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Galileo Galilei (1564–1642) is a pivotal figure in the

development of Western science. Albert Einstein

called him “the father of modern physics—indeed,

of modern science altogether” [5]. More recently,

Stephen Hawking wrote: “Galileo, perhaps more

than any other single person, was responsible for

the birth of modern science” [13].

Galileo’s trial and condemnation by the Inquisi-

tion in 1633 have become an international symbol

of authority triumphing over knowledge. Since the

issue was the structure of the solar system, the

scandal has put in relief Galileo’s contributions

to astronomy and cast into relative shadow the

fundamental changes that he wrought in our in-

tellectual approach to the natural sciences. These

are surely what Einstein and Hawking refer to, and

these are the subject of Galileo’s Muse.

Galileo’s stature as the father of modern science

derives from his insistence on experiment as

the way to verify hypotheses about nature and

his recognition of mathematics as the medium

in which hypotheses and experiments could be

compared. As he says [7, Vol. 8, 212]:

[reference to an experiment] is habitual

and appropriate in those sciences which

apply mathematical demonstrations to

statements about nature, as we see with
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perspectivists, astronomers, mechanicians,

musicians and others; they confirm their

principles with experiments that may be

perceived by the senses; these principles

are the foundation for the whole ensuing

structure.” 1

We now know that advances in the sciences grow

not only out of previous scientific work but also

from the culture in which scientists live. Seeking

out those roots in culture is especially interesting

when the advances in question seem to break with

scientific tradition. Gerald Holton, for example, set

out “to explore how the cultural milieu Einstein

found himself in resonated with and conditioned

his science” [14]. He found a possible source of

Einstein’s striving for uniform explanations of

disparate phenomena in the influence of Goethe,

a poet who had “an especially strong grip on the

German imagination” of the day and who argued

for “the primacy of unity in scientific thinking.”

Mark Peterson has carried out a similar program

for Galileo. Rather than looking to literature, he

maintains “that Galileo drew upon mathematical

traditions in the arts in his scientific work.” (There

is a powerful hint in the Galilean quotation above,

which sets music and perspective on a par with

astronomy and mechanics as experimental and

mathematically deductive sciences.)

This review is organized to give an account of

the main lines of Peterson’s argument, focusing

more closely and more critically on the points most

relevant to the development of mathematics. Full

disclosure: I am a mathematician, which gives me

a professional concern with scientific detail that

may be out of place in judging a book written for a

very wide audience, and I am also part Florentine,

1Translations from Italian are mine, except as noted. In this

instance “experiments that may be perceived by the senses”

for sensate esperienze differs from the “well-chosen exper-

iments” that Peterson uses, following [8]. This conforms to

the usage of the time [6].
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which gives me a personal interest in anything

that concerns one of that city’s most illustrious

sons. I am not a historian of science. Some of the

book’s content, most notably the section on the

Oratio, is possibly controversial in that context;

I am not in a position to evaluate this material

except to assess plausibility or nonplausibility for

nonspecialists.

Peterson’s strategy in Galileo’s Muse is to sketch

a selective panorama of the intellectual atmo-

sphere in which Galileo developed, the late six-

teenth century in Florence. Into this sketch is

interpolated material about Galileo’s life and sci-

entific work, organized so as to highlight the effect

of the artistic/literary milieu on the development

of Galileo’s scientific ideas.

Galileo’s Muse begins with a section on Galileo

as a humanist and on the classical legacy, those

scientific works from (mainly Greek) antiquity

that were available to Galileo and to his fellow

scholars. Peterson reminds us that Galileo was the

son of a musician and music theorist and that

his early training was in the humanities. Galileo

wrote elegant Latin, played the lute as well as

any professional, developed an artistic taste so

exquisite that the best painters of the period came

to him for advice; his scientific career began only

when he came upon Euclid, at about age twenty.

Peterson might have added that Galileo was a

connoisseur of literature and is still considered to

be one of the best writers of Italian prose, if not

the best of all.

There follow four two-chapter sections on the

arts: Poetry, Painting, Music, Architecture. The

book ends with three additional chapters and an

epilogue. Two of those chapters cover the mathe-

matics and science of the period and summarize

how Galileo’s humanist formation helped him

transform them. The last concerns a document,

the Oration in Praise of Mathematics, by Galileo’s

student Niccolò Aggiunti, which seems to reflect

Galileo’s thought and may even contain his own

words. The epilogue is a brief examination of the

Copernican controversy as seen in the context of

Galileo’s entire scientific life.

Peterson’s “Poetry” section is mostly a search

for mathematical elements in Dante’s Paradiso.

This is of interest in itself but does not seem to

have any direct bearing on the subject of the book.

I’ll only say that I find his interpretation of the

transcendental end of the poem in terms of the ir-

rationality/unconstructability of π intriguing but

too far-fetched to be useful.

The Visual Arts: Perspective, Error and

Chiaroscuro

The great changes in art that occurred during

the Renaissance included a new, quantitative

approach to the visual world. As Peterson tells

us, Filippo Brunelleschi was not satisfied with

reading about classical proportions in Vitru-

vius: he went to Rome in 1405 and measured

the remaining monuments. Leon Battista Alberti’s

Della Pittura (1435) gave a detailed explanation

of how to draw a pavement correctly in perspec-

tive. It involved measuring the distance from the

“eye” to the picture-plane and using that dis-

tance in a plane-geometric construction. Galileo

trained as an artist and knew the perspective

construction. In fact, the distinguished painter

Cigoli (Lodovico Cardi, 1559–1613), a close life-

long friend, maintained that Galileo had taught

him all the perspective he knew.

So art had become to some extent imbued with

mathematics: mostly geometry, but with some

actual measurement. Peterson suggests we look

at it the other way: Renaissance art contributed

to pulling geometry out of its abstract, platonic

existence and into close contact with the real world

of working artists; Galileo was part of this process.

At the same time, as Peterson points out, artists

like Piero della Francesca were explicitly aware of

the accommodation necessary when applying a

perfect theory to an imperfect medium; Peterson

reasons that this sensibility was incorporated by

Galileo into his understanding of the unavoidable

error in any measurement (see below).

Peterson also remarks that Galileo’s proficiency

as an artist would have entailed a knowledge of

chiaroscuro, the technique of using shading to

convey relief. The training would have helped

him correctly interpret the patterns of light and

dark he observed on the surface of the moon as

indications that the moon, far from being smooth,

had mountain ranges and deep valleys. This line

of thought appears, considerably elaborated, in a

1984 article by Samuel Edgerton [4], who writes,

“I shall argue that we have here a clear case of

cause and effect between the practice of Italian

Renaissance Art and the development of modern

experimental science.”

Music: Tension on Strings

Galileo was closely tied to the contemporary com-

munity of artists, but his links to the world of

music and music theory were even tighter. His

father, Vincenzo Galilei (c. 1520–1591) was a

renowned performer on the lute and a prominent

music theorist; Marin Mersenne defers to him [18]

in his 1625 La Vérité des Sciences. Most of Vin-

cenzo’s theoretical publications were devoted to

the vexing and age-old problem of tuning.

The diatonic scale (our do-re-mi-fa-sol-la-ti-do

or one of its cyclic permutations) was known to

the Babylonians [16]; our names for the tones are

more recent. The diatonic scale has five whole
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steps, do-re-mi and fa-sol-la-ti, along with two half

steps, mi-fa, ti-do. Babylonians also had identified

the most consonant musical intervals: the octave

(eighth), the fifth, and the fourth, named for their

span (8, 5, or 4 notes in the diatonic scale, starting

from do). The Pythagorean discovery that these

three intervals correspond to notes sounded by

strings (of equal composition and tension) with

length ratios 2:1, 3:2, and 4:3 brought music

and mathematics together. But the alliance was

always uneasy. Mathematicians wanted to make

every interval correspond to a ratio of whole

numbers. For example, the difference between the

fourth and the fifth, i.e., the interval fa-sol, had to

correspond to the ratio 9:8 (since 9
8
·

4
3
=

3
2
). Since

9
8

is not a perfect square, there was no rational

way to make mi-fa half of fa-sol. And if some

ratio of magnitudes could be found for mi-fa,

there was still a problem, since (
9
8
)6 ≠ 2. Many,

many solutions were tried; all had to fall short

somewhere. Artistic and technological progress in

Europe (polyphony, placement of frets on lutes,

tuning of harpsichords) meant that the theoretical

tuning problems of antiquity had serious practical

consequences. Peterson surveys this situation in

some detail.

Vincenzo Galilei was an enthusiastic partici-

pant in the theoretical musical ferment of the

day, but with a difference. In his writings on

tuning, he constantly refers to esperienza, which

sometimes means “experience” and sometimes

definitely means “experiment”. For example, in

his 1589 Discorso … [10, p. 128] he writes, con-

cerning the acoustical properties of metal strings

versus gut: “Everyone can verify this as he pleases

by experiment.”

Vincenzo’s experiments went beyond tinker-

ing with instruments into a full-scale test of a

physical law. Here the scientific innovation was

profound enough (it made Vincenzo perhaps the

first experimentalist in the history of European

science [2]) that people have wanted to see Galileo

involved in the process. One must keep in mind

that Vincenzo and Galileo never mentioned each

other in their published writings and that in Vi-

viani’s and Niccolò Gherardini’s biographies [7,

Vol. 19], which present themselves as based on

conversations with Galileo, there is no mention

of musical experiments at all; we only know that

Galileo was living at home in the years directly

before Vincenzo published the Discorso and that

Galileo inherited Vincenzo’s papers. Whether or

not father and son performed these experiments

together, as Peterson suggests, the story is worth

repeating.

It had been thought throughout the Middle Ages

that to raise the note produced by a plucked string

to a note one octave higher, one could shorten

the length by one-half or double the tension. The

tension part was (probably incorrectly) attributed

to Pythagoras by authorities of the late Roman Em-

pire: Boethius, Macrobius, and Nichomachus, who

wrote [17, p. 84]: “The weight on one string was

twelve pounds, while on the other was six pounds.

Being therefore in double ratio, it produced the

octave, the ratio being evidenced by the weights

themselves.” Vincenzo challenged this statement

in the Discorso [10, p. 104]: “Experiment…shows

us that he who from two strings of equal length,

thickness and quality would want to hear the

Diapason [the octave], would need to hang from

them weights that were not in the double…but

in the quadruple proportion. The fifth will be

heard whenever from the same strings one hangs

weights in proportion 9:4 (dupla sesquiquarta),

the fourth from those which would be [in pro-

portion] 9:16 and the whole tone 9:8 from the

[proportion] 64:81.” On the next page, criticizing

another traditional belief, he wrote: “This doctrine

was published as the truth by Pythagoras, a man

of very great authority; it was so well believed that

even today it is accepted by some, who seek no

further, satisfied just by Pythagoras having said

it.”

Vincenzo reported an additional experiment

in one of the three essays, unpublished until

recently [11], written after the Discorso and thus

in the period 1588–1591. He reported that “the

same thing [hearing the octave] will happen if

equal weights are suspended from strings the

thicknesses of which are in quadruple proportion,

provided the length and goodness are the same.”

Galileo’s Two New Sciences was published some

forty years after the experiments his father de-

scribed. The late music historian Claude Palisca,

after speculating on whether Vincenzo influenced

Galileo or vice-versa, wrote, “While the possi-

bility of such an influence is only conjectural,

it is a striking fact that Galileo, in the section

on consonances in the Dialogues Concerning Two

New Sciences, repeats in the conversation between

the two interlocutors, Sagredo and Salviati, the

thought process that is documented in the dis-

courses of Vincenzo Galilei” [18]. Galileo has

Sagredo run through the relations between pitch

and length, tension or thickness and justify them

by reference to “true (verissime) experiments”, but

with no reference to where, by whom, or exactly

how those experiments were carried out. In partic-

ular, Sagredo asserts that substituting a string of

one fourth the thickness will give a note one octave

higher. (Note that “thickness” must be interpreted

as cross-sectional area for this to be correct).

Salviati later suggests an improvement: the higher

string should have one fourth the weight; this

refinement obviates the thickness/cross-section
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Figure 1. Galileo’s illustration of three

“magnitudes of the same type”.

ambiguity and allows the rule to be applied to

strings of different material. Galileo also goes

beyond his father’s experiments in relating pitch

to frequency and in explaining the perception of

consonance in terms of coherent vibrations of the

eardrum.

From the evidence, to say that Galileo drew

upon mathematical traditions in music theory

would be a substantial understatement. He grew

up exposed to reliance on physical experiment

and also to the willingness to challenge traditional

authority. This was in the domain of music theory,

but the principles have wide application. Galileo

spoke of his father’s experiments as if they were

his own and integrated them into his thought about

periodic motion in general. On the other hand, the

importance of the legacy of his father’s scientific

attitude towards tradition cannot be precisely

gauged but should not be underestimated.

The Legacy of Antiquity

There is a substantial difference between the

mathematics of 1500 and that of 1650. While

algebra maintained a steady course through those

times, the mathematics of magnitude changed

radically. From a strictly mathematical viewpoint,

the account of Galileo’s participation in this change

is the central part of Galileo’s Muse, because it is

part of the process by which we came to grips

with real numbers.

The problem of how to extend arithmetic to

quantities which might not be rational had already

preoccupied the Greeks. Euclid’s Book V, Defini-

tion 5, traditionally attributed to Eudoxus, states

what it means for two ratios of magnitudes to be

equal:

Magnitudes are said to be in the same

ratio, the first to the second and the third

to the fourth, when, if any equimultiples

whatever be taken of the first and third, and

any equimultiples whatever of the second

and fourth, the former equimultiples alike

exceed, are alike equal to, or alike fall short

of, the latter equimultiples respectively

taken in corresponding order.

In modern symbols, the definition of α : β = γ :

δ becomes

∀m,n ∈ N mα
>
=

<
nβ⇔mγ

>
=

<
nδ.

Anachronistic replacement of β and δ by the unit

gives

∀
n

m
∈ Q+ α

>
=

<
n

m
⇔ γ

>
=

<
n

m
,

suggestive of the modern definition of reals in

terms of rationals via Dedekind cuts.

This definition did not have a smooth journey

through the following centuries. As Peterson tells

us [20, p. 43], it was badly garbled in the early

translations into Arabic, and the ensuing nonsense

assumed mystical significance during the Middle

Ages. A correct rendition did not appear until

around 1500 in Bartolomeo Zamberti’s translation

from the Greek, in time to be available to Galileo.

Galileo considered it important enough to merit a

long gloss in the projected Day Five of Two New

Sciences, where he explains the composition of

proportions using this example (Figure 1):

Imagine two magnitudes A, B of the same

type; the magnitude A will have a certain

proportion to B; and now imagine another

magnitude C placed amongst them, also

of the same type: whatever proportion the

magnitude A has to B is said to be composed

of the two intermediate proportions, i.e., of

that one which A has to C and of that one

which C has to B” [7, Vol. 8, p. 360].

Galileo’s choice of figures forces his readers to

think of magnitudes, and their ratios, as having

their own existence beyond the arithmetic of the

counting numbers.

When he comes to physical laws, Galileo states

them in terms of equality of ratios of magnitudes.

The late Galileo scholar Stillman Drake considered

this a drawback: “The price Galileo paid for rigor

in the avoidance of algebra and the use of Eudox-

ian proportion theory was that his mathematical

physics was restricted to comparisons of ratios”

[9, Introduction, p. xxiii]. I believe this is a mis-

understanding. Galileo measured time intervals

using a water clock. There was no useful unit of

time available to him, but working with a constant

flow allowed him to correctly reckon the relative
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lengths of time intervals, exactly what he needed

for a concise formulation of his law of falling

bodies. The advantage of equations and functions

in the development of calculus and in the full

elaboration of laws of motion lay in the future.

The relations between ratios that Galileo pub-

lished were based on ratios of measurements he

had carried out. Folio 117v2 in the collection of

his manuscript notes in the Biblioteca Nazionale

Centrale in Florence—first published in 1973 by

Stillman Drake (see [3]; he dates it to 1608)—gives

a nice example. In this experiment the inputs were

the heights (300, 600, 800, 828, 1000 punti ; a

punto is slightly less than a millimeter) at which a

ball was released to roll down a track. At the end of

the track the ball was deflected to the horizontal

and allowed to fall to the floor, 828 punti below.

The outputs were the horizontal distances (800,

1172, 1238, 1340, 1500 punti) the ball had trav-

eled after leaving the track and before hitting the

ground. Galileo’s theory of uniform acceleration

due to gravity predicted that if H1,H2 were two

release heights, D1,D2 the corresponding hori-

zontal traces, then the ratio D1 : D2 should be

the same as the ratio
√

H1 :
√

H2. He used the

first output measurement (800) to predict what

the other four should be; he recorded in his notes

the predicted values, the measurements, and the

differences: 41, 22, 11, 40. Galileo famously wrote

in Il Saggiatore that the book of nature is “written

in mathematical language, and the characters are

triangles, circles and other geometric figures…”

[7, Vol. 6, p. 232]. What he did not write (the words

did not then exist), and what this experiment

beautifully exemplifies, was that the link between

the geometric figures of theory and the book of

nature as manifested in the laboratory was the

exacting measurement of magnitudes in terms of

real numbers.

There are in fact very few numbers in Two

New Sciences, and those are all integers. Most of

them are in Day Four, which contains three tables

giving properties of trajectories with initial angles

ranging from 1 to 89 degrees. Two of them give the

height and the width of a semiparabola, assuming

a constant initial velocity that is chosen so that

initial angle 45◦ gives range 10000 (the units

are not mentioned). The third gives the energy

required to achieve the range 10000, assuming

that initial angle 45◦ will require the kinetic energy

of a fall from 5000 of the same units. Although the

entries in the table are whole numbers, their large

size guarantees several significant digits most of

2The page is reproduced in [3]. An interactive image

is now available through the Biblioteca Nazionale

Centrale via the Museo Galileo in Florence and the

Max Plank Institute for the History of Science in Berlin,

http://www.imss.fi.it/ms72/INDEX.HTM.

the time. In the first table, for example, the values

go from 349 (for 1◦ and 89◦) and 698 (for 2◦ and

88◦) to 10000, with all the other angles giving

four digits. This practice is congruent with the

format of the mathematical tables of the time. In

the table of tangents that Galileo used for the first

table, the tangent of 45◦ was recorded as 10000,

as he tells us. James Napier’s use of the decimal

point in his 1614 table of logarithms is said to

have contributed to its rapid diffusion throughout

Europe [15], but he used it sparingly: he records

the sine of 90◦ as 1000000.0.

There is one work of Galileo’s that he may

have planned to publish but never did and that

shows him at work with what are essentially finite

decimals. Along with his 1596 La Bilancetta, he

prepared two tables listing samples of various

substances with their weights in air and in water.

These tables were not published during his lifetime

but are appended to La Bilancetta in Volume 1

of [7]. Let’s call the two weights w1 (in air) and

w2 (in water); the weights are recorded in grani

(1 grano = 0.049g [1]) as integers plus a fraction,

with denominators mostly low powers of 2. To be

comparable, the pairs of weights are all normalized

to have weight in air equal to 576, the weight of

Galileo’s Gold sample. Normalized relative weights

576 × w2/w1 are computed for seventeen of the

samples. Of those, thirteen have denominator 100,

two have denominator 60, one has denominator

2, and one is whole. For me, the predominance of

denominator 100 strongly suggests that Galileo

was carrying long division past the units and

recording the next two digits with rounding. For

example, one sample of copper has w1 = 179
9
16

and w2 = 159. Division yields 576 × w2/w1 =

510.039 . . . ; Galileo records 510 4
100
.3

These three examples show Galileo at work

with numbers. In the first the punto, his unit of

length, is small enough with respect to the scale

of his experiment for three or four significant

figures to be achieved by whole numbers of punti.

In the second his use of a trigonometric table with

tan 45◦ = 10000 similarly allows four significant

figures from whole numbers. In the third we

see decimal fractions with denominator 100 and

again four or five significant figures. Why did

Galileo, writing in 1638, never use the decimal

point? It had been over twenty years since Simon

Stevin’s logarithmic tables; Galileo’s friend Clavius

3Galileo records 510
15
100 and 510

75
100 for two other mea-

surements from this sample and another. Peterson asserts

that “Galileo only scaled the first sample in each pair [of

samples]. Not scaling the second one, as if to avoid the em-

barrassment of seeing how different it was, is a bit odd, but

psychologically not hard to understand.” In this one case,

his account is incorrect.
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had published a table with decimal points as far

back as 1593 [12]. The answer may well be that

he did not need it. One can speculate that he

was leery of a notation that implied a possible

infinity of digits trailing off to the right, but

as far as I know there is no evidence one way

or the other. Galileo’s published works stay on

traditional, solid ground with whole numbers and

proportions of magnitudes, while his notebooks

and his table of densities show the essential role

that measurements, reported in numbers, played

in his scientific work.

This is a different view of Galileo’s mathematical

position from that proposed in Galileo’s Muse.

Peterson emphasizes Galileo’s use of proportions

in lieu of numbers. “The notion of proportion,

central in all the arts, took on a new significance in

Galileo’s work” [20, (p. 289)]. This statement has

an additional problem: “proportion” in the arts

means linear proportion; the proportions that

Vincenzo and Galileo used, of one number with

the square root or the
3
2 power of another, do not

make artistic sense. It is true that “is proportional

to” is an essential connector in physics, but such

proportionalities as ẍ ∼ − sin(x), the equation for

the pendulum, are not those that artists consider;

adding a friction term to produce mẍ + kẋ +

a sin(x) = 0 generalizes proportions to linear

combinations, which are still only special cases

of equations of motion. So calling physics “the

science of proportionalities in nature”, as Peterson

does (p. 291), is not completely appropriate.

The Architecture of Dante’s Inferno: Scaling

Problems

One of Galileo’s most penetrating observations

concerns scaling. This is in fact the first of the

“Two New Sciences”. As Peterson presents it,

Galileo argues that the weight of a beam scales as

its volume, but its strength as its cross-section, and

concludes that any beam, scaled up geometrically,

will eventually collapse under its own weight.4 He

extends the lesson to biology: “Nature could not

make a horse as large as twenty, or a giant ten

times as tall as a man, except either by miracle

or by substantially changing the proportions of

the limbs, and in particular of the bones, making

them much, much thicker than ordinary ones”

[7, Vol. 8, pp. 52–53]. Peterson relates this insight

to Galileo’s work on the architecture of Hell, as

organized and depicted by Dante in the Inferno

section of the Divine Comedy.

4More specifically, Galileo argues with moments, and con-

cludes that the strength is proportional to the diameter

cubed and inversely proportional to the length. This is what

is taught today, except that for rectangular beams, instead

of diameter cubed we have width times the square of the

height.

Here are the relevant facts that are known

today.

• Galileo gave two lectures in 1588 to the

Florentine Academy, where he defended

the model of Dante’s Hell due to Antonio

Manetti (1423–1497). Manetti had given

a mathematically precise description of

its location, extent, and structure. The

overall shape was a cone with vertex at the

center of the Earth, axis passing through

Jerusalem and radius one twelfth of the

earth’s circumference, some 2,000 of our

miles. The cone was essentially hollow

(the Circles of Hell were terraces around

the interior), with a roof some 500 miles

thick. The lectures were very well received.

In one of the lectures he argued from a

scale model that the roof of Hell would be

perfectly stable.

• In 1589 Galileo began a professorship at

Pisa (controlled by Florence since 1509).

He was appointed by Grand Duke Ferdi-

nand I after being highly recommended by

Guidobaldo dal Monte, a marquis and a

well-respected mathematician.

• In 1592 Galileo was named professor of

mathematics in Padua in the Venetian

Republic. “In his first years there he…con-

sulted for the Venetian Arsenal concerning

the placement of oars on large ships” [20,

p. 229].

• In 1594 Luigi Alamanni tried without suc-

cess to have Galileo send him a copy of

the Inferno lectures.

• In 1609 Galileo wrote to Antonio de’

Medici: “And just lately I have succeeded

in finding all the conclusions, with their

proofs, pertaining to forces and resis-

tances of pieces of wood of various lengths,

sizes, and shapes, and by how much they

would be weaker in the middle than at the

ends, and how much more weight they can

sustain if the weight were distributed over

the whole rather than concentrated at one

place, and what shape wood should have

in order to be equally strong everywhere:

which science is very necessary in making

machines and all kinds of buildings, and

which has never been treated before by

anyone.” (Translation from [19]; this item

is not mentioned in Galileo’s Muse.)

• Galileo’s first biographer, Vincenzo Vi-

viani, who lived “in Galileo’s house during

his last years, collecting Galileo’s stories”

[20, (p. 230)] does not mention the Inferno

lectures.
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• In 1638 Galileo published Two New Sci-

ences, where the scaling of the strength

with respect to linear dimensions is dis-

cussed in detail. He introduces the topic

at the start of Day 1: his interlocutors are,

or just were, at the Venice Arsenal and

ponder what they had heard from one of

the workmen in charge (“that good old

fellow”): a large military galley under con-

struction was in need of extra support to

prevent “its breaking its back under the

huge weight of its own vast bulk, a trouble

to which smaller craft are not subject” [7,

Vol. 8, pp. 49–50].

• When Galileo’s stand-in, Salviati, explains

that “there is a limit [in size] beyond

which neither nature nor art can exceed:

exceed, I say, while always keeping the

same proportions and the same material,”

his interlocutor Sagredo reacts emotion-

ally: “I feel my brain turning over and, like

a cloud suddenly opened by lightning, my

mind being flooded by a momentary and

unusual light.” [7, Vol. 8, pp. 49–50].

Peterson interprets the circumstantial evidence

here quite reasonably. Galileo’s defense of Manetti

had been terribly flawed: the posited roof of Hell

would have collapsed instantly under its own

weight; he would have realized the error after

moving to Padua, perhaps literally at the Vene-

tian Arsenal. Since the Inferno lectures came

just before he assumed his professorship at Pisa,

knowledge of the error would have been extremely

embarrassing to him and to his sponsors. That

prospect would have concentrated his mind to

work out the theory correctly; at the same time he

would have done his best to avoid any further at-

tention being paid to the lectures. One incongruity

is Peterson’s suggestion that the analysis may have

been done “very soon after the Inferno Lectures;”

this contrasts with the “recently” in Galileo’s 1609

letter to Antonio de’ Medici. It is also unfortunate

that no reference is given for Peterson’s assertion

about Galileo’s consulting for the Arsenal during

his first years in the Venetian Republic. But this

does not detract from the main point: it is very

plausible that the detailed study of the architec-

ture of Hell led Galileo to his trail-blazing study

of strength of materials and of scaling laws.

The Oration in Praise of Mathematics

The Oration was written in Latin under the name

of Niccolò Aggiunti and published in 1627. Pe-

terson advances and defends the hypothesis that

this work not only reflects the thoughts of Galileo

(Aggiunti, twenty-seven years old at that time,

had been “a devoted follower of Galileo for four

years”) but in many places reproduces the words

of the master himself. Peterson’s arguments are

manifold and quite convincing (at least to me).

Nevertheless, the Oration was not chosen by An-

tonio Favaro, the editor of Galileo’s twenty-volume

complete works, for inclusion in that series even

though Favaro did include many ancillary doc-

uments besides Galileo’s own writings. Some of

Peterson’s most compelling evidence comes from

the Oration itself. Here is one of several quotations

from the work:

All earthly objects show forth the di-

vine mathematics to those who observe

them with close attention. They proclaim

with utmost clarity that God is the Arch-

geometer: the movements of the stars;

the balance of the earth; the absorption

by plants of moisture from the ground

through fibrous pipes; the penetration of

the moisture to the leaves by means of

veins running through the whole trunk and

branches; the swimming, flight and crawl-

ing of fishes, birds and reptiles—obviously

a subtle hidden mathematics underlies all

these phenomena.

As Peterson remarks, “The Orator flatly contra-

dicts Ptolemy’s sharp distinction between philo-

sophical mathematics and earthly physics,” an

opinion that “would be someday unremarkable

but was close to unthinkable in 1627” and not

what one might expect from “a young professor

of mathematics”.

Comparison of this passage with, say, the “Fable

of the Sounds” in Il Saggiatore, keeping in mind

the several translations involved,5 makes it quite

plausible that we are listening to Galileo’s own

twice-filtered voice.

Whether or not we accept the Oration as com-

pletely Galilean, it is hard not to enjoy the Orator’s

enthusiastic account of how “charming, thrilling

and useful” it is to use a microscope, quoted at

length by Peterson on p. 282.

Exposition, Divulgation, and the Appropri-

ateness of Accuracy

Galileo’s Muse is a good read. The style is com-

fortably conversational,6 veering only occasionally

into the colloquial. The book bubbles with ideas,

insights, and delicious bits of historical detail.

Most mathematicians will be amazed to learn that

5Hypothetically, Aggiunti translated Galileo’s Italian into

Latin; this translation into English is due to Philippa Gould.
6The text is abundantly but discreetly footnoted; the notes

are gathered at the back of the book and grouped by page

number, an excellent practice.
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Dante’s model for the entire universe was topo-

logically a 3-sphere, with God and Satan at the

poles; it’s all spelled out in Paradiso, Canto XXVIII.

The easy reading and the immediacy of the

story come at a price. In Galileo’s Muse there is

a hypothetical sentence on almost every page,

usually correctly characterized as such. There are

also hundreds of real facts, references, quotations

from the period, and historically documented oc-

currences. The reader must constantly remember

whether we are in “did” or “must have done”

territory. Most of the time this is not a problem,

but in places the boundary becomes fuzzy. The

student reading “Pythagoras used his knowledge

benevolently,…” (p. 168) may forget the “accord-

ing to stories” seven sentences before and may

not realize that almost nothing is known about the

historical figure Pythagoras, certainly not whether

he used his knowledge benevolently. This sen-

tence, as well as “Pythagoras discovered the small

integer ratios in music” on the next page, has to be

interpreted as a statement about a semimythical

figure. Similarly (I referred to this point earlier),

when reading about Vincenzo Galilei’s musical

experiments with strings and weights, we find

“His son Galileo…must have participated in these

experiments.” The “must have” is a red flag, of

course. But then we read, “they repeated the exper-

iments …,” “they found…,” “they had to quadruple

the weight…,” “[Galileo’s] first encounter with the

issue of measurement uncertainty must have been

this experiment in music,” “the Pythagorean exper-

iments on tension and musical pitch that Galileo

conducted with his father…” (p. 257), as if it were

a known fact that Galileo took part in his father’s

experiments. But it is not.

Scientists writing for a general audience, espe-

cially about the history of science, are in dangerous

territory. Data are often lacking, the existing data

are often unreliable, but the methods and logic

have to be airtight; when they cannot be so, this

circumstance should be fully understood by the

reader. How to achieve this understanding with-

out weighing down the text with a noxious drone

of caveats is a conundrum. But creating false

impressions must be avoided.

Readers of Galileo’s Muse may expect, from the

subtitle, a survey of the arts and mathematics

in the Renaissance. I spoke above of a selective

panorama; in fact, the choice of topics is somewhat

more haphazard. Besides material that is germane

to the thesis of the work, some is included just

because it makes such a good story (the topology

of Paradise mentioned above or the Cardano-

Tartaglia imbroglio or speculation about what Luca

Pacioli and Leonardo da Vinci actually thought of

each other). But it is a good story and gives the

reader a lively introduction to a period of ferment

in art, music, and mathematics, and to Galileo,

whose wide-encompassing intellect brought them

all together.

References
[1] Roberto Caffarelli, Il Laboratorio di Galileo Galilei,

Physics Department, Università di Pisa, 2005.

[2] Stillman Drake, Renaissance music and experi-

mental science, Journal of the History of Ideas 31,

483–500.

[3] Stillman Drake and James MacLachlan, Galileo’s

discovery of the parabolic trajectory, Sci. Amer.

(March 1975), 102–110.

[4] Samuel Y. Edgerton, Galileo, Florentine “Disegno”,

and the “Strange Spottednesse” of the moon, Art

Journal 44 (1984), 225–232.

[5] Albert Einstein, Ideas and Opinions, Crown, New

York, 1954.

[6] John Florio, Queen Anna’s New World of Words, or

Dictionarie of the Italian and English tongues, etc.,

London, 1611.

[7] Galileo Galilei, Opere, Firenze, 1898.

[8] , Two New Sciences, translated by Henry Crew

and Alfonso de Savio, Dover, New York, 1954.

[9] , Two New Sciences, translated by Stillman

Drake, University of Wisconsin Press, 1974.

[10] Vincenzo Galilei, Discorso di Vincentio Galilei No-

bile Fiorentino, intorno all’opere de messer Gioseffo

Zarlino da Chioffia, et altri importanti particolari at-

tententi alla musica, Marescotti, Florence, 1589. A

useful translation is appended to Randall Goldberg’s

2011 Indiana University thesis, Where nature and

art adjoin: Investigations into the Zarlino-Galilei dis-

pute, including an annotated translation of Vincenzo

Galilei’s “Discorso intorno all’opere di Messer Gioseffo

Zarlino”.

[11] , Discorso particolare intorno alla diuersita

delle forme del diapason, (with translation) in Claude

Palisca, The Florentine Camerata, Yale Univ. Press,

New Haven, 1989.

[12] Jekuthiel Ginsburg, On the early history of the

decimal point, Amer. Math. Monthly 35 (1928),

347–349.

[13] Stephen Hawking, A Brief History of Time: From the

Big Bang to Black Holes, Bantam Books, New York,

1988.

[14] Gerard Holton, Einstein and the cultural roots of

modern science, Daedalus 127, no. 1 (1998), 1–44.

[15] Victor J. Katz, A History of Mathematics, 2nd ed.,

Addison-Wesley, New York, 1998.

[16] Anne D. Kilmer, The discovery of an ancient

Mesopotamian theory of music, Proc. Amer. Philos.

Soc. 115 (1971), 131–149.

[17] Nichomachus, The Manual of Harmonics of

Nichomachus the Pythagorean, translated by Flora R.

Levin, Phanes Press, Grand Rapids, 1994.

[18] Claude V. Palisca, Studies in the History of Italian

Music and Music Theory, Clarendon Press, Oxford,

1994.

[19] M. A. Peterson, Galileo’s discovery of scaling laws,

Amer. J. Phys. 70 (2002), 575–580.

[20] , Galileo’s Muse: Renaissance Mathematics

and the Arts, Harvard University Press, Cambridge,

London, 2011.

1442 Notices of the AMS Volume 59, Number 10


