Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Computing the arithmetic genus of Hilbert modular fourfolds
HTML articles powered by AMS MathViewer

by H. G. Grundman and L. E. Lippincott PDF
Math. Comp. 75 (2006), 1553-1560 Request permission

Abstract:

The Hilbert modular fourfold determined by the totally real quartic number field $k$ is a desingularization of a natural compactification of the quotient space $\Gamma _k \backslash {\mathcal H}^4$, where $\Gamma _k=\mbox {PSL}_2({\mathcal O}_k)$ acts on ${\mathcal H}^4$ by fractional linear transformations via the four embeddings of $k$ into $\bf R$. The arithmetic genus, equal to one plus the dimension of the space of Hilbert modular cusp forms of weight $(2,2,2,2)$, is a birational invariant useful in the classification of these varieties. In this work, we describe an algorithm allowing for the automated computation of the arithmetic genus and give sample results.
References
  • C. Batut, K. Belabas, D. Benardi, H. Cohen, and M. Olivier. User’s Guide to PARI-GP, 1998. $\langle$ftp://megrez.math.u-bordeaux.fr/pub/pari$\rangle$.
  • J. Buchmann, F. Diaz y Diaz, D. Ford, P. Létard, M. Olivier, M. Pohst, and A. Schwarz. Tables of number fields of low degree, $\langle$ftp://megrez.math.u-bordeaux.fr/pub/ numberfields/$\rangle$.
  • M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI 10.1006/jsco.1996.0126
  • Eberhard Freitag, Hilbert modular forms, Springer-Verlag, Berlin, 1990. MR 1050763, DOI 10.1007/978-3-662-02638-0
  • H. G. Grundman, Hilbert modular varieties of Galois quartic fields, J. Number Theory 63 (1997), no. 1, 47–58. MR 1438648, DOI 10.1006/jnth.1997.2074
  • H. G. Grundman and L. E. Lippincott, Hilbert modular fourfolds of arithmetic genus one, High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 217–226. MR 2076248
  • Friedrich E. P. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183–281. MR 393045
  • Friedrich Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Translated from the German and Appendix One by R. L. E. Schwarzenberger; With a preface to the third English edition by the author and Schwarzenberger; Appendix Two by A. Borel; Reprint of the 1978 edition. MR 1335917
  • F. Hirzebruch and A. Van de Ven, Hilbert modular surfaces and the classification of algebraic surfaces, Invent. Math. 23 (1974), 1–29. MR 364262, DOI 10.1007/BF01405200
  • F. Hirzebruch and D. Zagier, Classification of Hilbert modular surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 43–77. MR 0480356
  • Carl Ludwig Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969 (1969), 87–102 (German). MR 252349
  • Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. MR 930101, DOI 10.1007/978-3-642-61553-5
  • Don Zagier, On the values at negative integers of the zeta-function of a real quadratic field, Enseign. Math. (2) 22 (1976), no. 1-2, 55–95. MR 406957
Similar Articles
Additional Information
  • H. G. Grundman
  • Affiliation: Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, Pennsylvania 19010
  • MR Author ID: 307385
  • Email: grundman@brynmawr.edu
  • L. E. Lippincott
  • Affiliation: Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, Pennsylvania 19010
  • Email: llippinc@brynmawr.edu
  • Received by editor(s): April 23, 2004
  • Received by editor(s) in revised form: May 10, 2005
  • Published electronically: March 21, 2006
  • Additional Notes: The first author wishes to acknowledge the support of the Faculty Research Fund of Bryn Mawr College.
  • © Copyright 2006 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 75 (2006), 1553-1560
  • MSC (2000): Primary 11F41, 14E08; Secondary 14J10, 14J35
  • DOI: https://doi.org/10.1090/S0025-5718-06-01842-4
  • MathSciNet review: 2219045