Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The Takaga operator, Bernoulli sequences, smoothness conditions and fractal curves
HTML articles powered by AMS MathViewer

by Anca Deliu and Peter Wingren PDF
Proc. Amer. Math. Soc. 121 (1994), 871-881 Request permission

Abstract:

We map Lipschitz spaces and functions of bounded variation by the operator $\sigma :\varphi (x) \to \sum \nolimits _0^\infty {{2^{ - n}}} \varphi ({2^n}x),x \in [0,1]$, and we estimate the Hausdorff measure of $\sigma (\varphi )$. We furthermore introduce a class of continuous and nowhere differentiable functions on [0,1] which we call $\mathcal {T}$. We make a refined analysis of the fractal and smoothness properties of the functions in $\mathcal {T}$ and study the relationship between the two. We show that all the functions in $\mathcal {T}$ have box dimension equal to $\frac {1}{2}$, with respect to the dimension family $\{ t/{(\log \frac {1}{t})^s}:s \in {\mathbb {R}^ + }\}$, but that their order of smoothness covers a wide range.
References
    O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral representations of functions and imbedding theorems, Wiley, New York, 1978.
  • K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
  • Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
  • R. Häggvist, Personal communication.
  • Masayoshi Hata, Topological aspects of self-similar sets and singular functions, Fractal geometry and analysis (Montreal, PQ, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 346, Kluwer Acad. Publ., Dordrecht, 1991, pp. 255–276. MR 1140724
  • E. W. Hobson, The theory of functions of a real variable, Dover, New York, 1957.
  • Alf Jonsson and Hans Wallin, Function spaces on subsets of $\textbf {R}^n$, Math. Rep. 2 (1984), no. 1, xiv+221. MR 820626
  • James L. Kaplan, John Mallet-Paret, and James A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 261–281. MR 766105, DOI 10.1017/S0143385700002431
  • Konrad Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen, Math. Z. 2 (1918), no. 1-2, 1–26 (German). MR 1544308, DOI 10.1007/BF01212897
  • R. Daniel Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. MR 860394, DOI 10.1090/S0002-9947-1986-0860394-7
  • Benoit B. Mandelbrot, Fractals: form, chance, and dimension, Revised edition, W. H. Freeman and Co., San Francisco, Calif., 1977. Translated from the French. MR 0471493
  • G. de Rham, Sur un exemple de fonction continue sans dérivée, Enseign. Math. (2) 3 (1957), 71–72 (French). MR 85314
  • C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • T. Takaga, A simple example of a continuous function without derivative, Proc. Phys. Math. Soc. Japan 1 (1903), 176-177.
  • B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, Math. Z. 32 (1930), no. 1, 474–475 (German). MR 1545179, DOI 10.1007/BF01194647
  • K. Weierstrass, Mathematische Werke, Mayer and Müller, Berlin, 1894-1927. P. Wingren, Imbeddings and characterizations of Lipschitz spaces on closed sets, Department of Mathematics, University of Umeå5 (1985).
  • A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A80
  • Retrieve articles in all journals with MSC: 28A80
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 121 (1994), 871-881
  • MSC: Primary 28A80
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1196164-2
  • MathSciNet review: 1196164