Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations
HTML articles powered by AMS MathViewer

by Ali Taheri PDF
Proc. Amer. Math. Soc. 131 (2003), 3101-3107 Request permission

Abstract:

Let $\Omega \subset {\mathbb R}^n$ be a bounded starshaped domain. In this note we consider critical points $\bar {u} \in \bar {\xi } y + W_0 ^{1,p} (\Omega ; {\mathbb R}^m)$ of the functional \[ {\mathcal F}(u, \Omega ) := \int _{\Omega } f( \nabla u(y)) dy, \] where $f: {\mathbb R}^{m \times n} \to {\mathbb R}$ of class $\mathrm {C}^1$ satisfies the natural growth \[ |f (\xi )| \le c (1 + | \xi |^p) \] for some $1 \le p < \infty$ and $c>0$, is suitably rank-one convex and in addition is strictly quasiconvex at $\bar {\xi } \in {\mathbb R}^{m \times n}$. We establish uniqueness results under the extra assumption that ${\mathcal F}$ is stationary at $\bar {u}$ with respect to variations of the domain. These statements should be compared to the uniqueness result of Knops & Stuart (1984) in the smooth case and recent counterexamples to regularity produced by Müller & Šverák (2003).
References
  • Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890, DOI 10.1007/978-3-642-51440-1
  • H. Federer, Geometric measure theory, Graduate Texts in Mathematics 153, Springer-Verlag, 1969.
  • A. E. Green, On some general formulae in finite elastostatics, Arch. Rational Mech. Anal. 50 (1973), 73–80. MR 441065, DOI 10.1007/BF00251294
  • Robert M. Hardt, Singularities of harmonic maps, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 1, 15–34. MR 1397098, DOI 10.1090/S0273-0979-97-00692-7
  • Fritz John, Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains, Comm. Pure Appl. Math. 25 (1972), 617–634. MR 315308, DOI 10.1002/cpa.3160250505
  • R. J. Knops and C. A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86 (1984), no. 3, 233–249. MR 751508, DOI 10.1007/BF00281557
  • J. Kristensen, A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations, Max-Planck-Institute MIS (Leipzig) Preprint-Nr. 59, 2001.
  • S. Müller, V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, To appear in Ann. of Math., 2003.
  • K. D. E. Post and J. Sivaloganathan, On homotopy conditions and the existence of multiple equilibria in finite elasticity, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 3, 595–614. MR 1453283, DOI 10.1017/S0308210500029929
  • Ali Taheri, Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 1, 155–184. MR 1820298, DOI 10.1017/S0308210500000822
  • A. Taheri, On critical points of functionals with polyconvex integrands, J. Convex Anal., Vol. 9, 2002, pp. 55-72.
  • A. Taheri, On Artin’s braid group and polyconvexity in the calculus of variations, To appear in J. Lond. Math. Soc., 2002.
  • A. Taheri, Local minimizers and quasiconvexity - the impact of Topology, Max-Planck-Institute MIS (Leipzig) Preprint-Nr. 27, 2002.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 49J10, 49J45
  • Retrieve articles in all journals with MSC (2000): 49J10, 49J45
Additional Information
  • Ali Taheri
  • Affiliation: Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany
  • Email: taheri@mis.mpg.de
  • Received by editor(s): July 31, 2001
  • Received by editor(s) in revised form: April 24, 2002
  • Published electronically: January 28, 2003
  • Communicated by: Bennett Chow
  • © Copyright 2003 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 131 (2003), 3101-3107
  • MSC (2000): Primary 49J10, 49J45
  • DOI: https://doi.org/10.1090/S0002-9939-03-06852-7
  • MathSciNet review: 1993219