Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Gap estimates of the spectrum of Hill’s equation and action variables for KdV
HTML articles powered by AMS MathViewer

by T. Kappeler and B. Mityagin PDF
Trans. Amer. Math. Soc. 351 (1999), 619-646 Request permission

Abstract:

Consider the Schrödinger equation $-y'' + Vy = \lambda y$ for a potential $V$ of period 1 in the weighted Sobolev space $(N \in \mathbb {Z}_{\ge 0}, \omega \in \mathbb {R}_{\ge 0})$ \[ H^{N, \omega }(S^1; \mathbb {C}) := \{ f(x) = \sum ^{\infty }_{k= - \infty } \hat {\hat f}(k) e^{i 2 \pi kx} \bigg | \parallel f \parallel _{N, \omega } < \infty \}\] where $\hat {\hat f}(k) (k \in \mathbb {Z})$ denote the Fourier coefficients of $f$ when considered as a function of period 1, \[ \parallel f \parallel _{N, \omega } := \bigg ( \sum _k (1+| k|)^{2N} e^{2 \omega | k |} | \hat {\hat {f}} (k) |^2 \bigg )^{^{1}/2} < \infty ,\] and where $S^1$ is the circle of length 1. Denote by $\lambda _k \equiv \lambda _k (V) (k \ge 0)$ the periodic eigenvalues of $- \frac {d^2}{dx^2} + V$ when considered on the interval $[0,2],$ with multiplicities and ordered so that $Re \lambda _j \le Re \lambda _{j+1} (j \ge 0).$ We prove the following result.

Theorem. For any bounded set ${\mathcal B} \subseteq H^{N, \omega } (S^1; \mathbb {C}),$ there exist $n_0 \ge 1$ and $M \ge 1$ so that for $k \ge n_0$ and $V \in {\mathcal B}$, the eigenvalues $\lambda _{2k}, \lambda _{2k -1}$ are isolated pairs, satisfying (with $\{ \lambda _{2k}, \lambda _{2k-1} \} = \{ \lambda ^+_k , \lambda ^-_k \})$

  • [(i)] $\sum _{k \ge n_0} (1+k)^{2N} e^{2 \omega k} | \lambda _k^+ - \lambda ^-_k |^2 \le M$,

  • [(ii)] $\sum _{k \ge n_0} (1 + k)^{2 N+1} e^{2 \omega k} \bigg | (\lambda ^+_k - \lambda ^-_k) -2 \sqrt {\hat {\hat {V}} (k) \hat {\hat {V}}(-k)} \bigg |^2 \le M$.

  • References
    Similar Articles
    • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58F19, 58F07, 35Q35
    • Retrieve articles in all journals with MSC (1991): 58F19, 58F07, 35Q35
    Additional Information
    • T. Kappeler
    • Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
    • Email: tk@math.unizh.ch
    • B. Mityagin
    • Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
    • Email: borismit@math.ohio-state.edu
    • Received by editor(s): December 5, 1996
    • © Copyright 1999 American Mathematical Society
    • Journal: Trans. Amer. Math. Soc. 351 (1999), 619-646
    • MSC (1991): Primary 58F19, 58F07, 35Q35
    • DOI: https://doi.org/10.1090/S0002-9947-99-02186-8
    • MathSciNet review: 1473448