Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Principe local-global pour les zéro-cycles sur les surfaces réglées
HTML articles powered by AMS MathViewer

by Jean-Louis Colliot-Thélène
J. Amer. Math. Soc. 13 (2000), 101-124
DOI: https://doi.org/10.1090/S0894-0347-99-00318-5
Published electronically: September 29, 1999

Abstract:

Let $k$ be a number field, $C/k$ a smooth projective curve, and $X$ a smooth projective surface which is a conic bundle over $C$. Let $CH_0(X/C)$ be the relative Chow group, which is the kernel of the projection map $CH_0(X) \rightarrow CH_0(C)$ on Chow groups of zero-cycles. For each place $v$ of $k$, one may consider the relative Chow group $CH_0(X_v/C_v)=CH_0(X\times _kk_v/C\times _kk_v)$. Under minor assumptions, we identify the diagonal image of $CH_0(X/C)$ in the product of all $CH_0(X_v/C_v)$ as the kernel of the natural pairing with the Brauer group of $X$. When $C$ is an elliptic curve with finite Tate-Shafarevich group, under minor assumptions, we show that the Brauer-Manin obstruction to the existence of a zero-cycle of degree one on $X$ is the only obstruction.
References
Similar Articles
Bibliographic Information
  • Jean-Louis Colliot-Thélène
  • Affiliation: C.N.R.S., UMR 8628, Mathématiques, Bâtiment 425, Université de Paris-Sud, F–91405 Orsay, France
  • MR Author ID: 50705
  • Email: colliot@math.u-psud.fr
  • Received by editor(s): May 29, 1998
  • Received by editor(s) in revised form: June 17, 1999
  • Published electronically: September 29, 1999
  • Additional Notes: La première partie de l’article (groupes de Chow relatifs, Théorèmes 1.3 et 1.4) a été conçue en janvier 1996, lors d’un séjour à l’Institut Tata (TIFR, Mumbai, Inde), Institut que j’ai plaisir à remercier pour son hospitalité. Je remercie aussi le Centre Franco-Indien pour la Promotion de la Recherche Avancée (CEFIPRA/IFCPAR) pour son soutien en diverses occasions. Le Théorème 1.5 a été trouvé à l’occasion de la conférence L’arithmétique et la géométrie des cycles algébriques, qui s’est tenue à Banff (Alberta, Canada), du 7 au 19 Juin 1998. Une version préliminaire fut mise au point à l’Institut Isaac Newton (Cambridge, G.-B.).
    Je remercie R. Sujatha pour de nombreuses discussions à l’origine de ce travail, et dont on trouvera une trace au §9. Je remercie aussi E. Frossard, V. Suresh et R. Parimala pour diverses remarques.

  • Dedicated: Avec un appendice par E. Frossard et V. Suresh
  • © Copyright 1999 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 13 (2000), 101-124
  • MSC (2000): Primary 11G35, 14J26, 14C15; Secondary 14J20, 14G25
  • DOI: https://doi.org/10.1090/S0894-0347-99-00318-5
  • MathSciNet review: 1697092