Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Schrödinger equations with time-dependent strong magnetic fields
HTML articles powered by AMS MathViewer

by D. Aiba and K. Yajima
St. Petersburg Math. J. 25 (2014), 175-194
DOI: https://doi.org/10.1090/S1061-0022-2014-01284-8
Published electronically: March 12, 2014

Abstract:

Time dependent $d$-dimensional Schrödinger equations $i\partial _t u = H(t)u$, $H(t)=-(\partial _x-iA(t,x))^2+ V(t,x)$ are considered in the Hilbert space $\mathcal {G}=L^2(\mathbb {R}^d)$ of square integrable functions. $V(t,x)$ and $A(t,x)$ are assumed to be almost critically singular with respect to the spatial variables $x\in \mathbb {R}^d$ both locally and at infinity for the operator $H(t)$ to be essentially selfadjoint on $C_0^\infty (\mathbb {R}^d)$. In particular, when the magnetic fields $B(t,x)$ produced by $A(t,x)$ are very strong at infinity, $V(t,x)$ can explode to the negative infinity like $-\theta |B(t,x)|-C(|x|^2+1)$ for some $\theta <1$ and $C>0$. It is shown that such equations uniquely generate unitary propagators in $\mathcal {G}$ under suitable conditions on the size and singularities of the time derivatives of the potentials $\dot V(t,x)$ and $\dot A(t,x)$.
References
  • H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
  • Akira Iwatsuka, Essential selfadjointness of the Schrödinger operators with magnetic fields diverging at infinity, Publ. Res. Inst. Math. Sci. 26 (1990), no. 5, 841–860. MR 1082319, DOI 10.2977/prims/1195170737
  • Tosio Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 241–258. MR 279626
  • Tosio Kato, Linear evolution equations of “hyperbolic” type. II, J. Math. Soc. Japan 25 (1973), 648–666. MR 326483, DOI 10.2969/jmsj/02540648
  • Tosio Kato, Remarks on the selfadjointness and related problems for differential operators, Spectral theory of differential operators (Birmingham, Ala., 1981), North-Holland Math. Stud., vol. 55, North-Holland, Amsterdam-New York, 1981, pp. 253–266. MR 640895
  • Tosio Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135–148 (1973). MR 333833, DOI 10.1007/BF02760233
  • J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
  • Herbert Leinfelder and Christian G. Simader, Schrödinger operators with singular magnetic vector potentials, Math. Z. 176 (1981), no. 1, 1–19. MR 606167, DOI 10.1007/BF01258900
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0493420
  • Kenji Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), no. 3, 415–426. MR 891945
  • Kenji Yajima, Schrödinger evolution equations with magnetic fields, J. Analyse Math. 56 (1991), 29–76. MR 1243098, DOI 10.1007/BF02820459
  • Kenji Yajima, On time dependent Schrödinger equations, Dispersive nonlinear problems in mathematical physics, Quad. Mat., vol. 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 267–329. MR 2231332
  • Kenji Yajima, Schrödinger equations with time-dependent unbounded singular potentials, Rev. Math. Phys. 23 (2011), no. 8, 823–838. MR 2836569, DOI 10.1142/S0129055X11004436
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J10
  • Retrieve articles in all journals with MSC (2010): 35J10
Bibliographic Information
  • D. Aiba
  • Affiliation: Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
  • Email: aiba@math.gakushuin.ac.jp
  • K. Yajima
  • Affiliation: Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
  • Email: kenji.yajima@gakushuin.ac.jp
  • Received by editor(s): October 20, 2012
  • Published electronically: March 12, 2014
  • Additional Notes: Supported by JSPS grant in aid for scientific research No. 22340029

  • Dedicated: To the memory of the late Professor Vladimir S. Buslaev
  • © Copyright 2014 American Mathematical Society
  • Journal: St. Petersburg Math. J. 25 (2014), 175-194
  • MSC (2010): Primary 35J10
  • DOI: https://doi.org/10.1090/S1061-0022-2014-01284-8
  • MathSciNet review: 3114848