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BOUNDS FOR THE TORNHEIM DOUBLE ZETA FUNCTION

TAKASHI NAKAMURA

(Communicated by Amanda Folsom)

Abstract. In the present paper, we give bounds for the Tornheim double zeta
function T (s1, s2, s3) when |t1|, |t2|, |t3| ≥ 1, |t1+ t2|, |t2+ t3|, |t3+ t1| ≥ 1 and
|t1 + t2 + t3| ≥ 1 with σ1, σ2, σ3 > −K and σ1 + σ2, σ2 + σ3, σ3 + σ1 > 1−K,
where K is a positive integer, from bounds for the Hurwitz zeta function which
are shown by Bourgain’s bounds for exponential sums.

1. Introduction

The study of the order of the Riemann zeta function has a long history. For
σ, t ∈ R, put s = σ+ it, where i is the imaginary unit. Let ε > 0, 0 ≤ D < 1/2 and

(1.1) gε,D(σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1/2− σ σ < 0,

1/2− (1− 2D)σ + ε 0 ≤ σ ≤ 1/2,

2D(1− σ) + ε 1/2 ≤ σ ≤ 1,

0 σ > 1.

It is well-known that the Phragmèn-Lindelöf convexity principal, the Dirichlet series
expression and the functional equation of the Riemann zeta function ζ(s) imply

ζ(s) � |t|gε,1/4(σ)

(e.g. [19, Chapter 5.1]). The case σ = 1/2 which determines the value D in gε,D
is the most important in the theory of the Riemann zeta function. The Lindelöf
hypothesis says that we can take D = 0. The first non-trivial result ζ(1/2 +
it) � |t|1/6+ε, in other words, ζ(σ + it) � |t|gε,1/6(σ), is proved by Hardy and
Littlewood (e.g. [19, Theorem 5.5]). Huxley [8, Theorem 1] obtained the bound
ζ(1/2 + it) � |t|32/205+ε. The best known result till date, which was proved by
Bourgain [4, Theorem 5], for the order estimation is

ζ(1/2 + it) � |t|13/84+ε.

It is natural to consider order estimations for other zeta functions. Applying
Huxley’s bounds for exponential sums, Garunkštis [6, Theorem 3] showed a bound
for the Lerch zeta function defined as L(λ, s, a) :=

∑∞
n=0 e

2πinλ(n + a)−s, where
0 < λ, a ≤ 1. Note that his theorem implies

L(1, 1/2 + it, a)− a−1/2−it � |t|32/205+ε
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(see also [2, Theorem 12.23] and [13, Theorem 3.1.3]). Let r be a natural number
and put

ζr(s1, . . . , sr) :=
∑

0<n1<···<nr

1

ns1
1 · · ·nsr

r
,

where s1, . . . , sr are complex variables. This infinite series is called the Euler-Zagier
r-ple zeta function (see [20, Sections 8 and 9]). In [9, Theorem 1], Ishikawa and
Matsumoto gave an upper bound of |ζr(s1, . . . , sr)| for general r ∈ N by using the
Mellin-Barnes integral formula. For example, they showed

ζ2(it, iαt) � |t|3/2+ε, ±1 �= α ∈ R.

Afterwards, Kiuchi and Tanigawa [11] showed an order estimation of |ζ2(s1, s2)|
in the strip 0 ≤ σ1, σ2 ≤ 1 by using the Euler-Maclaurin summation formula and
theory of double exponential sums of van der Corput’s type. For instance, when
t1 � t2 � t1 and |t1 + t2| ≥ 1 they proved

ζ2(σ1 + it1, σ2 + it2) � |t1|1−2(σ1+σ2)/3 log2|t1|, 0 ≤ σ1, σ2 ≤ 1/2

in [11, Theorem 1.1]. They also proved an order estimation of |ζ3(s1, s2, s3)| in
the strip 0 ≤ σ1, σ2, σ3 ≤ 1 by using the Euler-Maclaurin summation formula and
van der Corput’s method of multiple exponential sums in [12, Theorem]. By using
Perron’s formula, Banerjee, Minamide and Tanigawa [3, Theorems 3 and 4] proved

ζ2(σ1 + it1, σ2 + it2) � |t1|gε,D(σ1)|t2|gε,D(σ2)

when ζ(s) � |t|gε,D(σ) for 0 < σ1, σ2 < 1 and |t1|, |t2| ≥ 1 under certain conditions.
Note that we can take D = 13/84 in the formula above according to Bourgain
[4, Theorem 5].

2. Main results

For j = 1, 2, 3, put sj = σj + itj , where σj , tj ∈ R. Then we define the Tornheim
double zeta function by

(2.1) T (s1, s2, s3) :=

∞∑
m,n=1

1

ms1ns2(m+ n)s3

in the region of absolute convergence σ1+σ3 > 1, σ2+σ3 > 1 and σ1+σ2+σ3 > 2.
In [14, Theorem 1] and [15, Theorem 6.1], it is proved that T (s1, s2, s3) can be
continued meromorphically and its true singularities are only on the hyperplanes
given by one of the equations below:

(2.2) s1 + s3 ∈ Z≤1, s2 + s3 ∈ Z≤1, s1 + s2 + s3 = 2.

Particular values of the Tornheim double zeta function T (a, b, c) with a, b, c ∈ N

were studied by Tornheim in 1950, later by Mordell in 1958, and many mathemati-
cians since then (see e.g., [16, Section 1]). Note that 2sT (s, s, s) coincides with the
Witten zeta function for sl(3) (see [20, Sections 7 and 8]).

In this paper, we give the following bound for T (s1, s2, s3). Let k ∈ Z≥0 and put

g
[k]
ε,D(σ) := gε,D(σ − k),

where gε,D(σ) is already defined as (1.1). Moreover, let ζ(s, a) be the Hurwitz zeta
function and for K ∈ Z≥1, to state our main result we need to define the following
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quantities.

U(s1, s2, s3) := |t1|gε,D(σ1)|t2|gε,D(σ2)|t3|gε,D(σ3),(2.3)

VK(s1, s2, s3) := V �
K(s1, s2, s3) + V �

K(s3, s1, s2) + V �
K(s2, s3, s1),(2.4)

WK(s1, s2, s3) := W �
K(s1, s2, s3) +W �

K(s3, s1, s2) +W �
K(s2, s3, s1),(2.5)

where V �
K and W �

K are defined by

V �
K(s1, s2, s3) := |t1|1/2−σ1×(

K−1∑
k=0

1

|t1|k+1

k∑
j=0

|t2|g
[j]
ε,D(σ2)|t3|g

[k−j]
ε,D (σ3) +

1

|t1|K
K∑
j=0

|t2|g
[j]
ε,D(σ2)|t3|g

[K−j]
ε,D (σ3)

)

and

W �
K(s1, s2, s3) := |t1|1/2−σ1 |t2|1/2−σ2

(
K−1∑
k=0

|t3|g
[k]
ε,D(σ3)

|t1 + t2|k+1
+

|t3|g
[K]
ε,D(σ3)

|t1 + t2|K

)
.

Theorem 2.1. For a ∈ [1/2, 3/2], let us suppose that the Hurwitz zeta function
satisfies

(2.6)
∣∣ζ(s, a)∣∣ ≤ Bσ|t|gε,D(σ), Bσ > 0, |t| ≥ 1

and also assume that |t1|, |t2|, |t3| ≥ 1, |t1+t2|, |t2+t3|, |t3+t1| ≥ 1 and |t1+t2+t3|
≥ 1, with σ1, σ2, σ3 > −K and σ1 + σ2, σ2 + σ3, σ3 + σ1 > 1−K, then

(2.7) T (s1, s2, s3) � U(s1, s2, s3) + VK(s1, s2, s3) +WK(s1, s2, s3),

where U(s1, s2, s3), VK(s1, s2, s3) and WK(s1, s2, s3) are already defined in (2.3),
(2.4) and (2.5), respectively.

Corollary 2.2. Let us suppose that the Hurwitz zeta function ζ(s, a) satisfies the
same assumption of Theorem 2.1. Let |t1|, |t2|, |t3| ≥ 1, |t1+t2|, |t2+t3|, |t3+t1| ≥ 1,
|t1 + t2 + t3| ≥ 1 and t1 � t2 � t3 � t1. Then it holds that

(2.8) T (s1, s2, s3) � U(s1, s2, s3).

Especially, the (uniform) Lindelöf hypothesis of ζ(s, a) implies the Lindelöf hypoth-
esis of T (s1, s2, s3) when t1 � t2 � t3 � t1.

In addition to the above results, we establish the bound in (2.6) for the Hurwitz
zeta function with D = 13/84 by employing Bourgain’s bound for exponential sums
(see [4, Theorem 4]).

Proposition 2.3. For a ∈ [1/2, 3/2], we have∣∣ζ(s, a)∣∣ ≤ Bσ|t|gε,13/84(σ).

Recall that the theorems in Ishikawa & Matsumoto [9], Kiuchi & Tanigawa
[11, 12] and Banerjee, Minamide & Tanigawa [3] are order estimations of not the
Tornheim zeta double function but Euler-Zagier multiple zeta functions. Note that
Kiuchi & Tanigawa [11, 12], and Banerjee, Minamide & Tanigawa [3] consider the
bounds on Euler-Zagier double and triple zeta functions only in the case σj ≥ 0.
However, the cases not only σj ≥ 0 but also σj < 0 are discussed in Ishikawa &
Matsumoto [9] and this paper. The keys for the proofs of theorems in [9], [11, 12]
and [3] are the Mellin-Barnes integral formula, the Euler-Maclaurin summation
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formula and Perron’s formula, respectively. Note that the main ingredient of the
proof of Theorem 2.1 is the integral representation

(2.9) T (s1, s2, s3) =

∫ 1

0

∑
l>0

e2πila

ls1

∑
m>0

e2πima

ms2

∑
n>0

e−2πina

ns3
da, σ1, σ2, σ3 > 1

due to Zagier (see the footnote in [1, p. 62]).
The rest of this paper is organized as follows. In the next section, we review

some results on the Hurwitz zeta and related functions. Section 4 is devoted to the
proofs of Theorem 2.1 and Corollary 2.2. In Section 5, we prove Proposition 2.3.

3. Preliminaries

For a > 0 and �(s) > 1, the Hurwitz zeta function ζ(s, a) and the periodic zeta
function F (s, a) are defined by

ζ(s, a) :=
∞∑
n=0

1

(n+ a)s
, F (s, a) :=

∞∑
n=1

e2πina

ns
,

respectively (e.g. [2, Chapter 12]). Next we define bilateral Hurwitz zeta function
Z(s, a), bilateral periodic zeta function P (s, a), bilateral Hurwitz zeta star function
Y (s, a), bilateral periodic zeta star function O(s, a) by

Z(s, a) := ζ(s, a) + ζ(s, 1− a), P (s, a) := F (s, a) + F (s, 1− a),

Y (s, a) := ζ(s, a)− ζ(s, 1− a), O(s, a) := −i
(
F (s, a)− F (s, 1− a)

)
,

respectively (see [17, Section 1.2]). Note that ζ(s, a) and Z(s, a) can be meromor-
phically continued to the whole complex plane with a simple pole at s = 1 whose
residue is 1 and 2, respectively (e.g. [2, Theorem 12.4]). Moreover, the functions
F (s, a), P (s, a), O(s, a) and Y (s, a) with 0 < a < 1 can be analytically continued
to the whole complex plan since their Dirichlet series converge uniformly in each
compact subset of the half-plane �(s) > 0 when 0 < a < 1 (e.g. [13, p. 20]). When
σ > 1, we can easily see that

(3.1)
∂

∂a
ζ(s, a) =

∞∑
n=0

∂

∂a
(n+ a)−s = −s

∞∑
n=0

(n+ a)−s−1 = −sζ(s+ 1, a).

Thus, we obtain

∂

∂a
Z(s, a) = s

∞∑
n=0

(
(n+ 1− a)−s−1 − (n+ a)−s−1

)
= −sY (s+ 1, a),

∂

∂a
Y (s, a) = −s

∞∑
n=0

(
(n+ a)−s−1 + (n+ 1− a)−s−1

)
= −sZ(s+ 1, a),

for σ > 1. Hence, for all 1 �= s ∈ C. we have

(3.2)
∂

∂a
Z(s, a) = −sY (s+ 1, a),

∂

∂a
Y (s, a) = −sZ(s+ 1, a)

by the analytic continuation of Z(s, a) and Y (s, a). For simplicity, put

Γcos(s) :=
2Γ(s)

(2π)s
cos

(πs
2

)
, Γsin(s) :=

2Γ(s)

(2π)s
sin

(πs
2

)
.

Then, by [5, (2.2) and (2.3)], we have the functional equations

(3.3) Γcos(s)P (s, a) = Z(1− s, a), Γsin(s)O(s, a) = Y (1− s, a).
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We recall Stirling’s formula given by∣∣Γ(s)∣∣ = (2π)1/2(|t|+ 2)σ−1/2e−π|t|/2(1 +O
(
(|t|+ 2)−1

))
.

Then one has that

(3.4) |t|1/2−σ � 1

Γcos(s)
,Γcos(1− s),

1

Γsin(s)
,Γsin(1− s) � |t|1/2−σ

according to Stirling’s formula above and Euler’s formula in complex analysis.

4. Proofs of Theorem 2.1 and Corollary 2.2

4.1. Key lemma. To show Theorem 2.1, we put

GZ(s, a) := ζ(1−s, 1+a)+ζ(1−s, 1−a), GY (s, a) := ζ(1−s, 1+a)−ζ(1−s, 1−a).

From ζ(s, 1 + a) = a−s + ζ(s, a), we can easily see that

(4.1) Z(1− s, a) = as−1 +GZ(s, a), Y (1− s, a) = as−1 +GY (s, a).

Note that GZ(s, a) is a meromorphic function with a simple pole at s = 0 and
GY (s, a) is analytically continuable to the whole complex plan when a ∈ [0, 1/2]
(see Section 3). In order to prove Lemma 4.1, we put

ν
{n}
ε,D (σ) := n+ gε,D(σ + n), G

(n)
X (s, a) := (∂n/∂an)GX(s, a),

where n ∈ Z≥0 and X = Z or Y . Then we have the following.

Lemma 4.1. For a ∈ [1/2, 3/2], assume that ζ(s, a) satisfies (2.6). Then we have∣∣G(n)
Z (s, a)

∣∣ ≤ B{n}
σ |t|ν

{n}
ε,D (1−σ),

∣∣G(n)
Y (s, a)

∣∣ ≤ C{n}
σ |t|ν

{n}
ε,D (1−σ)

for some positive constants B
{n}
σ and C

{n}
σ which depend on σ ∈ R and n ∈ Z≥0

but do not depend on a ∈ [0, 1/2].

Proof. By the definition of G(s, a), we have∣∣GZ(1− s, a)
∣∣ ≤ ∣∣ζ(s, 1 + a)

∣∣+ ∣∣ζ(s, 1− a)
∣∣.

Thus, we obtain this lemma for G
(0)
Z (s, a) = GZ(s, a) by the bound (2.6). Similarly,

we can show |G(0)
Y (s, a)| ≤ C

{0}
σ |t|ν

{0}
ε,D(1−σ). From (3.1), one has

(4.2)
∂

∂a
GZ(s, a) = (s− 1)GY (s+ 1, a),

∂

∂a
GY (s, a) = (s− 1)GZ(s+ 1, a).

Therefore, we can show Lemma 4.1 inductively. �

In order to prove the main theorems, we put

S(s1, s2, s3) := −T (s1, s2, s3) + T (s3, s1, s2) + T (s2, s3, s1)

which has already appeared in [5, Proposition 2.1] and [18, Theorem 1.2]. Lemma
4.2 plays essential role in the present paper.

Lemma 4.2. Let us suppose that ζ(s, a) satisfies the same assumption of Lemma
4.1. For |t1|, |t2|, |t3| ≥ 1, |t1 + t2|, |t2 + t3|, |t3 + t1| ≥ 1 and |t1 + t2 + t3| ≥ 1,
with σ1, σ2, σ3 > −K and σ1 + σ2, σ2 + σ3, σ3 + σ1 > 1−K, where K is a positive
integer, we have

S(s1, s2, s3) � U(s1, s2, s3) + VK(s1, s2, s3) +WK(s1, s2, s3).
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Proof. It is widely-known that

4 sinx sin y cos z = cos(−x+ y+ z)+ cos(x− y+ z)− cos(x+ y− z)− cos(x+ y+ z)

for x, y, z ∈ C. From the definitions of P (s, a) and O(s, a), we have

P (s, a) = 2

∞∑
n=1

cos 2πna

ns
, O(s, a) = 2

∞∑
n=1

sin 2πna

ns

when σ > 1. Hence, by (2.9), Z(s, a) = Z(s, 1 − a), Y (s, a) = −Y (s, 1 − a) and
functional equations in (3.3), it holds that

S(s1, s2, s3) =

∫ 1

0

∑
l,m,n>0

4 sin 2πila sin 2πima cos 2πina

ls1ms2ns3
da

=

∫ 1

0

Y (1− s1, a)Y (1− s2, a)Z(1− s3, a)

2Γsin(s1)Γsin(s2)Γcos(s3)
da

=

∫ 1/2

0

Y (1− s1, a)Y (1− s2, a)Z(1− s3, a)

Γsin(s1)Γsin(s2)Γcos(s3)
da

when �(s1),�(s2),�(s3) > 1. Now we consider the integral expressed as

Γsin(s1)Γsin(s2)Γcos(s3)S(s1, s2, s3) =∫ 1/2

0

(
as1−1 +GY (s1, a)

)(
as2−1 +GY (s2, a)

)(
as3−1 +GZ(s3, a)

)
da

(see (4.1)). Clearly, it holds that∫ 1/2

0

as1−1as2−1as3−1da =
22−s1−s2−s3

s1 + s2 + s3 − 2
.

Second we consider the function I1(s1, s2, s3) defined by

I1(s1, s2, s3) :=

∫ 1/2

0

as1−1as2−1GZ(s3, a)da.

The integral on the right-hand side converges when σ1 + σ2 > 1 and s3 �= 0 since
GZ(s, a) has a pole at s = 0. Now we show that the function I1(s1, s2, s3) can be
meromorphically continued by using partial integration. One has

I1(s1, s2, s3) =

∫ 1/2

0

as1+s2−2GZ(s3, a)da =

∫ 1/2

0

(
as1+s2−1

s1 + s2 − 1

)′
GZ(s3, a)da

=
21−s1−s2

s1 + s2 − 1
GZ(s3, 1/2)−

∫ 1/2

0

as1+s2−1

s1 + s2 − 1
G′

Z(s3, a)da

when σ1 + σ2 > 1 and s3 �= 0. Note that 21−s1−s2GZ(s3, 1/2) is a meromorphic

function. Furthermore, the integral
∫ 1/2

0
as1+s2−1G′

Z(s3, a)da converges when s3 �=
0 and σ1 + σ2 > 0. Hence, the function I1(s1, s2, s3) is continued meromorphically

when s3 �= 0, σ1+σ2 > 0 and s1+s2 �= 1. For the integral
∫ 1/2

0
as1+s2−1G′

Z(s3, a)da,
it holds that∫ 1/2

0

as1+s2−1G′
Z(s3, a)da =

∫ 1/2

0

(
as1+s2

s1 + s2

)′
G′

Z(s3, a)da

=
2−s1−s2

s1 + s2
G′

Z(s3, 1/2)−
∫ 1/2

0

as1+s2

s1 + s2
G′′

Z(s3, a)da.
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The last integral converges when s3 �= 0, σ1 + σ2 > −1 and s1 + s2 �= 0. Thus
I1(s1, s2, s3) is continued meromorphically when s3 �= 0, σ1+σ2 > −1 and s1+s2 �=
0, 1. In addition, by Lemma 4.1, we have the order estimations

21−s1−s2

s1 + s2 − 1
GZ(s3, 1/2) �

|t3|ν
{0}
ε,D(1−σ3)

|s1 + s2 − 1| ,
2−s1−s2

s1 + s2
G′

Z(s3, 1/2) �
|t3|ν

{1}
ε,D(1−σ3)

|s1 + s2|
,

∫ 1/2

0

as1+s2

s1+s2
G′′

Z(s3, a)da ≤ max
a∈[0,1/2]

∣∣∣G′′
Z(s3, a)

∣∣∣ ∫ 1/2

0

∣∣∣∣as1+s2

s1+s2

∣∣∣∣da � |t3|ν
{2}
ε,D(1−σ3)

|s1 + s2|

when |t3| ≥ 1, σ1 + σ2 > −1. Therefore, we have

I1(s1, s2, s3) �
|t3|ν

{0}
ε,D(1−σ3)

|s1 + s2 − 1|0
+

|t3|ν
{1}
ε,D(1−σ3)

|s1 + s2 − 1|1
+

|t3|ν
{2}
ε,D(1−σ3)

|s1 + s2 − 1|1
,

where |s|k := |s| · · · |s + k| and k ∈ Z≥0. Hence, applying partial integration
repeatedly, we can see that I1(s1, s2, s3) can be continued meromorphically to the
hyper-half-plane σ1 + σ2 > 1−K, where K ∈ N. Furthermore, we have

I1(s1, s2, s3) � W �
K(s1, s2, s3) :=

K−1∑
k=0

|t3|ν
{k}
ε,D (1−σ3)

|s1 + s2 − 1|k
+

|t3|ν
{K}
ε,D (1−σ3)

|s1 + s2 − 1|K−1

when |t3| ≥ 1, σ1 + σ2 > 1 − K and s1 + s2 �= 1, 0,−1, . . . , 2 − K. Note that
W �

K(s1, s2, s3) = W �
K(s2, s1, s3). Similarly, we consider the integrals

I2(s1, s2, s3) :=

∫ 1/2

0

as3+s1−2GY (s2, a)da,

I3(s1, s2, s3) :=

∫ 1/2

0

as2+s3−2GZ(s1, a)da.

Then, by repeating partial integration and modifying the proof above, we can easily
see that I2(s1, s2, s3) and I3(s1, s2, s3) are continued meromorphically to σ2+σ3 >
1−K and σ3 + σ1 > 1−K, respectively. Moreover, when |t1|, |t2| ≥ 1, we have

I2(s1, s2, s3) � W �
K(s2, s3, s1), σ2 + σ3 > 1−K, s2 + s3 �= 1, 0, . . . , 2−K,

I3(s1, s2, s3) � W �
K(s3, s1, s2), σ3 + σ1 > 1−K, s3 + s1 �= 1, 0, . . . , 2−K.

Next we estimate the function J1(s1, s2, s3) defined as

J1(s1, s2, s3) :=

∫ 1/2

0

as1−1GY (s2, a)GZ(s3, a)da.

By using partial integration, we have

J1(s1, s2, s3) =

∫ 1/2

0

(
as1

s1

)′
GY (s2, a)GZ(s3, a)da

=
2−s1

s1
GY (s2, 1/2)GZ(s3, 1/2)−

∫ 1/2

0

as1

s1

(
GY (s2, a)GZ(s3, a)

)′
da
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when σ1 > 0 and s3 �= 0 because GZ(s, a) has a pole at s = 0. For the last integral
which converges if s3 �= 0, σ1 > −1 and s1 �= 0, we have∫ 1/2

0

as1
(
GY (s2, a)GZ(s3, a)

)′
da =

∫ 1/2

0

(
as1+1

s1 + 1

)′(
GY (s2, a)GZ(s3, a)

)′
da

=
2−s1−1

s1 + 1

(
GY (s2, 1/2)GZ(s3, 1/2)

)′ − ∫ 1/2

0

as1+1

s1 + 1

(
GY (s2, a)GZ(s3, a)

)′′
da.

From Lemma 4.1, we can estimate each term by(
GY (s2, 1/2)GZ(s3, 1/2)

)′ � |t2|ν
{1}
ε,D(1−σ2)|t3|ν

{0}
ε,D(1−σ3)+|t2|ν

{0}
ε,D(1−σ2)|t3|ν

{1}
ε,D(1−σ3),∫ 1/2

0

as1+1

s1 + 1

(
GY (s2, a)GZ(s3, a)

)′′
da

≤ max
a∈[0,1/2]

∣∣∣(GY (s2, a)GZ(s3, a)
)′′∣∣∣ ∫ 1/2

0

∣∣∣∣ as1+1

s1 + 1

∣∣∣∣da
� 1

|s1 + 1|

2∑
j=0

(
2

j

)
|t2|ν

{j}
ε,D(1−σ2)|t3|ν

{2−j}
ε,D (1−σ3)

∫ 1/2

0

aσ1+1da

when |t2|, |t3| ≥ 1, σ1 > −2 and s1 �= −1. Thus, by using partial integration repeat-
edly, we can see that the function J1(s1, s2, s3) can be continued meromorphically
to the half-plane σ1 > −K. Moreover, from Lemma 4.1 and the Leibniz product
rule, one has

J1(s1, s2, s3) � V �
K(s1, s2, s3), |t2|, |t3| ≥ 1,

where V �
K(s1, s2, s3) is given by the function

K−1∑
k=0

1

|s1|k

k∑
j=0

(
k

j

)
|t2|ν

{j}
ε,D(1−σ2)|t3|ν

{k−j}
ε,D (1−σ3)

+
1

|s1|K−1

K∑
j=0

(
K

j

)
|t2|ν

{j}
ε,D(1−σ2)|t3|ν

{K−j}
ε,D (1−σ3)

when σ1 > −K and s1 �= 0,−1, . . . , 1−K. Note that V �
K(s1, s2, s3) = V �

K(s1, s3, s2).
Similarly, consider the integrals

J2(s1, s2, s3) :=

∫ 1/2

0

as2−1GZ(s3, a)GY (s1, a)da,

J3(s1, s2, s3) :=

∫ 1/2

0

as3−1GY (s1, a)GY (s2, a)da.

By repeating partial integration, we can show that J2(s1, s2, s3) and J3(s1, s2, s3)
are continued meromorphically to σ2 > −K and σ3 > −K, respectively. Moreover,
we have

J2(s1, s2, s3) � V �
K(s2, s3, s1), |t3|, |t1| ≥ 1, σ2 > −K, s2 �= 0, . . . , 1−K,

J3(s1, s2, s3) � V �
K(s3, s1, s2), |t1|, |t2| ≥ 1, σ3 > −K, s3 �= 0, . . . , 1−K.

Furthermore, when |t1|, |t2|, |t3| ≥ 1, it holds that∫ 1/2

0

GY (s1, a)GY (s2, a)GZ(s3, a)da � |t1|ν
{0}
ε,D(1−σ1)|t2|ν

{0}
ε,D(1−σ2)|t3|ν

{0}
ε,D(1−σ3)
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from Lemma 4.1. Therefore, we obtain

Γsin(s1)Γsin(s2)Γcos(s3)S(s1, s2, s3) � |t1|ν
{0}
ε,D(1−σ1)|t2|ν

{0}
ε,D(1−σ2)|t3|ν

{0}
ε,D(1−σ3)

+ V �
K(s1, s2, s3) + V �

K(s2, s3, s1) + V �
K(s3, s1, s2)

+W �
K(s1, s2, s3) +W �

K(s2, s3, s1) +W �
K(s3, s1, s2).

In addition, one has g
[k]
ε,D(σ) = ν

{k}
ε,D(1− σ) + 1/2− σ by

ν
{k}
ε,D(1− σ) + 1/2− σ = 1/2− σ + k + gε,D(1− σ + k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1/2− σ + k + 1/2− (1− σ + k) 1− σ + k < 0,

1/2− σ + k + 1/2− (1− 2D)(1− σ + k) + ε 0 ≤ 1− σ + k ≤ 1/2,

1/2− σ + k + 2D(1− (1− σ + k)) + ε 1/2 ≤ 1− σ + k ≤ 1,

1/2− σ + k 1− σ + k > 1,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 σ − k > 1,

2D(σ − k) + ε 1/2 ≤ σ − k ≤ 1,

1/2− (1− 2D)(σ − k) + ε 0 ≤ σ − k ≤ 1/2,

1/2− σ + k σ − k < 0,

= gε,D(σ − k) = g
[k]
ε,D(σ).

Hence, we have Lemma 4.2 from (3.4) and g
[k]
ε,D(σ) = ν

{k}
ε,D(1− σ) + 1/2− σ. �

4.2. Proofs of the main results. Now we are in a position to prove Theorem 2.1
and Corollary 2.2.

Proof of Theorem 2.1. Replacing variables (s1, s2, s3) by (s3, s1, s2) and (s2, s3, s1)
in the definition of S(s1, s2, s3), we have

S(s3, s1, s2) = −T (s3, s1, s2) + T (s2, s3, s1) + T (s1, s2, s3),

S(s2, s3, s1) = −T (s2, s3, s1) + T (s1, s2, s3) + T (s3, s1, s2),

respectively. Therefore, we obtain

2T (s1, s2, s3) = S(s3, s1, s2) + S(s2, s3, s1).

From the definition in Section 2, we have U(s1, s2, s3) = U(s3, s1, s2) = U(s2, s3, s1).
Furthermore, the same relation holds for the functions VK and WK . Hence, these
equalities and Lemma 4.2 imply Theorem 2.1. �

Proof of Corollary 2.2. We can easily see that

g
[k]
ε,D(σ)− k ≤ gε,D(σ), 0 ≤ k ≤ K.

Thus, for t � t1 � t2 � t3 � t, we have

|t1 + t2|−k|t3|g
[k]
ε,D(σ3) � |t|g

[k]
ε,D(σ3)−k � |t|gε,D(σ3),

|t1|−k|t2|g
[j]
ε,D(σ2)|t3|g

[k−j]
ε,D (σ3) � |t|g

[j]
ε,D(σ2)−j+g

[k−j]
ε,D (σ3)+j−k � |t|gε,D(σ2)+gε,D(σ3).

In addition, one has |t|1/2−σ ≤ |t|gε,D(σ) from 1/2 − σ ≤ gε,D(σ). Therefore, we
obtain

V �
K(s1, s2, s3), V

�
K(s3, s1, s2), V

�
K(s2, s3, s1),

W �
K(s1, s2, s3),W

�
K(s3, s1, s2),W

�
K(s2, s3, s1)

� U(s1, s2, s3)

if t1 � t2 � t3 � t1. Hence, we have Corollary 2.2 by Theorem 2.1. �
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5. Proof of Proposition 2.3

First, we show the following convexity bound for ζ(s, a). We can prove this
bound by Katsurada [10, Lemma 1] but give a new proof here.

Proposition 5.1 ([10, Lemma 1]). Let 0 < a < 1 and |t| ≥ 1. Then we have∣∣ζ(s, a)− a−s
∣∣ ≤ Bσ|t|gε,1/4(σ).

Proof. By the series expression of ζ(s, a), we have

(5.1)
∣∣(ζ(s, a)−a−s)± (ζ(s, 1−a)− (1−a)−s)

∣∣ = ∣∣ζ(s, 1+a)±ζ(s, 2−a)
∣∣ ≤ 2ζ(σ)

when σ > 1. Moreover, if σ > 1, we have

(5.2)
∣∣F (s, a)± F (s, 1− a)

∣∣ ≤ ∞∑
n=1

|e2πina ± e−2πina|
nσ

≤ 2ζ(σ).

From (3.4), (5.2), the functional equations in (3.3), we have∣∣ζ(s, a)± ζ(s, 1− a)
∣∣ ≤ Bσ|t|1/2−σ

when σ < 0. In this case, clearly we have

(5.3)
∣∣(ζ(s, a)− a−s)± (ζ(s, 1− a)− (1− a)−s)

∣∣ ≤ Bσ|t|1/2−σ

by the assumption σ < 0 which implies |a−s| ≤ 1. Therefore, we have

(5.4)
∣∣(ζ(s, a)− a−s)± (ζ(s, 1− a)− (1− a)−s)

∣∣ ≤ Bσ|t|gε,1/4(σ)

by (5.1), (5.3) and the Phragmèn–Lindelöf convexity principal. Hence, we have the
order estimation of Proposition 5.1 by the inequality |2x| ≤ |x + y| + |x − y| with
x = ζ(s, a)− a−s and y = ζ(s, 1− a)− (1− a)−s. �

Next, we show the following order estimate of |ζ(1/2 + it, a)|.

Proposition 5.2. For a ∈ [1/2, 3/2], we have∣∣ζ(1/2 + it, a)
∣∣ ≤ B|t|13/84+ε, B > 0.

To show Proposition 5.2, we quote the following statements from [13, Theorem
4.1.1] and [4, Theorem 4], respectively.

Lemma 5.3 ([13, Theorem 4.1.1]). Let 0 < a ≤ 1, 0 < σ ≤ 1, t ≥ t0 > 1,
y := (t/2π)1/2, q := �y	, k := �y − a	 and b := q − k. Then we have

ζ(s, a) =

k∑
n=0

1

(n+ a)s
+ eit+πi/4+2πia

(2π
t

)σ−1/2+it
q−1∑
n=1

e−2πian

n1−s

+ eπif(a,t)
(2π

t

)σ/2

ψ(2y − q − k − a) +O
(
tσ/2−1

)
,

where f(a, t) and ψ(a) are given by

f(a, t) := − t

2π
log

t

2πe
+

4a2 − 7

8
− ab+ 2y(b− a)− q + k

2
,

ψ(a) :=
cos(π(a2/2− a− 1/8))

cos(πa)
.

Note that the approximate functional equation above holds uniformly in 0 < a ≤ 1.
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Lemma 5.4 ([4, Theorem 4]). Let F be a smooth function on [1/2, 1] satisfying
for some constant c ∈ (0, 1], the condition

(5.5) min
{
|F ′′(x)|, |F ′′′(x)|, |F ′′′′(x)|

}
> c.

Given T > 0 sufficiently large, M ≥ 1, we put f(u) := TF (u/M) with M/2 ≤ u ≤
M and

S :=
∑

m∼M

exp
(
2πif(m)

)
.

Then it holds that

(5.6)
∣∣S∣∣ � M1/2T 13/84+ε when

17

42
≤ θ :=

logM

log T
≤ 1

2
.

Proof of Proposition 5.2. We modify the arguments in [4, Section 4] and [6, Section
3]. For the application to |ζ(1/2+ it, a)|, we show that (5.6) also holds for 0 ≤ θ ≤
17/42. The case 0 ≤ θ ≤ 13/42 is trivial since we have |S| ≤ M . Hence, all that
remains to be done is establishing that (5.6) holds when θ ∈ (13/42, 17/42). To
achieve this we can employ the bound

(5.7)
∣∣S∣∣ � T (4+103θ)/128+ε, 12/31 < θ ≤ 1,

which is [7, Theorem 3], in combination with the exponent pair estimate

(5.8)
∣∣S∣∣ � (T/M)1/9M13/18 = M11/18T 1/9, 0 < θ ≤ 1,

which corresponds to the exponent pair (1/9, 13/18) = ABA2B(0, 1) in [19, Chapter
5.20]. Note that (5.7) and (5.8) need additional assumptions concerning the function
F , beyond condition (5.5). However, this is not an obstacle to the application to

k∑
n=0

1

(n+ a)1/2+it
and

q−1∑
n=1

e−2πian

n1/2−it

appearing in Lemma 5.3, since that only requires consideration of cases in which
F (x) = log(x+a) and F (x) = 2πax/T− log x (see also the proof of [6, Theorem 3]).
A calculation shows that (5.6) is implied by (5.7) for all θ ∈ (12/31, 332/819], and
is implied by (5.8) for all θ ∈ [0, 11/28]: noting that (13/42, 17/42) ⊂ [0, 11/28] ∪
(12/31, 332/819].

Hence, we have (5.6) whenever 0 ≤ θ ≤ 1/2, at least this is so in the cases
F (x) = log(x + a) and F (x) = 2πax/T − log x. From the approximate functional
equation in Lemma 5.3 and partial summation, we obtain Proposition 5.2. �

Proof of Proposition 2.3. Clearly, we have |ζ(s, a)| ≤ Bσ|t|gε,1/4(σ) if a ∈ [1/2, 3/2]
and σ < 0 or σ > 1 by Proposition 5.1. Therefore, we have Proposition 2.3 from
Proposition 5.2 and Phragmèn-Lindelöf convexity principal. �
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