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ALTERNATIVE PROOFS OF MANDREKAR’S THEOREM

LINUS BERGQVIST

(Communicated by Javad Mashreghi)

Abstract. We present two alternative proofs of Mandrekar’s theorem, which
states that an invariant subspace of the Hardy space on the bidisc is of Beurling
type precisely when the shifts satisfy a doubly commuting condition [Proc.
Amer. Math. Soc. 103 (1988), pp. 145–148]. The first proof uses properties of
Toeplitz operators to derive a formula for the reproducing kernel of certain shift
invariant subspaces, which can then be used to characterize them. The second
proof relies on the reproducing property in order to show that the reproducing
kernel at the origin must generate the entire shift invariant subspace.

1. Introduction

In this note we provide new proofs of Mandrekar’s theorem on shift invariant sub-
spaces of the Hardy space on the bidisc through methods mainly using reproducing
kernels.

As usual, we say that a closed subspace M ⊂ H2(D2) is shift invariant if
SjM ⊂ M for j = 1, 2, where

Sj : H2(D2) �→ H2(D2), f(z) �→ zjf(z), for j = 1, 2.
We want to prove the following.

Theorem 1 (Theorem 2 from [4]). An invariant subspace M �= {0} of H2(D2) is
of the form ϕH2 with ϕ an inner function if and only if the shift operators S1
and S2 are doubly commuting on M.

That {Sj}j=1,2 is doubly commuting means that the operators commute with
each other, and with each other’s adjoints: that is, SiSj = SjSi and SiS

∗
j = S∗

j Si

for i �= j. A function ϕ is inner if ϕ ∈ H∞(D2) and |ϕ(z)| = 1 almost everywhere
on T2.

1.1. Overview. Mandrekar’s theorem consists of two implications: the first and
more straightforward implication is that if M is a closed invariant subspace of the
form ϕH2(D2) with ϕ inner, then the shift operators are doubly commuting on M;
and the second is that if M is a closed shift invariant subspace on which the shift
operators are doubly commuting, then M = ϕH2(D2) for some inner function ϕ.

We will begin by going through some preliminaries that are necessary for the
new proofs of Mandrekar’s theorem provided in this article. After this, the article
consists of 3 additional sections. In the first section we give a new proof of the first
implication by using how Toeplitz operators act on the reproducing kernel.
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In the second we give a somewhat new proof of the second implication, i.e.
we prove that an invariant subspace M on which the shift operators are doubly
commuting must be of the form ϕH2 for some inner function ϕ. Mandrekar’s
original proof is done in two steps: first he shows that a certain subspace of M has
dimension 1 and is generated by an inner function, and then he uses a wandering
subspace theorem from [9] to show that this subspace generates M. The proof
given in this section still largely uses Mandrekar’s argument for showing that this
subspace has dimension 1 and is generated by an inner function, but then instead
uses the main idea from the alternative proof of Beurling’s theorem given by Karaev
in [3] in order to characterize the reproducing kernel of M, and thus show that M
has the desired form.

In the third and final section we give a completely new proof of the second
implication by using a modified version of the classical proof of Beurling’s theorem
given in [2]. Namely, we show that if the shift operators are doubly commuting on
M, then either the reproducing kernel at the origin or a function which reproduces
the value of a suitable derivative at the origin (if all functions in the invariant
subspace vanish at the origin) must generate the entire invariant subspace M. This
is done by using the defining property of the reproducing kernel at the origin to
show that no function in M can be orthogonal to the invariant subspace generated
by this function.

1.2. Preliminaries. We begin with some general theory for the reproducing ker-
nels of operator range spaces and how Toeplitz operators act on such spaces. For
more details see [1] and chapter 1 of [6].

A Hilbert space H with inner product 〈·, ·〉H consisting of functions defined on
a domain D is called a reproducing kernel Hilbert space if point evaluations are
bounded linear functionals. By Riesz representation theorem, this means that for
every point z0 ∈ D there is a function kz0 ∈ H, called the reproducing kernel at
z0, such that

f(z0) = 〈f, kz0〉H
for all f ∈ H. The reproducing kernel of H2(Dn) is the Cauchy kernel

Cλ(z) =
n∏

j=1

1
(1 − λjzj)

,

and throughout this note, we will denote by kMλ the reproducing kernel of a closed
subspace M ⊂ H2(Dn).

If T : H �→ H is a partial isometry on a reproducing kernel Hilbert space H with
reproducing kernel kλ(z), then T (H) and T (H)⊥ are closed subspaces of H, and
their reproducing kernels are given by TT ∗kλ(z) and (1 − TT ∗)kλ(z) respectively.
In particular, we are interested in Toeplitz operators

Tϕ : H �→ H, f �→ ϕf,

with symbol ϕ belonging to the multiplier algebra of H. In the case of H2(Dn),
the multiplier algebra is H∞(Dn), the space of bounded analytic functions on Dn.

If Tϕ is an isometry, then the above means that ϕH and (ϕH)⊥ will have repro-
ducing kernels

(1) ϕ(z)ϕ(λ)kλ(z) and (1 − ϕ(z)ϕ(λ))kλ(z),
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respectively. In order to arrive at (1) we have used that

(2) T ∗
ϕ = Tϕ and Tϕkλ(z) = ϕ(λ)kλ(z).

These two equalities always hold for Toeplitz operators on reproducing kernel
Hilbert spaces, and will be used frequently in this note.

Note that Tϕ is an isometry whenever ϕ is an inner function and H is the Hardy
space or a closed subspace of the Hardy space, and thus (1) holds in these cases.

2. Alternate proof of the first implication

Proof of the first implication of Theorem 1. Let ϕ be an inner function and con-
sider the closed invariant subspace M = ϕH2. We want to show that S1 and S2
are doubly commuting on M.

First of all S1 and S2 are commuting on M since z1z2ϕ(z)f(z) = z2z1ϕ(z)f(z)
for all f ∈ H2. In [4] Mandrekar just refers to Theorem 1(i) ⇒ (ii) in [9] to show
that S1 and S2 are in fact doubly commuting on such a subspace M if ϕ is inner
(or, more generally, of constant modulus on T2).

We will instead show that S1 and S2 are doubly commuting on such a subspace
M by considering their action on the reproducing kernel. From the first formula of
(1) we know that the reproducing kernel of M is

kMλ (z) = ϕ(λ)ϕ(z)
(1 − λ1z1)(1 − λ2z2)

.

Since the reproducing kernels are dense in M, we only need to show that

S1S
∗
2k

M
λ (z) = S∗

2S1k
M
λ (z)

for the kernels. By using equation (2), we immediately see that the left hand side is
z1λ2k

M
λ (z). To see that the same holds for the right hand side we argue as follows.

Since kMλ (z) = ϕ(z)ϕ(λ)Cλ1(z1)Cλ2(z2), we see that

S∗
2(z1k

M
λ (z)) =

〈
w1w2k

M
λ (w), kMz (w)

〉
H2(D2)

=
〈
w1w2ϕ(w)ϕ(λ)Cλ1(w1)Cλ2(w2), ϕ(w)ϕ(z)Cz1(w1)Cz2(w2)

〉
H2(D2)

.

Note that the integration defining the inner product above is with respect to w.
Since |ϕ(w)|2 = 1 almost everywhere on T2, we see that〈

w1w2ϕ(w)ϕ(λ)Cλ1(w1)Cλ2(w2), ϕ(w)ϕ(z)Cz1(w1)Cz2(w2)
〉
H2(D2)

=
〈
w1w2ϕ(λ)Cλ1(w1)Cλ2(w2), ϕ(z)Cz1(w1)Cz2(w2)

〉
H2(D2)

= ϕ(λ)ϕ(z) 〈w1w2Cλ1(w1)Cλ2(w2), Cz1(w1)Cz2(w2)〉H2(D2) .

Because of the product structure of H2(D2) we have that

〈w1w2Cλ1(w1)Cλ2(w2), Cz1(w1)Cz2(w2)〉H2(D2)

= 〈w1Cλ1(w1), Cz1(w1)〉H2(D) 〈w2Cλ2(w2), Cz2(w2)〉H2(D) ,



ALTERNATIVE PROOFS OF MANDREKAR’S THEOREM 49

and by using (2) on H2(D) we see that

〈w1Cλ1(w1), Cz1(w1)〉H2(D) 〈w2Cλ2(w2), Cz2(w2)〉H2(D)

= z1Cλ1(z1)Tz2 (Cλ2(z2)) = z1Cλ1(z1)λ2Cλ2(z2).

By putting all of this together we see that

S∗
2 (z1k

M
λ (z)) = ϕ(λ)ϕ(z)z1Cλ1(z1)λ2Cλ2(z2) = z1λ2k

M
λ (z),

which is what we wanted to show.
This finishes the proof. �

3. First alternate proof of the second implication

In Mandrekar’s original proof of this direction, he first proved that a certain
subspace of M has dimension one and contains an inner function ϕ, and he then
used a wandering subspace theorem from [9] to prove that this subspace generates
M. This implies that M = ϕH2.

In this proof, we will still largely use Mandrekar’s original proof to show that
this subspace of M has dimension one and is generated by an inner function ϕ. But
instead of using the wandering subspace theorem from [9], we will use properties of
reproducing kernels to describe the reproducing kernel of M. This will show that
M = ϕH2.

For completeness and to get a self-contained proof, we will present the proofs
from Mandrekar’s article [4] of the statements that we need to use, and furthermore
we will add proofs of statements from [9] that are used in both this proof and in
Mandrekar’s original proof.

First proof of the second implication of Theorem 1. Consider the subspaces

Oj(M) := M
 SjM,

and their intersection O1(M)∩O2(M). This is the subspace with which Mandrekar
applies S�lociński’s wandering subspace theorem for commuting isometries from [9].

We will essentially use Mandrekar’s original proof to show that if M is an invari-
ant subspace on which {Sj}j=1,2 is doubly commuting, then the closed subspace
O1(M) ∩ O2(M) either has dimension 1 and contains an inner function, or it
only contains the zero function. In fact, Mandrekar excludes the possibility that
O1(M)∩O2(M) = {0} by another application of the wandering subspace theorem
from [9], but we will deal with the possibility that the intersection is trivial at a
later stage.

In order to show that the dimension of the intersection is smaller than or equal
to 1, we must use the fact that O1 is invariant under S2 and O2 is invariant under
S1. That is

(3) S2(O1) ⊂ O1 and S1(O2) ⊂ O2.

Mandrekar proves this by simply referring to Theorem 1(iii) in [9]. However, this
can be shown with elementary arguments using that {Sj}j=1,2 are doubly com-
muting on M. Namely, since S1 and S∗

2 are commuting, we have that for every
g ∈ M
 S1M

0 = 〈g, S1(S∗
2f)〉 = 〈g, S∗

2(S1f)〉 = 〈S2g, S1f〉
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for all f ∈ M, and so S2g ∈ M 
 S1M. Again, here we regard Sj and S∗
j as

operators on M.
With this result at hand, we can go on with presenting the way Mandrekar proves

that the dimension of O1(M) ∩ O2(M) is 1 unless the intersection only contains
the zero function.

Let g1, g2 ∈ O1(M) ∩O2(M). Then for all m,n > 0∫
T2

zm1 zn2 g1(z)g2(z)|dz| = 0,

and by (3) we also have that∫
T2

zn2 g1(z)zm1 g2(z)|dz| = 0

for all m,n > 0. By symmetry and since z1
m = z−m

1 , this means that

(4)
∫
T2

zm1 zn2 g1(z)g2(z)|dz| = 0,

for all (m,n) �= (0, 0), which means that g1(z)g2(z) = c a.e. on T2.
Now suppose that there are g1, g2 ∈ O1(M)∩O2(M) \ {0} with g1 ⊥ g2. In this

case |g1|2 = c1 �= 0 and |g2|2 = c2 �= 0 a.e. on T
2 by (4), but g1g2 = 0 a.e. on T

2

since g1g2 is a.e. constant and g1 ⊥ g2.
This is impossible, and hence O1(M)∩O2(M) is one-dimensional. Furthermore,

from the above arguments it follows that O1(M) ∩ O2(M) contains, and hence is
generated by an inner function, which we denote by ϕ. All that remains is to show
that this implies that M = ϕH2(D2) for this inner function ϕ.

The next step in Mandrekar’s proof relies on a wandering subspace theorem for
commuting isometries due to S�lociński from [9]. Here, we instead use an argument
with reproducing kernels similar to that in [3].

Since S1 and S2 are partial isometries on any closed invariant subspace of
H2(D2), applying the second formula of (1) shows that the reproducing kernel
of O2(M) is given by

(1 − λ2z2)kMλ (z),
and since O2(M) is invariant under S1 by (3), applying the second formula of (1)
again shows that the reproducing kernel for O1(M) ∩O2(M) is given by

(5) (1 − λ1z1)(1 − λ2z2)kMλ (z).

If O1(M) ∩O2(M) = {0}, then

(1 − λ1z1)(1 − λ2z2)kMλ (z) = 0 ⇒ kMλ (z) = 0,

and so M is trivial.
If O1(M)∩O2(M) �= {0}, then we know that O1(M)∩O2(M) is one-dimensional,

and so its reproducing kernel will be given by ϕ(λ)ϕ(z) for some ϕ with H2-norm
equal to 1. From the previous arguments, we know that this ϕ will in fact be inner.
Put together, this means that

(1 − λ1z1)(1 − λ2z2)kMλ (z) = ϕ(λ)ϕ(z)

⇐⇒ kMλ (z) = ϕ(λ)ϕ(z)
(1 − λ1z1)(1 − λ2z2)

.
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By (1) we recognize the right hand side of the last equation as the reproducing
kernel of ϕH2(D2). Since a Hilbert space is uniquely determined by its reproducing
kernel, this finishes the proof. �

A somewhat informal, but perhaps helpful way to think about the derivation
of formula (5) for the reproducing kernel of O1(M) ∩ O2(M) is to note that the
orthogonal projection onto Oj(M) ⊂ M is given by Pj := (I−SjS

∗
j ), and using that

since {Sj}j=1,2 are doubly commuting on M, the projections P1 and P2 commute.
As a consequence, the orthogonal projection onto O1(M)∩O2(M) is given by P1P2,
and the reproducing kernel of O1(M) ∩O2(M) is

P1P2k
M
λ (z).

Furthermore, it is worth noting that our argument for why
O1(M) ∩O2(M) = {0} ⇒ M = {0}

is actually not very different from the argument given in [4]. For this Mandrekar
essentially refers to the wandering subspace theorem from [9], and concludes that
if O1(M) ∩ O2(M) = {0} then M = {0}, since clearly the wandering subspace
O1(M) ∩O2(M) can’t generate anything else.

Remark. The wandering subspace argument using reproducing kernels given above
works exactly the same way in n variables, and Mandrekar’s argument for showing
that the wandering subspace is one-dimensional also works in n variables, although
in that case the argument will become slightly more technical. But since [9] only
deals with a pair of doubly commuting isometries, Mandrekar’s original theorem
only concerns functions of two complex variables. However, more recently the main
results in [9] have been generalized by Sarkar in [7] to deal with an n-tuple of
pairwise doubly commuting isometries, and thus Mandrekar’s original argument
can be applied directly to show the corresponding theorem for H2(Dn). Though, it
is worth pointing out that Mandrekar’s theorem on H2(Dn) has already been proved
by Seto in [8] by using the Wold decompositions from [9] in a slightly different way.

4. Second alternate proof of the second implication

In this section we give another proof of the second direction of Mandrekar’s
theorem, which is instead based on the proof idea of Beurling’s theorem provided
in [2].

We begin by proving a weaker version of the second direction of Mandrekar’s
theorem, where we assume that the origin is not a common zero for all functions
in M. The exact statement we prove is as follows.

Theorem 2. If the shift operators S1 and S2 are doubly commuting on an in-
variant subspace M �= {0} of H2(T2), which has the additional property that it
contains an element which does not vanish at the origin, then M is of the form
ϕH2 for an inner function ϕ.

Proof. We will show that M = ϕH2 for some function ϕ ∈ H2 with constant
modulus c �= 0 a.e. on the boundary. By simply normalizing ϕ one then obtains
the desired inner function.

As always we denote by kMλ (z) the reproducing kernel of M. Now, denote by
ϕ(z) the reproducing kernel at the origin, kM0 (z). Note that k0(z) �= 0 since we
assume that some function in M does not vanish at the origin. We will show that
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ϕ(z) has constant modulus on the boundary by showing that all Fourier coefficients
of |ϕ(z)|2 apart from the constant term are zero.

By the reproducing property of ϕ

(6)
∫
T2

|ϕ(z)|2zk1zn2 |dz| = 〈zk1zn2ϕ(z), ϕ(z)〉 = 0

for all (k, n) �= (0, 0) with k, n ≥ 0, and by taking complex conjugates, we also see
that ∫

T2
|ϕ(z)|2zk1zn2 |dz| = 0

when (k, n) �= (0, 0), and k, n ≤ 0.
If (k, n) �= (0, 0) with k, n ≥ 0 then∫

T2
|ϕ(z)|2zk1 z−n

2 |dz| =
∫
T2

(ϕ(z)zk1 )(ϕ(z)zn2 )|dz| = 〈Sk
1ϕ(z), Sn

2 ϕ(z)〉,

and since S1 and S2 are assumed to be doubly commuting
〈Sk

1ϕ(z), Sn
2 ϕ(z)〉 = 〈ϕ(z), (S∗

1)kSn
2 ϕ(z)〉 = 〈ϕ(z), Sn

2 (S∗
1)kϕ(z)〉 = 0,

where the last equality is again a consequence of the reproducing property of ϕ.
By using the same argument with (−k, n) instead of (k,−n), we finally see that∫

T2
|ϕ(z)|2zk1zn2 |dz| = 0

for all (k, n) �= (0, 0), which shows that |ϕ(z)| is constant almost everywhere on T2.
It remains to show that M = ϕH2(D2).
Since ϕ has constant modulus on the boundary and since the polynomials are

dense in H2(D2), we have that

ϕH2(D2) = {ϕ(z)p(z) : p(z) ∈ C[z1, z2]} ⊂ M.

Now let f ∈ M be orthogonal to all elements in {ϕ(z)p(z) : p(z) ∈ C[z1, z2]}. We
will show that f = 0 by showing that all the Fourier coefficients of ϕf are zero.

By the orthogonality assumption on f∫
T2

ϕ(z)f(z)zk1zn2 |dz| = 0,

for all n, k ≥ 0. Furthermore, by again using the reproducing property of ϕ, and
since S1 and S2 are doubly commuting on M, we have that∫

T2
ϕ(z)f(z)zk1z−n

2 |dz| =
∫
T2

ϕ(z)zk1f(z)zn2 |dz|

= 〈zk1ϕ(z), zn2 f(z)〉 = 〈ϕ(z), Sn
2 (S∗

1)kf(z)〉 = 0,

for n ≥ 1 and k ≥ 0. The same argument for (−k, n) instead of (k,−n) shows that∫
T2

ϕ(z)f(z)z−k
1 zn2 |dz| = 0

when n ≥ 0 and k ≥ 1.
It remains to show that

(7) 〈ϕ, f(z)zk1zn2 〉 =
∫
T2

ϕ(z)f(z)z−k
1 z−n

2 |dz| = 0

for k, n ≥ 1.
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But this is an immediate consequence of the reproducing property of ϕ since
f(z)zk1zn2 belong to M and vanish at the origin for all k, n ≥ 1.

It follows that all Fourier coefficients of ϕf vanish, and so ϕf = 0. Since |ϕ| =
c �= 0 a.e. on T2, this means that f = 0 a.e. on T2, and thus f is identically equal
to zero. �

For functions of one variable, the general case — in which all functions in M
might have a common zero at the origin — is easily reduced to the case above by, if
necessary, simply factoring out zk for some k ≥ 1. For functions of several variables
this is no longer possible since there is no canonical factor corresponding to zeros
at the origin. Instead, we modify the argument given above as follows.

Second proof of the second implication of Theorem 1. As above we will show that
if S1 and S2 are doubly commuting on M, then M = ϕH2(D2) for some function ϕ
with constant modulus c �= 0 a.e. on the boundary. By normalizing ϕ one obtains
the desired inner function.

If there is some f ∈ M which does not vanish at the origin, we can just apply
Theorem 2, and then there is nothing more to be done.

Now suppose d ≥ 1 is the smallest integer such that all partial derivatives of
total degree less than d of all functions f ∈ M vanish at the origin. That is, for all
j1, j2 ∈ N with j1 + j2 < d

(8)

(
∂j1+j2f

∂zj11 ∂zj22

)
(0, 0) = 0

for all f ∈ M. We may assume that d < ∞ since otherwise all functions in M are
identically zero, i.e. M = {0}.

Let (d1, d2) ∈ N2 with d1 + d2 = d be any pair of integers such that(
∂d1+d2f

∂zd1
1 ∂zd2

2

)
(0, 0) �= 0

for some f ∈ M. Consider the bounded linear functional E(d1,d2)
0 on H2(D2) defined

by

E
(d1,d2)
0 : f �→

(
∂d1+d2f

∂zd1
1 ∂zd2

2

)
(0, 0).

That this functional is indeed bounded on H2(D2) is clear since it maps a function
f to a fixed constant multiple of its Fourier coefficient with index (d1, d2).

By the Riesz representation theorem there exists a unique function, which we
will denote by k

(d1,d2)
0 , such that

E
(d1,d2)
0 (f) =

〈
f, k

(d1,d2)
0

〉
for all f ∈ H2(D2). This is kind of a reproducing kernel at the origin, only it gives
the value for the (d1, d2)th partial derivative instead of for the function.

Just as for the ordinary reproducing kernel, we have that PMk
(d1,d2)
0 ∈ M is the

unique function in M such that

E
(d1,d2)
0 (f) =

〈
f, PMk

(d1,d2)
0

〉
for all f ∈ M. From now on we will denote the function PMk

(d1,d2)
0 by ϕ.
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Since ϕ reproduces the (d1, d2)th partial derivative at the origin and since equa-
tion (8) holds for all f ∈ M, we have that∫

T2
|ϕ(z)|2zk1zn2 |dz| = 〈zk1zn2ϕ(z), ϕ(z)〉 = 0,

for all (n, k) �= (0, 0), n, k ∈ N. That is ϕ satisfies equation (6) from the proof of
Theorem 2.

In fact, as a consequence of the reproducing property of ϕ and the fact that (8)
holds for all f ∈ M, we have that

(9) 〈ϕ, f(z)zn1 zk2 〉 = 0

for all f ∈ M and all n, k ∈ N with (n, k) �= (0, 0). To see that (9) holds, note that
when we evaluate the terms of the partial derivatives of f(z)zn1 zk2 at the origin,
either they will vanish because of a monomial factor zl1z

m
2 still being left after

differentiation, or they will vanish because of (8).
Now in order to finish the proof we can just use the proof of Theorem 2 from

equation (6) verbatim, if we just replace any reference to “the reproducing property
of ϕ” with a reference to equation (9). �

The function ϕ used above can be obtained as the unique minimizer of a suitable
extremal problem. When obtained in this way, one instead shows that equation (6)
holds through a variational argument. This is of course more complicated than
the argument given above, but in the one variable setting this approach has been
successfully applied to extend results whose usual proofs rely heavily on Hilbert
space techniques to Banach spaces like Hp(D) and Ap(D). In this specific context
though it might be worth to point out that Mandrekar’s theorem for Hp(D2) for
p ≥ 1 has already been proved by Redett in [5]. The argument used in that article
is a modification of the idea of considering the intersection of the invariant subspace
with H2(D2), applying Mandrekar’s theorem, and using a density argument.
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