Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A bound on the geometric genus of projective varieties verifying certain flag conditions
HTML articles powered by AMS MathViewer

by Vincenzo Di Gennaro PDF
Trans. Amer. Math. Soc. 349 (1997), 1121-1151 Request permission

Abstract:

Fix integers $n,r,s_{1},...,s_{l}$ and let $\mathcal {S}(n,r;s_{1},...,s_{l})$ be the set of all integral, projective and nondegenerate varieties $V$ of degree $s_{1}$ and dimension $n$ in the projective space $\mathbf {P}^{r}$, such that, for all $i=2,...,l$, $V$ does not lie on any variety of dimension $n+i-1$ and degree $<s_{i}$. We say that a variety $V$ satisfies a flag condition of type $(n,r;s_{1},...,s_{l})$ if $V$ belongs to $\mathcal {S}(n,r;s_{1},...,s_{l})$. In this paper, under the hypotheses $s_{1}>>...>>s_{l}$, we determine an upper bound $G^{h}(n,r;s_{1},...,s_{l})$, depending only on $n,r,s_{1},...,s_{l}$, for the number $G(n,r;s_{1},...,s_{l}):= {max} {\{} p_{g}(V) : V\in \mathcal {S}(n,r;s_{1},...,s_{l}){\}}$, where $p_{g}(V)$ denotes the geometric genus of $V$. In case $n=1$ and $l=2$, the study of an upper bound for the geometric genus has a quite long history and, for $n\geq 1$, $l=2$ and $s_{2}=r-n$, it has been introduced by Harris. We exhibit sharp results for particular ranges of our numerical data $n,r,s_{1},...,s_{l}$. For instance, we extend Halphen’s theorem for space curves to the case of codimension two and characterize the smooth complete intersections of dimension $n$ in $\mathbf {P}^{n+3}$ as the smooth varieties of maximal geometric genus with respect to appropriate flag condition. This result applies to smooth surfaces in $\mathbf {P}^{5}$. Next we discuss how far $G^{h}(n,r;s_{1},...,s_{l})$ is from $G(n,r;s_{1},...,s_{l})$ and show a sort of lifting theorem which states that, at least in certain cases, the varieties $V\in \mathcal {S}(n,r;s_{1},...,s_{l})$ of maximal geometric genus $G(n,r;s_{1},...,s_{l})$ must in fact lie on a flag such as $V=V_{s_{1}}^{n}\subset V_{s_{2}}^{n+1}\subset ...\subset V_{s_{l}}^{n+l-1}\subset {\mathbf {P}^{r}}$, where $V^{j}_{s}$ denotes a subvariety of $\mathbf {P}^{r}$ of degree $s$ and dimension $j$. We also discuss further generalizations of flag conditions, and finally we deduce some bounds for Castelnuovo’s regularity of varieties verifying flag conditions.
References
Similar Articles
Additional Information
  • Vincenzo Di Gennaro
  • Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata", 00133 Roma, Italy
  • Email: Digennaro@mat.utovrm.it
  • Received by editor(s): October 23, 1995
  • © Copyright 1997 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 349 (1997), 1121-1151
  • MSC (1991): Primary 14J99, 14M07, 14M10; Secondary 14F17
  • DOI: https://doi.org/10.1090/S0002-9947-97-01785-6
  • MathSciNet review: 1390976