Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The invariant polynomials on simple Lie superalgebras
HTML articles powered by AMS MathViewer

by Alexander Sergeev
Represent. Theory 3 (1999), 250-280
DOI: https://doi.org/10.1090/S1088-4165-99-00077-1
Published electronically: August 31, 1999

Abstract:

Chevalley’s theorem states that for any simple finite dimensional Lie algebra $\mathfrak {g}$: (1) the restriction homomorphism of the algebra of polynomials $S(\mathfrak {g}^*)\longrightarrow S(\mathfrak {h}^*)$ onto the Cartan subalgebra $\mathfrak {h}$ induces an isomorphism $S(\mathfrak {g}^*)^{\mathfrak {g}}\cong S(\mathfrak {h}^*)^{W}$, where $W$ is the Weyl group of $\mathfrak {g}$; (2) each $\mathfrak {g}$-invariant polynomial is a linear combination of the polynomials $\operatorname {tr} \rho (x)^k$, where $\rho$ is a finite dimensional representation of $\mathfrak {g}$. None of these facts is necessarily true for simple Lie superalgebras. We reformulate Chevalley’s theorem as formula $(*)$ below to include Lie superalgebras. Let $\mathfrak {h}$ be the split Cartan subalgebra of $\mathfrak {g}$; let $R=R_+\cup R_-$ be the set of nonzero roots of $\mathfrak {g}$, the union of positive and negative ones. Set $\tilde R_+=\{\alpha \in R_+\mid -\alpha \in R_-\}$. For each root $\alpha \in \tilde R_+$ denote by $\mathfrak {g}(\alpha )$ the Lie superalgebra generated by $\mathfrak {h}$ and the root superspaces $\mathfrak {g}_\alpha$ and $\mathfrak {g}_{-\alpha }$. Let the image of $S(\mathfrak {g}(\alpha )^*)^{\mathfrak {g}(\alpha )}$ under the restriction homomorphism $S(\mathfrak {g}(\alpha )^*)\longrightarrow S(\mathfrak {h}^*)$ be denoted by $I^{\alpha }(\mathfrak {h}^*)$ and the image of $S(\mathfrak {g}^*)^{\mathfrak {g}}$ by $I(\mathfrak {h}^*)$. Then \begin{equation*} I(\mathfrak {h}^*)=\bigcap \limits _{\alpha \in \tilde R_+}I^{\alpha }(\mathfrak {h}^*).\tag *{(*)} \end{equation*} Chevalley’s theorem for anti-invariant polynomials is also presented.
References
  • Bernstein J., Finite dimensional representations of semisimple Lie algebras. (Verma module approach). In: Leites D. (ed.) Seminar on Supermanifolds, Reports of Stockholm University, n. 10, 1987–92.
  • I. N. Bernšteĭn and D. A. Leĭtes, A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series $\textrm {Gl}$ and $\textrm {sl}$, C. R. Acad. Bulgare Sci. 33 (1980), no. 8, 1049–1051 (Russian). MR 620836
  • J. N. Bernstein and D. A. Leĭtes, The superalgebra $Q(n)$, the odd trace and the odd determinant, C. R. Acad. Bulgare Sci. 35 (1982), no. 3, 285–286. MR 677839
  • F. A. Berezin, Representations of the supergroup $U(p,q).$, Funkcional. Anal. i Priložen. 10 (1976), no. 3, 70–71 (Russian). MR 0422508, DOI 10.1007/BF01075528
  • Berezin F., Laplace–Cazimir operators on Lie supergroups. The general theory. Preprints ITEPh 77, Moscow, ITEPh, 1977; Berezin F. Introduction to superanalysis. Edited and with a foreword by A. A. Kirillov. With an appendix by V. I. Ogievetsky. Translated from the Russian by J. Niederle and R. Kotecký. Translation edited by Dimitri Leites. Mathematical Physics and Applied Mathematics, 9. D. Reidel Publishing Co., Dordrecht-Boston, MA, 1987.
  • Bourbaki N., Groupes et algébres de Lie. Ch. VII–VIII, Hermann, Paris, 1978.
  • Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1975 edition. MR 979493
  • Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR 979760
  • George Egorov, How to superize $\mathfrak {gl}(\infty )$, Topological and geometrical methods in field theory (Turku, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 135–146. MR 1224273
  • V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
  • V. G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Algebra 5 (1977), no. 8, 889–897. MR 444725, DOI 10.1080/00927877708822201
  • Victor G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 2, , Phys. Sci., 645–647. MR 735060, DOI 10.1073/pnas.81.2.645
  • I. N. Bernšteĭn and D. A. Leĭtes, A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series $\textrm {Gl}$ and $\textrm {sl}$, C. R. Acad. Bulgare Sci. 33 (1980), no. 8, 1049–1051 (Russian). MR 620836
  • D. A. Leĭtes, Lie superalgebras, Current problems in mathematics, Vol. 25, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 3–49 (Russian). MR 770940
  • D. A. Leĭtes, M. V. Saveliev, and V. V. Serganova, Embeddings of $\textrm {osp}(N/2)$ and the associated nonlinear supersymmetric equations, Group theoretical methods in physics, Vol. I (Yurmala, 1985) VNU Sci. Press, Utrecht, 1986, pp. 255–297. MR 919750
  • Manin Yu. (ed.), Current problems in mathematics. Newest results, Vol. 32, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, 3–70.
  • A. Okun′kov and G. Ol′shanskiĭ, Shifted Schur functions, Algebra i Analiz 9 (1997), no. 2, 73–146 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 9 (1998), no. 2, 239–300. MR 1468548
  • Onishchik A., Vinberg E., Lie groups and Algebraic Groups, Springer, 1987.
  • Penkov I., Characters of strongly generic irreducible Lie superalgebra representations. Preprint ESI 341, Vienna, 1996; Internat. J. Math. 9, 1998, no. 3, 331–366.
  • Ivan Penkov, Generic representations of classical Lie superalgebras and their localization, Monatsh. Math. 118 (1994), no. 3-4, 267–313. MR 1309652, DOI 10.1007/BF01301693
  • Ivan Penkov and Vera Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math. 5 (1994), no. 3, 389–419. MR 1274125, DOI 10.1142/S0129167X9400022X
  • Ivan Penkov and Vera Serganova, Representations of classical Lie superalgebras of type $\textrm {I}$, Indag. Math. (N.S.) 3 (1992), no. 4, 419–466. MR 1201236, DOI 10.1016/0019-3577(92)90020-L
  • Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI 10.1007/BFb0083503
  • Sergeev A., Laplace operators and Lie superalgebra representations. Ph.D. thesis, Moscow University, 1985. In: Leites D. (ed.) Seminar on Supermanifolds, Reports of Stockholm University, n. 32/1988–15, 44–95.
  • A. N. Sergeev, Invariant polynomial functions on Lie superalgebras, C. R. Acad. Bulgare Sci. 35 (1982), no. 5, 573–576 (Russian). MR 680999
  • A. N. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n,\,\textbf {C})$, Lett. Math. Phys. 7 (1983), no. 3, 177–179. MR 706205, DOI 10.1007/BF00400431
  • V. N. Shander, Orbits and invariants of the supergroup $\textrm {GQ}_n$, Funktsional. Anal. i Prilozhen. 26 (1992), no. 1, 69–71 (Russian); English transl., Funct. Anal. Appl. 26 (1992), no. 1, 55–56. MR 1163022, DOI 10.1007/BF01077078
  • Manfred Scheunert, Invariant supersymmetric multilinear forms and the Casimir elements of $P$-type Lie superalgebras, J. Math. Phys. 28 (1987), no. 5, 1180–1191. MR 887044, DOI 10.1063/1.527565
  • Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 17A70, 17B35, 13A50
  • Retrieve articles in all journals with MSC (1991): 17A70, 17B35, 13A50
Bibliographic Information
  • Alexander Sergeev
  • Affiliation: On leave of absence from the Balakovo Institute of Technique of Technology and Control, Branch of Saratov State Technical University, Russia; Correspondence: c/o D. Leites, Department of Mathematics, University of Stockholm, Roslagsv. 101, Kräftriket hus 6, S-106 91, Stockholm, Sweden
  • Email: mleites@matematik.su.se
  • Received by editor(s): April 22, 1999
  • Received by editor(s) in revised form: June 28, 1999
  • Published electronically: August 31, 1999
  • Additional Notes: I am thankful to D. Leites for help and support.
  • © Copyright 1999 American Mathematical Society
  • Journal: Represent. Theory 3 (1999), 250-280
  • MSC (1991): Primary 17A70; Secondary 17B35, 13A50
  • DOI: https://doi.org/10.1090/S1088-4165-99-00077-1
  • MathSciNet review: 1714627