitehead graphs.

Remark 2.7. In the setting of Lemma 2.5, for any vertex v of Γ, the map Whv(w) →
Whf(v)(w

′) induced by f is injective on edges.

In fact, the implication of Lemma 2.5 can be reversed: if one of the Whitehead
graphs has a cut vertex, then we can unfold.

Lemma 2.8. Let (Γ′, w′) be a graph pair, and suppose that some edge ē′ defines a
cut vertex in Why′(w′) (where y′ = τ (e′)). Then there is a graph pair (Γ, w) and
a morphism of pairs defining a homotopy-equivalent fold f : (Γ, w) → (Γ′, w′) that
identifies a pair of edges e1, e2 to e′.
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Proof. The hypothesis tells us that Why′(w′) = W1 ∧ē1∼ē2 W2, where ēi ∈ Wi is
a vertex with image ē′ in the wedge. Let x′ = ι(e′) (and note that x′ and y′ are
not necessarily distinct). We will define the pair (Γ, w) via its Whitehead graphs
(appealing to Remark 2.3). The proof divides into two similar cases, depending on
whether or not x′ = y′.

Suppose first that x′ �= y′. For any vertex z′ of Γ′ not equal to x′ or y′, we take
a vertex z for Γ with Whitehead graph isomorphic to Whz′(w′). The remaining
vertices of Γ are denoted by x, y1, y2. We define Whyi

(w) to be Wi for i = 1, 2.
Finally, Whx(w) is defined so that

Whx′(w′) = Whx(w) ∧e1∼e2 .

That is, Whx(w) is obtained from Whx′(w′) by dividing the vertex e′ into two
vertices, e1, e2. The edges of Whx(w) incident at e1 and e2 are defined so that they
respect the natural bijections between the stars of the ei and the stars of the ēi.
There is then a natural lift of the bijections on stars in Wh(w′) to bijections on
stars in Wh(w), and this completes the construction of (Γ, w).

The case in which x′ = y′ is similar. Again, for any vertex z′ of Γ′ not equal to
x′ or y′, we take a vertex z for Γ with Whitehead graph isomorphic to Whz′(w′).
The remaining vertices of Γ are denoted by x, y. Since x′ = y′, the vertex e′ is
contained in Why′(w′) = W1 ∧ē1∼ē2 W2 and, without loss of generality, we may
take e′ ∈ W1. We now define Why(w) = W2 and Whx(w) so that

W1 = Whx(w) ∧e1∼e2 .

As before, this means that Whx(w) is obtained by dividing the vertex e′ into two
vertices e1, e2, and the edges of Whx(w) incident at the ei are defined to respect
the natural bijections between the stars of the ei and the stars of the ēi. Again,
this completes the construction of (Γ, w).

In either case identifying e1 and e2 defines a fold (Γ, w) → (Γ′, w′). Since τ (e2) �=
τ (e1), the fold is a homotopy equivalence. Note also that, by construction, the fold
is a morphism of pairs. �

Whitehead introduced Whitehead graphs to recognize basis elements of free
groups and, more generally, free splittings. (More generally still, Whitehead gave
an algorithm to find the shortest element in an orbit of the automorphism group.)
We will use Whitehead graphs to recognize (weakly) irreducible pairs.

Definition 2.9. Consider a graph pair (Γ, w) with Γ a finite connected graph. By
Grushko’s theorem, π1Γ splits canonically as

G1 ∗ · · · ∗Gk ∗ F,

where for each j = 1, . . . , k, there is an index set Ij so that wi is conjugate into Gj

for all i ∈ Ij , each Gj does not split freely relative to the set {wi | i ∈ Ij}, and no
wi is conjugate into F . A factor Gj is called cyclic if Ij is a singleton {i} and, up
to conjugacy, wi generates Gj .

The pair (Γ, w) is called weakly irreducible if there are no cyclic factors; otherwise
it is called strongly reducible. The pair is called reducible if it is weakly irreducible
and k = 1; otherwise it is called reducible. When Γ is disconnected, the pair (Γ, w)
is called (weakly) irreducible or (strongly) reducible if and only if each component
has that property.
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The point of the above definition is that the pair (Γ, w) is reducible if and only if
the fundamental group of the double D(w), obtained as a graph of spaces with two
vertex spaces homeomorphic to Γ and edge maps given by w, admits a nontrivial
free splitting. Cyclic factors are relevant because they give rise to Z factors of the
double. Even a single cyclic factor is reducible, since Z splits as an HNN extension
of the trivial group.

The following lemma is the key result for recognizing reducible pairs. It is quite
standard, but we give a proof using folds and wedges as a sample application of the
above ideas.

Lemma 2.10 (Whitehead). If (Γ, w) is reducible, then there is a vertex x of Γ so
that one of the following holds:

(i) Whx(w) is disconnected;
(ii) Whx(w) has a leaf, i.e., a vertex of valence 1; or
(iii) Whx(w) has a cut vertex, i.e., a vertex e so that Whx(w)� {e} is discon-

nected.

Proof. The case in which π1Γ is cyclic and w : S1 → Γ is a π1-isomorphism is easy
and is left as an exercise. Suppose therefore that π1Γ admits a free splitting relative
to w. It follows that there is a morphism of graphs f : (Γ′, w′) → (Γ, w) which is a
homotopy equivalence, so that Γ′ has a vertex x′ with Whx′(w′) disconnected. The
morphism f now factors as a sequence of homotopy-equivalent folds; in particular,
whenever e1 and e2 with ι(e1) = ι(e2) are identified, we have τ (e1) �= τ (e2). Con-
sider the final such fold, which identifies a pair of distinct vertices y1, y2 to a vertex
y. Lemma 2.5 implies that Why(w) has a cut vertex. �

Motivated by Whitehead’s lemma, we call a Whitehead graph Whx(w) reducible
if it satisfies one of the three conclusions of the lemma; otherwise, we call Whx(w)
irreducible. We call the pair (Γ, w) locally irreducible if, for every vertex x of Γ, the
Whitehead graph Whx(w) is irreducible. Whitehead’s lemma therefore says that a
locally irreducible pair is irreducible.

The converse to this statement is not quite true—there are irreducible pairs that
are not locally irreducible. To construct an example, take an irreducible pair and
apply one fold. We therefore must allow ourselves to unfold in order to prove a
converse to Whitehead’s lemma.

Lemma 2.11 (Converse to Whitehead’s lemma). If a pair (Γ, w) is irreducible,
then there is a locally irreducible pair (Γ′, w′) and a map of pairs (Γ′, w′) → (Γ, w)
which is a homotopy equivalence.

Proof. If some vertex of Γ has either a disconnected Whitehead graph or a leaf,
then (Γ, w) is reducible. Suppose therefore that there is a vertex y so that Why(w)
has a cut vertex ē. By Lemma 2.8 there is a fold (Γ′, w′) → (Γ, w) so that the
edge e is unfolded to a pair of edges e′1, e

′
2.

Note: the number of edges of Wh(w′) is equal to the number of edges of Wh(w);
the number of vertices of Wh(w′) is greater than the number of vertices of Wh(w);
for each vertex z′ of Γ′, the Whitehead graph Whz′(w′) is connected without leaves.
In particular, the number of vertices of Wh(w′) is at most the number of edges of
Wh(w). It follows that only finitely many unfoldings of this form can be performed.

When no further unfoldings can be performed, the final pair (Γ′, w′) is locally
irreducible, as claimed. �
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The final lemma of this section shows that we can use locally irreducible ∂-
immersions to recognize weakly irreducible immersions.

Lemma 2.12. If (Λ, u) → (Δ, v) � (Γ, w) is a ∂-immersion and (Λ, u) is locally
irreducible, then the pair (Δ, v) is weakly irreducible.

Proof. By repeatedly applying Lemma 2.8 as in the proof of Lemma 2.11, there is a
homotopy-equivalent morphism of pairs (Δ′, v′) → (Δ, v) so that every Whitehead
graph of (Δ′, v′) has no cut vertices. Since (Λ, u) is locally irreducible, the morphism
(Λ, u) → (Δ, v) lifts to a morphism (Λ, u) → (Δ′, v′); note that this map is bijective
on edges of Whitehead graphs and surjective on vertices. If some component of a
Whitehead graph of (Δ′, v′) had at most one edge, a component of a Whitehead
graph of (Λ, u) that mapped to it would also, contradicting the hypothesis that
(Λ, u) is locally irreducible. �

3. Admissible ∂-immersions

Consider an irreducible graph pair (Γ, w) as above. In this section we will study
∂-immersions

(Λ, u) → (Δ, v) � (Γ, w),

where (Λ, u) is a locally irreducible pair. We will impose one additional condition
on our ∂-immersions.

Definition 3.1. A map of graph pairs (Λ, u) → (Γ, w) is called admissible if there
is a positive integer n = n(u) so that every point in Sw has exactly n preimages in
Su. A ∂-immersion (Λ, u) → (Δ, v) � (Γ, w) is called admissible if the composition
(Λ, u) → (Γ, w) is admissible.

Calegari uses the term “admissible” similarly for maps of surfaces with boundary
[8, p. 37]. Note that, in his context, the integer n counts preimages with a sign
determined by orientation, whereas in our context, the count is unsigned.

We next write down a finite set of pieces, from which ∂-immersions of locally
irreducible pairs can be constructed.

Definition 3.2. Let W be the set of components of Wh(w). The set P of pieces
(over Wh(w)) consists of all pairs of maps of graphs (up to graph isomorphism)

P → V ↪→ W

such that P is a disjoint union of irreducible graphs, the map P → V is bijective
on edges, the map V ↪→ W is injective, and W ∈ W . When P → V ↪→ W is an
element of P, we will often abuse notation and write P ∈ P, since the map P → W
determines V .

Remark 3.3. Note that P is finite. This trivial observation is of crucial importance.

We will study admissible ∂-immersions of locally irreducible pairs by looking at
how they are constructed from the pieces P. The involutions ie on the stars of
vertices of Wh(w) define relations on the elements of P, as follows.
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Definition 3.4. Consider

P → U ↪→ W1, Q → V → W2

elements of P. Suppose that e is a vertex of U ⊆ W1 and that ē is a vertex of
V ⊆ W2. Let e1, . . . , em be the set of vertices of P that map to e ∈ U , and let
ē1, . . . , ēn be the set of vertices of Q that map to ē ∈ V . We write

P ↔e Q

if the following hold:

(i) m = n; and
(ii) up to reordering of indices, ie restricts to bijections StP (ej) → StQ(ēj) for

all j.

The relation P ↔e Q can be interpreted in terms of Manning’s splicing operation
[30]. It says that P and Q can be spliced at the sets of vertices {e1, . . . , en} and
{ē1, . . . , ēn} and that U and V can be spliced at e and ē.

To record how the elements of P are glued together, we introduce P-stars.

Definition 3.5. A P-star σ consists of the following data:

(i) a piece P → U ↪→ W in P;
(ii) for each vertex ei of U , a choice of piece Qi → Vi ↪→ Wi in P and a vertex

ēi of Vi so that P ↔ei Qi.

We write σ(∗) = P and, for each vertex ei of P , we write σ(ei) = Qi.

Let S ≡ S(P) be the (finite) set of all P-stars. Let VP = RS , and let V +
P ⊆ VP

be the nonnegative orthant. An admissible ∂-immersion

(Λ, u) → (Δ, v) � (Γ, w)

of a locally irreducible pair (Λ, u) defines an integer vector π(u) ∈ V +
P in a natural

way, as follows. For each vertex x of Δ, let x′
1, . . . , x

′
k be the preimages of x in Λ,

and let x0 be the image vertex in Γ. The piece P (x) ∈ P is then defined to be

k∐
i=1

Whx′
i
(u) → Whx(v) ↪→ Whx0

(w).

If e is an edge of Δ with ι(e) = x and τ (e) = y, then P (x) ↔e P (y). Therefore, for
each vertex x of Δ, we can define σx to be the corresponding P-star associated to
the labels of the neighboring vertices:

(i) σx(∗) = P (x); and
(ii) for each ei ∈ StΛ(x), σx(ei) = P (τ (ei)).

Now define π(u) to be the vector p ∈ V +
P so that

pσ = #{x ∈ V (Δ) | σx = σ}

for each σ ∈ S.
The image of π is not arbitrary—in fact, it is precisely the set of integer points of

a certain cone CP ⊆ V +
P . We will describe this cone using systems of equations: the

gluing equations and the admissibility equations. We start with the gluing equa-
tions. A nonnegative integer vector that satisfies the gluing equations necessarily
comes from a ∂-immersion of a locally irreducible pair.
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Definition 3.6. We write x = (xσ)σ∈S for an element of VP . For each pair of
pieces P,Q ∈ P and the edge e satisfying P ↔e Q, we have the gluing equation∑

σ(∗)=P
σ(e)=Q

xσ =
∑

σ(∗)=Q
σ(ē)=P

xσ,

where each sum is taken over all P-stars σ satisfying the conditions.

We next describe the admissibility equations, which force any P-pair that defines
a vector to be admissible.

Definition 3.7. Let ε be an edge of Wh(w). For a piece

P → V ↪→ W

in P, set δε(P ) to be the number of preimages of ε in P . (Note that this is either
0 or 1, by definition.) We now define a linear map nε : VP → R by setting

nε(x) =
∑
σ∈S

xσδε(σ(∗)).

The admissibility equations assert that nε(x) = nε′(x) for all edges ε and ε′ in
Wh(w).

The cone CP ⊆ V +
P is now defined to be the subset of V +

P that satisfies the
gluing equations and the admissibility equations.

Lemma 3.8. An integer vector x ∈ V +
P � 0 is the image of an admissible ∂-

immersion from a locally irreducible pair under π if and only if it is in CP .

Proof. Let (Λ, u) be locally irreducible, and let

(Λ, u) → (Δ, v) � (Γ, w)

be a ∂-immersion. First we show that π(u) satisfies the gluing equations. Indeed,
the expression in the gluing equations is just two different ways of evaluating the
number of edges e of Δ with P (ι(e)) = P and P (τ (e)) = Q. The admissibility
equations are satisfied since each nε evaluates to n(u).

Conversely, given an integer vector x ∈ CP , we need to construct an admissible
∂-immersion

(Λ, u) → (Δ, v) � (Γ, w)

with (Λ, u) locally irreducible. By Remark 2.3, it is enough to describe

Wh(u) → Wh(v) ↪→ Wh(w)

together with their pairings on stars of vertices. For each star σ, Wh(u) →
Wh(v) ↪→ Wh(w) contains xσ copies of the piece σ(∗). This determines the graphs
and maps Wh(u) → Wh(v) ↪→ Wh(w); it remains to determine the pairings. Con-
sider the pieces

P → U ↪→ W1, Q → V ↪→ W2,

and suppose that e is an edge of U and ē is an edge of V . The gluing equations
imply that there is a bijection between the number of P-stars σ so that σ(∗) = P
and σ(e) = Q and the number of P-stars σ so that σ(∗) = Q and σ(ē) = P
which satisfy the condition that the bijection ie : StW1

(e) → StW2
(ē) restricts to a

bijection StU (e) → StV (ē), and thence to bijections of the stars of the preimages
in P and Q. Choosing a bijection between these P-stars then determines the
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required bijection between vertices of the copies of P and Q in these P-stars, and
the bijections between stars are then determined by the relation ↔e.

By construction, (Λ, u) is locally irreducible and

(Λ, u) → (Δ, v) � (Γ, w)

is a ∂-immersion. Finally, the admissibility equations immediately imply that this
∂-immersion is admissible. �

Thus, we have seen that admissible ∂-immersions of locally irreducible pairs
correspond naturally to nonzero integer vectors in CP or, equivalently, to rational
points in the projectivization P(CP). Motivated by Calegari’s work on stable com-
mutator length (see [9] and [8], and also [5]), we will study these rational points via
rational functions on P(CP).

4. The rationality theorem

We start by writing down two natural linear maps on CP . For an admissible
∂-immersion

(Λ, u) → (Δ, v) � (Γ, w),

the corresponding linear maps are (minus) the Euler characteristic of Λ, and the
degree n(u) with which Su covers Sw. The key observation is that both of these
can be computed from the vector π(u).

First, the admissibility equations imply that the linear map nε is independent of
ε. We therefore write n = nε, evidently a linear map which is nonzero on CP � 0.

Second, for a piece

P → V ↪→ W

in P, we let μ(V ) denote the number of connected components of V , and we let
ν(V ) denote the number of vertices of V . We then define χ− : VP → R by

χ−(x) =
∑
σ∈S

xσ

(
1

2
ν(σ(∗))− μ(σ(∗))

)
.

It is well known that the Euler characteristic of a graph can be computed as the
sum over the vertices of one minus half the valence, and from this we see that, for
an admissible ∂-immersion

(Λ, u) → (Δ, v) � (Γ, w)

of a locally irreducible pair (Λ, u), we have χ− ◦ π(u) = −χ(Δ).

Definition 4.1. Since χ−/n is a quotient of two linear maps on CP � 0 and the
denominator is nonzero, it yields a well-defined function on the projectivization
P(CP). We call this function

ρP =
χ−
n

the projective P-rank function on P(CP).

In analogy with stable commutator length (see [8]), we may use the rational
function ρP to define an invariant of a multicycle w in a graph Γ.
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Definition 4.2. The maximal P-rank of a pair (Γ, w) is denoted by ρ+P(w) and is
defined to be

ρ+P(w) := max
[x]∈P(CP)

ρP [x].

Note that this maximum is indeed realized, since P(CP) is compact. Similarly, the
minimal P-rank, ρ−P(w), is defined to the minimum of ρP over the same domain.

Since P(CP) is compact, the maximal and minimal P-ranks are certainly attained
as long as P(CP) is nonempty (i.e., as long as CP is nonzero). In fact, since ρP is a
quotient of linear maps, the maximal and minimal P-ranks are attained on rational
points of P(CP) and, hence, are realized by admissible ∂-immersions.

Theorem 4.3. If CP �= 0, then the maximal and minimal P-ranks are realized
by admissible ∂-immersions of locally irreducible pairs; that is, there exist locally
irreducible pairs (Λ±, u±) and admissible ∂-immersions

(Λ±, u±) → (Δ±, v±) � (Γ, w)

so that ρP ◦ π(u±) = ρ±P(w). In particular, ρ±P(w) are positive rational numbers.

Proof. We prove the result for the maximal P-rank; the proof for the minimal P-
rank is identical. If CP �= 0, then the projectivization P(CP) is nonempty. From
the definition of ρ+P , we may normalize and restrict our attention to the rational
polytope n−1(1), so

ρ+P(w) = max
n(x)=1

χ−(x).

But χ− is linear and so attains its maximum on a vertex x0 of n−1(1). Since x0 is
rational and ρ+P is a projective function, there is some integer vector x1, a multiple

of x0, on which ρ+P attains its maximum. Since x1 ∈ CP is an integer vector, it

is equal to π(u) for some admissible P-pair (Λ, u), which therefore realizes ρ+P , as
required. �

An admissible ∂-immersion

(Λ, u) → (Δ, v) � (Γ, w)

of a locally irreducible pair (Λ, u) for which ρP ◦ π(u) = ρ+P(w) is called maximal.

(Similarly, if ρP ◦ π(u) = ρ−P(w), then the ∂-immersion is called minimal.)

5. Maximal P-rank and surfaces

Our results so far imply that every irreducible pair admits a maximal ∂-immersion.

Lemma 5.1. If (Γ, w) is irreducible, then there exists a maximal, admissible ∂-
immersion

(Λ, u) → (Δ, u) � (Γ, w)

for a locally irreducible pair (Λ, u).

Proof. Since (Γ, w) is irreducible, Lemma 2.11 guarantees a locally irreducible pair
(Γ′, w′) → (Γ, w). The map (Γ′, w′) → (Γ, w) consists of a π1-isomorphism and a
homeomorphism Sw′ → Sw, so it is certainly admissible and essential. In particular,

(Γ′, w′) → (Γ, w)
∼=→ (Γ, w)

is an admissible ∂-immersion of a locally irreducible pair, so π(w′) ∈ CP and
CP �= 0. Theorem 4.3 now implies that a maximal ∂-immersion exists. �
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In this section, we shall use the relative JSJ decomposition together with the
results of [42] to show that maximal ∂-immersions are closely related to surfaces.

Definition 5.2. A group pair is said to be of surface type if it arises as the funda-
mental group of a space pair (Σ, ∂Σ), where Σ is a compact surface with boundary.
It is said to be of weak surface type if it is a free product of pairs of surface type.
A graph pair (Γ, w) is of (weak) surface type if the corresponding group pair is of
(weak) surface type.

A theorem of Culler [15] shows that any pair (Γ, w) of surface type can be
unfolded to a fatgraph (Γ′, w′)—a graph pair in which every Whitehead graph is
a cycle. One may therefore equivalently think of pairs of surface type as given by
fatgraphs. Likewise, a pair of weak surface type can be unfolded to a graph pair in
which every Whitehead graph is a disjoint union of cycles.

Fundamental groups of pairs of surface type can typically be decomposed as
graphs of groups in many ways. In order to discuss this, we introduce some termi-
nology for graph-of-groups decompositions of pairs.

Definition 5.3. Let (G,A) be a group pair. A decomposition of (G,A) is a graph
of groups G with fundamental group G such that, for every a ∈ A, the stabilizer
StabG(a) is conjugate into a vertex group of G.

Let v be a vertex of G, and fix a preimage ṽ of v in the Bass–Serre tree T . Let
Gṽ be the stabilizer of ṽ. Set

Aṽ = {a ∈ A | StabGṽ
(a) �= 1},

and let Bṽ be the set of edges of T incident at ṽ. The induced pair at v is defined
to be (Gṽ,Aṽ � Bṽ), which is defined up to conjugacy in G. The vertex v is called
peripheral if Aṽ is nonempty.

If every edge group of G is cyclic, then G is said to be a cyclic decomposition
of (G,A). As usual, the graph of groups G is called trivial if G is the stabilizer of
some vertex of the Bass–Serre tree.

We will only be concerned with cyclic decompositions of graph pairs (Γ, w), with
F = π1Γ. We will abuse notation and write the corresponding group pair as (F,w).

Pairs of surface type can be contrasted with rigid pairs, which only have trivial
decompositions.

Definition 5.4. An irreducible graph pair (Γ, w) is rigid if every cyclic decompo-
sition of (Γ, w) is trivial and if (Γ, w) is not of surface type. (This last requirement
is to rule out the pair of pants, which is of surface type but admits no cyclic de-
compositions.) A group pair (F,w) is rigid if some (any) corresponding graph pair
is rigid.

The main theorem of this section is phrased in terms of the relative JSJ decom-
position of the group pair (F,w). This is a canonical decomposition of the pair
(F,w), which in a sense encodes all cyclic decompositions. The absolute version
of this decomposition was described in the hyperbolic case by Bowditch [4]; the
relative version in the free case was described by Cashen [13]. See also the work of
Guirardel and Levitt [20], who explain how to construct this JSJ decomposition as
a tree of cylinders.
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Theorem 5.5 (Relative JSJ decomposition). Let (F,w) be an irreducible group
pair. There is a canonical cyclic decomposition G for F with the following properties.

(i) The underlying graph of G has three kinds of vertices—rigid, surface and
cyclic—such that the following hold:
(a) if a vertex v is of rigid type, then the induced pair at v is a rigid group

pair;
(b) if a vertex v is of surface type, then the induced pair at v is of surface

type;
(c) if a vertex v is cyclic, then the vertex group Gv is (infinite) cyclic.

(ii) The underlying graph of G is bipartite, with red vertices cyclic and green
vertices either rigid or surface. In particular, every edge adjoins exactly
one cyclic vertex.

(iii) Every peripheral subgroup 〈wi〉 is conjugate into a unique cyclic vertex
group. (These cyclic vertices are called peripheral.)

The decomposition G guaranteed by the theorem is called the relative JSJ de-
composition of the pair (F,w). For an irreducible graph pair (Γ, w), we will refer
to the disjoint union of the relative JSJ decompositions of the fundamental groups
of the components as the relative JSJ decomposition of the pair (Γ, w).

We are now ready to state the main theorem of this section, which describes the
relative JSJ decompositions of maximal ∂-immersions.

Theorem 5.6. If (Λ, u) is locally irreducible and

(Λ, u) → (Δ, v) � (Γ, w)

is a maximal, admissible ∂-immersion, then for each irreducible free factor (π1Δi, vi)
of the corresponding group pair (π1Δ, v), the relative JSJ decomposition of (π1Δi, vi)
has no rigid vertices. Furthermore, if there is such a maximal ∂-immersion, then
there is a maximal, admissible ∂-immersion so that (Δ, v) is of weak surface type.

The proof is based on ideas from [42]; the main technical result of that paper is
as follows [42, Theorem 8].

Theorem 5.7. If (Γ, w) is a rigid graph pair, then there is a finite-sheeted cover

(Γ̂, ŵ) → (Γ, w) such that, whenever a finite-sheeted cover (Γ′, w′) → (Γ, w) factors

through (Γ̂, ŵ), the pair (Γ, w′ � w′
i) is irreducible for any component w′

i of w
′.

We will also need a relative analogue of Shenitzer’s lemma (see, for instance,
[39, Corollary 1.1]), which we state here in the terminology of this paper.

Lemma 5.8 (Relative Shenitzer’s lemma). Consider a decomposition G of a group
pair (F,w). If the induced pair at every vertex of G is irreducible, then the pair
(F,w) is irreducible.

We now assemble the lemmas that we will need to prove Theorem 5.6. The first
shows how to use a rigid vertex to increase irreducible rank. Its proof is illustrated
in Figure 3.
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Figure 3. The graph of spaces X has one rigid vertex, one surface
vertex, one nonperipheral cyclic vertex, and three peripheral cyclic
vertices. By taking multiple copies of X and deleting complemen-
tary components of the rigid vertices, we construct a new graph of
spaces X ′ with greater projective P-rank.

Lemma 5.9. Let (Γ, w) be an irreducible graph pair. If the relative JSJ decom-
position of (Γ, w) has a rigid vertex, then there is a locally irreducible pair (Γ′, w′)
and an admissible, essential map (Γ′, w′) → (Γ, w) with

χ−(Γ
′)

n(w′)
> χ−(Γ).

Proof. Consider the relative JSJ decomposition G of the pair (Γ, w). By Theorem
5.7 and Marshall Hall’s theorem [22], after replacing (Γ, w) with a finite-sheeted
cover, we may assume that every rigid vertex Gu has the property guaranteed by
Theorem 5.7. Note that, if ν(v) denotes the valence of the vertex v, then every
rigid vertex u has ν(u) > 1.

To construct Γ′, we realize the relative JSJ decomposition of (Γ, w) as a graph
of spaces X. We may take the vertex spaces of X to be graphs and the edge spaces
to be circles, although this is not important for the subsequent argument. We now
construct a new graph of spaces X ′ and an essential map X ′ → X.

Let k =
∏

u(ν(u) − 1), where the product is taken over all rigid vertices of X.
For each nonrigid vertex Xv, we take k copies of the induced pair at v. Consider
a rigid vertex u, with incident edges {ei}. For each edge ei′ incident at u, we take
k/(ν(u)− 1) copies of the pair (Xu, {Xei | i �= i′}). Note that every edge space of
X appears exactly k times in this collection of pairs. We may therefore glue up the
resulting collection of pairs to form a graph of spaces X ′.

By construction, X ′ is naturally equipped with a map X ′ → X, which is π1-
injective by Proposition 1.7. Furthermore, X ′ is naturally equipped with exactly
k copies of component of w; we call this map of circles w0. Let Γ0 be the dis-
joint unions of the cores (in the sense of [38]) of the covers of Γ corresponding to
the components of X0. We may realize w0 as a collection of cycles in Γ0. Then
(Γ0, w0) → (Γ, w) is an admissible, essential map. The pair (Γ0, w0) is irreducible
by Lemma 5.8, and hence by Lemma 2.11, can be unfolded to a locally irreducible
pair (Γ′, w′) → (Γ, w).

Finally, we compute Euler characteristics. We have n(w′) = k, while

χ−(Γ
′)

k
=

∑
u

ν(u)

(ν(u)− 1)
χ−(Xu) +

∑
v

χ−(Xv) > χ−(Γ),

where u ranges over all the rigid vertices of X and v ranges over all the nonrigid
vertices. This completes the proof. �



914 HENRY WILTON

A similar argument shows that there are always maximal pairs of surface type.

Lemma 5.10. Let (Γ, w) be an irreducible graph pair. If the relative JSJ decom-
position of (Γ, w) has no rigid vertices, then there is a locally irreducible group pair
(Γ′, w′) of surface type and an admissible, essential (Γ′, w′) → (Γ, w) with

χ−(Γ
′)

n(w′)
= χ−(Γ).

Proof. Consider the JSJ decomposition G of the pair (Γ, w). By Marshall Hall’s
theorem, we may assume that the attaching maps at cyclic vertices are all isomor-
phisms.

We realize G as a graph of spaces X in the natural way, taking each surface
vertex to be a compact surface and each cyclic vertex to be a circle, and we define
a new graph of spaces X ′ as follows. We take two copies of each surface vertex
Xv. We take ν(w) copies of each nonperipheral cyclic vertex space Xw. We take
two copies of each peripheral cyclic vertex space Xw of X; these will each be a
peripheral vertex of X ′. Finally, we take ν(w)− 1 further copies of each peripheral
vertex space Xw; these will be nonperipheral vertices of X ′. It is now easy to see
that we can assemble these to form X ′ so that every nonperipheral cyclic vertex
group has exactly two incident edges and all the attaching maps are isomorphisms.
As before, the natural map X ′ → X is π1-injective by Proposition 1.7.

Every nonperipheral cyclic vertex w is adjacent to exactly two surface vertices
and is identified with two boundary components of these. We may therefore contract
the two edges adjacent to w to obtain a larger surface vertex.

Thus, the resulting graph of spaces X ′ is homeomorphic to a surface Σ. The
peripheral cyclic vertices equip X ′ with exactly two copies of each component of
w; we call this collection of cyclic subgroups w′. We note that n(w′) = 2 and
that, since only surface vertices contribute to Euler characteristic, χ(Σ) = 2χ(F ).
Therefore, if we replace (Σ, w′) by a locally irreducible graph pair (Γ′, w′) as in the
previous lemma, χ−(Γ

′)/n(w′) = χ−(Γ).
At this stage we have a locally irreducible, admissible pair (Γ′, w′) of surface

type, satisfying the required constraints on the Euler characteristic, so that each
component of w′ is conjugate into some component of ∂Σ (and every component
of ∂Σ contains a component of w′). To make this pair of surface type, we need w′

to be identified bijectively with ∂Σ. To ensure this, we first invoke Marshall Hall’s
theorem again, replacing Γ′ with a finite-sheeted cover and w′ with its pullback,
so that each component of w′ maps isomorphically to the component of ∂Σ that
contains it. For each component ∂iΣ ⊆ ∂Σ, let ni be the number of components
of w′ contained in ∂iΣ. Replacing Σ with two copies of itself, we may assume that
each ni is even. Without loss of generality, we may also assume that n1 is minimal
among the ni. We now take n1 copies of Σ, and equip each boundary component
with exactly one component of w′. We may then add annuli to Σ to pair up the
remaining components of w′. This completes the proof. �

We can now apply these two lemmas to prove that we can always find a maximal
∂-immersion of surface type.

Proof of Theorem 5.6. By Lemma 2.12 (Δ, v) is weakly irreducible, so it can be
unfolded to a pair (without loss of generality, (Λ, u)) which is a wedge of locally
irreducible graph pairs (Λj , uj). That is, there is a finite set Ξ equipped with maps
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ξ± : Ξ →
∐

j V (Λj), so that

Λ =
∐
j

Λj/ ∼,

where ξ+(x) ∼ ξ−(x) for all x ∈ Ξ, and u =
∐

j uj . For each x ∈ Ξ, let us fix
choices of lifts of the maps ξ± to maps η± : Ξ → Su.

Suppose that, for some j (without loss of generality, j = 1), the relative JSJ
decomposition of the group pair (π1Λ1, u1) has a rigid vertex. Lemma 5.9 applied
to (Λ1, u1) yields an essential map from an irreducible pair (Λ′

1, u
′
1) → (Λ1, u1)

that satisfies χ−(Λ
′
1) > dχ−(Λ1), where d is the degree of the covering map Su′

1
→

Su1
. By Lemma 2.11, after unfolding, we may take the pair (Λ′

1, u
′
1) to be locally

irreducible. Let (Λ′
j , u

′
j) consist of d copies of (Λj , uj), for each j �= 1. Let (Λ̂, û) =∐

j(Λ
′
j , u

′
j). Let Ξ′ = Ξ × {1, . . . , d}, and choose a map η′± : Ξ′ → Sû so that, for

each x ∈ Ξ, η′±(x, ·) indexes the d preimages of η±(x) in Sû. Let ξ′± = û ◦ η′±.
The maps ξ′± now define a wedge Λ′ = Λ̂/ ∼, where ξ′+(x

′) ∼ ξ′−(x
′) for all

x′ ∈ Ξ′, which folds (preserving Euler characteristic) to an immersion Δ′ → Δ. Let

u′ be the composition of û with the natural quotient map Λ̂ → Λ′, and let v′ be the
composition of u′ with the quotient map Λ′ → Δ′. We therefore have an admissible
∂-immersion

(Λ′, u′) → (Δ′, v′) � (Δ, v)

such that (Λ′, u′) is locally irreducible with χ(Δ′) = χ(Λ′) and n(v′) = n(u′) =
dn(v).

We now compare Euler characteristics:

χ−(Δ) =
∑
j

χ−(Λj) + |Ξ|,

whereas

χ−(Δ
′) = χ−(Λ

′
1) +

∑
j �=1

χ−(Λ
′
j) + |Ξ′| > dχ−(Λ1) + d

∑
j �=1

χ−(Λ
′
j) + d|Ξ|,

so χ−(Δ
′) > dχ−(Δ). The ∂-immersion

(Λ′, u′) → (Δ′, v′) � (Γ, w)

therefore has greater projective P-rank, contradicting the maximality hypothesis.
The second part of the theorem follows in the same way, using Lemma 5.10

instead of Lemma 5.9. �

Our main technical theorem follows immediately.

Theorem 5.11. Let (Γ, w) be an irreducible graph pair. There exists a compact
surface with boundary Σ and an admissible, essential map (Σ, ∂Σ) → (Γ, w).

Proof. By Lemma 5.1 a maximal, admissible ∂-immersion

(Λ, u) → (Δ, v) � (Γ, w)

exists. By Theorem 5.6 there is such a maximal, admissible ∂-immersion so that
(Δ, v) is of weak surface type. After passing to the disjoint union of the free factors,
we obtain a maximal, admissible ∂-immersion so that (Δ, v) is of surface type. �
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6. Surface subgroups and hierarchies

In this section we deduce the claimed consequences of Theorem 5.11. We start
with graphs of virtually free groups with virtually cyclic edge groups. The deduction
of the existence of surface subgroups from a result like Theorem 5.11 is well known
(cf. [7] or [42], for instance); we include an argument here for completeness.

Theorem 6.1. Let Γ be the fundamental group of a graph of virtually free groups
with virtually cyclic edge groups. If Γ is hyperbolic and one-ended, then Γ contains
a quasi-convex surface subgroup.

Proof. By [43] Γ is residually finite and so virtually torsion-free. We may therefore
assume that Γ is the fundamental group of a graph of free groups with cyclic edge
groups. We call the vertices v of the underlying graph of Γ noncyclic, and we
subdivide each edge, putting a cyclic vertex in the middle with vertex group Z.

Consider the induced pair (Fv, wv) for a noncyclic vertex v. Since Γ is one
ended, (Fv, wv) is irreducible. By Theorem 5.11 we can replace each (Fv, wv) by
an admissible, essential map of a surface pair (π1Σv, ∂Σv). By gluing these to the
adjacent cyclic vertices, we define a new graph of free groups with cyclic edge groups
H, with every noncyclic vertex of surface type. Note that χ(Σv) ≤ 0 for all v.

The fundamental group H of H is equipped with a natural map f : H → Γ, and
by Proposition 1.7 f is injective. In particular, H contains no Baumslag–Solitar
subgroups, since Γ is hyperbolic.

The graph of groups H is a graph of surfaces glued along their boundary compo-
nents to circles, which we realize in the natural way as a graph of spaces X. Note
that χ(X) =

∑
v χ(Σv) ≤ 0. By [43], after replacing H by a subgroup of finite

index, we may assume that the attaching maps are all homeomorphisms. It is then
easy to see that X can be thickened to a 3-manifold M with boundary. Since closed
3-manifolds have zero Euler characterisitic,

χ(∂M) = 2χ(M) = 2χ(X) ≤ 0,

and so we may choose a component Σ of ∂M with χ(Σ) ≤ 0. Inclusion induces
a natural map π1Σ → H. But H is one ended by Shenitzer’s lemma, and Dehn’s
lemma then implies that the map π1Σ → H (and hence the composition π1Σ → Γ)
is injective.

Finally, Γ is locally quasi-convex [3, Theorem D] and, hence, the surface subgroup
π1Σ is quasi-convex. This completes the proof. �

A group Γ is called rigid if it does not split over a (possibly finite) virtually
cyclic subgroup. Given a group Γ, a virtually cyclic hierarchy for Γ is a set of
subgroups of Γ obtained by passing to the vertex groups of a splitting of Γ over
virtually cyclic edge groups and then repeating this operation on those subgroups
recursively. If a finite virtually cyclic hierarchy exists, terminating in (possibly
finite) rigid subgroups, then we shall say that Γ has a finite hierarchy. Graphs
of virtually free groups with virtually cyclic edge groups play a special role in the
subgroup theory of groups that have finite hierarchies.

Remark 6.2. Let G be a one-ended group with a finite hierarchy, and let H be a
one-ended subgroup in the hierarchy of G with no one-ended subgroups below it.
Then either H is rigid or H is a graph of virtually free groups over virtually cyclic
edge groups.
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In [36] Sela showed that limit groups have a finite hierarchy. He also showed
that a limit group without a Z2 subgroup is hyperbolic and that nonabelian limit
groups are never rigid. We thus obtain

Corollary 6.3. Every one-ended limit group contains a surface subgroup.

Louder and Touikan showed that a hyperbolic group without 2-torsion has a
finite hierarchy [29]. (The restriction on 2-torsion is technical and, conjecturally,
can be removed.) We thus obtain the following contribution toward the complete
resolution of Gromov’s question.

Corollary 6.4. Every one-ended hyperbolic group without 2-torsion either contains
a surface subgroup or contains a quasi-convex, infinite, rigid subgroup.

In particular, Gromov’s question is reduced to the rigid case (modulo the tech-
nical issue of 2-torsion).

7. Applications to profinite rigidity

In this section we discuss applications to Question 0.2 and related problems. As
explained in [6, Theorem 4.17], Corollary 6.3 resolves the question for limit groups.

We include the proof for completeness. The key point is that it follows that the
profinite completions of nonfree limit groups have nonzero virtual second cohomol-
ogy. We work with continuous cohomology, with coefficients in Z/2.

Theorem 7.1. If L is a limit group and not free, then there is a subgroup L0 of

finite index in L such that H2(L̂0;Z/2) �= 0.

Proof. By Corollary 6.3 L contains a subgroup S isomorphic to the fundamental
group of a closed surface of nonpositive Euler characteristic; in particular, H2(S) �=
0 (with coefficients in Z/2). Since surface groups are good in the sense of Serre [19],

it follows that the continuous cohomology H2(Ŝ) is also nonzero. By [41] S is
a virtual retract of L, so there is a finite-index subgroup L0 containing S and a
retraction r : L0 → S. Let i : S → L0 be the inclusion map, so r ◦ i = idS . Both

r and i extend by continuity to maps r̂ : L̂0 → Ŝ and î : Ŝ → L̂0, and r̂ ◦ î = id
̂S .

Therefore the induced maps on cohomology satisfy î∗ ◦ r̂∗ = idH∗(̂S). In particular,

since H2(Ŝ) is nonzero, H2(L̂0) is also nonzero, as claimed. �

Since every open subgroup of a profinite free group is profinite free and, hence,
has zero second cohomology, Corollary D follows immediately. Corollary E also
follows quickly from Theorem 7.1.

Proof of Corollary E. To prove the contrapositive, we assume that w is not prim-
itive in F . Recall that the double D(w) is the fundamental group of the graph of
groups with two vertices labeled by F , and it has one edge between them for each
component of w. The double D(w) is a limit group and hence, by Theorem 7.1,

has a subgroup D0 of finite index with H2(D̂0;Z/2) �= 0. If w were primitive in F̂ ,

then D̂(w) would be free profinite, hence so would D̂0, and therefore H2(D̂0;Z/2)
would be zero, a contradiction. �
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1977. Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass; Astérisque,
No. 46. MR0476875

[38] John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3, 551–565, DOI
10.1007/BF02095993. MR695906

[39] Nicholas Touikan, On the one-endedness of graphs of groups, Pacific J. Math. 278 (2015),
no. 2, 463–478. MR3407182

[40] J. H. C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. (2) 37
(1936), no. 4, 782–800, DOI 10.2307/1968618. MR1503309

[41] Henry Wilton, Hall’s theorem for limit groups, Geom. Funct. Anal. 18 (2008), no. 1, 271–303,
DOI 10.1007/s00039-008-0657-8. MR2399104

[42] Henry Wilton, One-ended subgroups of graphs of free groups with cyclic edge groups, Geom.
Topol. 16 (2012), no. 2, 665–683, DOI 10.2140/gt.2012.16.665. MR2928980

[43] Daniel T. Wise, Subgroup separability of graphs of free groups with cyclic edge groups, Q. J.
Math. 51 (2000), no. 1, 107–129, DOI 10.1093/qmathj/50.1.107. MR1760573

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3

0WB, United Kingdom

Email address: h.wilton@maths.cam.ac.uk

http://www.ams.org/mathscinet-getitem?mr=3361773
http://www.ams.org/mathscinet-getitem?mr=0028836
http://www.ams.org/mathscinet-getitem?mr=2912704
http://www.ams.org/mathscinet-getitem?mr=3374956
http://www.ams.org/mathscinet-getitem?mr=1662319
http://www.ams.org/mathscinet-getitem?mr=3286893
http://www.ams.org/mathscinet-getitem?mr=2925298
http://www.ams.org/mathscinet-getitem?mr=3417184
http://www.ams.org/mathscinet-getitem?mr=3650082
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=3061779
http://www.ams.org/mathscinet-getitem?mr=584569
http://www.ams.org/mathscinet-getitem?mr=3264763
http://www.ams.org/mathscinet-getitem?mr=1043446
http://www.ams.org/mathscinet-getitem?mr=564422
http://www.ams.org/mathscinet-getitem?mr=1863735
http://www.ams.org/mathscinet-getitem?mr=0476875
http://www.ams.org/mathscinet-getitem?mr=695906
http://www.ams.org/mathscinet-getitem?mr=3407182
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=2399104
http://www.ams.org/mathscinet-getitem?mr=2928980
http://www.ams.org/mathscinet-getitem?mr=1760573

	1. Pairs
	1.1. Group pairs
	1.2. Space pairs
	1.3. Graph pairs

	2. Whitehead graphs and folds
	3. Admissible ∂-immersions
	4. The rationality theorem
	5. Maximal 𝒫-rank and surfaces
	6. Surface subgroups and hierarchies
	7. Applications to profinite rigidity
	Acknowledgments
	References

