THE DENSITY OF PRIMES DIVIDING A TERM IN THE SOMOS-5 SEQUENCE

BRYANT DAVIS, REBECCA KOTSONIS, AND JEREMY ROUSE

(Communicated by Matthew A. Papanikolas)

Abstract. The Somos-5 sequence is defined by $a_0 = a_1 = a_2 = a_3 = a_4 = 1$ and $a_m = a_{m-1}a_{m-4} + a_m - 2a_{m-3}$ for $m \geq 5$. We relate the arithmetic of the Somos-5 sequence to the elliptic curve $E : y^2 + xy = x^3 + x^2 - 2x$ and use properties of Galois representations attached to E to prove the density of primes p dividing some term in the Somos-5 sequence is equal to $\frac{5087}{10752}$.

1. Introduction and statement of results

There are many results in number theory that relate to a determination of the primes dividing some particular sequence. For example, it is well known that if p is a prime number, then p divides some term of the Fibonacci sequence, defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$. Students in elementary number theory learn that a prime p divides a number of the form $n^2 + 1$ if and only if 2 has even order in \mathbb{F}_p^\times.

A related result is the following. The Lucas numbers are defined by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ for $n \geq 2$. In 1985, Lagarias proved (see [9] and [10]) that the density of primes dividing some Lucas number is $\frac{2}{3}$. Given a prime number p, let $Z(p)$ be the smallest integer m so that $p | F_m$. A prime p divides L_n for some n if and only if $Z(p)$ is even. In [2], Paul Cubre and the third author prove a conjecture of Bruckman and Anderson on the density of primes p for which $m | Z(p)$, for an arbitrary positive integer m.

In the early 1980s, Michael Somos discovered integer-valued non-linear recurrence sequences. The Somos-k sequence is defined by $c_0 = c_1 = \cdots = c_{k-1} = 1$ and

$$c_m = \frac{c_{m-1}c_{m-(k-1)} + c_{m-2}c_{m-(k-2)} + \cdots + c_{m-\lceil \frac{k}{2} \rceil}c_{m-\lfloor \frac{k}{2} \rfloor}}{c_{m-k}}$$

for $m \geq k$. Despite the fact that division is involved in the definition of the Somos sequences, the values c_m are integral for $4 \leq k \leq 7$. Fomin and Zelevinsky [3] show that the introduction of parameters into the recurrence results in the c_m being
Laurent polynomials in those parameters. Also, Speyer [15] gave a combinatorial interpretation of the Somos sequences in terms of the number of perfect matchings in a family of graphs.

Somos-4 and Somos-5 type sequences are also connected with the arithmetic of elliptic curves (a connection made quite explicit by A. N. W. Hone in [5], and [6]). If a_n is the nth term in the Somos-4 sequence, $E : y^2 + y = x^3 - x$ and $P = (0, 0) \in E(\mathbb{Q})$, then the denominator of the x-coordinate of $(2n - 3)P$ is equal to a_n^2. It follows from this that $p | a_n$ if and only if $(2n - 3)P$ reduces to the identity in $E(\mathbb{F}_p)$, and so a prime p divides a term in the Somos-4 sequence if and only if $(0, 0) \in E(\mathbb{F}_p)$ has odd order. In [8], Rafe Jones and the third author prove that the density of primes dividing some term of the Somos-4 sequence is $\frac{11}{21}$. The goal of the present paper is to prove an analogous result for the Somos-5 sequence.

Let $\pi'(x)$ denote the number of primes $p \leq x$ so that p divides some term in the Somos-5 sequence. We have the following table of data:

<table>
<thead>
<tr>
<th>x</th>
<th>$\pi'(x)$</th>
<th>$\pi'(x)/\pi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>0.750000</td>
</tr>
<tr>
<td>10^2</td>
<td>12</td>
<td>0.480000</td>
</tr>
<tr>
<td>10^3</td>
<td>83</td>
<td>0.494048</td>
</tr>
<tr>
<td>10^4</td>
<td>588</td>
<td>0.478438</td>
</tr>
<tr>
<td>10^5</td>
<td>4539</td>
<td>0.473207</td>
</tr>
<tr>
<td>10^6</td>
<td>37075</td>
<td>0.472305</td>
</tr>
<tr>
<td>10^7</td>
<td>314485</td>
<td>0.473209</td>
</tr>
<tr>
<td>10^8</td>
<td>2725670</td>
<td>0.473087</td>
</tr>
<tr>
<td>10^9</td>
<td>24057711</td>
<td>0.473134</td>
</tr>
<tr>
<td>10^{10}</td>
<td>215298607</td>
<td>0.473129</td>
</tr>
<tr>
<td>10^{11}</td>
<td>1948329818</td>
<td>0.473119</td>
</tr>
</tbody>
</table>

Our main result is the following.

Theorem 1. We have

$$
\lim_{x \to \infty} \frac{\pi'(x)}{\pi(x)} = \frac{5087}{10752} \approx 0.473121.
$$

The Somos-5 sequence is related to the coordinates of rational points on the elliptic curve $E : y^2 + xy = x^3 + x^2 - 2x$. This curve has $E(\mathbb{Q}) \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and generators are $P = (2, 2)$ (of infinite order) and $Q = (0, 0)$ (of order 2). We have (see Lemma 3) that

$$
mP + Q = \left(a_{m+2}^2 - a_{m} a_{m+4}, \frac{4a_{m} a_{m+2} a_{m+4} - a_{m}^2 a_{m+6} - a_{m+2}^3}{a_{m+2}^3} \right).
$$

It follows that a prime p divides a term in the Somos-5 sequence if and only if the reduction of Q modulo p is in $\langle P \rangle \subseteq E(\mathbb{F}_p)$. Another way of stating this is the following: there is a 2-isogeny $\phi : E \to E'$, where $E' : y^2 + xy = x^3 + x^2 + 8x + 10$ and

$$
\phi(x, y) = \left(\frac{x^2 - 2}{x}, \frac{x^2 y + 2x + 2y}{x^2} \right).
$$

The kernel of ϕ is $\{0, Q\}$. Letting $R = \phi(P)$ we show (see Theorem 4) that a prime p of good reduction divides some term in the Somos-5 sequence if and only if the order of P in $E(\mathbb{F}_p)$ is twice that of R in $E'(\mathbb{F}_p)$.
A result of Pink (see Proposition 3.2 on page 284 of [11]) shows that the \(\ell\)-adic valuation of the order of a point \(P \pmod{p}\) can be determined from a suitable Galois representation attached to an elliptic curve. For a positive integer \(k\), we let \(K_k\) be the field obtained by adjoining to \(\mathbb{Q}\) the \(x\) and \(y\) coordinates of all points \(\beta_k\) with \(2^k\beta_k = P\). There is a Galois representation \(\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \to \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})\) and we relate the power of 2 dividing the order of \(P\) in \(E(\mathbb{F}_p)\) to \(\rho_{E,2^k}(\sigma_p)\), where \(\sigma_p\) is a Frobenius automorphism at \(p\) in \(\text{Gal}(K_k/\mathbb{Q})\). Using the isogeny \(\phi\) we are able to relate \(\rho_{E,2^k}(\sigma_p)\) and \(\rho_{E',2^{k-1}}(\sigma_p)\), obtaining a criterion that indicates when \(p\) divides some term in the Somos-5 sequence. We then determine the image of \(\rho_{E,2^k}\) for all \(k\).

Once the image of \(\rho_{E,2^k}\) is known, the problem of computing the fraction of elements in the image with the desired properties is quite a difficult one. We introduce a new and simple method for computing this fraction and apply it to prove Theorem 1.

2. Background

If \(E/F\) is an elliptic curve given in the form \(y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6\), the set \(E(F)\) has the structure of an abelian group. Specifically, if \(P, Q \in E(F)\), let \(R = (x, y)\) be the third point of intersection between \(E\) and the line through \(P\) and \(Q\). We define \(P + Q = (x, y - a_1x - a_3)\). The multiplication by \(m\) map on an elliptic curve has degree \(m^2\), and so if \(E/\mathbb{C}\) is an elliptic curve and \(\alpha \in E(\mathbb{C})\), then there are \(m^2\) points \(\beta\) so that \(m\beta = \alpha\).

If \(K/\mathbb{Q}\) is a finite extension, let \(\mathcal{O}_K\) denote the ring of algebraic integers in \(K\). A prime \(p\) ramifies in \(K\) if \(p\mathcal{O}_K = \prod_{i=1}^g p_i^{e_i}\) and some \(e_i > 1\), where the \(p_i\) are distinct prime ideals of \(\mathcal{O}_K\).

Suppose \(K/\mathbb{Q}\) is Galois, \(p\) is a prime number that does not ramify in \(K\), and \(p\mathcal{O}_K = \prod_{i=1}^g p_i\). For each \(i\), there is a unique element \(\sigma \in \text{Gal}(K/\mathbb{Q})\) for which

\[\sigma(\alpha) \equiv \alpha^{p_i} \pmod{p_i} \]

for all \(\alpha \in \mathcal{O}_K\). This element is called the Artin symbol of \(p_i\), and is denoted \([K/\mathbb{Q}]_{p_i}\). If \(i \neq j\), \([K/\mathbb{Q}]_{p_i}\) and \([K/\mathbb{Q}]_{p_j}\) are conjugate in \(\text{Gal}(K/\mathbb{Q})\) and \([K/\mathbb{Q}] := \{ [K/\mathbb{Q}]_{p_i} : 1 \leq i \leq g \}\) is a conjugacy class in \(\text{Gal}(K/\mathbb{Q})\).

The key tool we will use in the proof of Theorem 1 is the Chebotarev density theorem.

Theorem 2 ([7], page 143). If \(C \subseteq \text{Gal}(K/\mathbb{Q})\) is a conjugacy class, then

\[\lim_{x \to \infty} \frac{\# \{ p \leq x : \text{prime}, [K/\mathbb{Q}]_p = C \}}{\pi(x)} = \frac{|C|}{|\text{Gal}(K/\mathbb{Q})|}. \]

Roughly speaking, each element of \(\text{Gal}(K/\mathbb{Q})\) arises as \([K/\mathbb{Q}]_p\) equally often.

Let \(E[m] = \{ P \in E : mp = 0 \}\) be the set of points of order dividing \(m\) on \(E\). Then \(\mathbb{Q}(E[m])/\mathbb{Q}\) is Galois and \(\text{Gal}(\mathbb{Q}(E[m])/\mathbb{Q})\) is isomorphic to a subgroup of \(\text{Aut}(E[m]) \cong GL_2(\mathbb{Z}/m\mathbb{Z})\). Moreover, Proposition V.2.3 of [13] implies that if \(\sigma_p\) is a Frobenius automorphism at some prime above \(p\) and \(\tau : \text{Gal}(\mathbb{Q}(E[m])/\mathbb{Q}) \to GL_2(\mathbb{Z}/m\mathbb{Z})\) is the usual mod \(m\) Galois representation, then \(\text{tr}(\sigma_p) \equiv \text{det}(\tau(\sigma_p)) \equiv p \pmod{m}\). Another useful fact is the following. If \(K/\mathbb{Q}\) is a number field, \(\mathfrak{p}\) is a prime ideal in \(\mathcal{O}_K\) above \(p\),
gcd(m, p) = 1 and P \in E(K)[m] is not the identity, then P does not reduce to the
identity in E(O_K/p).

We will construct Galois representations attached to elliptic curves with images
in \text{AGL}(\mathbb{Z}/2^k\mathbb{Z}) \cong (\mathbb{Z}/2^k\mathbb{Z})^2 \times \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z}). Elements of such a group can be
thought of either as pairs \((\vec{v}, M)\), where \(\vec{v}\) is a row vector, and \(M \in \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})\),
or as 3 \times 3 matrices \[
\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
e & f & 1
\end{bmatrix},
\]
where \(\vec{v} = [e \ f]\) and \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\). In the former
notation, the group operation is given by
\[
(\vec{v}_1, M_1) \ast (\vec{v}_2, M_2) = (\vec{v}_1 + \vec{v}_2 M_1, M_2 M_1).
\]

3. Connection between the Somos-5 sequence and E

Lemma 3. Define \(P = (2, 2)\) and \(Q = (0, 0)\) on \(E : y^2 + xy = x^3 + x^2 - 2x\). For
all \(m \geq 0\), we have the following relationship between the Somos-5 sequence and E:
\[
mP + Q = \left(\frac{a_{m+2}^2 - a_m a_{m+4}}{a_{m+2}^2}, \frac{4a_m a_{m+2} a_{m+4} - a_m^2 a_{m+6} - a_{m+2}^3}{a_m^2} \right).
\]

Proof. We will prove this by strong induction. A straightforward calculation shows
that the base cases \(m = 0\) and \(m = 1\) are true. For simplicity’s sake, we will denote
\(a = a_m, b = a_{m+1}, c = a_{m+2}, d = a_{m+3}, e = a_{m+4}, f = a_{m+5}, g = a_{m+6}\), and
\(i = a_{m+8}\). Our inductive hypothesis is that
\[
mP + Q = \left(\frac{c^2 - a e}{c^2}, \frac{4ace - a^2 g - e^3}{c^3} \right).
\]
We will now compute \((m + 2)P + Q\).

To find the \(x\) and \(y\) coordinates of \((m+2)P + Q\), we add \(2P = (1, -1)\) to \(mP + Q\).
If \(w\) is the slope and \(v\) is the \(y\)-intercept, the line between \(2P\) and \(mP + Q\) is
\(y = wx + v\) with \(w = \frac{ag-4ce}{cx} \) and \(v = -\frac{ag+3ce}{cx}\). Substituting this into the equation
for \(E\), we find the \(x\)-coordinate of \(2P + (mP + Q)\) to be \(r_x = \frac{a^2g^2 - 7aceg + ae^3 + c^3g + 8c^2e^2}{c^2e^2}\).
A straightforward but lengthy inductive calculation shows that if
\[
F(a, c, e, g) = a^2g^2 - 7aceg + ae^3 + c^3g + 8c^2e^2,
\]
then \(F(a_n, a_{n+2}, a_{n+4}, a_{n+6}) = 0\) for all \(n\). Also, \(ai = cg+8e^2\) holds (by Proposition
2.8 in Hone’s paper [6]). Since \(F(a, c, e, g) = 0\), we know that \(r_x = \frac{F(a, c, e, g)}{c^2e^2} = r_x\). Therefore, we know that \(r_x = \frac{-cg+e^2}{c^2} \).

Denote the \(y\)-coordinate of \((m+2)P + Q\) as \(r_y\). We compute that \(r_y = \frac{9ag}{e^2}\).
Using that \(r_y = r_y \frac{F(a, c, e, g)}{ace}\), we find that \(r_y = \frac{4ce^2 - c^3i - e^3}{c^3} \). Therefore, it is evident
that
\[
(m + 2)P + Q = \left(\frac{a_{m+4}^2 - a_m a_{m+2} a_{m+6}}{a_{m+4}^2}, \frac{4a_m a_{m+2} a_{m+4} a_{m+6} - a_m^2 a_{m+2} a_{m+8} - a_{m+4}^3}{a_{m+4}^3} \right).
\]
\(\Box\)

Let \(E'\) be given by \(E' : y^2 + xy = x^3 + x^2 + 8x + 10\) and let \(R = (1, 4) \in E'(\mathbb{Q})\).
We have a 2-isogeny \(\phi : E \to E'\) given by
\[
\phi(x, y) = \left(\frac{x^2 - 2}{x}, \frac{x^2 y + 2x + 2y}{x^2} \right).
\]
The elliptic curves E and E' each have conductor $102 = 2 \cdot 3 \cdot 17$. The next result classifies the primes of good reduction that divide a term in the Somos-5 sequence.

Theorem 4. If p is a prime of good reduction that divides a term in the Somos-5 sequence, the order of $P = (2, 2)$ in $E(\mathbb{F}_p)$ is twice the order of $R = (1, 4)$ in $E'(\mathbb{F}_p)$. Otherwise, their orders are the same.

Proof. If p divides a term in our sequence, say a_m, we know from our previous lemma that the denominators $(m-2)P + Q$ are divisible by p. Therefore, modulo p, $(m-2)P + Q = 0$. The point Q has order 2, so adding Q to both sides we know that $(m-2)P = Q$. Therefore, we can deduce that $Q \in \langle P \rangle$. We have $\ker(\phi) = \{Q, 0\}$ (see Section 3.4 of [13]). Therefore, if ϕ is restricted to the subgroup generated by P, we have $|\ker(\phi)| = 2$. Since $\phi(P) = R$, by the first isomorphism theorem for groups, $|\langle P \rangle| = |\ker(\phi)| = |R|$. It follows that $|P| = 2 \cdot |R|$.

Alternatively, assume p does not divide a term in the Somos-5 sequence. So, there is no m such that $mP + Q = 0$ modulo p, which implies that $Q \not\in \langle P \rangle$. Therefore, the kernel of ϕ restricted to $\langle P \rangle$ is $\{0\}$ and so $|P| = |\phi(P)| = |R|$.

It is easy to see that 2 and 3 each divide terms in the Somos-5 sequence, and the proof above can be modified to handle the case of 17. In particular, 17 divides a term in the Somos-5 sequence if and only if $Q \in \langle P \rangle \subseteq E_{ns}(\mathbb{F}_{17})$. Since E has non-split multiplicative reduction at 17, we have an isomorphism $E_{ns}(\mathbb{F}_{289}) \cong \mathbb{F}_{289}$ (by Proposition III.2.5 of [13]). The image of P in \mathbb{F}_{289} has order 9. Thus, $\langle P \rangle \subseteq E_{ns}(\mathbb{F}_{17})$ has odd order and so $(0, 0)$ cannot be contained in it. Thus, 17 does not divide any term in the Somos-5 sequence.

4. Galois representations

Denote by $E[2^r]$ the set of points on E with order dividing 2^r. Denote K_r the field obtained by adjoining to \mathbb{Q} all x and y coordinates of points β with $2^r \beta = P$. For a prime p that is unramified in K_r, let $\sigma = \left[\frac{K_r/\mathbb{Q}}{\mathfrak{p}} \right]$ for some prime ideal \mathfrak{p}_i above p. Given a basis $\langle A, B \rangle$ for $E[2^r]$, for any such $\sigma \in \mathrm{Gal}(K_r/\mathbb{Q})$, we have $\sigma(\beta) = \beta + eA + fB$. Also, $\sigma(A) = aA + bB$ and $\sigma(B) = cA + dB$. Define the map $\rho_{E,2^k} : \mathrm{Gal}(K_r/\mathbb{Q}) \to \mathrm{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$ by $\rho_{E,2^k}(\sigma) = (\vec{v}, M)$ where $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\vec{v} = [e \ f]$. Let $\tau : \mathrm{Gal}(K_r/\mathbb{Q}) \to \mathrm{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$ be given by $\tau(\sigma) = M$. In a similar way, we let K'_r be the field obtained by adjoining to \mathbb{Q} the x and y coordinates of points β' with $2^k \beta' = R$ and from this construct $\rho_{E',2^k} : \mathrm{Gal}(K'_r/\mathbb{Q}) \to \mathrm{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$.

Let $S = \{ \beta \in E(\mathbb{C}) : m \cdot \beta \in E(K) \}$ and let L be the field obtained by adjoining all x and y coordinates of points in S to K. Then the only primes p that ramify in L/K are those that divide m and those where E/K has bad reduction (see Proposition VIII.1.5(b) in [13]).

Note that, if p is unramified, there are multiple primes \mathfrak{p}_i above p which could result in different matrices M_i and \vec{v}_i. However, properties we consider of these \vec{v}_i and M_i do not depend on the specific choice of \mathfrak{p}_i. The map depends on the choice of basis for $E[2^r]$, we choose this basis as described below in Theorem 7.

Let $\beta_r \in E(\mathbb{C})$ be a point with $2^r \beta_r = P$. We say that β_r is an rth preimage of P under multiplication by 2. Let p be a prime with $p \neq 2$, 3 or 17, $\sigma = \left[\frac{K_r/\mathbb{Q}}{\mathfrak{p}_i} \right]$,
and \((\vec{v}, M) = \rho_{E,2^r}(\sigma)\). Assume that \(\det(I - M) \neq 0 \pmod{2^r}\). This implies that \(#E(\mathbb{F}_p) \neq 0 \pmod{2^r}\).

Theorem 5. Assume the notation above. Then \(2^h P\) has odd order in \(E(\mathbb{F}_p)\) if and only if \(2^h \vec{v}\) is in the image of \(I - M\).

Proof. First, assume \(2^h \vec{v}\) is in the image of \(I - M\). This means that \(\vec{x} = 2^h \vec{v} + \vec{x} M\) for some row vector \(\vec{x}\) with coordinates in \((\mathbb{Z}/2^r\mathbb{Z})^2\). If this is true for \(\vec{x} = [e \ f]\), define \(C := 2^h \beta_r + e A + f B \in E(K_r)\). Then \(\sigma(C) = C\). Since \(O_{K_r}/p_i\) is an extension of \(\mathbb{F}_p\), we can consider the reductions, modulo \(p_i\), of \(\beta_r, A, B\) and \(P\), namely \(\overline{\beta_r}, \overline{A}, \overline{B}\), and \(\overline{P}\). Since \(\sigma(C) = C\), we have that \(\overline{C} = 2^h \overline{\beta_r} + e \overline{A} + f \overline{B} \in E(\mathbb{F}_p)\) has the property that \(2^h \overline{C} = 2^h \overline{P}\).

If \(|\overline{C}|\) is odd, then \(|2^h \overline{P}|\) is necessarily odd. On the other hand, if \(|\overline{C}|\) is even, then every multiplication of \(C\) by \(2\) cuts the order by a factor of \(2\) until we arrive at a point of odd order. Since \(|E(\mathbb{F}_p)| = \det(I - M) \neq 0 \pmod{2^r}\), the power of \(2\) dividing \(|C|\) is also less than \(r\), and so \(|2^h \overline{C}| = |2^h \overline{P}|\) is odd.

Conversely, assume that \(|2^h \overline{P}|\) is odd. Let \(a\) be the multiplicative inverse of \(2^r\) modulo \(|2^h \overline{P}|\) and define \(C := a 2^h \overline{P} \in E(\mathbb{F}_p)\). Then \(2^h \overline{C} = 2^h \overline{P}\) and so we have \(2^h (\overline{C} - 2^h \overline{\beta_r}) = 0\), where \(\beta_r \in E(K_r)\) and \(\overline{\beta_r}\) is its reduction in \(E(\mathbb{F})\), where \(\mathbb{F}/\mathbb{F}_p\) is a finite extension.

It follows that \(\overline{C} := 2^h \overline{\beta_r} + y \overline{A} + z \overline{B} \in E(\mathbb{F}_p)\) for some \(y, z \in \mathbb{Z}/2^r\mathbb{Z}\). Hence if we set \(C := 2^h \beta_r + y A + z B\), then there is a Frobenius automorphism \(\sigma \in \text{Gal}(K_r/\mathbb{Q})\) for which \(\sigma(C) \equiv C \pmod{p_i}\) for any prime ideal \(p_i\) above \(p\).

We claim that \(\sigma(C) = C\) (as elements of \(E(K_r)\)). Note that \(\sigma(C) - C \in E[2^r]\) and \(\sigma(C) - C\) reduces to the identity modulo \(p_i\). Since reduction is injective on torsion points of order coprime to the characteristic, and \(p\) is odd, it follows that \(\sigma(C) = C\). It follows that if \(\rho_{E,2^r}(\sigma) = (\vec{v}, M)\), then \(2^h \vec{v} = [y \ z] (I - M)\), which implies that \(2^h \vec{v}\) is in the image of \(I - M\). \(\square\)

The following corollary is immediate.

Corollary 6. Let \(o\) be the smallest positive integer so that \(2^o \vec{v} = \vec{x}(I - M)\) for some \(\vec{x}\) with entries in \((\mathbb{Z}/2^r\mathbb{Z})^2\). Then \(2^o\) is the highest power of \(2\) dividing \(|P|\).

The following theorem gives a convenient choice of basis for \(E[2^k]\) and \(E'[2^k]\).

Theorem 7. Given a positive integer \(k\), there are points \(A_k, B_k \in E(\mathbb{C})\) that generate \(E[2^k]\) and points \(C_k, D_k \in E'(\mathbb{C})\) that generate \(E'[2^k]\) so that \(\phi(A_k) = C_k\) and \(\phi(B_k) = 2D_k\). These points also satisfy the relations:

\[
2A_k = A_{k-1}, \quad 2B_k = B_{k-1}, \quad 2C_k = C_{k-1}, \quad \text{and} \quad 2D_k = D_{k-1}.
\]

Proof. We will prove this by induction. Recall that \(\phi : E \to E'\) is the isogeny with \(\ker \phi = \{0, T\}\) where \(T = (0, 0)\). Let \(\phi' : E' \to E\) be the dual isogeny, and note that \(\phi \circ \phi'(P) = 2P\). Base Case: Let \(k = 1\). We want to find \(A_1, B_1\) to generate \(E[2]\) and \(C_1, D_1\) to generate \(E'[2]\) so that \(\phi(A_1) = C_1\) and \(\phi(B_1) = 2D_1\). We set \(B_1 = (0, 0)\), and choose \(A_1\) to be any non-identity point in \(E[2]\) other than \((0, 0)\).

We set \(C_1 = \phi(A_1) = (-5/4, 5/8)\) and choose \(D_1\) to be any non-identity point in \(E'[2]\) other than \(C_1\). Note that \(\phi'(D_1) = B_1\).

Inductive Hypothesis: Assume \(\langle A_k, B_k \rangle = E[2^k]\) and \(\langle C_k, D_k \rangle = E'[2^k]\) so that \(\phi(A_k) = C_k\), \(\phi(B_k) = 2D_k\), and \(\phi'(D_k) = B_k\). Moreover, \(D_k \not\in \phi(E[2^k])\).

Since \(|\ker \phi| = 2\), we have that \(\phi(E[2^{k+1}]) \supset E'[2^k]\). Hence, we can choose \(B_{k+1}\) so that \(\phi(B_{k+1}) = D_k\). Then \(2B_{k+1} = \phi'(\phi(B_{k+1})) = \phi'(D_k) = B_k\). We choose
D_{k+1} so that $\phi'(D_{k+1}) = B_{k+1}$. Note that $2D_{k+1} = \phi(B_{k+1}) = D_k$ and so $D_{k+1} \in E'[2^{k+1}]$. Now we pick A_{k+1} so that $2A_{k+1} = A_k$ and define $C_{k+1} = \phi(A_{k+1})$.

By our Inductive Hypothesis, $\langle A_k, B_k \rangle = E[2^k]$. This implies that $\langle A_k \rangle \cap \langle B_k \rangle = 0$, which in turn implies that $\langle 2A_k \rangle \cap \langle 2B_k \rangle = 0$. Let $C \in \langle A_k \rangle \cap \langle B_k \rangle$. Then, $C = aA_{k+1} = bB_{k+1}$. Because $[m] = \frac{[g]}{\gcd([m],[g])}$, $|C| = \frac{2^{k+1}}{2^{\text{ord}_2(n)}}$, where $\text{ord}_2(n)$ is the highest power of 2 dividing n, it follows that either a and b are both even, or they are both odd. If a and b are odd, then $|C| = 2^{k+1}$ but $2C \in \langle A_k \rangle \cap \langle B_k \rangle = 0$, which is a contradiction. If a and b are even, then $C \in \langle A_k \rangle \cap \langle B_k \rangle = 0$. It follows that $\langle A_{k+1} \rangle \cap \langle B_{k+1} \rangle = 0$, which gives that $E[2^{k+1}] = \langle A_{k+1}, B_{k+1} \rangle$.

Now we show that $\langle C_{k+1}, D_{k+1} \rangle = E'[2^{k+1}]$, by way of showing that $\langle C_{k+1} \rangle \cap \langle D_{k+1} \rangle = 0$. We have shown that $\langle A_{k+1}, B_{k+1} \rangle = E[2^{k+1}]$, and so $\phi(E[2^{k+1}]) = \langle C_{k+1}, 2D_{k+1} \rangle$. We want to show that $D_{k+1} \notin \phi(E[2^{k+1}])$.

If $D_{k+1} \in \phi(E[2^{k+1}])$, then $D_{k+1} = aC_{k+1} + 2bD_{k+1}$. So, $aC_{k+1} + (2b-1)D_{k+1} = 0$. Since $(2b-1)$ is odd, $(2b-1)D_{k+1}$ has order dividing 2^{k+1}. Hence, aC_{k+1} has order dividing 2^{k+1}. We can then see that

$$2aC_{k+1} + 2(2b-1)D_{k+1} = 0$$
$$aC_k + (2b-1)D_k = 0$$

which is a contradiction. This implies that $\phi(E[2^{k+1}])$ is an index 2 subgroup of $\langle C_{k+1}, D_{k+1} \rangle$ of order 2^{2k+1}, and so $\langle C_{k+1}, D_{k+1} \rangle = E'[2^{k+1}]$. This proves the desired claim. \hfill \Box

Recall the maps $\rho_{E,2k} : \text{Gal}(K_k/\mathbb{Q}) \to \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$ and $\tau : \text{Gal}(K_k/\mathbb{Q}) \to \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$, defined at the beginning of this section. In [12], an algorithm is given to compute the image of the 2-adic Galois representation τ. Running this algorithm shows that the image of τ (up to conjugacy) is the index 6 subgroup of $\text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$ generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 7 & 0 \\ 2 & 1 \end{bmatrix}$, and $\begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$. Moreover, the subgroup generated by the aforementioned matrices is the unique conjugate that corresponds to the basis chosen in Theorem 7.

Theorem 8. If $\rho_{E,2k}(\sigma) = (\bar{v}, M)$ where $\bar{v} = (e, f)$, then $e \equiv 0 \pmod{2}$ if and only if $\text{det}(M) \equiv 1, 7 \pmod{8}$.

Proof. We will show that $e \equiv 0 \pmod{2}$ and $\text{det}(M) \equiv 1, 7 \pmod{8}$ if and only if $\sigma(\sqrt{2}) = \sqrt{2}$.

Let β_1 be a point in $E(K_1)$ so that $2\beta_1 = (2, 2)$. We pick a basis $\langle A_1, B_1 \rangle$ according to Theorem 7. We have $\sigma(\beta_1) = \beta_1 + eA_1 + fB_1$, where $e, f \in \mathbb{Z}/2\mathbb{Z}$.

Let $\phi : E \to E'$ be the usual isogeny and note that $B_1 \in \ker\phi$. Thus, $\phi(\sigma(\beta_1)) = \phi(\beta_1 + eA_1 + fB_1) = \phi(\beta_1) + e\phi(A_1)$. It follows that $e \equiv 0 \pmod{2}$ if and only if $\sigma(\phi(\beta_1)) = \phi(\sigma(\beta_1)) = \phi(\beta_1)$. A straightforward computation shows that the coordinates of $\phi(\beta_1)$ generate $\mathbb{Q}(\sqrt{2})$. It follows that $e \equiv 0 \pmod{2}$ if and only if $\sigma(\sqrt{2}) = \sqrt{2}$.

Finally, suppose that σ is the Artin symbol associated to a prime ideal \mathfrak{p} above a rational prime p. By properties of the Weil pairing (see [13], Section III.8), we have that $\zeta_{2^k} = e^{2\pi i/2^k} \in \mathbb{Q}(E[2^k])$, and that $\sigma(\zeta_{2^k}) = \zeta_{2^k}^{\text{det}(M)} = \zeta_{2^k}^p$. Since
\[\sqrt{2} = \zeta_8 + \zeta_8^{-1}, \] it follows easily that \(\sigma(\sqrt{2}) = \sqrt{2} \iff p \equiv 1, 7 \pmod{8} \) and hence \(\sigma(\sqrt{2}) = \sqrt{2} \) if and only if \(\det(M) \equiv 1, 7 \pmod{8} \). \[\square \]

For \(k \geq 3 \), define \(I_k \) to be the subgroup of \(\text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z}) \) whose elements are ordered pairs \(\{ (\vec{v}, M) \} \) where \(\vec{v} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \) \[\left[\begin{array}{cc} 7 & 0 \\ 2 & 1 \end{array} \right], \] and \(e \equiv 0 \pmod{2} \) if and only if \(\det(M) \equiv 1 \) or \(7 \pmod{8} \). By Theorem 8 and the discussion preceding it, we know that the image of \(\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \rightarrow \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z}) \) is contained in \(I_k \).

We now aim to show that the image of \(\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \rightarrow \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z}) \) is \(I_k \) for \(k \geq 3 \). By [13] (page 105), if we have an elliptic curve \(E : y^2 = x^3 + Ax + B, \) the division polynomial \(\psi_m \in \mathbb{Z}[A,B,x,y] \) is determined recursively by:

\[\psi_1 = 1, \psi_2 = 2y, \psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2, \]
\[\psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3), \]
\[\psi_{2m+1} = \psi_m + 2\psi_m^3 - \psi_{m-1}\psi_{m+1}, \quad 2y\psi_{2m} = \psi_m(\psi_{m+2}\psi_m - \psi_{m-1}\psi_{m+1}). \]

We then define \(\phi_m \) and \(\omega_m \) as follows:

\[\phi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1}, \]
\[4y\omega_m = \psi_{m+2}\psi_m - \psi_{m-2}\psi_{m+1}. \]

If \(\Delta = -16(4A^3 + 27B^2) \neq 0 \), then \(\phi_m(x) \) and \(\psi_m(x)^2 \) are relatively prime. This also implies that, for \(P = (x_0,y_0) \in E, \)

\[[m]P = \left(\frac{\phi_m(P)}{\psi_m(P)^3}, \frac{\omega_m(P)}{\psi_m(P)^3} \right). \]

Lemma 9. The map \(\rho_{E,8} : \text{Gal}(K_3,\mathbb{Q}) \rightarrow \text{AGL}_2(\mathbb{Z}/8\mathbb{Z}) \) has image \(I_3 \).

Proof. The curve \(E \) is isomorphic to \(E_2 : y^2 = x^3 - 3267x + 45630 \). The isomorphism that takes \(E \) to \(E_2 \) takes \(P = (2,2) \) on \(E \) to \(P_2 = (87,648) \) on \(E_2 \).

We use division polynomials to construct a polynomial \(f(x) \) whose roots are the \(x \)-coordinates of points \(\beta_3 \) on \(E_2 \) so that \(8\beta_3 = P_2 \). By the above formulas, \(8P_2 = \left(\frac{\phi_8(P_2)}{\psi_8(P_2)^2}, \frac{\omega_8(P_2)}{\psi_8(P_2)^2} \right). \) Since \(P_2 = (87,648), \)

\[f(x) = \phi_8(P_2) - 87\psi_8(P_2)^2 = 0 \]

will yield the equation with roots that satisfy our requirement. This is a degree 64 polynomial. By using Magma to compute the Galois group of \(f(x) \), we find the order to be 8192. A simple calculation shows that \(I_3 \) has order 8192 and since \(f(x) \) splits in \(K_3/\mathbb{Q} \), we have that \(\text{Gal}(K_3/\mathbb{Q}) \cong I_3 \). \[\square \]

To show that the image of \(\rho_{E,2^k} \) is \(I_k \), we will consider the Frattini subgroup of \(I_k \). This is the intersection of all maximal subgroups of \(I_k \). Since \(I_k \) is a 2-group, every maximal subgroup is normal and has index 2. It follows from this that if \(g \in I_k \), then \(g^2 \in \Phi(I_k) \).

Lemma 10. For \(3 \leq k \), \(\Phi(I_k) \) contains all pairs \((\vec{v}, M) \) such that \(\vec{v} \equiv \vec{0} \pmod{4} \) and \(M \equiv I \pmod{8} \).

Proof. We begin by observing that for \(r = k, (0, I) \in \Phi(I_k) \). We prove the result by backwards induction on \(r \).
Inductive Hypothesis: $\Phi(I_k)$ contains all pairs $(0, M), M \equiv I \pmod{2^r}$. Write $g = I + 2^{r-2}N$ for some $N \in M_2(\mathbb{Z}/4\mathbb{Z})$, and let $h = I + 2^{r-1}N$. If $r \geq 5$, then a straightforward calculation shows that $(0, g) \in I_k$. So, $(0, g^2) = (0, g^2) \in \Phi(I_k)$. Therefore, for $r > 3$,

$$g^2 = I + 2^{r-1}N + 2^{r-4}N^2 \equiv h \pmod{2^{2r-4}}.$$

By the induction hypothesis, $(0, g^2 h^{-1}) \in \Phi(I_k)$, and so $(0, h) \in \Phi(I_k)$.

So, for $k \geq r \geq 4$, all pairs $(0, M), M \equiv I \pmod{2^r} \in \Phi(I_k)$. We will now construct I_4, compute $\Phi(I_4)$, and show that $\Phi(I_4) \supseteq \{(\vec{v}, M) : \vec{v} \equiv 0 \pmod{8}, M \equiv I \pmod{8}\}$. A computation with Magma shows that

$$I_4 = \left\langle \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 7 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \right\rangle.$$

We then construct $\Phi(I_4)$ and then $\phi : \Phi(I_4) \to \text{GL}_2(\mathbb{Z}/8\mathbb{Z})$ obtained by reducing the entries modulo 8. We check that $\ker \phi$ has order 64 and this proves the desired claim about $\Phi(I_4)$.

Now, observe that if $\vec{v}_1 = (2x, 2y)$, then $(\vec{v}_1, I) \in I_k$ and so $(2\vec{v}_1, I) = (\vec{v}_1, I)^2 \in \Phi(I_k)$, and so $\Phi(I_k)$ contains all pairs (\vec{v}, I) with $\vec{v} \equiv 0 \pmod{4}$. Finally, for any matrix $M \equiv I \pmod{8}$, we have

$$((\vec{v}_1, I) * (0, M) = (\vec{v}_1, M) \in \Phi(I_k)$$

and this proves the desired claim. \blacksquare

Finally, we determine the image.

Theorem 11. The map $\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \to \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$ has image I_k for all $k \geq 3$.

Proof. If not, the image of $\rho_{E,2^k}$ is contained in a maximal subgroup M of I_k. Lemma 10 implies that M contains the kernel of the map from $I_k \to I_3$, and so the image of $\rho_{E,8}$ must lie in a maximal subgroup of I_3. This contradicts Lemma 9 and shows the image is I_k. \blacksquare

Now, we indicate the relationship between $\rho_{E,2^k}$ and $\rho_{E',2^k}$. Let $\sigma \in \text{Gal}(K_k/\mathbb{Q})$. If β_k is chosen so $2^k \beta_k = P$, then

$$\sigma(A_k) = aA_k + bB_k,$$

$$\sigma(B_k) = cA_k + dB_k,$$

$$\sigma(\beta_k) = \beta_k + eA_k + fB_k.$$

Applying ϕ to these equations, we have

$$\phi(\sigma(A_k)) = aC_k + 2dB_k = \sigma(\phi(A_k)) = \sigma(C_k),$$

$$\phi(\sigma(B_k)) = cC_k + 2dD_k = \sigma(\phi(B_k)) = \sigma(2D_k),$$

$$\phi(\sigma(\beta_k)) = \phi(\beta_k) + eC_k + 2fD_k = \sigma(\phi(\beta_k)) = \sigma(\beta'_k),$$

where $2^k \beta'_k = R$ on E'. Using the relations from Theorem 7 we have that $2D_k = D_{k-1}$ and $2C_k = C_{k-1}$. This gives

$$\sigma(C_{k-1}) = aC_{k-1} + 2bD_{k-1},$$

$$\sigma(D_{k-1}) = \frac{c}{2}C_{k-1} + dD_{k-1}.$$
Thus, \(\rho_{E', 2^{k-1}}(\sigma) = (\vec{v}', M') \in AGL_2(\mathbb{Z}/2^{k-1}\mathbb{Z}) \), where \(\vec{v}' = [e \ 2f] \) and \(M' = \begin{bmatrix} a & 2b \\ \frac{c}{2} & d \end{bmatrix} \).

Let \((v, M) \) be a vector-matrix pair in \(I_k \). Suppose that \(o \) is the smallest non-negative integer so that \(2^o \vec{v} \) is in the image of \((I - M) \). Thus there are integers \(c_1 \) and \(c_2 \) (not necessarily unique) so that \(2^o \vec{v} = c_1 \vec{x}_1 + c_2 \vec{x}_2 \), where \(\vec{x}_1 \) and \(\vec{x}_2 \) are the first and second rows of \(I - M \).

Lemma 12. Assume that \(\det(M - I) \not\equiv 0 \pmod{2^k} \). If \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = d_1 \vec{x}_1 + d_2 \vec{x}_2 \), then \(c_1 \equiv d_1 \pmod{2} \) and \(c_2 \equiv d_2 \pmod{2} \).

Proof. The assumption on \(\det(M - I) \) implies that \(\ker(M - I) \) has order dividing \(2^{k-1} \). However, if \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = d_1 \vec{x}_1 + d_2 \vec{x}_2 \), then \([c_1 - d_1 \ c_2 - d_2] \) is an element of \(\ker(M - I) \). If \(c_1 \not\equiv d_1 \pmod{2} \) or \(c_2 \not\equiv d_2 \pmod{2} \), then this element has order \(2^k \), which is a contradiction.

The above lemma makes it so we can speak of \(c_1 \pmod{2} \) and \(c_2 \pmod{2} \) unambiguously. We now have the following result.

Theorem 13. Assume the notation above. Let \(o' \) be the smallest positive integer so that \(2^{o'} \vec{v}' \) is in the image of \(I - M' \). If \(\det(M - I) \not\equiv 0 \pmod{2^{k-1}} \), then \(o \not\equiv o' \) if and only if \(c_1 \) is even.

Proof. Let \(\vec{y}_1 \) and \(\vec{y}_2 \) be the first two rows of \(I - M' \). A straightforward calculation shows that if \(2^o \vec{v} = c_1 \vec{x}_1 + c_2 \vec{x}_2 \), then \(2^o \vec{v}' = c_1 \vec{y}_1 + 2c_2 \vec{y}_2 \). If \(c_1 \) is even, then it follows that \(2^{o-1} \vec{v}' = (c_1/2)\vec{y}_1 + c_2 \vec{y}_2 \) and so \(o \not\equiv o' \).

Conversely, if \(o \not\equiv o' \), then \(o' \leq o - 1 \) and so \(2^{o-1} \vec{v}' = d_1 \vec{y}_1 + d_2 \vec{y}_2 \). We have then that

\[
2^o \vec{v} \equiv 2d_1 \vec{x}_1 + 2d_2 \vec{x}_2 \pmod{2^{k-1}}.
\]

So if \(\vec{x} = [2d_1 \ d_2] \) we have \(\vec{x}(I - M) \equiv 2^o \vec{v} \pmod{2^{k-1}} \). If there is a vector \(\vec{x}' \) with \(\vec{x} \not\equiv \vec{x}' \pmod{2} \) so that \(\vec{x}'(I - M) \equiv 2^o \vec{v} \pmod{2^{k-1}} \), then \(\vec{x} - \vec{x}' \) is in the kernel of \(I - M \pmod{2^{k-1}} \). However, the order of \(\vec{x} - \vec{x}' \) is \(2^{k-1} \) and this contradicts the condition on the determinant. This proves the desired result.

5. Proof of Theorem 11

Theorem 4 states that a prime \(p \) divides a term in the Somos-5 sequence if and only if the order of \(P = (2, 2) \in E(F_p) \) is different from the order of \(R = (1, 4) \in E'(F_p) \). Recall that \(o \), the power of two dividing the order of \(P \), is the smallest positive integer such that \(2^{o} \vec{v} \in \text{im}(I - M) \), and \(o' \) is the power of two dividing the order of \(R \).

For the remainder of the argument, we will consider elements of \(I_k \) as \(3 \times 3 \) matrices

\[
I - M = \begin{bmatrix} a \ b \ 0 \\ c \ d \ 0 \\ e \ f \ 1 \end{bmatrix}
\]

and consider \(M \) as the \(3 \times 3 \) matrix

\[
\begin{bmatrix} a \ b \ 0 \\ c \ d \ 0 \\ 0 \ 0 \ 0 \end{bmatrix}.
\]

We let \(I - M = \begin{bmatrix} \alpha \ \beta \ 0 \\ \gamma \ \delta \ 0 \\ e \ f \ 0 \end{bmatrix} \) and define \(A = \gamma f - \delta e, B = \alpha f - \beta e, \) and \(C = \alpha \delta - \beta \gamma \).

We define \(M^0_k(\mathbb{Z}/2^k\mathbb{Z}) \) to be the set of \(3 \times 3 \) matrices with entries in \(\mathbb{Z}/2^k\mathbb{Z} \) whose third column is zero. We will use \(\text{ord}_2(r) \) to denote the highest power of 2 dividing \(r \) for \(r \in \mathbb{Z}/2^k\mathbb{Z} \). If \(r = 0 \in \mathbb{Z}/2^k\mathbb{Z} \), we will interpret \(\text{ord}_2(r) \) to have an undefined value, but we will declare the inequality \(\text{ord}_2(r) \geq k \) to be true.
Suppose that \(\det(I - M) \not\equiv 0 \pmod{2^k-1} \). We have \(2^o \vec{\nu} \in \im(I - M) \) if and only if \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = 2^o \vec{\nu} \), where
\[
M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \vec{x}_1 = [1 - a \quad -b], \quad \text{and} \quad \vec{x}_2 = [-c \quad 1 - d].
\]

We know that \(o \neq o' \) if and only if \(c_1 \) is even. Solving the equation \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = 2^o \vec{\nu} \) using Cramer’s rule gives that \(c_1 C = -2^o A \) and \(c_2 C = 2^o B \). Assuming that \(c_1 \) is even and \(o > 0 \) implies that \(c_2 \) must be odd. (If \(c_1 \) and \(c_2 \) are both even, then \(2^{o-1} \vec{v} = (c_1/2) \vec{x}_1 + (c_2/2) \vec{x}_2 \), which contradicts the definition of \(o \).) The fact that \(c_2 \) is odd, together with \(c_2 C = 2^o B \) implies that \(\ord_2(B) < \ord_2(C) \). Moreover, since the power of 2 dividing \(c_1 C \) must be higher than that of \(c_2 C \) it follows that \(\ord_2(B) < \ord_2(A) \). Conversely, if \(\ord_2(B) < \ord_2(A) \) and \(\ord_2(B) < \ord_2(C) \), then \(o > 0 \) and \(c_1 \) is even. Therefore, our goal is the counting of elements of \(I_k \) with \(\ord_2(A) > \ord_2(B) \) and \(\ord_2(C) > \ord_2(B) \). For an \(M_0 \in M_3^0(\mathbb{Z}/2^k\mathbb{Z}) \), define
\[
\eta(M_0, r, k) = \# \{ M \in M_3^0(\mathbb{Z}/2^k\mathbb{Z}) : M \equiv M_0 \pmod{2^r}, \quad \ord_2(A), \ord_2(C) > \ord_2(B) \},
\]
\[
\mu(M_0, r) = \lim_{k \to \infty} \frac{\eta(M_0, r, k)}{|I_k| \cdot 64^{k-3}}.
\]

Roughly speaking, \(\mu(M_0, r) \) is the fraction of matrices \(M \equiv M_0 \pmod{2^r} \) in \(I_k \) with the property that \(\rho_{E,2^k}(\sigma_p) = M \) implies that \(p \) divides a term of the Somos-5 sequence.

Theorem 14. We have
\[
\lim_{x \to \infty} \frac{\pi'(x)}{\pi(x)} = \sum_{M \in I_3} \mu(I - M, 3).
\]

Before we start the proof, we need some lemmas. The first is straightforward, and we omit its proof.

Lemma 15. If \(a \in \mathbb{Z}/2^k\mathbb{Z} \), then the number of pairs \((x, y) \in (\mathbb{Z}/2^k\mathbb{Z})^2 \) with \(xy \equiv a \pmod{2^k} \) is \((\ord_2(a) + 1)2^{k-1} \), where if \(a \equiv 0 \pmod{2^k} \), we take \(\ord_2(a) = k + 1 \).

Lemma 16. The number of matrices \(M \in M_2(\mathbb{Z}/2^k\mathbb{Z}) \) with \(\det(M) \equiv 0 \pmod{2^k} \) is \(3 \cdot 2^{3k-1} - 2^{2k-1} \).

Proof. We count quadruples \((a, b, c, d) \) with \(ad \equiv bc \pmod{2^k} \). By Lemma 15, this number is equal to
\[
\sum_{\alpha \in \mathbb{Z}/2^k\mathbb{Z}} \left((\ord_2(\alpha) + 1)2^{k-1} \right)^2,
\]
which can easily be shown to equal \(3 \cdot 2^{3k-1} - 2^{2k-1} \).

Proof of Theorem 14 For \(k \geq 1 \), let \(G = \text{Gal}(K_k/\mathbb{Q}) \) and \(\sigma \in G \) have the property that \(\sigma = [\frac{K_k}{p}] \) for some prime ideal \(p \subset O_{K_k} \) with \(p \cap \mathbb{Z} = (p) \). Assume that \(p \) is unramified in \(K_k/\mathbb{Q} \) and \(E/\mathbb{F}_p \) has good reduction at \(p \). Let \(M \) be the \(3 \times 3 \) matrix corresponding to \(\rho_{E,2^k}(\sigma) \), and \(A, B \) and \(C \) be the corresponding minors of \(I - M \). Then one of three alternatives occurs:

(a) \(B \not\equiv 0 \pmod{2^k} \), and a higher power of 2 divides both \(A \) and \(C \).

In this situation (the good case), previous results ensure that the order of \(P \) in \(E(\mathbb{F}_p) \) is twice the order of \(R \) in \(E'(\mathbb{F}_p) \), and hence \(p \) divides some term in the Somos-5 sequence.
(b) One of \(A \) or \(C \) is not congruent to 0 mod \(2^k \) and the power of 2 dividing \(B \) is equal to or higher than for \(A \) or \(C \).

In this situation (the bad case), previous results ensure that the order of \(P \) in \(E(\mathbb{F}_p) \) is equal to the order of \(R \) in \(E'(\mathbb{F}_p) \) and \(p \) does not divide any term in the Somos-5 sequence.

(c) \(A \equiv B \equiv C \equiv 0 \pmod{2^k} \).

In this situation (the inconclusive case), we do not have enough information to determine if \(p \) divides a term in the Somos-5 sequence or not.

Fix \(\epsilon > 0 \) and choose a \(k \) large enough so that both of the following conditions are satisfied:

(i) \(\left| \sum_{M \in I_3} \frac{n(I-M,3,k)}{|I_3|} - \sum_{M \in I_3} \mu(I-M,3) \right| < \epsilon/3 \), and

(ii) the fraction of elements \(M \) in \(I_k \) with \(C \equiv \det(I-M) \equiv 0 \pmod{2^{k-1}} \) is less than \(\epsilon/3 \). (A matrix \(M \in M_2(\mathbb{Z}/2^k\mathbb{Z}) \) has determinant \(\equiv 0 \pmod{2^{k-1}} \) if and only if its reduction modulo \(2^k-1 \) has determinant \(\equiv 0 \pmod{2^{k-1}} \). Thus, by Lemma [10] there are \(16 \cdot (3 \cdot 2^{3(k-1)} - 2^{2(k-1)} - 1) \) such matrices. Thus, the fraction of such \(M \) is \(3 \cdot 2^{-3k+5} - 2^{-4k+6} \to 0 \) as \(k \to \infty \).)

Let \(C \subseteq I_k \) be the collection of “good” elements of \(I_k \) and let \(C' \) be the collection of “good or inconclusive” elements.

By the statements above, we have that

\[
\sum_{M \in I_3} \mu(I-M,3) - 2\epsilon/3 < \frac{|C|}{|I_k|}
\]

and

\[
\frac{|C'|}{|I_k|} < \sum_{M \in I_3} \mu(I-M,3) + \epsilon/3.
\]

By the Chebotarev density theorem, we have

\[
\lim_{x \to \infty} \frac{\# \{ p \text{ prime} : p \leq x \text{ is unramified in } K_k \text{ and } \left[\frac{K_k/\mathbb{Q}}{p} \right] \subseteq C \}}{\pi(x)} = \frac{|C|}{|I_k|},
\]

and the same with \(C' \).

Let \(r \) be the number of primes that either ramify in \(K_k/\mathbb{Q} \) or for which \(E/\mathbb{Q} \) has bad reduction. Then there is a constant \(N \) so that if \(x > N \), then

\[
\sum_{M \in I_3} \mu(I-M,3) - \epsilon + \frac{r}{\pi(x)}
\]

\[
< \frac{\# \{ p \text{ prime} : p \leq x \text{ is unramified in } K_k \text{ and } \left[\frac{K_k/\mathbb{Q}}{p} \right] \subseteq C \}}{\pi(x)}
\]

and

\[
\frac{\# \{ p \text{ prime} : p \leq x \text{ is unramified in } K_k \text{ and } \left[\frac{K_k/\mathbb{Q}}{p} \right] \subseteq C' \}}{\pi(x)}
\]

\[
< \sum_{M \in I_3} \mu(I-M,3) + \epsilon - \frac{r}{\pi(x)}.
\]

It follows from these inequalities that for \(x > N \), then

\[
-\epsilon < \frac{\pi'(x)}{\pi(x)} - \sum_{M \in I_3} \mu(I-M,3) < \epsilon.
\]
This proves that
\[
\lim_{x \to \infty} \frac{\pi'(x)}{\pi(x)} = \sum_{M \in I_3} \mu(I - M, 3).
\]
\[\square\]

Our goal is now to compute \(\sum_{M \in I_3} \mu(I - M, 3)\). To do this, we will develop rules to compute \(\mu(M, r)\) for any matrix \(M \in M_3(\mathbb{Z}/2^r\mathbb{Z})\) whose third column is zero. Observe that \(\mu(M_0, r) \leq \frac{\#\{M \in M_3^0(\mathbb{Z}/2^r\mathbb{Z}); M \equiv M_0 \pmod{2^r}\}}{|M_3(\mathbb{Z}/2^r\mathbb{Z})|} = \frac{1}{2^{64 - r}}.\)

Also, if all the entries in \(M\) are even, then \(\mu(M, r) = \frac{1}{64}\mu\left(\frac{M}{2}, r - 1\right)\). This allows us to reduce to matrices where at least one entry is odd. If \(M \in M_3^0(\mathbb{Z}/2\mathbb{Z})\) is the zero matrix, we have
\[
\mu(M, 1) = \frac{1}{64}\mu(M/2, 0) = \frac{1}{64} \sum_{N \in M_3^0(\mathbb{Z}/2\mathbb{Z})} \mu(N, 1) = \frac{1}{64}\mu(M, 1) + \frac{1}{64} \sum_{N \in M_3^0(\mathbb{Z}/2\mathbb{Z})} \mu(N, 1).
\]

It follows that \(\mu(M, 1) = \frac{1}{64} \sum_{N \in M_3^0(\mathbb{Z}/2\mathbb{Z})} \mu(N, 1)\).

In order to determine \(\mu(M_0, r)\), it is necessary to consider a matrix
\(M \in M_3(\mathbb{Z}/2^k\mathbb{Z})\)
and examine the behavior of matrices \(M' \in M_3(\mathbb{Z}/2^{k+1}\mathbb{Z})\) with \(M' \equiv M \pmod{2^k}\). We refer to these as ‘lifts’ of \(M\). We define \(A, B\) and \(C\) to be functions defined on a matrix \(M = \begin{bmatrix} \alpha & \beta & 0 \\ \gamma & \delta & 0 \\ e & f & 0 \end{bmatrix}\), given by \(A = \gamma(f - \delta e), B = \alpha f - \beta e\) and \(C = \alpha \delta - \beta \gamma\).

Theorem 17. Let \(k \geq 1\) and \(M = \begin{bmatrix} \alpha & \beta & 0 \\ \gamma & \delta & 0 \\ e & f & 0 \end{bmatrix} \in M_3(\mathbb{Z}/2^k\mathbb{Z})\) and suppose \(A \equiv B \equiv C \equiv 0 \pmod{2^k}\).

1. If \(\gamma\) or \(\delta\) is odd, then \(\mu(M, k) = 0\).
2. If \(\gamma\) and \(\delta\) are both even, but one of \(\alpha, \beta, e\) or \(f\) is odd, then \(\mu(M, k) = \frac{1}{64^{k - r}}\).

Proof. Consider \(M'\) to be a lift of \(M\) mod \(2^{k+1}\) and write
\[
M' = \begin{bmatrix} \alpha' & \beta' & 0 \\ \gamma' & \delta' & 0 \\ e' & f' & 0 \end{bmatrix}.
\]
Assume that \(\gamma\) is odd and \(A' = \gamma'f' - \delta'e' \equiv 0 \pmod{2^{k+1}}\) and \(C' = \alpha' \delta' - \beta' \gamma' \equiv 0 \pmod{2^{k+1}}\). From this, we get that \(f' \equiv \frac{e'e'}{\gamma'} \pmod{2^k}\) and \(\beta' \equiv \frac{\alpha' \gamma'}{\delta'} \pmod{2^k}\). We then find that \(B' \equiv \alpha'f' - \beta'e' \equiv \alpha'\left(e'e' - \frac{\alpha' \gamma'}{\delta'}e'\right) \equiv 0 \pmod{2^k}\). It follows that none of the lifts of \(M\) have \(\text{ord}_2(B) < \min\{\text{ord}_2(A), \text{ord}_2(C)\}\) and so \(\mu(M, k) = 0\). A similar argument applies in the case that \(\delta\) is odd.
Suppose now that γ and δ are both even. In this case, write

$$M' = \begin{bmatrix} \alpha + \alpha_1 2^k & \beta + \beta_1 2^k & 0 \\ \gamma + \gamma_1 2^k & \delta + \delta_1 2^k & 0 \\ e + e_1 2^k & f + f_1 2^k & 0 \end{bmatrix},$$

where $\alpha_1, \beta_1, \gamma_1, \delta_1, e_1, f_1 \in \mathbb{F}_2$. If A', B' and C' are the values of A, B, and C associated to M', then

$$A' \equiv A + 2^k (\gamma_1 f - \delta_1 e) \pmod{2^k+1}$$

$$B' \equiv B + 2^k (\alpha_1 f + \alpha f_1 - \beta_1 e - \beta e_1) \pmod{2^k+1}$$

$$C' \equiv C + 2^k (\alpha \delta_1 - \beta \gamma_1) \pmod{2^k+1}.$$

Suppose that e or f is odd. Then the map $\mathbb{F}_2^3 \to \mathbb{F}_2^3$ given by $\begin{pmatrix} \alpha_1, \beta_1, \gamma_1, \delta_1, e_1, f_1 \end{pmatrix}$ $\mapsto \begin{pmatrix} \gamma_1 f - \delta_1 e, \alpha_1 f + \alpha f_1 - \beta_1 e - \beta e_1 \end{pmatrix}$ is surjective. It follows that the 64 lifts of M, one quarter have $(A' \pmod{2^k+1}, B' \pmod{2^k+1})$ equal to each of $(2^k, 2^k), (0, 2^k), (2^k, 0)$ and $(0, 0)$. Moreover, if $A' \equiv 0 \pmod{2^k+1}$, then we must have $C' \equiv 0 \pmod{2^k+1}$. This is because if e' is odd, then $\delta' \equiv \frac{\alpha' \delta - \beta' \gamma}{e'} \pmod{2^k+1}$, and $\beta' \equiv \frac{\alpha' \delta - \beta' \gamma}{e'} \pmod{2^k+1}$. Plugging these into $C' = \alpha' \delta' - \beta' \gamma'$ gives $C' \equiv B' \gamma' \pmod{2^k+1}$. Since γ' is even, it follows that $C' \equiv 0 \pmod{2^k+1}$. A similar argument shows that $C' \equiv 0 \pmod{2^k+1}$ if f' is odd. As a consequence, of the 64 lifts of M, 32 have $\mu(M', k + 1) = 16$ have $\text{ord}_2(B') < \text{ord}_2(A')$ and $\text{ord}_2(B') < \text{ord}_2(C')$. For these, we have $\mu(M', k + 1) = \frac{1}{2^{64k+1}}$. The remainder have $A' \equiv B' \equiv C' \equiv 0 \pmod{2^k+1}$. It follows that

$$\mu(M, k) = \frac{1}{2^{64k+1}} \cdot \frac{1}{4} + \sum_{\substack{M' \equiv M \\ A' \equiv B' \equiv C' \equiv 0 \pmod{2^k+1}}} \mu(M', k + 1).$$

Applying the above argument repeatedly gives

$$\mu(M, k) = \frac{1}{2^{64k+1}} \cdot \left(\frac{1}{4} + \frac{1}{16} + \cdots + \frac{1}{4^\ell} \right) + \sum_{\substack{M' \equiv M \\ A' \equiv B' \equiv C' \equiv 0 \pmod{2^{k+\ell}}}} \mu(M', k + \ell).$$

Using the bound $0 \leq \mu(M', k + \ell) \leq \frac{1}{2^{64k+1+\ell}}$, noting that the sum contains 16^ℓ terms, and taking the limit as $\ell \to \infty$ yields that $\mu(M, k) = \frac{1}{2^{64k+1}} \sum_{r=1}^{\infty} \frac{1}{4^r} = \frac{1}{2^{64k+1}}$.

The case when α or β is odd is very similar. In that case, one can show that the 64 lifts M' of $(B' \pmod{2^k+1}, C' \pmod{2^k+1})$ divided equally between $(2^k, 2^k), (0, 2^k), (2^k, 0)$ and $(0, 0)$, and that $C' \equiv 0 \pmod{2^k+1}$ implies that $A' \equiv 0 \pmod{2^k+1}$. Again, one quarter of the lifts M' have $B' \equiv 2^k \pmod{2^k+1}$ and $A' \equiv C' \equiv 0 \pmod{2^k+1}$, and $\mu(M, k) = \frac{1}{2^{64k+1}}$. \hfill \Box

Let $M \in M_3^0(\mathbb{Z}/8\mathbb{Z})$ be the zero matrix. We have that $\mu(M, 3) = \frac{1}{6^3} \mu(M, 1) = \frac{1}{6^3} \cdot \frac{1}{6^2} \sum_{N \in M_3^0(\mathbb{Z}/2\mathbb{Z})} \mu(N, 1)$. Of the 63 non-zero matrices in $M_3^0(\mathbb{Z}/2\mathbb{Z})$ we find that 6 have B odd and A and C even, while 36 have A or C odd. Of the remaining 21, there are 12 that have γ or δ odd, and the remaining 9 have γ and δ both even. It follows that

$$\mu(M, 3) = \frac{1}{63} \cdot \frac{1}{64^2} \cdot \frac{1}{2} \left[6 + 36 \cdot 0 + 12 \cdot 0 + 9 \cdot \frac{1}{3} \right] = \frac{1}{8192} \cdot \frac{1}{7} = \frac{1}{57344}.$$
(Note that in the denominator of $\mu(N, 1)$ we have $|I_3|64^{-2} = 8192 \cdot (1/4096) = 2$.)

For each of the 8191 non-identity elements M of I_3, we divide $I - M$ by the highest power of 2 dividing all of the elements, say 2^r. In 3754 cases, we have $\text{ord}_2(B) < \text{ord}_2(A)$ and $\text{ord}_2(B) < \text{ord}_2(C)$. For each of these, $\mu(I - M, 3) = \frac{1}{8192}$.

In 4036 cases, we have $\text{ord}_2(B) \geq \text{ord}_2(A)$ or $\text{ord}_2(B) \geq \text{ord}_2(C)$ and not all of A, B, and C are congruent to 0 modulo 2^{3-r}. For each of these, $\mu(I - M, 3) = 0$.

In 365 cases, we have $A \equiv B \equiv C \equiv 0 \pmod{2^{3-r}}$ and γ and δ are both even. In each of these cases, $\mu(I - M, 3) = \frac{1}{3 \cdot 8192}$ by Theorem 17.

In the remaining 36 cases, we have $A \equiv B \equiv 0 \pmod{2^{3-r}}$ and one of γ or δ is odd. By Theorem 17, $\mu(I - M, 3) = 0$.

It follows that

$$\sum_{M \in I_3} \mu(I - M, 3) = 3754 \cdot \frac{1}{8192} + 365 \cdot \frac{1}{3 \cdot 8192} + \frac{1}{57344} = \frac{5087}{10752}.$$

This concludes the proof of Theorem 1.

Acknowledgments

The first and second authors thank the Wake Forest Undergraduate Research and Creative Activities Center for financial support. The authors used Magma [1] version 2.20-6 for computations. The authors would like to thank the anonymous referee for an especially thorough report with a number of suggestions that have improved the paper.

References

Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina 27109

Current address: Department of Statistics, University of Florida, Gainesville, Florida 32611

E-mail address: davibf11@ufl.edu

Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina 27109

E-mail address: rkotsonis@uchicago.edu

Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina 27109

E-mail address: rouseja@wfu.edu