Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Runge-Kutta methods and local uniform grid refinement
HTML articles powered by AMS MathViewer

by R. A. Trompert and J. G. Verwer PDF
Math. Comp. 60 (1993), 591-616 Request permission

Abstract:

Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transitions, so as to avoid discretization on a very fine grid covering the entire physical domain. This paper examines the LUGR technique for time-dependent problems when combined with static regridding. Static regridding means that in the course of the time evolution, the space grid is adapted at discrete times. The present paper considers the general class of Runge-Kutta methods for the numerical time integration. Following the method of lines approach, we develop a mathematical framework for the general Runge-Kutta LUGR method applied to multispace-dimensional problems. We hereby focus on parabolic problems, but a considerable part of the examination applies to hyperbolic problems as well. Much attention is paid to the local error analysis. The central issue here is a "refinement condition" which is to underly the refinement strategy. By obeying this condition, spatial interpolation errors are controlled in a manner that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation. A diagonally implicit Runge-Kutta method is discussed for illustration purposes, both theoretically and numerically.
References
Similar Articles
Additional Information
  • © Copyright 1993 American Mathematical Society
  • Journal: Math. Comp. 60 (1993), 591-616
  • MSC: Primary 65M50; Secondary 65L06, 65M20
  • DOI: https://doi.org/10.1090/S0025-5718-1993-1181332-3
  • MathSciNet review: 1181332