Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Ramanujan’s class invariants, Kronecker’s limit formula, and modular equations
HTML articles powered by AMS MathViewer

by Bruce C. Berndt, Heng Huat Chan and Liang-Cheng Zhang PDF
Trans. Amer. Math. Soc. 349 (1997), 2125-2173 Request permission

Abstract:

In his notebooks, Ramanujan gave the values of over 100 class invariants which he had calculated. Many had been previously calculated by Heinrich Weber, but approximately half of them had not been heretofore determined. G. N. Watson wrote several papers devoted to the calculation of class invariants, but his methods were not entirely rigorous. Up until the past few years, eighteen of Ramanujan’s class invariants remained to be verified. Five were verified by the authors in a recent paper. For the remaining class invariants, in each case, the associated imaginary quadratic field has class number 8, and moreover there are two classes per genus. The authors devised three methods to calculate these thirteen class invariants. The first depends upon Kronecker’s limit formula, the second employs modular equations, and the third uses class field theory to make Watson’s “empirical method”rigorous.
References
  • Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903, DOI 10.1007/978-1-4612-0965-2
  • Bruce C. Berndt, Ramanujan’s notebooks. Part IV, Springer-Verlag, New York, 1994. MR 1261634, DOI 10.1007/978-1-4612-0879-2
  • B. C. Berndt and H. H. Chan, Some values for the Rogers–Ramanujan continued fraction, Canad. J. Math. 47 (1995), 897–914.
  • B. C. Berndt, H. H. Chan, and L.–C. Zhang, Ramanujan’s class invariants and cubic continued fraction, Acta Arith. 73 (1995), 67–85.
  • B. J. Birch, Weber’s class invariants, Mathematika 16 (1969), 283–294. MR 262206, DOI 10.1112/S0025579300008251
  • A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
  • Duncan A. Buell, Binary quadratic forms, Springer-Verlag, New York, 1989. Classical theory and modern computations. MR 1012948, DOI 10.1007/978-1-4612-4542-1
  • H. H. Chan and S. S. Huang, On the Ramanujan–Göllnitz–Gordon continued fraction, The Ramanujan Journal 1 (1997), 75–90.
  • Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
  • David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
  • M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band I 2, Heft 10, Teil II (Article I 2, vol. 23, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1958 (German). MR 0167481
  • J. Janusz, Algebraic Number Fields, 2nd ed., Amer. Math. Soc., Providence, 1996.
  • R. Kortum and G. McNiel, A Table of Periodic Continued Fractions, Lockheed Aircraft Corporation, Sunnyvale, CA.
  • R. A. Mollin and L.-C. Zhang, Orders in quadratic fields. II, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 9, 368–371. MR 1261615, DOI 10.3792/pjaa.69.368
  • M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013, DOI 10.1017/CBO9780511661952
  • K. G. Ramanathan, Remarks on some series considered by Ramanujan, J. Indian Math. Soc. (N.S.) 46 (1982), no. 1-4, 107–136 (1985). MR 878066
  • K. G. Ramanathan, On the Rogers-Ramanujan continued fraction, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), no. 2-3, 67–77. MR 813071, DOI 10.1007/BF02840651
  • K. G. Ramanathan, Ramanujan’s continued fraction, Indian J. Pure Appl. Math. 16 (1985), no. 7, 695–724. MR 801801
  • K. G. Ramanathan, Some applications of Kronecker’s limit formula, J. Indian Math. Soc. (N.S.) 52 (1987), 71–89 (1988). MR 989231
  • K. G. Ramanathan, On some theorems stated by Ramanujan, Number Theory and Related Topics, Oxford University Press, Bombay, 1989, pp. 151–160.
  • S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math. (Oxford) 45 (1914), 350–372.
  • Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
  • S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
  • Joseph Rotman, Galois theory, Universitext, Springer-Verlag, New York, 1990. MR 1064318, DOI 10.1007/978-1-4684-0367-1
  • R. Russell, On modular equations, Proc. London Math. Soc. 21 (1890), 351–395.
  • Carl Ludwig Siegel, Advanced analytic number theory, 2nd ed., Tata Institute of Fundamental Research Studies in Mathematics, vol. 9, Tata Institute of Fundamental Research, Bombay, 1980. MR 659851
  • G. N. Watson, Theorems stated by Ramanujan (IX): two continued fractions, J. London Math. Soc. 4 (1929), 231–237.
  • G. N. Watson, Theorems stated by Ramanujan (XIV): a singular modulus, J. London Math. Soc. 6 (1931), 126–132.
  • G. N. Watson, Some singular moduli (I), Quart. J. Math. 3 (1932), 81–98.
  • G. N. Watson, Some singular moduli (II), Quart. J. Math. 3 (1932), 189–212.
  • G. N. Watson, Singular moduli (3), Proc. London Math. Soc. 40 (1936), 83–142.
  • G. N. Watson, Singular moduli (4), Acta Arith. 1 (1936), 284–323.
  • G. N. Watson, Singular moduli (5), Proc. London Math. Soc. 42 (1937), 377–397.
  • G. N. Watson, Singular moduli (6), Proc. London Math. Soc. 42 (1937), 398–409.
  • H. Weber, Lehrbuch der Algebra, dritter Band, Chelsea, New York, 1961.
Similar Articles
Additional Information
  • Bruce C. Berndt
  • Affiliation: Department of Mathematics, 1409 West Green Street, University of Illinois, Urbana, Illinois 61801
  • MR Author ID: 35610
  • Email: berndt@math.uiuc.edu
  • Heng Huat Chan
  • Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
  • Address at time of publication: Department of Mathematics, National Chung Cheng University, Minhsiung, Chiyai 621, Taiwan, R.O.C.
  • MR Author ID: 365568
  • Email: hhchan@mthmp.math.ccu.edu.tw
  • Liang-Cheng Zhang
  • Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
  • Email: liz917f@cnas.smsu.edu
  • Received by editor(s): March 16, 1995
  • Received by editor(s) in revised form: November 14, 1995

  • Dedicated: In Memory of Jerry Keiper
  • © Copyright 1997 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 349 (1997), 2125-2173
  • MSC (1991): Primary 11R29; Secondary 11R04, 11R37, 11R42, 11F27, 33D10
  • DOI: https://doi.org/10.1090/S0002-9947-97-01738-8
  • MathSciNet review: 1376539