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THE TRACE PROPERTY IN PREENVELOPING CLASSES

HAYDEE LINDO AND PEDER THOMPSON

(Communicated by Jerzy Weyman)

Abstract. We develop the theory of trace modules up to isomorphism and
explore the relationship between preenveloping classes of modules and the
property of being a trace module, guided by the question of whether a given
module is trace in a given preenvelope. As a consequence we identify new
examples of trace ideals and trace modules, and characterize several classes of
rings with a focus on the Gorenstein and regular properties.

1. Introduction

Let R be a ring and let M be an R-submodule of another R-module X. The
module M is fully invariant in X, or endomorphism invariant in X, if ϕ(M) ⊆ M
for every endomorphism ϕ of X. In [14], Johnson and Wong motivated the study
of endomorphism invariance by establishing that quasi-injective modules, earlier
known for their role in direct sum decompositions of modules, are simply modules
that are endomorphism invariant in their injective envelopes; see [10, 28].

This paper explores the relationship between the theory of endomorphism in-
variant modules, the notion of reflexivity of a module, and the modern theory of
trace modules — particularly in the language of preenveloping classes of modules.
Here, an R-module M is a trace module if there exist R-modules A and X such
that

M =
∑

α∈HomR(A,X)

α(A).

There has been recent interest in the theory of trace ideals over commutative
rings, where a trace module in X is called a trace ideal provided X = R; see [7,9,12,
13,15,19,23]. This and other progress in the more general theory of trace modules
have shown certain trace modules to have desireable properties, like nonrigidity,
that is, the existence of self-extensions; see [20]. A growing body of work has
also demonstrated the ubiquity of trace modules, and their subsequent usefulness
in classifying artinian Gorenstein rings, unique factorization domains, and certain
subclasses of hypersurfaces; see also [15, 21].

In [4], Brandt’s exploration of automorphism invariance in injective modules
points to the idea that when X is part of a preenveloping class of R-modules then
the trace submodules of X are precisely its endomorphism invariant submodules.
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This paper formalizes this idea and explores its consequences. For example, it fol-
lows that quasi-injective modules, and other well-studied classes of endomorphism
invariant modules, are examples of trace modules, and the language of trace mod-
ules can be used to characterize many more and significantly different classes of
rings than previously established. Notably, we observe the following as equivalent
to a part of the result [16, Theorem 6.83] due to work of Osofsky in [22]: R is
semisimple if and only if every R-module is trace in its injective envelope; see The-
orem 4.2. In particular, this is a consequence of our first key technical result about
(pre)enveloping classes, Theorem 4.1, which also leads to a characterization of von
Neumann regular rings in Corollary 4.14. This complements recent work of Goto,
Isobe, and Kumashiro in [9, Lemma 4.6], where the authors observe that every ideal
in a von Neumann regular ring is a trace ideal.

The paper is structured as follows. In Section 2, we formalize the idea of both
trace submodules and trace modules up to isomorphism, as well as give some of the
basic properties of trace modules. In Section 3, we explore the link between the
trace property and notions such as being fully invariant or reflexive. In particular,
these observations provide new examples of trace modules. We prove two general
technical results in Section 4, namely Theorems 4.1 and 4.3, which provide a way to
understand when one class of modules is trace in another class. As consequences,
we characterize various rings in terms of traceness, including semisimple rings (The-
orem 4.2), Gorenstein rings of dimension at most 1 (Theorem 4.8), Gorenstein rings
of higher dimension (Theorem 4.11), von Neumann regular rings (Theorem 4.14),
and regular rings (Theorem 4.16). Finally, in Section 5, we consider more closely
traceness of ideals in enveloping classes. Our main tool here is Theorem 5.2, from
which we obtain a characterization of self-injective rings (Corollary 5.3) and another
characterization of Gorenstein rings (Theorem 5.5).

2. Preliminaries on trace modules

Throughout this paper, let R be a ring with unity. An R-module is assumed to
be a left R-module; right R-modules are considered as modules over the opposite
ring, Rop. The category of (left) R-modules is denoted ModR.

We first introduce some terminology.

Definition 2.1. Let M and X be R-modules.

(1) The trace module of M in X is the sum of all R-homomorphic images of
M in X, and it is denoted τM (X):

τM (X) =
∑

α∈HomR(M,X)

α(M).

Equivalently, τM (X) is the image of the natural homomorphism

HomR(M,X)⊗R M −→ X

defined by evaluation across the tensor, that is, f ⊗ m �→ f(m) for f in
HomR(M,X) and m in M .

(2) If M is an R-submodule of X, we say that M is a trace submodule of X if
M = τN (X) for some R-module N . In the case X = R, a left ideal I of R
is a trace ideal of R if I = τN (R) for some R-module N .

(3) If ι : M → X is an injective R-homomorphism, we say that M is trace in
X via ι if its image, Im(ι), is a trace submodule of X.
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(4) More generally, we say that M is trace in X up to isomorphism if there
exists an injection ι : M → X such that Im(ι) is a trace submodule of X.

Before moving on, we give a simple example illustrating these notions.

Example 2.2. Let R = k[x], for a field k. The ideal (x) is not a trace ideal (that
is, not a trace submodule of R), however, (x) is isomorphic to a trace ideal. Indeed
τ(x)(R) = (1), as multiplication by 1/x in the total ring of fractions of R gives an
isomorphism ι : (x) → (1). Using the terminology in Definition 2.1, we say that
(x) is trace in R up to isomorphism, or, more precisely, that (x) is trace in R via
ι : (x) → R.

There has been recent work by Kobayashi and Takahashi exploring rings in which
every ideal is isomorphic to a trace ideal; see [15].

Remark 2.3. Any trace ideal I = τN (R) of R is in fact a (two-sided) ideal. This
seems to be known, for example see Herbera and Př́ıhoda [11], but we provide a
proof here for completeness. It is only needed to show the right-absorption property
holds:

Let x ∈ I and r ∈ R. First suppose that there exists ϕ : N → R such that
ϕ(y) = x for some y ∈ N . Define ϕ̃ : N → R by ϕ̃(n) = ϕ(n)r for all n ∈ N .
The mapping ϕ̃ is an R-homomorphism and so by the definition of τN (R) one
has xr ∈ ϕ̃(N) ⊆ τN (R) = I. In general, by the definition of trace modules,
if x ∈ I = τN (R) then x is a finite sum of the form x =

∑
ϕi(yi) for some

ϕi : N → R and yi ∈ N . The previous argument now shows that each ϕi(yi)r
belongs to I, hence so does x.

The next fact gives useful alternative descriptions of trace submodules; it is
[20, Lemma 2.4]. Note that [20] subsumes the results from the unpublished [18].

Lemma 2.4 ([20]). Let M be an R-submodule of X. The following are equivalent:

(i) M is a trace submodule of X.
(ii) M = τM (X).
(iii) The inclusion M ⊆ X induces an isomorphism

HomR(M,M)
∼=−→ HomR(M,X).

Remark 2.5. Being a trace submodule of a module is hereditary with respect to
submodules: If M ⊆ X ⊆ Y and M is a trace submodule of Y, then M is a trace
submodule of X. This follows from the equivalence (i)⇔(iii) in Lemma 2.4.

Remark 2.6. Let M , M ′, and X be R-modules such that M ∼= M ′. Since
HomR(M,X) ∼= HomR(M

′, X), it follows that τM (X) = τM ′(X).

The next fact extends Lemma 2.4.

Lemma 2.7. Let M and X be R-modules. The following are equivalent:

(i) M is trace in X up to isomorphism.
(ii) M ∼= τM (X).
(iii) There exists an injective R-homomorphism M → X that induces an iso-

morphism HomR(M,M)
∼=−→ HomR(M,X).

Proof. Assume (i) holds. There exists an injective R-homomorphism ι : M → X
such that Im(ι) is a trace submodule of X. Now Lemma 2.4 and Remark 2.6 yield

M ∼= Im(ι) = τIm(ι)(X) = τM (X),
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and so (ii) holds. Next assuming (ii), there is an evident injective R-homomorphism
ι : M → X induced by the composition M ∼= τM (X) ⊆ X. This induces isomor-
phisms HomR(M,M) ∼= HomR(M, τM (X)) ∼= HomR(M,X), the latter by Lemma
2.4. Finally, assuming (iii), let ι : M → X be an injection such that the in-
duced HomR(M,M) → HomR(M,X) is an isomorphism. Thus any homomorphism
ϕ : M → X satisfies Im(ϕ) ⊆ Im(ι), hence Im(ι) is a trace submodule of X and (i)
holds. �

We next give an example of a trace submodule that is not an ideal.

Example 2.8. Let R = k[x], for a field k. Consider the R-module X = R/(x2).
The R-submodule M = (x)/(x2) is a trace submodule of X: indeed M = τk(X),
as for any homomorphism ϕ : k → X, one has (x) Im(ϕ) = 0, hence Im(ϕ) ⊆ M .
Thus k is a trace module in X up to isomorphism (via the injection k → X defined
by 1 �→ x), but k is not a trace ideal of R (even up to isomorphism).

Remark 2.9. Let M be an R-module. Given an R-homomorphism X → Y , there
is an induced map τM (X) → τM (Y ), yielding a covariant functor

τM (−) : ModR → ModR

that is left exact. This can be checked directly from the definition of τM (−); see also
Wisbauer [27, 45.11]. It is not right exact: take R = k[x]/(x2) and I = (x)/(x2).
Here, τI(−) does not preserve the surjection R → R/I.

3. Trace, fully invariant, and reflexive modules

In this section we connect the idea of being trace to the classic notions of being
fully invariant and being reflexive in an ambient module. This allows us to find
new examples of trace modules.

In particular, we next aim to note that trace submodules M in X are stable
under endomorphisms of the module X, and traces up to isomorphism can be char-
acterized by this fact when X is an envelope from an enveloping class of modules.

Let R be a ring with unity. The next definition compares to the terminology
used in [16].

Definition 3.1. Let ι : M → X be an injection. We say that M is fully invariant
in X via ι if each endomorphism ϕ : X → X restricts to an endomorphism of
ι(M), that is, ϕ(ι(M)) ⊆ ι(M). If M happens to be an R-submodule of X (i.e., ι
is simply inclusion), then we say that M is fully invariant in X.

In particular, an R-submodule M ⊆ X is fully invariant inX provided restriction
induces an R-algebra homomorphism

EndR(X) −→ EndR(M).

Recall the following standard definition:

Definition 3.2. Let M be an R-module and let V be a class of R-modules. A
V-preenvelope of M is an R-homomorphism ϕ : M → V with V ∈ V , such that
for any ψ : M → V ′ with V ′ ∈ V , there exists α : V → V ′ such that αϕ = ψ. A
V-envelope of M is a V-preenvelope ϕ : M → V such that if α : V → V satisfies
αϕ = ϕ, then α is an isomorphism. Given another class U of R-modules, we say
that V is (pre)enveloping for U if every module in U has a V-(pre)envelope.
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Of course the most well-known example of a V-(pre)envelope is the case where
V = InjR, the class of injective R-modules. In this case, they are simply referered
to as injective (pre)envelopes.

Proposition 3.3. Let ι : M → X be an injective R-homomorphism. If M is trace
in X via ι, then it is fully invariant in X via ι. If M is fully invariant in X via ι,
and each R-homomorphism M → X lifts to an endomorphism X → X, for example
if ι : M → X is a V-preenvelope for some class V, then M is trace in X via ι.

Proof. Assume M is trace in X via ι and consider any homomorphism ϕ : X → X.
Since M is trace in X via ι, the submodule ι(M) is a trace submodule of X. Thus
the restriction ϕ|ι(M) : ι(M) → X must have its image contained in τι(M)(X) =
ι(M); see Remark 2.4. This means that ϕ|ι(M) is an endomorphism of ι(M) and
hence M is fully invariant in X via ι.

Now assume that M is fully invariant in X via ι, that is, ι(M) is a fully in-
variant submodule of X, and let ϕ ∈ HomR(M,X). By assumption, ϕ lifts to a
homomorphism ϕ̄ ∈ HomR(X,X), that is, ϕ = ϕ̄ι. Since M is fully invariant in X
via ι,

ϕ(M) = ϕ̄ι(M) ⊆ ι(M).

Therefore ι(M) = τM (X). Thus M is trace in X via ι. �

Recall that as long as a preenveloping class V of ModR contains the injective R-
modules, then for every R-module M the V-preenvelope ι : M → V is an injection.

Corollary 3.4. Let ι : M → V be a V-preenvelope such that ι is an injection.
Then M is trace in V via ι if and only if M is fully invariant in V via ι. �

We take a moment to recall a classic notion introduced in [14]:

Definition 3.5. An R-module M is called quasi-injective if for any submodule
L ⊆ M , a homomorphism L → M extends to an endomorphism of M .

In the case where V is the class of injective R-modules, the previous corollary
says that a module is trace in its injective envelope if and only if it is quasi-injective:

Corollary 3.6. Let M be an R-module and M → E(M) its injective envelope.
Then M is trace in E(M) via this map if and only if M is quasi-injective.

Proof. Let ι : M → E(M) be the injective envelope. By [16, Theorem 6.74], the
submodule ι(M) is quasi-injective if and only if ι(M) is fully invariant in E(M).
The result then follows by Corollary 3.4. �

Example 3.7. A semisimple R-module is trace in its injective envelope. This is
because any such module is quasi-injective by [16, Examples 6.72].

In addition to quasi-injectives as a source of trace modules (see [16, Remark 6.71
and Example 6.72 ]), we have the following result. Compare condition (2) below to
the characterization of trace submodules in Lemma 2.4.

Proposition 3.8. Let M ⊆ X be an R-submodule. Suppose the following hold:

(1) The homothety map R → HomR(X,X) is a surjection, and
(2) The induced map HomR(X,X) → HomR(M,X) is a surjection.

Then M is a trace submodule of X.
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Proof. Let α : M → X be a homomorphism. By condition (2), there exists a lifting
ᾱ : X → X of α along the inclusion M ⊆ X. By condition (1), ᾱ must correspond
to multiplication by some element of R, thus so does α. It follows that α(M) ⊆ M ,
that is, M is a trace submodule of X. This idea is based on an argument given in
the proof of [21, Remark 3.2(i)]. �

Example 3.9. Here are some examples afforded by Proposition 3.8.

(1) Let I be a left ideal of a ring R such that Ext1R(R/I,R) = 0. Condition
(1) holds trivially and condition (2) holds by the vanishing of Ext applied
to the natural long exact sequence in Ext. Thus in this case I is a trace
ideal of R. In particular, every left ideal of a left self-injective ring is a
trace ideal; this is a non-commutative extension of one of the implications
of [21, Theorem 3.5]. See also [19, Example 2.4].

(2) Let R be a complete local ring with residue field k, and let E(k) be the
injective envelope of k. Every submodule of E(k) is a trace submodule.
Indeed, (1) holds as R is complete by Matlis duality [5, Theorem 3.2.13],
and (2) holds for every submodule of E(k) by injectivity of E(k).

Goto, Isobe, and Kumashiro [9, Theorem 4.1] prove that if R is a commuta-
tive noetherian ring, then the existence of an embedding of an R-module X into⊕

m
ER(R/m), over all maximal ideals m of R, is equivalent to the condition that

every submodule of X is a trace submodule. The next consequence of Proposition
3.8 provides some insight into this result over any ring.

Corollary 3.10. Let X and Y be R-modules such that HomR(Y, Y ) ∼= R. Assume
that there exists an injective map α : X → Y such that for every R-submodule
M ⊆ X, the induced map α∗ : HomR(Y, Y ) → HomR(M,Y ) is surjective. Then
every R-submodule of X is a trace submodule of X.

Proof. Let M ⊆ X be an R-submodule and suppose α : X → Y is an injective R-
homomorphism satisfying the given conditions. By Proposition 3.8, α(M) is a trace
submodule of Y , and hence also of α(X) by Remark 2.5. Since α is an injection,
M is a trace submodule of X. �

We end the section by discussing X-reflexive modules, providing another source
of fully invariant and trace submodules.

Definition 3.11. Let M and X be R-modules. We say M is X-reflexive if the
natural map

M �� HomR(HomR(M,X), X),

given by sending m in M to evaluation at m, is an isomorphism.

Lemma 3.12. Let M and X be R-modules such that there exists an injection
ι : M −→ X. If M is X-reflexive, then M is fully invariant in X via ι.

Proof. It suffices to show that the submodule ι(M) ⊆ X is fully invariant, thus we
may assume M ⊆ X.

Application of HomR(−, X) to the exact sequence

HomR(M,X)⊗R M −→ τM (X) −→ 0
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yields the first exact row in the following commutative diagram:

0 �� HomR(τX(M), X) ��

∼=

��

HomR(HomR(M,X)⊗R M,X)

∼=
��

HomR(M,HomR(HomR(M,X), X))

∼=
��

HomR(τM (X), τM (X)) �
� σ ���������� HomR(M,M),

where the isomorphisms in the diagram follow from the traceness of τM (X) in X,
Hom-Tensor Adjunction, and the X-reflexivity of M . Together, these homomor-
phisms induce a homomorphism σ from HomR(τM (X), τM (X)) to HomR(M,M).

Via the homomorphisms in the above diagram, note that a homomorphism ψ in
HomR(τM (X), τM (X)) is mapped to the homomorphism {m �→ {α �→ ψ(α(m))}}
in HomR(M,HomR(HomR(M,X), X)). Since M is X-reflexive, we know that
{α �→ ψ(α(m))} = evm′ for some m′ ∈ M so that ψ(α(m)) = α(m′) for all
α ∈ HomR(M,X). In particular, choosing α the inclusion of M in X, one has
ψ(α(m)) = α(m′) implies ψ(m) = m′ and therefore

ψ(α(m)) = α(m′) = α(ψ(m))

for all α ∈ HomR(M,X). We conclude that {α → ψ(α(m))} is evaluation at ψ(m).
Because M ∼= HomR(HomR(M,X), X) via m �→ evm it follows that σ(ψ) = ψ|M ∈
HomR(M,M).

Since τM (X) is fully invariant in X, repeated restriction induces the mapping

HomR(X,X) −→ HomR(τM (X), τM (X)) −→ HomR(M,M)

and so M is an EndR(X)-submodule of X. �

Example 3.13. The following are examples of R-modules M ⊆ X such that M is
X-reflexive, hence fully invariant by Lemma 3.12.

(1) If R is a commutative Gorenstein ring of dimension 1, then a common
example is an ideal containing a nonzero divisor. Such an ideal is contained
in R and is R-reflexive.

(2) If R is a complete local ring with residue field k, then any finitely generated
submodule of E(k) is E(k)-reflexive and hence fully invariant in E(k) by
Matlis duality; see [5, Theorem 3.2.13] and compare to Example 3.9(2).

(3) If R is a local Cohen-Macaulay ring, with canonical module ω and M is a
maximal Cohen-Macaulay submodule of ω, then M is ω-reflexive and hence
fully invariant in ω; see [5, Theorem 3.3.10]. See also [5, Corollary 3.3.19]
for a case where ω is an ideal.

Corollary 3.14. Let ι : M → X be an injective R-homomorphism. If M is both
X-reflexive and has the lifting property that each homomorphism in HomR(M,X)
lifts to one in HomR(X,X), such as when X is a preenvelope, then M is trace in
X via ι.

Proof. This follows from Lemma 3.12 along with Proposition 3.3. �

Example 3.15. Let R be a complete local ring with residue field k, and let M be
a finitely generated submodule of E(k). As noted in Example 3.13(2), M is fully
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invariant in E(k). Injectivity of E(k) provides the desired lifting property in the
previous corollary, hence we actually obtain that M is a trace submodule of E(k).

4. Characterizing rings via traceness of subcategories of ModR

As earlier, R denotes a ring with unity. The aim of this section is to first establish
a general result in which we start to answer the question: given subcategories U and
V of ModR, when is each module in U a trace submodule of some module from V?
Our approach is strongly motivated by Corollary 3.6 and the proof of [16, Theorem
6.83], and as an application we characterize various classes of rings.

This is our first key technical result. It uses the fact that R is a generator for
the module category, that is, given any R-module M one can find a surjection
R(I) → M , for some index set I.

Theorem 4.1. Let U and V be subcategories of ModR such that U is closed under
finite direct sums and contains R, and V is closed under isomorphisms and direct
summands. Assume further that each module in U injects into a module in V. The
following are equivalent:

(i) The containment U ⊆ V holds.
(ii) Every module in U is a trace submodule of a module in V.
(iii) Every module in U is trace in a module in V up to isomorphism.

If in addition V is preenveloping for U , these are also equivalent to:

(iv) Every module in U is trace in some V-preenvelope up to isomorphism.

If in addition V is enveloping for U , these are also equivalent to:

(v) Every module in U is trace in its V-envelope up to isomorphism.

Proof. The implication (i)⇒(ii) is clear as every module is a trace submodule of
itself, and the implication (ii)⇒(iii) holds because a trace submodule of an ambi-
ent module is trace in the ambient module up to isomorphism (via the inclusion
homomorphism).

Consider the implication (iii)⇒(i): Let U ∈ U . By the hypotheses, the sum
U ⊕R belongs to U , and thus by (iii) one has that U ⊕R is trace in some module
V ∈ V up to isomorphism. That is, there is an injection ι : U ⊕ R → V such that
Im(ι) is a trace submodule of V . As R is a generator of ModR, so are U ⊕ R and
Im(ι). So, Im(ι) being a trace submodule of V implies Im(ι) = V , that is, U ⊕ R
is isomorphic to a module in, and thus belongs to, V because V is closed under
isomorphisms. As V is also closed under direct summands, one has that U ∈ V .
Thus U ⊆ V .

Now suppose that V is preenveloping for U . The implication (i)⇒(iv) follows
from the fact that the identity map on a module in V is a V-preenvelope. To justify
the converse we first show that in this case any V-preenvelope of a module in U is
an injection. Let U ∈ U and let ϕ : U → V be a V-preenvelope. By hypothesis
there is an injection ι : U → V ′ for some V ′ ∈ V . The definition of V-preenvelope
yields a map ψ : V → V ′ such that ψϕ = ι, and thus ϕ must be an injection. Now,
assuming (iv) let U ∈ U . It follows that U ⊕ R belongs to U , and there exists a
V-preenvelope, ϕ : U ⊕R → V such that ϕ(U ⊕R) is a trace submodule of V. Since
R is a generator of ModR, then so are U ⊕ R and ϕ(U ⊕ R). So ϕ(U ⊕ R) being
trace in V implies ϕ(U ⊕ R) = V . As V is closed under isomorphisms and direct
summands, one has that U ∈ V , and (i) follows.
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The equivalence of (i) and (v) is proven similarly as that of (i) and (iv) mutatis
mutandis. �

The equivalence of (i) and (iii) in the following result was first proven in [16, The-
orem 6.83]. As a result of Theorem 4.1 we recover and extend that characterization
of semisimple rings:

Theorem 4.2. Let R be a ring with unity. The following are equivalent:

(i) R is semisimple.
(ii) Every R-module is trace up to isomorphism in its injective envelope.
(iii) Every R-module is quasi-injective.

Proof. Applying Theorem 4.1 to the subcategories U = ModR and V = InjR, the
subcategory of injective R-modules, one obtains that every R-module is injective
(that is, R is semisimple) if and only if every R-module is trace up to isomorphism
in its injective envelope. The remaining equivalence is by Corollary 3.6. �

The next result is a variation of Theorem 4.1. It will be useful, for example,
when considering the map from a module to its double R-dual.

Theorem 4.3. Let U be a subcategory of ModR. Let F : ModR → ModR be an
additive functor with a natural transformation η : id → F such that for each M ∈ U
the natural map ηM : M → F (M) is an injection. Assume that R ∈ U and that U
is closed under finite direct sums. The following are equivalent:

(i) For every M ∈ U , the map ηM : M → F (M) is an isomorphism.
(ii) Every module M in U is trace in F (M) via ηM : M → F (M).

Proof. The implication (i)⇒(ii) is clear, so it is enough to justify the converse. Let
M ∈ U . By assumption, one has R ∈ U and U is closed under finite direct sums.
Hence M ⊕ R ∈ U . Thus the natural maps ηM⊕R : M ⊕ R → F (M ⊕ R) and
ηR : R → F (R) are injections. Assumption (ii) implies that M ⊕ R is trace in
F (M ⊕ R) via ηM⊕R. As R is a generator for ModR, the only way for this to
happen is if Im(ηM⊕R) = F (M ⊕R), making ηM⊕R an isomorphism.

Application of F to the split exact sequence 0 → M → M ⊕ R → R → 0 yields
a commutative diagram with exact rows:

0 �� M ��� �

ηM

��

M ⊕R ��

ηM⊕R ∼=
��

R ��� �

ηR

��

0

0 �� F (M) �� F (M ⊕ R) �� F (R) �� 0.

By the Snake Lemma ηM : M → F (M) is an isomorphism. �

Remark 4.4. Writing M∗ for the R-dual of M , HomR(M,R), there is a natural
evaluation map

εM : M −→ (M∗)∗

m �→ evm : ψ �→ ψ(m).

Definition 4.5. A finitely generated R-module M is said to be torsionless if εM
is an injection, and reflexive if εM is an isomorphism.
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Remark 4.6. We will write T for the full subcategory of torsionless R-modules and
R for the full subcategory of reflexive R-modules. Note that R ⊆ T .

The double dual functor (−)∗∗ is additive and there is a natural transformation
from the identity functor to it. Moreover, T is closed under finite direct sums; see
[16, 4.65(c)].

If M is a module over a commutative noetherian domain, then the double dual
M∗∗ is a reflexive module; see for example [24, Tag 0AV3].

Lemma 4.7. Assume that R is a commutative noetherian domain. The natural
homomorphism M → M∗∗ is an R-preenvelope, and R is preenveloping in ModR.

Proof. Let M be any R-module. There is a natural evaluation homomorphism
εM : M → M∗∗. Given any reflexive R-module X and homomorphism α : M → X,
application of HomR(HomR(−, R), R) induces a homomorphism α∗∗ : M∗∗ → X∗∗.
One may check directly that there is a commutative diagram

M
εM ��

α

��

M∗∗

α∗∗

��

X
εX
∼=

�� X∗∗.

The map ε−1
X α∗∗ : M∗∗ → X thus satisfies α = (ε−1

X α∗∗)εM , so that εM : M → M∗∗

is an R-preenvelope; see Definition 3.2. �

Theorem 4.8. Let R be a commutative noetherian ring. The following are equiv-
alent.

(i) R is a Gorenstein ring of dimension at most one.
(ii) Every torsionless R-module is reflexive.
(iii) Every torsionless R-module is trace in its double dual, via the natural map.

If R is also a domain, these conditions are equivalent to:

(iv) Every torsionless R-module is trace in some R-preenvelope up to isomor-
phism.

Proof. Let T be the subcategory of torsionless R-modules. We apply Theorem 4.3
to this subcategory and the double dual functor (−)∗∗. Note that for any torsionless
R-module M the natural map M → M∗∗ is an injection. Also, T contains R and
is closed under finite direct sums, see Remark 4.6. The equivalence of (ii) and
(iii) thus follows from Theorem 4.3. The equivalence of (i) and (ii) is contained in
[3, Theorem 6.2].

In the case where R is a commutative noetherian domain, apply Theorem 4.1 to
the subcategories U = T and V = R. We must check that R is closed under direct
summands: say M is reflexive and M = L⊕N . Since the double dual functor (−)∗∗

is additive, the map M → M∗∗ is simply the sum of maps L → L∗∗ and N → N∗∗,
both of which must be isomorphisms as M → M∗∗ is an isomorphism. Now, in light
of Lemma 4.7, the subcategory R is preenveloping and so Theorem 4.1 implies that
every torsionless R-module is reflexive if and only if every torsionless R-module is
trace in some R-preenvelope up to isomorphism. This gives the equivalence of (ii)
and (iv). �

https://stacks.math.columbia.edu/tag/0AV3
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We now turn to characterizing (not necessarily commutative) Gorenstein rings
of higher dimension in terms of trace modules, by utilizing the class of modules
having finite Gorenstein injective dimension:

Definition 4.9. A cochain complex C• of R-modules is called a totally acyclic com-
plex of injectives if each Ci is injective and both C• and HomR(C

•, J) are acyclic
for every injective R-module J . An R-module G is called Gorenstein injective if
there exists a totally acyclic complex of injectives C• such that G ∼= ker(C0 → C1).
Finally, the Gorenstein injective dimension of an R-module M is defined to be the
least integer n such that there is an exact sequence 0 → M → G0 → · · · → Gn → 0
with each Gi Gorenstein injective.

Definition 4.10. A ring R is called Iwanaga-Gorenstein if R is both left and right
noetherian and R has finite injective dimension both as an R- and an Rop-module.

Theorem 4.11. Let R be a left and right noetherian ring. The ring R is Iwanaga-
Gorenstein of dimension at most n if and only if every left and right R-module is
trace up to isomorphism in a module of Gorenstein injective dimension at most n.

Proof. Let V and Vop be the classes of R- and Rop-modules having Gorenstein
injective dimension at most n. By [8, Theorem 12.3.1], one has that R is an
Iwanaga-Gorenstein ring of dimension at most n if and only if both ModR ⊆ V
and ModRop ⊆ Vop hold. In order to apply Theorem 4.1, it is sufficient to check
that one can apply this result to the subcategories U = ModR and V . Note that
any R-module injects into a module in V , as InjR ⊆ V . Further, V is closed under
isomorphisms and direct summands. The result follows from Theorem 4.1. �

As recently noted by Goto, Isobe, and Kumashiro [9, Lemma 4.6], every ideal
in a von Neumann regular ring is a trace ideal. We recall next that such rings
can be defined in terms of fp-injective modules, and use this class of modules to
characterize von Neumann regular rings in terms of trace modules.

Definition 4.12. An R-module I is called fp-injective if Ext1R(F, I) = 0 for each
finitely presented R-module F . The class of fp-injective R-modules is denoted
fpInjR, and fpInjR-preenvelopes are called fp-injective preenvelopes.

Remark 4.13. Von Neumann regular rings are those rings over which all modules
are flat, see [16, Example 2.32(d) and Theorem 4.21]. Equivalently, a von Neumann
regular ring is a ring over which all modules are fp-injective; see for example [6,
Remark 1.3].

Theorem 4.14. A ring R is von Neumann regular if and only if every R-module
is trace in an fp-injective preenvelope up to isomorphism.

Proof. Apply Theorem 4.1 to the categories U = ModR and V = fpInjR. To do
this, recall from [26, Theorem 3.4] that every R-module injects into an fp-injective
preenvelope. �

We end this section with an application to regular rings. Let (R,m, k) be
a Cohen-Macaulay local ring having a canonical module. If dimR = n, recall
(for example from [17, Definition 11.4]) that an R-module ω is a canonical mod-
ule if it is maximal Cohen-Macaulay, has finite injective dimension, and satisfies
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dimk Ext
n
R(k, ω) = 1. Let modR be the subcategory of finitely generated R-

modules. For an integer n, let fidn R ⊆ modR be the subcategory of finitely gen-
erated R-modules having injective dimension at most n and let MCMR ⊆ modR
be the subcategory of maximal Cohen-Macaulay R-modules, that is, those finitely
generated R-modules having depth equal to dimR. Note that by [2, Corollary
5.5], if n = dimR one has fidn R is precisely the subcategory of finitely generated
R-modules of finite injective dimension.

The next fact is due to Auslander and Buchweitz [1]; see also [17].

Proposition 4.15. Let R be a Cohen-Macaulay local ring having a canonical mod-
ule and set n = dimR. The class fidn R is enveloping for modR, is closed under
direct summands, and every module in modR injects into a module from fidn R.

Proof. The fact that fidn R is preenveloping follows from [17, Theorem 11.17]; the
fact that it is enveloping is proved in a manner dual to [17, Proposition 11.13]. It
is straightforward to check that fidn R is closed under direct summands. The last
claim is also by [17, Theorem 11.17]. �

Theorem 4.16. Let R be a Cohen-Macaulay local ring having a canonical module
and set n = dimR. The ring R is regular if and only if every finitely generated
R-module is trace in its fidn R-envelope up to isomorphism.

Proof. If R is regular, then modR = fidn R and the “only if” implication follows.
For the converse, we may per Proposition 4.15 apply Theorem 4.1 to the classes
of modules U = MCMR and V = fidn R. This yields that MCMR ⊆ fidn R. By
[17, Proposition 11.7], every maximal Cohen-Macaulay R-module of finite injective
dimension is isomorphic to a direct sum of copies of ω. A high syzygy of the residue
field k is MCM, hence also of finite injective dimension, thus contains ω as a direct
summand. By [25, Corollary 4.4] this is enough to imply that R is regular. �

5. Characterizing rings via traceness of ideals in enveloping classes

We now turn to characterizing rings R in terms of traceness of ideals in their
V-envelopes, where V is an enveloping subcategory of ModR.

Definition 5.1. For any class V of R-modules, one defines the left orthogonal of
V as the class ⊥V = {M ∈ ModR | Ext1R(M,V ) = 0 for all V ∈ V}.

Theorem 5.2. Let V ⊆ ModR be enveloping. The following are equivalent:

(i) The ring R is in V.
(ii) Every left ideal I ⊆ R with R/I ∈ ⊥V is trace in its V-envelope up to

isomorphism.
(iii) Every principal left ideal I ⊆ R with R/I ∈ ⊥V is trace in its V-envelope

up to isomorphism.

Indeed, if R ∈ V and I is a left ideal with R/I ∈ ⊥V, then I is a trace ideal of R.

Proof. First assume that R ∈ V and let I ⊆ R be a left ideal with R/I ∈ ⊥V . One
has that I is a trace ideal of R by applying Proposition 3.8 when X = R and use
that the inclusion I ⊆ R induces a surjection HomR(R,R) → HomR(I, R) because
Ext1R(R/I,R) = 0.

The remainder of the proof is cyclic, where the implication (ii)⇒(iii) is imme-
diate, and (iii)⇒(i) follows because R is such a principal ideal, and because R is
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a generator in Mod(R), R being trace in its V-envelope up to isomorphism implies
that R is in V , because enveloping classes are closed under isomorphism.

(i)⇒(ii): Assume that R ∈ V and let I ⊆ R be a left ideal with R/I ∈ ⊥V . We
first show that the V-envelope of I is isomorphic to a direct summand of R. Let
ϕ : I → V be the V-envelope of I. As R ∈ V and ϕ : I → V is a V-preenvelope, the
inclusion ι : I → R lifts to a map α : V → R so that αϕ = ι. Further, the exact

sequence 0 → I
ι−→ R → R/I → 0 induces an exact sequence

0 �� HomR(R/I, V ) �� HomR(R, V )
ι∗ �� HomR(I, V ) �� 0,

as R/I ∈ ⊥V implies that Ext1R(R/I, V ) = 0. It follows that the map ϕ : I → V
lifts to a map β : R → V such that βι = ϕ.

Putting this together, we see that ϕ = βι = βαϕ. As ϕ : I → V is a V-envelope,
it follows that βα is an isomorphism, hence V is isomorphic to a direct summand,
say V ′, of R. Finally, since I ⊆ V ′ ⊆ R and we have shown above that I is a trace
ideal of R, we obtain by Remark 2.5 that I is a trace submodule of V ′. Thus I is
trace in V up to isomophism. �

As an immediate consequence, we obtain the following:

Corollary 5.3. The following are equivalent:

(i) The ring R is injective as a left R-module.
(ii) Every left ideal is trace in its injective envelope up to isomorphism.
(iii) Every principal left ideal is trace in its injective envelope up to isomorphism.

Indeed, if R is injective as a left R-module, then every left ideal is a trace ideal.

Proof. Apply Theorem 5.2 to the class V = InjR. �

Remark 5.4. If R is a commutative noetherian ring, then R is artinian Gorenstein if
and only if every ideal is a trace ideal; this is a result of Lindo and Pande [21, Theo-
rem 3.5], for which the local assumption was removed by Kobayashi and Takahashi
[15, Proposition 3.1]. The previous corollary gives the forward implication of this
result, and also some insight to the reverse implication for rings that are not neces-
sarily noetherian. For example, Goto, Isobe, and Kumashiro [9, Lemma 4.6] noted
that any commutative von Neumann regular ring has the property that every ideal
is a trace ideal, but not all such rings are self-injective, so we do not expect a
commutative but non-noetherian ring to be self-injective if and only if every ideal
is a trace ideal. On the other hand, Corollary 5.3 says that a ring is injective as an
R-module if and only if every ideal is trace in its injective envelope, and this does
not require any commutative or noetherian assumption.

We end this section with another application to characterizing Gorenstein rings
in the context of a Cohen-Macaulay ring having a canonical module:

Theorem 5.5. Let R be a Cohen-Macaulay local ring having a canonical module
and set n = dimR. The following are equivalent:

(i) The ring R is Gorenstein.
(ii) Every ideal I such that R/I is MCM is trace in its fidn R-envelope up to

isomorphism.
(iii) Every principal ideal I such that R/I is MCM is trace in its fidn R-envelope

up to isomorphism.
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Proof. The equivalence of (i) – (iii) follows as an application of Theorem 5.2 to
the class V = fidn R, which is enveloping by Proposition 4.15, and the fact that
⊥ fidn R = MCMR; see [17, Proposition 11.3(i)]. �
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