Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

$\mathrm {G}_2$ and the rolling ball
HTML articles powered by AMS MathViewer

by John C. Baez and John Huerta PDF
Trans. Amer. Math. Soc. 366 (2014), 5257-5293

Abstract:

Understanding the exceptional Lie groups as the symmetry groups of simpler objects is a long-standing program in mathematics. Here, we explore one famous realization of the smallest exceptional Lie group, $\mathrm {G}_2$. Its Lie algebra $\mathfrak {g}_2$ acts locally as the symmetries of a ball rolling on a larger ball, but only when the ratio of radii is 1:3. Using the split octonions, we devise a similar, but more global, picture of $\mathrm {G}_2$: it acts as the symmetries of a ‘spinorial ball rolling on a projective plane’, again when the ratio of radii is 1:3. We explain this ratio in simple terms, use the dot product and cross product of split octonions to describe the $\mathrm {G}_2$ incidence geometry, and show how a form of geometric quantization applied to this geometry lets us recover the imaginary split octonions and these operations.
References
  • A. A. Agrachev, Rolling balls and octonions, Tr. Mat. Inst. Steklova 258 (2007), no. Anal. i Osob. Ch. 1, 17–27 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 258 (2007), no. 1, 13–22. MR 2400520, DOI 10.1134/S0081543807030030
  • Ilka Agricola, Old and new on the exceptional group $G_2$, Notices Amer. Math. Soc. 55 (2008), no. 8, 922–929. MR 2441524
  • Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729, DOI 10.1007/978-0-387-78835-7
  • John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087, DOI 10.1090/S0273-0979-01-00934-X
  • Gil Bor and Richard Montgomery, $G_2$ and the rolling distribution, Enseign. Math. (2) 55 (2009), no. 1-2, 157–196. MR 2541507, DOI 10.4171/LEM/55-1-8
  • Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248. MR 89473, DOI 10.2307/1969996
  • R. Bryant, Élie Cartan and geometric duality, notes from a lecture given at the Institut d’Élie Cartan, June 19, 1998. Available at http://www.math.duke.edu/$\sim$bryant/Cartan.pdf.
  • Robert L. Bryant and Lucas Hsu, Rigidity of integral curves of rank $2$ distributions, Invent. Math. 114 (1993), no. 2, 435–461. MR 1240644, DOI 10.1007/BF01232676
  • É. Cartan, Sur la structure des groupes simples finis et continus, C. R. Acad. Sci. 116 (1893), 784–786.
  • —, Sur la Structure des Groupes de Transformations Finis et Continus, Ph.D. thesis, Paris, Nony, 1894.
  • Elie Cartan, Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192 (French). MR 1509120, DOI 10.24033/asens.618
  • Elie Cartan, Nombres complexes, in Encyclopédie des Sciences Mathématiques, Gauthier–Villars, Paris, 1908, pp. 329–468.
  • Elie Cartan, Les groupes réels simples finis et continus, Ann. Sci. École Norm. Sup. 31 (1914), 255–262.
  • A. Cayley, On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwin; and on quaternions, Philos. Mag. 26 (1845), 208–211.
  • F. Engel, Sur un groupe simple à quatorze paramètres, C. R. Acad. Sci. 116 (1893), 786–788.
  • —, Ein neues, dem linearen Komplexe analoges Gebilde, Leipz. Ber. 52 (1900), 63–76, 220–239.
  • Norman E. Hurt, Geometric quantization in action, Mathematics and its Applications (East European Series), vol. 8, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1983. MR 689710, DOI 10.1007/978-94-009-6963-6
  • Aroldo Kaplan, Quaternions and octonions in mechanics, Rev. Un. Mat. Argentina 49 (2009), no. 2, 45–53. MR 2499815
  • Wilhelm Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen, Math. Ann. 33 (1888), no. 1, 1–48 (German). MR 1510529, DOI 10.1007/BF01444109
  • Katja Sagerschnig, Split octonions and generic rank two distributions in dimension five, Arch. Math. (Brno) 42 (2006), no. suppl., 329–339. MR 2322419
  • Betty Salzberg, Buildings and shadows, Aequationes Math. 25 (1982), no. 1, 1–20. MR 716374, DOI 10.1007/BF02189594
  • Richard D. Schafer, An introduction to nonassociative algebras, Dover Publications, Inc., New York, 1995. Corrected reprint of the 1966 original. MR 1375235
  • J.-P. Serre, Representations linéaires et espaces kähleriens des groups de Lie compacts, Séminaire Bourbaki 100 (1954).
  • Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
  • Jacques Tits, Sur certaines classes d’espaces homogènes de groups de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Coll. 29 (1955), p. 85.
  • Nicholas Woodhouse, Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1980. MR 605306
  • Igor Zelenko, On variational approach to differential invariants of rank two distributions, Differential Geom. Appl. 24 (2006), no. 3, 235–259. MR 2216939, DOI 10.1016/j.difgeo.2005.09.004
Similar Articles
Additional Information
  • John C. Baez
  • Affiliation: Department of Mathematics, University of California, Riverside, California 92521 — and — Centre for Quantum Technologies, National University of Singapore, Singapore 117543
  • Email: baez@math.ucr.edu
  • John Huerta
  • Affiliation: Department of Theoretical Physics, Research School of Physics and Engineering — and — Mathematical Sciences Institute, The Australian National University, Canberra, ACT 0200, Australia
  • Email: john.huerta@anu.edu.au
  • Received by editor(s): August 16, 2012
  • Received by editor(s) in revised form: September 28, 2012, and October 4, 2012
  • Published electronically: May 15, 2014
  • © Copyright 2014 John C. Baez and John Huerta
  • Journal: Trans. Amer. Math. Soc. 366 (2014), 5257-5293
  • MSC (2010): Primary 20G41, 17A75; Secondary 57S25, 51A45, 20E42
  • DOI: https://doi.org/10.1090/S0002-9947-2014-05977-1
  • MathSciNet review: 3240924