Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Simple birational extensions of the polynomial algebra $\mathbb {C}^{[3]}$
HTML articles powered by AMS MathViewer

by Shulim Kaliman, Stéphane Vénéreau and Mikhail Zaidenberg PDF
Trans. Amer. Math. Soc. 356 (2004), 509-555 Request permission

Abstract:

The Abhyankar-Sathaye Problem asks whether any biregular embedding $\varphi :\mathbb {C}^k\hookrightarrow \mathbb {C}^n$ can be rectified, that is, whether there exists an automorphism $\alpha \in \operatorname {Aut} \mathbb {C}^n$ such that $\alpha \circ \varphi$ is a linear embedding. Here we study this problem for the embeddings $\varphi :\mathbb {C}^3\hookrightarrow \mathbb {C}^4$ whose image $X=\varphi (\mathbb {C}^3)$ is given in $\mathbb {C}^4$ by an equation $p=f(x,y)u+g(x,y,z)=0$, where $f\in \mathbb {C}[x,y]\backslash \{0\}$ and $g\in \mathbb {C}[x,y,z]$. Under certain additional assumptions we show that, indeed, the polynomial $p$ is a variable of the polynomial ring $\mathbb {C}^{[4]}=\mathbb {C}[x,y,z,u]$ (i.e., a coordinate of a polynomial automorphism of $\mathbb {C}^4$). This is an analog of a theorem due to Sathaye (1976) which concerns the case of embeddings $\mathbb {C}^2\hookrightarrow \mathbb {C}^3$. Besides, we generalize a theorem of Miyanishi (1984) giving, for a polynomial $p$ as above, a criterion for when $X=p^{-1}(0)\simeq \mathbb {C}^3$.
References
  • Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 379502
  • H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279–299. MR 432626, DOI 10.1007/BF01403135
  • Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
  • A. D. R. Choudary and A. Dimca, Complex hypersurfaces diffeomorphic to affine spaces, Kodai Math. J. 17 (1994), no. 2, 171–178. MR 1282208, DOI 10.2996/kmj/1138039958
  • H. Derksen, Constructive Invariant Theory and the Linearization Problem, Ph.D. thesis, Basel, 1997.
  • Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196
  • I.V. Dolgachev, B.Ju. Veisfeiler, Unipotent group schemes over integral rings, Math. USSR, Izv. 8 (1975), 761-800.
  • Eric Edo and Stéphane Vénéreau, Length 2 variables of $A[x,y]$ and transfer, Ann. Polon. Math. 76 (2001), no. 1-2, 67–76. Polynomial automorphisms and related topics (Kraków, 1999). MR 1839860, DOI 10.4064/ap76-1-6
  • A. T. Fomenko and D. B. Fuks, Kurs gomotopicheskoĭ topologii, “Nauka”, Moscow, 1989 (Russian). With an English summary. MR 1027592
  • Takao Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 503–566. MR 687591
  • D. B. Fuks, O. Ya. Viro, Homology and cohomology, in: Encyclopedia of Math. Sci. Vol. 24, Topology-2, VINITI, Moscow, 1988, 123-245 (in Russian).
  • M. Gizatullin, On affine surfaces that can be completed by a nonsingular rational curve, Math. USSR, Izv. 4 (1970), 787-810.
  • Shulim Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math. 88 (1994), no. 1-3, 411–423. MR 1303505, DOI 10.1007/BF02937521
  • Sh. Kaliman, Polynomials with general $\mathbf C^2$-fibers are variables, Pacific J. Math. 203 (2002), no. 1, 161–190. MR 1895930, DOI 10.2140/pjm.2002.203.161
  • Shulim Kaliman and Leonid Makar-Limanov, On the Russell-Koras contractible threefolds, J. Algebraic Geom. 6 (1997), no. 2, 247–268. MR 1489115
  • S. Kaliman, L. Makar-Limanov, Locally nilpotent derivations of Jacobian type, Preprint, 1998, 16pp.
  • S. Kaliman, S. Vénéreau, M. Zaidenberg, Extensions birationnelles simples de l’anneau de polynômes $\mathbb {C}^3$, C. R. Acad. Sci. Paris Sér. I Math. 333:4 (2001), 319–322.
  • S. Kaliman, S. Vénéreau, M. Zaidenberg, Simple birational extensions of the polynomial ring $\mathbb {C}^{[3]}$, preprint, Institut Fourier des mathématiques, 532; E-print math.AG/0104204 (2001), 49pp.
  • Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95. MR 1669174, DOI 10.1007/BF01236662
  • Shulim Kaliman and Mikhail Zaidenberg, Families of affine planes: the existence of a cylinder, Michigan Math. J. 49 (2001), no. 2, 353–367. MR 1852308, DOI 10.1307/mmj/1008719778
  • S. Kaliman and M. Zaidenberg, Miyanishi’s characterization of the affine 3-space does not hold in higher dimensions, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 6, 1649–1669 (2001). MR 1817379, DOI 10.5802/aif.1803
  • V.Ya. Lin, M.G. Zaidenberg, Finiteness theorems for holomorphic mappings, Encyclopedia of Math. Sci. Vol. 9. Several Complex Variables III. Berlin, Heidelberg, New York: Springer Verlag, 1989, 113–172.
  • L. Makar-Limanov, On the hypersurface $x+x^2y+z^2+t^3=0$ in $\textbf {C}^4$ or a $\textbf {C}^3$-like threefold which is not $\textbf {C}^3$. part B, Israel J. Math. 96 (1996), no. part B, 419–429. MR 1433698, DOI 10.1007/BF02937314
  • L. Makar-Limanov, Again $x + x^2y + z^2 + t^3 = 0$, Preprint, 1998, 3p.
  • L. Makar-Limanov, Locally nilpotent derivations of affine domains, Abstract in: Affine Algebraic Geometry 14.05-20.05.2000, Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 21/2000, p. 11.
  • William S. Massey, Singular homology theory, Graduate Texts in Mathematics, vol. 70, Springer-Verlag, New York-Berlin, 1980. MR 569059, DOI 10.1007/978-1-4684-9231-6
  • C.R.F. Maunder, Algebraic topology, The New University Mathematics Series. Van Nostrand Reinhold Company Ltd., London, 1970.
  • Masayoshi Miyanishi, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), no. 6, 1469–1485. MR 765587, DOI 10.2307/2374401
  • Masayoshi Miyanishi, Algebraic characterizations of the affine $3$-space, Algebraic Geometry Seminar (Singapore, 1987) World Sci. Publishing, Singapore, 1988, pp. 53–67. MR 966444
  • Masayoshi Miyanishi, Open algebraic surfaces, CRM Monograph Series, vol. 12, American Mathematical Society, Providence, RI, 2001. MR 1800276, DOI 10.1090/crmm/012
  • Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
  • Peter Russell, Simple birational extensions of two dimensional affine rational domains, Compositio Math. 33 (1976), no. 2, 197–208. MR 429935
  • Peter Russell and Avinash Sathaye, On finding and cancelling variables in $k[X,\,Y,\,Z]$, J. Algebra 57 (1979), no. 1, 151–166. MR 533106, DOI 10.1016/0021-8693(79)90214-X
  • Avinash Sathaye, On linear planes, Proc. Amer. Math. Soc. 56 (1976), 1–7. MR 409472, DOI 10.1090/S0002-9939-1976-0409472-6
  • A. Sathaye, Polynomial ring in two variables over a DVR: a criterion, Invent. Math. 74 (1983), no. 1, 159–168. MR 722731, DOI 10.1007/BF01388536
  • Vladimir Shpilrain and Jie-Tai Yu, Embeddings of hypersurfaces in affine spaces, J. Algebra 239 (2001), no. 1, 161–173. MR 1827879, DOI 10.1006/jabr.2000.8677
  • Vladimir Shpilrain and Jie-Tai Yu, Embeddings of curves in the plane, J. Algebra 217 (1999), no. 2, 668–678. MR 1700520, DOI 10.1006/jabr.1998.7811
  • Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace $\textbf {C}^{2}$, J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 338423, DOI 10.2969/jmsj/02620241
  • S. Vénéreau, Quelques automorphismes et variables de $A[x,y]$, preprint, Institut Fourier des mathématiques, 460 (1999), 10pp.
  • Raymond Louis Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, Providence, R.I., 1979. Reprint of 1963 edition. MR 598636
  • David Wright, Cancellation of variables of the form $bT^{n}-a$, J. Algebra 52 (1978), no. 1, 94–100. MR 480550, DOI 10.1016/0021-8693(78)90263-6
  • M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces, and the characterization of the affine plane, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 534–567, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 503–532. MR 903623, DOI 10.1070/IM1988v030n03ABEH001027
  • M. Zaĭdenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999), no. 5, 3–73 (Russian); English transl., St. Petersburg Math. J. 11 (2000), no. 5, 703–760. MR 1734345
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14R10, 14R25
  • Retrieve articles in all journals with MSC (2000): 14R10, 14R25
Additional Information
  • Shulim Kaliman
  • Affiliation: Department of Mathematics, University of Miami, Coral Gables, Florida 33124
  • MR Author ID: 97125
  • Email: kaliman@math.miami.edu
  • Stéphane Vénéreau
  • Affiliation: Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France
  • Email: venereau@math.mcgill.ca
  • Mikhail Zaidenberg
  • Affiliation: Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France
  • MR Author ID: 196553
  • Email: zaidenbe@ujf-grenoble.fr
  • Received by editor(s): December 5, 2001
  • Published electronically: September 22, 2003
  • Additional Notes: The research of the first author was partially supported by the NSA grant MDA904-00-1-0016
    The third author is grateful to the IHES and to the MPI at Bonn (where a part of the work was done) for their hospitality and excellent working conditions
  • © Copyright 2003 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 356 (2004), 509-555
  • MSC (2000): Primary 14R10, 14R25
  • DOI: https://doi.org/10.1090/S0002-9947-03-03398-1
  • MathSciNet review: 2022709