Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Exponential Thurston maps and limits of quadratic differentials
HTML articles powered by AMS MathViewer

by John Hubbard, Dierk Schleicher and Mitsuhiro Shishikura
J. Amer. Math. Soc. 22 (2009), 77-117
DOI: https://doi.org/10.1090/S0894-0347-08-00609-7
Published electronically: June 3, 2009

Previous version: Original version posted July 9, 2008
Corrected version: Current version corrects publisher's introduction of inconsistent spelling of "Teichmüller".

Abstract:

We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers $g\colon \mathbb {C}\to \mathbb {C}\setminus \{0\}$ such that $0$ has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map $\lambda e^z$ or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston’s topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree.

One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

References
  • Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
  • Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
  • Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 8, 1517–1534. MR 1721835, DOI 10.1142/S0218127499001061
  • Ben Bielefeld, Yuval Fisher, and John Hubbard, The classification of critically preperiodic polynomials as dynamical systems, J. Amer. Math. Soc. 5 (1992), no. 4, 721–762. MR 1149891, DOI 10.1090/S0894-0347-1992-1149891-3
  • Henk Bruin, Alexandra Kaffl, Dierk Schleicher: Symbolic dynamics of quadratic polynomials. Manuscript, in preparation. Earlier version circulated as [BS].
  • I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49–77. MR 752391, DOI 10.5186/aasfm.1984.0903
  • Henk Bruin, Dierk Schleicher: Symbolic dynamics of quadratic polynomials. Report, Institute Mittag-Leffler, Djursholm 7 (2001/02). (128 pp.)
  • Robert Devaney, Lisa Goldberg, John Hubbard: A dynamical approximation to the exponential map of polynomials. Preprint, MSRI (1986).
  • Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
  • Leonhardt Euler: De formulis exponentialibus replicatis. Acta Acad. Petropolitanae 1 (1777), 38–60.
  • A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
  • Markus Förster, Lasse Rempe, and Dierk Schleicher, Classification of escaping exponential maps, Proc. Amer. Math. Soc. 136 (2008), no. 2, 651–663. MR 2358507, DOI 10.1090/S0002-9939-07-09073-9
  • Markus Förster, Dierk Schleicher: Parameter rays for the complex exponential family. Ergod. Thy and Dynam. Syst., to appear. ArXiv math.DS/050597.
  • Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906, DOI 10.1090/surv/076
  • John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR 2245223
  • John H. Hubbard and Dierk Schleicher, The spider algorithm, Complex dynamical systems (Cincinnati, OH, 1994) Proc. Sympos. Appl. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1994, pp. 155–180. MR 1315537, DOI 10.1090/psapm/049/1315537
  • Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
  • Jan Kiwi, Rational laminations of complex polynomials, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) Contemp. Math., vol. 269, Amer. Math. Soc., Providence, RI, 2001, pp. 111–154. MR 1810538, DOI 10.1090/conm/269/04331
  • Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
  • Silvio Levy: Critically finite rational maps. Ph.D. thesis, Princeton (1985).
  • Eike Lau, Dierk Schleicher: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Preprint, Inst. Math. Sci., Stony Brook 19 (1994). ArXiv math.DS/9411238.
  • Bastian Laubner, Dierk Schleicher and Vlad Vicol: A dynamical classification of postsingularly finite exponential maps. Discr. and Cont. Dyn. Sys., to appear. ArXiv math.DS/0602602.
  • Curt McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989), no. 1, 95–127. MR 999314, DOI 10.1007/BF01850656
  • Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
  • Curtis T. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. (2) 151 (2000), no. 1, 327–357. MR 1745010, DOI 10.2307/121120
  • Alfredo Poirier: On postcritically finite polynomials I/II. Preprint, Inst. Math. Sci., Stony Brook 5/7 (1993).
  • Lasse Rempe, Dierk Schleicher: Bifurcations in the space of exponential maps. Submitted. Preprint, Institute for Mathematical Sciences at Stony Brook 3 (2004). ArXiv math.DS/0311480.
  • Lasse Rempe, Dierk Schleicher: Combinatorics of bifurcations in exponential parameter space. In: P. Rippon, G. Stallard (eds), Transcendental dynamics and complex analysis, volume in honour of Professor I. N. Baker, LMS Lecture Note Series. ArXiv math.DS/0408011.
  • Lasse Rempe, Dierk Schleicher: Bifurcation Loci of Exponential Maps and Quadratic Polynomials: Local Connectivity, Triviality of Fibers, and Density of Hyperbolicity, with Lasse Rempe. In: M. Lyubich, M. Yampolsky (eds), Holomorphic Dynamics and Renormalization, in Honour of John Milnor’s 75th birthday. Fields Institute Communications 53 (2008), to appear.
  • Dierk Schleicher: On the dynamics of iterated exponential maps. Habilitationsschrift, TU München (1999).
  • Dierk Schleicher, Attracting dynamics of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 3–34. MR 1976827
  • Dierk Schleicher: Internal addresses in the Mandelbrot set and Galois groups of polynomials. Manuscript (2007), submitted. Earlier version circulated as [LS].
  • Dierk Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, Duke Math. J. 136 (2007), no. 2, 343–356. MR 2286634, DOI 10.1215/S0012-7094-07-13625-1
  • Dierk Schleicher, Hyperbolic components in exponential parameter space, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 223–228 (English, with English and French summaries). MR 2078079, DOI 10.1016/j.crma.2004.05.014
  • Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
  • Dierk Schleicher and Johannes Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 327–354. MR 1996442
Similar Articles
Bibliographic Information
  • John Hubbard
  • Affiliation: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853, and Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France
  • Email: jhh8@cornell.edu
  • Dierk Schleicher
  • Affiliation: School of Engineering and Science, Jacobs University Bremen, Postfach 750 561, D-28725 Bremen, Germany
  • MR Author ID: 359328
  • Email: dierk@jacobs-university.de
  • Mitsuhiro Shishikura
  • Affiliation: Department of Mathematics, Faculty of Sciences, Kyoto University, Kyoto 606-8502, Japan
  • Email: mitsu@math.kyoto-u.ac.jp
  • Received by editor(s): March 28, 2006
  • Published electronically: June 3, 2009
  • © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 22 (2009), 77-117
  • MSC (2000): Primary 30F30; Secondary 30F60, 32G15, 37F20, 37F30
  • DOI: https://doi.org/10.1090/S0894-0347-08-00609-7
  • MathSciNet review: 2449055