EXTENSION PROBLEM OF SUBSET-CONTROLLED QUASIMORPHISMS

MORIMICHI KAWASAKI

(Communicated by Ken Bromberg)

Abstract. Let \((G, H)\) be \((\text{Ham}(\mathbb{R}^{2n}), \text{Ham}(\mathbb{R}^{2n}))\) or \((B_{\infty}, B_n)\). We conjecture that any semi-homogeneous subset-controlled quasimorphism on \([G, G]\) can be extended to a homogeneous subset-controlled quasimorphism on \(G\) and also give a theorem supporting this conjecture by using a Bavard-type duality theorem on conjugation invariant norms.

1. Problems and results

To state our conjecture, we introduce the notion of subset-controlled quasimorphism (partial quasimorphism, pre-quasimorphism) which is a generalization of quasimorphism.

Definition 1.1. Let \(G\) be a group and let \(H\) be a subset of \(G\). We define the fragmentation norm \(q_H\) with respect to \(H\) for an element \(f\) of \(G\),
\[
q_H(f) = \min\{k; \exists g_1, \ldots, g_k \in G, \exists h_1, \ldots, h_k \in H \text{ such that } f = g_1^{-1}h_1g_1 \cdots g_k^{-1}h_kg_k\}.
\]
If there is no such decomposition of \(f\) as above, we put \(q_H(f) = \infty\).

\(H\) \(c\)-generates \(G\) if such decomposition as above exists for any \(f \in G\).

Definition 1.2. Let \(H, G'\) be subgroups of a group \(G\). A function \(\mu : G' \to \mathbb{R}\) is called an \(H\)-quasimorphism on \(G'\) if there exists a positive number \(C\) such that for any elements \(f, g\) of \(G'\),
\[
|\mu(fg) - \mu(f) - \mu(g)| < C \cdot \min\{q_H(f), q_H(g)\}.
\]

\(\mu\) is called homogeneous if \(\mu(f^n) = n\mu(f)\) holds for any element \(f\) of \(G'\) and any \(n \in \mathbb{Z}\). \(\mu\) is called semi-homogeneous if \(\mu(f^n) = n\mu(f)\) holds for any element \(f\) of \(G'\) and any \(n \in \mathbb{Z}_{\geq 0}\).

Such generalization as above of quasimorphism appeared first in [EP06]. For a symplectic manifold \((M, \omega)\), let \(\text{Ham}(M)\) denote the group of Hamiltonian diffeomorphisms with compact support and \((\mathbb{R}^{2n}, \omega_0)\), \((\mathbb{B}^{2n}, \omega_0)\) denote the 2\(n\)-dimensional Euclidean space, ball with the standard symplectic form, respectively. Let \(B_n\) denote the \(n\)-braid group and \(B_{\infty}\) denote the infinite braid group \(\bigcup_n B_n\).

We pose the following conjecture. For a group \(G\), let \([G, G]\) denote the commutator subgroup (the subgroup generated by the set \(\{[a, b] = aba^{-1}b^{-1}a, b \in G\}\) of commutators).

Received by the editors December 18, 2016, and, in revised form, April 19, 2017 and September 1, 2017.

2010 Mathematics Subject Classification. Primary 20J06, 53D22; Secondary 57M27.
This work was supported by IBS-R003-D1.

©2018 by the author under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)
Conjecture 1.3. Let \((G,H)\) be \((\text{Ham}(\mathbb{R}^{2n}),\text{Ham}(\mathbb{B}^{2n}))\) or \((B_{\infty},B_{n})\). For a semi-homogeneous \(H\)-quasimorphism \(\mu\) on \([G,G]\), there exists a homogeneous \(H\)-quasimorphism \(\hat{\mu}\) on \(G\) such that \(\hat{\mu}|_{[G,G]} = \mu\). In particular, any semi-homogeneous \(H\)-quasimorphism on \([G,G]\) is a homogeneous \(H\)-quasimorphism.

The author ([Ka1]) and Kimura ([Ki1]) constructed a non-trivial \(H\)-quasimorphism on \(G\) when \((G,H) = (\text{Ham}(\mathbb{R}^{2n}),\text{Ham}(\mathbb{B}^{2n}))\), \((G,H) = (B_{\infty},B_{n})\), respectively. Kimura also proved that the dimension of the linear space of \(H\)-quasimorphisms on \(G\) is infinite when \((G,H) = (B_{\infty},B_{n})\) ([Ki2]).

We give examples of semi-homogeneous subset-controlled quasimorphisms which are not homogeneous. Let \(\mathbb{T}^2\) be a 2-torus. By Proposition 3.1 of [Ka3], we see that the asymptotic Oh-Schwarz invariant \(\mu: \text{Ham}(\mathbb{T}^2) \to \mathbb{R}\) with respect to the fundamental class \([\mathbb{T}^2]\) is a semi-homogeneous \(\text{Ham}(U)\)-quasimorphism for any open subset \(U\) of \(\mathbb{T}^2\) whose closure \(\bar{U}\) is contractible. Since a meridian curve \(M\) in the 2-torus \(\mathbb{T}^2\) is heavy but not superheavy in the sense of Entov and Polterovich ([EP09]), we see that \(\mu\) is not homogeneous. Let \(\Lambda\) be an annulus embedded to \(\mathbb{T}^2\) such that \(M,U \subset \Lambda\). By restricting \(\mu\) to \(\text{Ham}(\Lambda)\), we can construct a semi-homogeneous subset-controlled quasimorphism which is not homogeneous on \(\text{Ham}(\mathbb{B}^{2n})\).

However, the author does not know whether there is a semi-homogeneous subset-controlled quasimorphism which is not homogeneous on \(\text{Ham}(\mathbb{B}^{2n})\).

Our main theorem is the following one which supports the above conjecture.

Theorem 1.4. Let \((G,H)\) be \((\text{Ham}(\mathbb{R}^{2n}),\text{Ham}(\mathbb{B}^{2n}))\) or \((B_{\infty},B_{n})\). For a semi-homogeneous \(H\)-quasimorphism \(\mu\) on \([G,G]\) and an element \(g\) of \([G,G]\) such that \(\mu(g) \neq 0\), there exists a homogeneous \(H\)-quasimorphism \(\hat{\mu}_g\) on \(G\) such that \(\hat{\mu}_g(g) \neq 0\).

In Section 2, we prepare some notions and statements. We prove Theorem 1.4 when \((G,H) = (B_{\infty},B_{n}), (\text{Ham}(\mathbb{R}^{2n}),\text{Ham}(\mathbb{B}^{2n}))\) in Sections 3 and 4 respectively.

2. Preliminaries

Let \(G'\) be a \(G\)-invariant subgroup of a group \(G\) i.e. \(g^{-1}g'g \in G'\) holds for any \(g' \in G'\) and any \(g \in G\). A function \(\nu: G' \to \mathbb{R}_{\geq 0}\) is called a \(G\)-invariant norm on \(G'\) if \(\nu\) is a conjugation-invariant norm on \(G'\) (see [BIP]) and \(\nu(g^{-1}g') = \nu(g')\) holds for any \(g' \in G'\) and any \(g \in G\). A \(G\)-invariant norm \(\nu_0\) on \(G'\) is called \(G\)-extremal if for any \(G\)-invariant norm \(\nu\) on \(G'\), there exist \(a,b \in \mathbb{R}_{\geq 0}\) such that \(\nu(g') - b < \nu_0(g')\) holds for any \(g' \in G'\).

Let \(G\) be a group and \(H\) a subgroup of \(G\) and \(p,q \in \mathbb{Z}_{>0} \cup \{\infty\}\). We define the \((H,p,q)\)-commutator subgroup \([G,G]^{H}_{p,q}\) of \(G\) with a subgroup \(H\) to be the subgroup generated by commutators \([f,g]\) such that \(q_H(f) \leq p, q_H(g) \leq q\). We also define the \((H,p,q)\)-commutator length \(c^H_{p,q}: [G,G]^{H}_{p,q} \to \mathbb{R}\) by

\[
c^H_{p,q}(h) = \min\{k \mid \exists f_1,\ldots,f_k,g_1,\ldots,g_k; q_H(f_i) \leq p, q_H(g_j) \leq q (i,j=1,\ldots,k); h = [f_1,g_1]\cdots[f_k,g_k]\}.
\]

We can easily prove that \([G,G]^{H}_{p,q}\) is a \(G\)-invariant subgroup and \(c^H_{p,q}\) is a \(G\)-invariant norm on \([G,G]^{H}_{p,q}\). To prove Theorem 1.4, we use the following propositions.

Proposition 2.1 ([Ka1], [Ki1]). Let \((G,H)\) be \((\text{Ham}(\mathbb{R}^{2n}),\text{Ham}(\mathbb{B}^{2n}))\) or \((B_{\infty},B_{n})\). Then \([G,G]^{H}_{p,q} = [G,G]\) holds for any \(p,q \in \mathbb{Z}_{>0} \cup \{\infty\}\).
For a conjugation-invariant norm \(\nu \) on a group \(G \), let \(s\nu \) denote the stabilization of \(\nu \) i.e. \(s\nu(g) = \lim_{n \to \infty} \frac{\nu(g^n)}{n} \) (this limit exists by Fekete’s Lemma).

Proposition 2.2 ([Ka2]). If there exists a semi-homogeneous \(H \)-quasimorphism \(\mu \) on \([G, G]^H_{p, q}\) with \(\mu(g) \neq 0 \) for some \(g \in [G, G]^H_{p, q} \) then \(scl^H_{p, q}(g) > 0 \) holds for any \(p, q \in \mathbb{Z}_{>0} \cup \{\infty\} \).

Bavard ([Bav]) gave some duality theorem between stable commutator length and quasimorphisms which generalizes Matsumoto and Morita’s famous work ([MM]). We use the following Bavard-type duality theorem.

Theorem 2.3 ([Ka2]). Let \((G, H) \) be \((\text{Ham}(\mathbb{R}^{2n}), \text{Ham}(\mathbb{B}^{2n}))\) or \((B_\infty, B_n) \) and let \(\nu \) be a conjugation-invariant norm on \(G \). Then, for any element \(g \) of \(G \) such that \(s\nu(g) > 0 \), there exists a homogeneous \(H \)-quasimorphism \(\mu: G \to \mathbb{R} \) such that \(\mu(g) > 0 \).

3. Proof on braid group

In the present section, let \(G, H \) denote \(B_\infty, B_n \), respectively.

Theorem 1.4 when \((G, H) = (B_\infty, B_n)\) immediately follows from Proposition 2.2. Theorem 2.3 and the following proposition. Let \(\sigma_1 \) denote the first standard Artin generator of \(B_\infty \). It is known that \(\{\sigma_1^{\pm 1}\} \) c-generates \(G \).

Proposition 3.1 ([Ki1]). The restriction of \(q_{\{\sigma_1^{\pm 1}\}} \) to \([G, G]\) is \(G \)-extremal.

Proof of Theorem 1.4 when \((G, H) = (B_\infty, B_n)\). Let \(g \) be an element of \([G, G]\) and let \(\mu \) be a semi-homogeneous \(H \)-quasimorphism on \([G, G]\) with \(\mu(g) \neq 0 \). Since \(\mu(g) \neq 0 \), Proposition 2.2 implies \(scl^H_{p, q}(g) > 0 \). Thus, by Proposition 2.1 and Proposition 3.1, \(sq_{\{\sigma_1^{\pm 1}\}}(g) > 0 \). Then Theorem 2.3 implies that there exists a homogeneous \(H \)-quasimorphism \(\hat{\mu}_g \) on \(G \) such that \(\hat{\mu}_g(g) \neq 0 \).

4. Proof on Hamiltonian diffeomorphism group

In the present section, let \(G, H \) denote \(\text{Ham}(\mathbb{R}^{2n}), \text{Ham}(\mathbb{B}^{2n}) \), respectively. We follow the notion of [E] and thus let \(\phi_F^t \) denote the time-\(t \) map of the Hamiltonian flow generated by \(F \) for a (time-dependent) Hamiltonian function \(F: \mathbb{R}^{2n} \times [0, 1] \to \mathbb{R} \).

Definition 4.1 ([C, Ban]). The Calabi homomorphism \(\text{Cal}: \text{Ham}(\mathbb{R}^{2n}) \to \mathbb{R} \) is defined by

\[
\text{Cal}(h) = \int_0^1 \int_M H\omega_0^n dt \text{ for a Hamiltonian diffeomorphism } h,
\]

where \(H: \mathbb{R}^{2n} \times [0, 1] \to \mathbb{R} \) is a Hamiltonian function which generates \(h \). \(\text{Cal}(h) \) does not depend on the choice of generating Hamiltonian function \(H \) and thus the functional \(\text{Cal} \) is a well-defined homomorphism.

For proving Theorem 1.4 when \((G, H) = (\text{Ham}(\mathbb{R}^{2n}), \text{Ham}(\mathbb{B}^{2n}))\), it is important to construct a Hamiltonian analogue of \(q_{\{\sigma_1^{\pm 1}\}} \). Let \(F: \mathbb{R}^{2n} \to \mathbb{R} \) be a (time-independent) Hamiltonian function such that \(\phi_F^1 \notin \text{Ker}(\text{Cal}) \) and let \(h \) be an element of \(\text{Ker}(\text{Cal}) \). Note that \(\text{Cal}(\phi_F^t) = t\text{Cal}(\phi_F^1) \). We define the conjugation-invariant norm \(\nu_{F, h} \) by \(\nu_{F, h} = q_{\{\phi_F^t\}_{t \in \mathbb{R}}}^{h \pm 1} \). Since \([G, G]\) is a simple group and...
\[[G, G] = \ker(\text{Cal}) \] (Ban), the subset \(\{\phi^*_F\}_{t \in \mathbb{R}} \cup \{h^{\pm 1}\} \) c-generates \(G \). Thus \(\nu_{F,h} \) is a conjugation-invariant norm on \(G \).

We use the following proposition which is a Hamiltonian analogue of Proposition 3.1.

Proposition 4.3. The restriction of \(\nu_{F,h} \) to \([G, G]\) is \(G \)-extremal.

To prove Proposition 4.2 we use the following lemma.

Lemma 4.3. Let \(\nu \) be a \(G \)-invariant norm on \([G, G]\). There exists a positive constant \(C_{F,\nu} \) which depends only on \(F \) and \(\nu \) such that \(\nu([g, \phi^*_F]) < C_{F,\nu} \) holds for any element \(g \) of \(G \).

Proof. Let \(R \) be a sufficient large number such that \(\text{Supp}(F) \subset Q_R \) where \(Q_R = [-R, R]^{2n} \subset \mathbb{R}^{2n} \). Let \(h_0 \) be an element of \([G, G]\) such that \(Q_R \cap h_0(Q_R) = \emptyset \). Note that \(\nu(h_0) \) depends only on \(F \) and \(\nu \). Fix an element \(g \) of \(G \) and take an element \(h_g \) of \(G \) such that \(h_g(Q_R) = Q_R \) and \(h_g h_0(Q_R) \cap (Q_R \cup \text{Supp}(g)) = \emptyset \). Then \((h_g h_0 h_g^{-1})(\phi^*_F)^{-1} (h_g h_0 h_g^{-1})^{-1}\) commutes with \(\phi^*_F \) and \(g \) and thus \([g, \phi^*_F] = [g, \phi^*_F, h_g h_0 h_g^{-1}]\). Since \(\nu \) is a \(G \)-invariant norm on \([G, G]\),

\[
\nu([g, \phi^*_F]) \leq \nu(g(\phi^*_F, h_g h_0 h_g^{-1})g^{-1}) + \nu((\phi^*_F, h_g h_0 h_g^{-1})^{-1})
\]

\[
= 2\nu((\phi^*_F, h_g h_0 h_g^{-1})^{-1}) \leq 2(\nu(\phi^*_F (h_g h_0 h_g^{-1}))(\phi^*_F)^{-1} + \nu((h_g h_0 h_g^{-1})^{-1}))
\]

\[
= 4\nu(h_g h_0 h_g^{-1}) = 4\nu(h_0).
\]

\[\square \]

Proof of Proposition 4.2. Let \(\phi \) be an element of \([G, G]\) and \(m \) a natural number such that \(\nu_{F,h}(\phi) \leq m \). Then, by the definition of \(\nu_{F,h} \), there exist \(f_1, \ldots, f_m \in \{\phi^*_F\}_{t \in \mathbb{R}} \cup \{h^{\pm 1}\} \) and \(g_1, \ldots, g_m \in G \) such that \(\phi = g_1^{-1} f_1 g_1 \cdots g_m^{-1} f_m g_m \). We define a function \(\tau : \{\phi^*_F\}_{t \in \mathbb{R}} \cup \{h^{\pm 1}\} \rightarrow \mathbb{R} \) by

\[
\tau(f) = \begin{cases} t & \text{(if } f = \phi^*_F) , \\ 0 & \text{(if } f \in \{h^{\pm 1}\}) \end{cases}
\]

We define real numbers \(T_k \) \((k = 1, \ldots, m+1)\) by \(T_k = \sum_{i=1}^{k-1} \tau(f_i) \) and set \(T_1 = 0 \). Then we define elements \(\alpha_k \) \((k = 1, \ldots, m)\) of \(\ker(\text{Cal}) = [G, G] \) by

\[
\alpha_k = \begin{cases} [\phi^*_F g_k^{-1}, \phi^*_F] & \text{(if } f_k = \phi^*_F) , \\ [\phi^*_F g_k^{-1}, \phi^*_F(\phi^*_F g_k^{-1})^{-1}] & \text{(if } f_k \in \{h^{\pm 1}\}) \end{cases}
\]

Fix a \(G \)-invariant norm \(\nu \) on \([G, G]\). Note that Lemma 4.3 implies \(\nu(\alpha_k) \leq \max\{C_{F,\nu}, \nu(h)\} \) holds for any \(k \). Since \(\phi^*_F g_k^{-1} f_k g_k = \alpha_k \phi^*_F \) holds for any \(k \),

\[
\phi = \phi^*_F g_1^{-1} f_1 g_1 \cdots g_m^{-1} f_m g_m = \alpha_1 \phi^*_F g_2^{-1} f_2 g_2 \cdots g_m^{-1} f_m g_m = \alpha_1 \alpha_2 \phi^*_F g_3^{-1} f_3 g_3 \cdots g_m^{-1} f_m g_m = \cdots = \alpha_1 \cdots \alpha_m \phi^*_F g_{m+1}^{-1} f_{m+1} g_{m+1} \nu(\phi) \leq \max\{C_{F,\nu}, \nu(h)\} \cdot m \) holds. Hence \(\nu(\phi) \leq \max\{C_{F,\nu}, \nu(h)\} \cdot \nu_{F,h}(\phi) \) holds for any element \(\phi \) of \([G, G]\). \[\square \]
The proof of Theorem 1.4 when $(G,H) = (\text{Ham}(\mathbb{R}^{2n}), \text{Ham}(\mathbb{B}^{2n}))$ is completely similar to the one when $(G,H) = (B_{\infty}, B_n)$ if we replace Proposition 3.1 by Proposition 4.2.

ACKNOWLEDGMENT

The author would like to thank Mitsuaki Kimura for some comments.

REFERENCES

Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea

Email address: kawasaki@ibs.re.kr