Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Condition numbers of large matrices, and analytic capacities
HTML articles powered by AMS MathViewer

by N. K. Nikolski
St. Petersburg Math. J. 17 (2006), 641-682
DOI: https://doi.org/10.1090/S1061-0022-06-00924-1
Published electronically: May 3, 2006

Abstract:

Given an operator $T:X\longrightarrow X$ on a Banach space $X$, we compare the condition number of $T$, $\operatorname {CN}(T)= \Vert T\Vert \cdot \Vert T^{-1}\Vert$, and the spectral condition number defined as $\operatorname {SCN}(T)= \Vert T\Vert \cdot r(T^{-1})$, where $r(\cdot )$ stands for the spectral radius. For a set $\Upsilon$ of operators, we put $\Phi (\Delta ) = \sup \{\operatorname {CN}(T): T\in \Upsilon , \operatorname {SCN}(T) \le \Delta \}$, $\Delta \in [1,\infty )$, and say that $\Upsilon$ is spectrally $\Phi$-conditioned. As $\Upsilon$ we consider certain sets of $(n\times n)$-matrices or, more generally, algebraic operators with $\deg (T)\le n$ that admit a specific functional calculus. In particular, the following sets are included: Hilbert (Banach) space power bounded matrices (operators), polynomially bounded matrices, Kreiss type matrices, Tadmor–Ritt type matrices, and matrices (operators) admitting a Besov class $B^{s}_{p,q}$-functional calculus. The above function $\Phi$ is estimated in terms of the analytic capacity $\operatorname {cap}_{A}(\cdot )$ related to the corresponding function class $A$. In particular, for $A= B^{s}_{p,q}$, the quantity $\Phi (\Delta )$ is equivalent to $\Delta ^{n}n^{s}$ as $\Delta \longrightarrow \infty$ (or as $n\longrightarrow \infty$) for $s>0$, and is bounded by $\Delta ^{n}(\log (n))^{1/q}$ for $s=0$.
References
  • J. Arazy, S. D. Fisher, and J. Peetre, Besov norms of rational functions, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 125–129. MR 942262, DOI 10.1007/BFb0078868
  • Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
  • H. Bohr, A theorem concerning power series, Proc. London Math. Soc. (2) 13 (1914), 1–5.
  • I. A. Boricheva and E. M. Dyn′kin, A nonclassical problem of free interpolation, Algebra i Analiz 4 (1992), no. 5, 45–90 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 5, 871–908. MR 1202724
  • Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345. MR 50011, DOI 10.1007/BF02392289
  • E. M. Dyn′kin, Free interpolation sets for Hölder classes, Mat. Sb. (N.S.) 109(151) (1979), no. 1, 107–128, 166 (Russian). MR 538552
  • O. Èl′-Falla, N. K. Nikol′skiĭ, and M. Zarrabi, Estimates for resolvents in Beurling-Sobolev algebras, Algebra i Analiz 10 (1998), no. 6, 1–92 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 10 (1999), no. 6, 901–964. MR 1678988
  • Omar El-Fallah and Thomas Ransford, Extremal growth of powers of operators satisfying resolvent conditions of Kreiss-Ritt type, J. Funct. Anal. 196 (2002), no. 1, 135–154. MR 1941994, DOI 10.1006/jfan.2002.3934
  • F. R. Gantmaher, Teoriya matrits, Second supplemented edition, Izdat. “Nauka”, Moscow, 1966 (Russian). With an appendix by V. B. Lidskiĭ. MR 0202725
  • E. Gluskin, M. Meyer, and A. Pajor, Zeros of analytic functions and norms of inverse matrices, Israel J. Math. 87 (1994), no. 1-3, 225–242. MR 1286828, DOI 10.1007/BF02772996
  • Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
  • Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606
  • M. B. Gribov and N. K. Nikol′skiĭ, Invariant subspaces and rational approximation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 103–114, 320 (Russian, with English summary). Investigations on linear operators and the theory of functions, IX. MR 566744
  • Roland Hagen, Steffen Roch, and Bernd Silbermann, Spectral theory of approximation methods for convolution equations, Operator Theory: Advances and Applications, vol. 74, Birkhäuser Verlag, Basel, 1995. MR 1320262, DOI 10.1007/978-3-0348-9067-0
  • Alfred Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math. Soc. 5 (1954), 4–7. MR 61573, DOI 10.1090/S0002-9939-1954-0061573-6
  • Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043
  • V. È. Kacnel′son and V. I. Macaev, Spectral sets for operators in a Banach space and estimates of functions of finite-dimensional operators, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 3 (1966), 3–10 (Russian). MR 0206715
  • P. I. Lizorkin, Multipliers of Fourier integrals in the spaces $L_{p,\,\theta }$, Trudy Mat. Inst. Steklov. 89 (1967), 231–248 (Russian). MR 0217519
  • Albert W. Marshall and Ingram Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, vol. 143, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 552278
  • F. L. Nazarov, Private communication, August 2004 (Russian); (fedja@math.msu.edu).
  • Nikolai Nikolski, In search of the invisible spectrum, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1925–1998. MR 1738071
  • Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR 1864396
  • Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002. Model operators and systems; Translated from the French by Andreas Hartmann and revised by the author. MR 1892647
  • N. Nikolski, Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics, Algebra i Analiz 14 (2002), no. 4, 141–157; English transl., St. Petersburg Math. J. 14 (2003), no. 4, 641–653. MR 1935921
  • N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
  • N. K. Nikol′skiĭ, Izbrannye zadachi vesovoĭ approksimatsii i spektral′nogo analiza, Izdat. “Nauka” Leningrad. Otdel., Leningrad, 1974 (Russian). Trudy Mat. Inst. Steklov. 120 (1974). MR 0467269
  • N. K. Nikol′skiĭ, Invariant subspaces in operator theory and function theory, Mathematical analysis, Vol. 12 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1974, pp. 199–412, 468. (loose errata) (Russian). MR 0430821
  • S. M. Nikol′skiĭ, Priblizhenie funktsiĭ mnogikh peremennykh i teoremy vlozheniya, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0310616
  • Jaak Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Duke University, Mathematics Department, Durham, N.C., 1976. MR 0461123
  • Vladimir V. Peller, Estimates of functions of power bounded operators on Hilbert spaces, J. Operator Theory 7 (1982), no. 2, 341–372. MR 658618
  • —, Estimates of functions of Hilbert space operators, similarity to a contraction and related function algebras, Linear and Complex Analysis Problem Book, Lecture Notes in Math., vol. 1043, Springer-Verlag, Berlin, 1984, pp. 199–204.
  • Hervé Queffélec, Sur un théorème de Gluskin-Meyer-Pajor, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 2, 155–158 (French, with English and French summaries). MR 1231413
  • Juan Jorge Schäffer, Norms and determinants of linear mappings, Math. Z. 118 (1970), 331–339. MR 281730, DOI 10.1007/BF01109869
  • N. A. Shirokov, Zero sets of analytic functions from the space $B^{1/p}_{p,1}$ are Carleson sets, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981), 253–257, 270 (Russian, with English summary). Investigations on linear operators and the theory of functions, XI. MR 629851
  • Béla Sz.-Nagy and Ciprian Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson et Cie, Paris; Akadémiai Kiadó, Budapest, 1967 (French). MR 0225183
  • Hans Triebel, Spaces of Besov-Hardy-Sobolev type, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1978. Teubner-Texte zur Mathematik; With German, French and Russian summaries. MR 581907
  • Nicholas Th. Varopoulos, Some remarks on $Q$-algebras, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 4, 1–11 (English, with French summary). MR 338780
  • I. V. Videnskiĭ and N. A. Shirokov, On an extremal problem in the Wiener algebra, Algebra i Analiz 11 (1999), no. 6, 122–138 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 11 (2000), no. 6, 1035–1049. MR 1746071
  • Pascale Vitse, Functional calculus under Kreiss type conditions, Math. Nachr. 278 (2005), no. 15, 1811–1822. MR 2182092, DOI 10.1002/mana.200310341
  • Pascale Vitse, Functional calculus under the Tadmor-Ritt condition, and free interpolation by polynomials of a given degree, J. Funct. Anal. 210 (2004), no. 1, 43–72. MR 2051632, DOI 10.1016/j.jfa.2003.08.002
  • —, A Besov algebra functional calculus for Tadmor–Ritt operators, AAA Preprint Series, Univ. Ulm, 2004.
  • John Wermer, Potential theory, Lecture Notes in Mathematics, Vol. 408, Springer-Verlag, Berlin-New York, 1974. MR 0454033
Similar Articles
Bibliographic Information
  • N. K. Nikolski
  • Affiliation: Département de Mathématiques, Université de Bordeaux 1, 351, cours de la Libération, 33405 Talence, France, and St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
  • Email: Nikolai.Nikolski@math.u-bordeaux1.fr
  • Received by editor(s): April 15, 2005
  • Published electronically: May 3, 2006
  • © Copyright 2006 American Mathematical Society
  • Journal: St. Petersburg Math. J. 17 (2006), 641-682
  • MSC (2000): Primary 47A60, 65F35, 15A12; Secondary 15A60, 32A38, 46J15
  • DOI: https://doi.org/10.1090/S1061-0022-06-00924-1
  • MathSciNet review: 2173939