Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Perturbed dynamical systems with an attracting singularity and weak viscosity limits in Hamilton-Jacobi equations
HTML articles powered by AMS MathViewer

by B. Perthame PDF
Trans. Amer. Math. Soc. 317 (1990), 723-748 Request permission

Abstract:

We give a new PDE proof of the Wentzell-Freidlin theorem concerning small perturbations of a dynamical system \[ \begin {gathered} {L_\varepsilon }{u_\varepsilon } = - \tfrac {\varepsilon } {2}\Delta {u_\varepsilon } - b \cdot \nabla {u_3} = 0\quad {\text {in}}\;\Omega , \hfill \\ {u_\varepsilon } = \varphi \quad {\text {on}}\;\partial \Omega . \hfill \\ \end {gathered} \] We prove that, if $b$ has a single attractive singular point, ${u_\varepsilon }$ converges uniformly on compact subsets of $\Omega$, and with an exponential decay, to a constant $\mu$, and we determine $\mu$. We also treat the case of Neumann boundary condition. In order to do so, we perform the asymptotic analysis for some ergodic measure which leads to a study of the viscosity limit of a Hamilton-Jacobi equation. This is achieved under very general assumptions by using a weak formulation of the viscosity limits of these equations. Résumé. Nous donnons une nouvelle preuve, par des méthodes EDP, du théorème de Wentzell-Freidlin concernant les petites perturbations d’un système dynamique: \[ \begin {gathered} {L_\varepsilon }{u_\varepsilon } = - \tfrac {\varepsilon } {2}\Delta {u_\varepsilon } - b \cdot \nabla {u_\varepsilon } = 0\quad {\text {dans}}\;\Omega , \hfill \\ {u_\varepsilon } = \varphi \quad {\text {sur}}\;\partial \Omega . \hfill \\ \end {gathered} \] Nous prouvons que, si $b$ a un seul point singulier attractif, alors ${u_\varepsilon }$ converge vers une constant $\mu$, uniformément sur tout compact, et avec une vitesse exponentielle. Nous déterminons $\mu$. Nous traitons aussi le cas de conditions aux limites de Neuman. Pour cela, nous faisons l’analyse asymptotique d’une mesure ergodique intervenant naturellement dans le problème, ce qui revient à étudier la limite par viscosité évanescente dans une équation de Hamilton-Jacobi. Ceci est réalisé sous des hypothèses très générales gâce à un passage à la limite faible dans cette équation.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B25, 35F99, 58F30
  • Retrieve articles in all journals with MSC: 35B25, 35F99, 58F30
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 317 (1990), 723-748
  • MSC: Primary 35B25; Secondary 35F99, 58F30
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0943607-3
  • MathSciNet review: 943607