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ON EULER CHARACTERISTIC AND HITCHIN-THORPE

INEQUALITY FOR FOUR-DIMENSIONAL COMPACT RICCI

SOLITONS

XU CHENG, ERNANI RIBEIRO JR., AND DETANG ZHOU

Abstract. In this article, we investigate the geometry of 4-dimensional com-
pact gradient Ricci solitons. We prove that, under an upper bound condition
on the range of the potential function, a 4-dimensional compact gradient Ricci

soliton must satisfy the classical Hitchin-Thorpe inequality. In addition, some
volume estimates are also obtained.

1. Introduction

A complete Riemannian metric g on an n-dimensional smooth manifold Mn is
called a gradient Ricci soliton if there exists a smooth function f on Mn such that
the Ricci tensor Ric of the metric g satisfies the equation

(1.1) Ric+Hess f = λg

for some constant λ ∈ R. Here, Hess f denotes the Hessian of f . A gradient Ricci
soliton (1.1) is called shrinking, steady or expanding if the real number λ is positive,
zero or negative, respectively. Ricci solitons are self-similar solutions of the Ricci
flows. Moreover, since they also arise as the singularity models of the Ricci flows
(see [20], [33]), understanding is very important.

It was proved by Perelman [34] that every compact Ricci soliton is a gradient
Ricci soliton (also see the proof in [15]). Moreover, it is known that on a compact
manifold Mn, a gradient steady or expanding Ricci soliton is necessarily an Einstein
metric (see [24]). On the other hand, for real dimension 4, the first example of
a compact non-Einstein gradient shrinking Ricci soliton was constructed in the
1990s by Koiso [27] and Cao [3] on the compact complex surface CP

2�(−CP
2),

where (−CP
2) denotes the complex projective space with the opposite orientation.

Therefore, compact non-Einstein Ricci solitons must be shrinking. In dimension
n = 2, Hamilton [21] showed that any 2-dimensional compact gradient shrinking
Ricci soliton is isometric to a quotient of the sphere S

2. For n = 3, by the works of
Ivey [25] and Perelman [33], it is known that any 3-dimensional compact gradient
shrinking Ricci soliton is a finite quotient of the round sphere S3. Even the non-
compact gradient shrinking Ricci solitons have been classified in two and three
dimensions.
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Unlike the cases of dimensions 2 and 3, the classification of higher dimension
gradient shrinking Ricci soliton is still incomplete. For dimension 4, after the
aforementioned works of Koiso [27] and Cao [3], Wang and Zhu [40] later proved
the existence of a gradient Kähler-Ricci soliton on CP

2�2(−CP
2). It remains to

be determined whether a compact non-Einstein gradient Ricci soliton is necessarily
Kähler. In any dimension, it is known that a compact gradient shrinking Ricci
soliton with constant scalar curvature must be Einstein; see [15, Eminenti, La Nave
and Mantegazza]. Even a 4-dimensional non-compact gradient shrinking Ricci soli-
ton with constant scalar curvature is rigid, too. Indeed, recently in [12] the first
and third authors of the present paper proved that a 4-dimensional non-compact
gradient shrinking Ricci soliton with constant scalar curvature S = 2λ must be
isometric to a finite quotient of S2 × R2. This result, together with the previous
results of Petersen and Wylie [35], and Fernández-López and Garćıa-Rı́o [18], con-
firms that a 4-dimensional complete non-compact gradient shrinking Ricci soliton
with constant scalar curvature is isometric to the Gaussian shrinking soliton R4, a
finite quotient of S2 × R2, or a finite quotient of S3 ×R. In recent years, there has
been much progress concerning the classification problem of 4-dimensional gradient
shrinking Ricci solitons; see, e.g., [3, 4, 6, 7, 9, 10, 12, 26, 30–32] and the references
therein.

It is interesting to study the topological character of the compact 4-dimensional
gradient shrinking Ricci solitons. It follows by the works of Li [28], Derdziński [14],
and Fernández-López and Garćıa-Rı́o [17] that a compact 4-dimensional gradient
shrinking Ricci soliton M has finite fundamental group; see [15] for an alternative
proof. Consequently, its first Betti number b1(M) = 0 and hence its Euler charac-
teristic χ(M) and signature τ (M) satisfy the inequality χ(M) > |τ (M)| (see (2.16)).
However, it is well known that for a compact 4-dimensional Einstein manifold M ,
the Hitchin-Thorpe inequality holds ([39], [23]; see also [1, Theorem 6.35]), that is,

(1.2) χ(M) ≥ 3

2
|τ (M)|.

This inequality provides a topological obstruction for the existence of an Einstein
metric on a given compact 4-dimensional manifold. As gradient Ricci solitons are
natural generalizations of Einstein manifolds and the non-trivial gradient shrinking
Ricci solitons on CP

2�(−CP
2) and CP

2�2(−CP
2) indeed satisfy the Hitchin-Thorpe

inequality, the following question was raised (see [4, Problem 6] and [5]):

“Does the Hitchin-Thorpe inequality hold for compact 4-dimensional
gradient shrinking Ricci solitons?”

In the last years, some partial answers were obtained. In this context, the as-
sumed conditions under which the Hitchin-Thorpe inequality holds are the follow-
ing, respectively.

[29, Ma]: the scalar curvature S and the volume of M satisfy
∫
M

S2dVg ≤
24λ2 Vol(M);

[16, Fernández-López and Garćıa-Rı́o]: some upper diameter bounds in terms of
the Ricci curvature;

[38, Tadano]: a lower bound on the diameter involving the maximum and mini-
mum values of the scalar curvature on M4, namely,(

2 +

√
6

2
π

) √
Smax − Smin

λ
≤ diam(M),
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where Smax and Smin denote the maximum and minimum values of the scalar
curvature S on M , respectively.

Zhang and Zhang [41] proved that if a given manifold has non-positive Yamabe
invariant and admits long time solutions of the normalized Ricci flow equation with
bounded scalar curvature, then it must satisfy the Hitchin-Thorpe inequality.

In the Kähler case, it is known that any compact Kähler gradient Ricci soliton
of real dimension 4 with the natural orientation satisfies the inequality 2χ(M) +
3τ (M) > 0 (see [29]; this result was generalized to Kähler Ricci almost solitons in
[2]).

In this paper, we consider the question mentioned earlier. Without loss of gen-
erality, we assume that the gradient shrinking Ricci solitons satisfy the equation

(1.3) Ric+Hess f =
1

2
g.

This normalization may be achieved by a scaling of the metric. We first establish
the following result.

Theorem 1. Let (M4, g, f) be a 4-dimensional compact gradient shrinking Ricci
soliton satisfying (1.3). Then it holds that

(1.4) 8π2χ(M) ≥
∫
M

|W |2dVg +
1

24
Vol(M)(5− efmax−fmin),

where fmin and fmax stand for the minimum and maximum of the potential function
f on M4, respectively, Vol(M) denotes the volume of M4 and W is the Weyl tensor.

Moreover, equality holds if and only if g is an Einstein metric (in this case, f is
constant).

As a consequence of Theorem 1 we obtain the following corollary.

Corollary 1. Let (M4, g, f) be a 4-dimensional compact gradient shrinking Ricci
soliton satisfying (1.3). If fmax − fmin ≤ log 5, then the Hitchin-Thorpe inequality

(1.5) χ(M) ≥ 3

2
|τ (M)|

holds on M .

Remark 1. The conclusion in Corollary 1 also holds if one replaces the assumption
fmax − fmin ≤ log 5 by Smax − Smin ≤ log 5, where Smax and Smin denote the
maximum and minimum of the scalar curvature S on M , respectively. Indeed, by a
choice of f , the scalar curvature S of a normalized gradient shrinking Ricci soliton
may satisfy

S + |∇f |2 = f and S > 0.

At a point p ∈ M where the function f takes the maximum, (∇f)(p) = 0. Hence,
S(p) = f(p) = fmax ≥ f = S + |∇f |2 ≥ S. Consequently, Smax = S(p) = fmax.
Let q be a point where the function f takes the minimum. Then fmax − fmin =
Smax − S(q) ≤ Smax − Smin.

Remark 2. We point out that, under the choice of f as in Remark 1, a normalized
compact 4-dimensional gradient shrinking Ricci soliton (M4, g, f) with fmax ≤ 3
must satisfy the Hitchin-Thorpe inequality. Indeed, since S > 0 and S +Δf = 2,
one obtains that ∫

M

S2dVg ≤ Smax

∫
M

SdVg = 2SmaxVol(M).
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Therefore, taking into account that Smax = fmax ≤ 3, we have
∫
M

S2dVg ≤
6Vol(M). So, it suffices to use the result obtained by Ma [29] to conclude the
Hitchin-Thorpe inequality holds on M4.

Again, as an application of Theorem 1, we deduce the following volume upper
bounds depending on the range of the potential function.

Theorem 2. Let (M4, g, f) be a 4-dimensional compact gradient shrinking Ricci
soliton satisfying (1.3). Then the following assertions hold:

Vol(M)
(
5− efmax−fmin

)
≤ 384π2.(1.6)

Equality holds if and only if (M, g) is a sphere S4 with the radius
√
6.

Vol(M)
(
5− efmax−fmin

)
≤ Y(M, [g])2,(1.7)

where Y(M, [g]) stands for the Yamabe invariant of (M4, g). Moreover, equality
holds if and only if g is an Einstein metric.

2. Notations and preliminaries

In this section we review some basic facts and present some lemmas that will be
used for the establishment of the main results. Throughout this paper, we adopt
the following convention for the curvatures:

Rm(X,Y ) = ∇2
Y,X −∇2

X,Y , Rm(X,Y, Z,W ) = g(Rm(X,Y )Z,W ),

K(ei, ej) = Rm(ei, ej , ei, ej), Ric(X,Y ) = trRm(X, ·, Y, ·),
Rij = Ric(ei, ej), S = trRic .

Besides, the Weyl tensor W is defined by the following decomposition formula:

Rijkl = Wijkl +
1

n− 2

(
Rikgjl +Rjlgik −Rilgjk −Rjkgil

)
− R

(n− 1)(n− 2)

(
gjlgik − gilgjk

)
,(2.1)

where Rijkl stands for the Riemann curvature tensor of (Mn, g).
Now, let (Mn, g, f) be an n-dimensional gradient shrinking Ricci soliton satis-

fying

(2.2) Ric+Hess f =
1

2
g.

Tracing the soliton equation (2.2) we get

(2.3) S +Δf =
n

2
,

where S denotes the scalar curvature of M .
Moreover, it is known that S + |∇f |2 − f is constant (see [21]) and hence, by

adding a constant to f if necessary, we have the equation

(2.4) S + |∇f |2 = f.

It follows from (2.3) and (2.4) that

(2.5) Δff =
n

2
− f,

where Δf · := Δ · −∇∇f · is the drifted Laplacian.
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In the sequel we recall the useful equations for the curvatures of a gradient
shrinking Ricci soliton. For their proofs, we refer the reader to [15, 36].

∇lRijkl = Rijklfl = ∇jRik −∇iRjk,(2.6)

∇jRij = Rijfj =
1

2
∇iS,(2.7)

ΔfRm = Rm+Rm ∗ Rm,(2.8)

ΔfRij = Rij − 2RikjlRkl,(2.9)

ΔfS = S − 2 |Ric|2 = 〈Ric, g − 2Ric〉.(2.10)

In this paper, we assume that M is compact. In [11], Chen proved that every
complete gradient shrinking Ricci soliton has positive scalar curvature unless it is
flat. Hence, S > 0 when M is compact.

In the rest of this section, we focus on dimension n = 4. It is known that, on a
four-dimensional oriented Riemannian manifold M4, the bundle of 2-forms Λ2 can
be invariantly decomposed as a direct sum

(2.11) Λ2 = Λ+ ⊕ Λ−,

where Λ± is the (±1)-eigenspace of the Hodge star operator ∗. This decomposition
is conformally invariant. In particular, let {ei}4i=1 be an oriented orthonormal basis
of the tangent space at any fixed point p ∈ M4. Then it gives rise to bases of Λ±

(2.12)
{
e1 ∧ e2 ± e3 ∧ e4, e1 ∧ e3 ± e4 ∧ e2, e1 ∧ e4 ± e2 ∧ e3

}
,

where each bi-vector has length
√
2. Moreover, the decomposition (2.11) allows us

to conclude that the Weyl tensor W is an endomorphism of Λ2 such that

(2.13) W = W+ ⊕W−,

where W± : Λ±M −→ Λ±M are called the self-dual part and anti-self-dual part
of the Weyl tensor W , respectively. Thereby, we may fix a point p ∈ M4 and
diagonalize W± such that w±

i , 1 ≤ i ≤ 3, are their respective eigenvalues. Also,
these eigenvalues satisfy

(2.14) w±
1 ≤ w±

2 ≤ w±
3 and w±

1 + w±
2 + w±

3 = 0.

Hence, the following inequality holds:

(2.15) detW+ ≤
√
6

18
|W+|3.

Moreover, equality holds in (2.15) if and only if w+
1 = w+

2 .
By Poincaré duality, it follows that, for all compact oriented 4-dimensional man-

ifolds, the Euler characteristic and signature of M4 are given by

χ(M) = 2− 2b1(M) + b2(M) and τ (M) = b+(M)− b−(M),

where b1(M) and b2(M) = b+(M) + b−(M) are the first and second Betti numbers
of M4, respectively. It turns out that

(2.16) χ(M) ≥ |τ (M)| − 2b1(M) + 2.

The curvature and topology of a compact 4-dimensional manifold are connected
via the classical Gauss-Bonnet-Chern formula

(2.17) χ(M) =
1

8π2

∫
M

(
|W+|2 + |W−|2 + S2

24
− 1

2
|R̊ic|2

)
dVg
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and the Hirzebrush’s theorem

(2.18) τ (M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dVg,

where R̊ic = Ric − S
4 g; for more details, see [1, Chapter 13]. It is easy to check

from (2.17) and (2.18) that every compact 4-dimensional Einstein manifold must
satisfy the Hitchin-Thorpe inequality.

We recall some useful expressions for the Euler characteristic χ(M) and give
their proof for the sake of completeness.

Lemma 1. Let (M4, g, f) be a compact 4-dimensional gradient shrinking Ricci
soliton satisfying (2.2). Then

8π2χ(M) =

∫
M

|W |2dVg +
1

6
Vol(M)− 1

12

∫
M

〈∇S,∇f〉dVg,(2.19)

8π2χ(M) =

∫
M

|W |2dVg +
1

2
Vol(M)− 1

12

∫
M

S2dVg.(2.20)

Proof. It follows from (2.3) that

(2.21)

∫
M

S dVg = 2 Vol(M).

Hence, by the Cauchy inequality, we have

4 Vol(M)2 =

(∫
M

SdVg

)2

≤ Vol(M)

∫
M

S2 dVg.

Consequently,

(2.22)

∫
M

S2 dVg ≥ 4 Vol(M).

Moreover, equality holds in (2.22) if and only if S = 2 and in this case, M4 must
be Einstein (see, e.g., [15]). At the same time, observe that∫

M

S2 dVg =

∫
M

S (2−Δf) dVg

= 2

∫
M

S dVg −
∫
M

SΔf dVg

= 4 Vol(M) +

∫
M

〈∇S,∇f〉dVg.(2.23)

Therefore, (2.22) and (2.23) give that
∫
M
〈∇S,∇f〉dVg ≥ 0. On the other hand,

integrating (2.10) and then using (2.21), we get

2

∫
M

|Ric|2 dVg =

∫
M

(S −ΔS + 〈∇S,∇f〉) dVg

= 2 Vol(M) +

∫
M

〈∇S,∇f〉dVg.(2.24)
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Substituting (2.23) and (2.24) into the Gauss-Bonnet-Chern formula (2.17) yields

8π2χ(M) =

∫
M

(
|W |2 + S2

24
− 1

2
|R̊ic|2

)
dVg

=

∫
M

(
|W |2 + S2

6
− 1

2
|Ric|2

)
dVg

=

∫
M

|W |2dVg +
1

6
Vol(M)− 1

12

∫
M

〈∇S,∇f〉dVg,(2.25)

which is (2.19). Finally, plugging (2.23) into (2.25) gives (2.20). �

3. Proof of the main results

For a gradient shrinking Ricci soliton (Mn, g, f), as in [8] by Cao and Zhou, we
consider the sub-level set of the potential function:

D(t) := {x ∈ M ; f(x) < t}.
In this section, we first discuss the absolute continuity of the integral of a bound
function on D(t).

3.1. Absolute continuity of a integral on D(t). Recently, Colding and Mini-
cozzi [13, Lemma 1.1] proved the properties of the critical set and the level sets of a
proper function f satisfying Δff = n

2 − f on the set {x ∈ M ; f(x) ≥ n
2 }, where M

is an n-dimensional Riemannian manifold. In this paper, we need a version of this
lemma for the whole manifold M . More precisely, we have the following lemma.

Lemma 2. Let (Mn, g) be an n-dimensional complete (not necessarily compact)
Riemannian manifold. Suppose that f is a proper and non-constant function sat-
isfying Δff = n

2 − f on M . Let C be the set of critical points of f . Then the
following assertions occur:

(a) The critical set C in M is locally contained in a smooth (n−1)-dimensional
manifold.

(b) Each level set {f(x) = c} has n-dimensional Hausdorff measure Hn({f =
c}) = 0.

(c) The regular set ∂D(t) \ C is dense in ∂D(t).

Proof. From (2.5), C ∩ {f = n
2 } is the singular set of the eigenfunction and hence

has locally finite (n− 2)-dimensional Hausdorff measure (see Theorem 1.1 in [22]).
On the other hand, Lemma 1.1 in [13] asserts that C in {f(x) > n

2 } is locally
contained in a smooth (n − 1)-dimensional manifold. Hence, it remains to prove
the conclusion in (a) for C in {f < n

2 }. This may be done by noticing that (2.5)
implies Δf > 0 on C ∩ {f < n

2 } and following the argument in [13] for C ∩ {f > n
2 }

with the appropriate adaptation. So, (a) is proved.
For any value c satisfying {f = c} �= ∅, the set {f = c} \ C is a countable union

of (n− 1)-manifolds. This property together with (a) gives (b).
Now, we confirm (c). For t > n

2 , it is the assertion (3) in Lemma 1.1 in [13]. For
t < n

2 , similar to the proof of (a), the assertion in this case follows by using (2.5)
and making the corresponding modifications of the argument of [13]. In the case
t = n

2 , the assertion follows from the properties that C ∩ {f = n
2 } has locally finite

(n− 2)-dimensional Hausdorff measure and the set {f = n
2 } \ C is locally a smooth

(n− 1)-manifold. Thus, the proof is finished. �
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We recall a result proved in [13] by Colding and Minicozzi.

Lemma 3 ([13, Lemma 1.3]). Suppose that b is a proper Cn function and Hn({|∇b|
= 0}) = 0 in {b ≥ r0} for some fixed r0. If g is a bounded function and Q(r) =∫
r0<b<r

g, then Q is absolutely continuous and Q′(r) =
∫
b=r

g
|∇b| a.e.

Using Lemmas 2 and 3, the following lemma may be established.

Lemma 4. Let (Mn, g, f) be an n-dimensional complete (not necessarily compact)
gradient shrinking Ricci soliton satisfying (2.2), where f is non-constant. Suppose
that h is a bounded measurable function. Then we have

(1) the set of the critical points of f and each level set of f satisfy Hn({|∇f | =
0}) = 0 and Hn({f = c}) = 0, respectively.

(2) F (t) :=
∫
D(t)

hdVg is absolutely continuous and F ′(t) =
∫
f=t

g
|∇f | a.e.,

where D(t) = {x ∈ M ; f(x) < t}.

Proof. First note that f satisfies (2.5), that is,

Δff =
n

2
− f.

Also in [8], Cao and Zhou proved that, when M is non-compact, there exists some
number r0 > 0 so that for all r(x) ≥ r0,

(3.1)
1

4

(
r(x)− c

)2

≤ f(x) ≤ 1

4

(
r(x) + c

)2

.

This implies that f is proper. So, (1) follows from (a) and (b) in Lemma 2.
Next, we deal with the second assertion. Indeed, by using that S > 0 and (2.4),

we know f > 0. The properness of f together with f > 0 implies that f may take
the positive minimum fmin. This fact and (a) in Lemma 2 imply that

F (t) =

∫
fmin≤f<t

hdVg =

∫
fmin<f<t

hdVg.

Thus, (2) follows from (1) and Lemma 3. �

Now we will present the proof of the main results.

3.2. Proof of Theorem 1.

Proof. If f is constant, then M4 is Einstein and (2.19) implies that the equality in
(1.4) holds. Thus, we consider the case that f is non-constant.

Let a and b be the minimum and maximum of f on M4, respectively. Then, by
using (2) in Lemma 4, we obtain that∫

D(s)

〈∇S,∇f〉dVg =

∫ s

a

∫
∂D(t)

〈∇S,∇f〉
|∇f | dσdt

=

∫ s

a

∫
∂D(t)

〈∇S, ν〉dσdt

=

∫ s

a

(∫
D(t)

ΔS dVg

)
dt

=

∫ s

a

(∫
D(t)

(S + 〈∇S,∇f〉 − 2|Ric|2)dVg

)
dt.(3.2)
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In the second equality of (3.2), ν is the outward unit normal vector of ∂D(t) and
in the third and fourth equalities, we have used the divergence theorem and (2.10),
respectively.

Define the functions Φ(s) and Ψ(s) by

Φ(s) =

∫ s

a

(∫
D(t)

〈∇S,∇f〉dVg

)
dt

and

Ψ(s) =

∫ s

a

(∫
D(t)

(S − 2|Ric|2)dVg

)
dt.

Hence, (3.2) becomes

(3.3) Φ′(s) = Φ(s) + Ψ(s).

Differentiating (3.3), we get that

(3.4) Φ′′(s) = Φ′(s) + Ψ′(s).

Noting Φ′(a) = 0, by (3.4), we obtain that

Φ′(s) = es
∫ s

a

Ψ′(t)e−tdt.

Consequently,

Φ′(b) = eb
∫ b

a

Ψ′(t)e−tdt

= eb
∫ b

a

(∫
D(t)

(S − 2|Ric|2)dVg

)
e−tdt

≤ eb
∫ b

a

(∫
D(t)

(S − 1

2
S2)dVg

)
e−tdt

= eb
∫ b

a

(∫
D(t)

(
1

2
− 1

2
(S − 1)2

)
dVg

)
e−tdt

≤ 1

2
eb

∫ b

a

Vol(D(t)) e−tdt

≤ 1

2
Vol(M) (eb−a − 1).(3.5)

Since Φ′(b) =
∫
M
〈∇S,∇f〉dVg, we get

(3.6)

∫
M

〈∇S,∇f〉dVg ≤ 1

2
Vol(M)(eb−a − 1).

Finally, plugging (3.6) into (2.25) we conclude

8π2χ(M) =

∫
M

|W |2dVg +
1

6
Vol(M)− 1

12

∫
M

〈∇S,∇f〉dVg

≥
∫
M

|W |2dVg +
1

24
Vol(M)(5− eb−a),(3.7)

which is (1.4). Now consider the case of the equality in (1.4). Suppose, by contrary,
that f is not constant. Then, Vol(D(t)) < Vol(M) for any t < b. Therefore the
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strict inequalities in (3.5) and thus in (3.7) must hold. This is a contradiction. So
f must be constant and M4 is Einstein. This finishes the proof of the theorem. �

3.3. Proof of Corollary 1.

Proof. Using (1.4) and (2.18), we get

4π2 (2χ(M)± 3τ (M)) ≥ 2

∫
M

|W±|2dVg

+
1

24
Vol(M)

(
5− efmax−fmin

)
.(3.8)

Hence, the assumption fmax − fmin ≤ log 5 implies that

χ(M) ≥ 3

2
|τ (M)|,

as asserted. �

3.4. Proof of Theorem 2.

Proof. Since M4 has positive scalar curvature, using a result on a compact oriented
Riemannian 4-manifold with positive scalar curvature, which was proved by Gursky
in [19] (see [37] also), we know that M4 must satisfy

(3.9) 8π2 (χ(M)− 2) ≤
∫
M

|W |2 dVg.

Moreover, equality holds if and only if M4 is conformally equivalent to a sphere S4.
By (3.9) and (1.4), we get

1

24
Vol(M)

(
5− efmax−fmin

)
≤ 16π2,(3.10)

which proves (1.6).
If the equality in (3.10) holds, then M must be Einstein and conformally equiv-

alent to a sphere S
4. Hence, f is constant, R̊ic = 0, S = 2, and W = 0. The

decomposition of the curvature tensor implies that the sectional curvature of M
must be constant 1

6 . Thus M must be a standard sphere S4 with the radius
√
6. In

particular, such a sphere has volume Vol(M) = 96π2.
Next, we deal with the second assertion in the theorem, i.e., the estimate on the

Yamabe invariant. Since the L2-norm of the Weyl tensor is conformally invariant
in dimension 4, one sees that

∫
M

(
S2

24
− 1

2
|R̊ic|2

)
dVg
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is conformally invariant as well. Let Y(M, [g])2 be the Yamabe invariant associated
to (M4, g). Then, given the Yamabe metric g ∈ [g], we obtain

Y(M, [g])2 =
1

Volg(M)

(∫
M

SdVg

)2

=

∫
M

S
2
dVg

≥
∫
M

(
S
2 − 12|R̊ic|2

)
dVg

=

∫
M

(
S2 − 12|R̊ic|2

)
dVg,(3.11)

where we have used the conformally invariance in the last equality. Moreover,
equality holds if and only if (M4, g) is conformally Einstein.

On the other hand, it is easy to check from (2.23) and (2.24) that∫
M

|R̊ic|2dVg =

∫
M

(
|Ric|2 − S2

4

)
dVg

=
1

2

∫
M

S2dVg −Vol(M)−
∫
M

S2

4
dVg

=
1

4

∫
M

S2dVg −Vol(M).(3.12)

Plugging (3.12) into (3.11), one obtains that

(3.13) Y(M, [g])2 ≥ −2

∫
M

S2dVg + 12Vol(M).

Hence, we may use (2.20) to get

(3.14) 8π2χ(M) ≤
∫
M

|W |2dVg +
1

24
Y(M, [g])2

and then it suffices to use (1.4) to see that

(3.15) Vol(M)
(
5− efmax−fmin

)
≤ Y(M, [g])2,

as asserted.
Finally, if the equality in (3.15) holds, then the equality in (1.4) must hold.

Hence, Theorem 1 implies that (M, g) must be Einstein with 4Vol(M) = Y(M, [g])2.
To prove the inverse, one only needs to note that the equalities in (1.4) and (3.11)
hold if (M, g) is Einstein. So, the proof is finished. �

Remark 3. We point out that (1.6) can be alternatively obtained by using (1.7) as
follows. For any compact 4-dimensional manifold M4, due to Aubin and Schoen,
one has the following inequality Y(M4, [g])2 ≤ Y(S4, [g0])

2, where g0 denotes the
metric of standard sphere S4. Moreover, equality holds if and only if (M, g) is
conformally equivalent to a sphere S4. At the same time, we have Y(S4, [g0])

2 =
384π2. Hence, (1.6) holds. For the equality case, the same argument as in the proof
of Theorem 2 can be applied.
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inequalities for compact Ricci solitons, Q. J. Math. 61 (2010), no. 3, 319–327, DOI
10.1093/qmath/hap006. MR2672426
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Instituto de Matemática e Estat́ıstica, Universidade Federal Fluminense - UFF,
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