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THE GRUSHIN HEMISPHERE AS A RICCI LIMIT SPACE

WITH CURVATURE ≥ 1
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(Communicated by Lu Wang)

Abstract. The Grushin sphere is an almost-Riemannian manifold that de-
generates along its equator. We construct a sequence of Riemannian metrics
on a sphere Sm+n with Ric ≥ 1 such that its Gromov-Hausdorff limit is the
n-dimensional Grushin hemisphere.

A Ricci limit space is the Gromov-Hausdorff limit of a sequence of complete Rie-
mannian n-manifolds with Ricci curvature uniformly bounded below. The structure
of Ricci limit spaces is crucial in understanding Ricci curvature and has been stud-
ied extensively since the seminal works by Cheeger and Colding. In a previous joint
work with Wei [9], we have constructed a Ricci limit space, as the asymptotic cone
of a complete Riemannian metric on R

n+1 with Ric > 0, such that its Hausdorff di-
mension exceeds its rectifiable dimension. The limit space is a halfplane [0,∞)×R;
its singular set is the boundary {0} × R with Hausdorff dimension 1 + α, where
α > 0 can be any prior chosen number. It answered a longstanding open problem
by Cheeger and Colding [3]. In a joint work with Dai, Honda, and Wei [4], among
other results, we have given a more detailed description of these spaces: it is the
metric completion of an incomplete weighted Riemannian metric defined on the
open halfplane (0,∞)× R. The metric and measure are

g = dx2 + x−2αdy2, m = cx
n−1
2 −αdxdy.

A subRiemannian manifold is a manifold endowed with a distribution and a fiber-
wise inner product on the distribution. The distribution specifies in which directions
one can travel. A classical example is the Heisenberg 3-group, which is a nilpotent
group with topological dimension 3 and Hausdorff dimension 4. Another simple
example is the Grushin plane (see [1, Section 3.1]). Its distribution is generated
by the vector fields X = ∂x and Y = |x|α∂y on R

2, where α > 0. Setting {X,Y }
orthonormal defines a subRiemannian metric on the plane. Note that Y only degen-
erates along the y-axis, so the distribution has maximal rank almost everywhere. A
subRiemannian manifold with this property is called almost-Riemannian. Outside
the y-axis, the Grushin plane becomes Riemannian with metric

g = dx2 + |x|−2αdy2.

Its halfplane [0,∞)×R is a convex subset, and the boundary {0}×R has Hausdorff
dimension 1 + α.
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For readers, it is now clear that Pan-Wei’s Ricci limit examples, as metric spaces,
are isometric to the Grushin halfplanes. This surprising connection was pointed
out to the author by Richard Montgomery when they met each other for the first
time. Special thanks to him. It was a moment Ricci curvature met subRiemannian
geometry.

In this paper, now we turn to another almost-Riemannian manifold: the Grushin
sphere, which is the spherical analog of the Grushin plane [2]. The distribution of
the 2-dimensional Grushin sphere is generated by the vector fields X = (1, 0) and
Y = (0, tanφ) written in the spherical coordinate (φ, θ) ∈ (−π/2, π/2) × [0, 2π].
Setting {X,Y } orthonormal defines the subRiemannian metric. The equator {φ =
0} has Hausdorff dimension 2. The Grushin hemisphere {φ ≥ 0} is convex and can
be viewed as the metric completion of a warped product on the open hemisphere

(0, π/2]×h S1, dφ2 + (tanφ)−2dθ2.

The n-dimensional Grushin spheres are constructed similarly. Its equator has Haus-
dorff dimension 2(n− 1). It seems to the author that we don’t have a good notion
for the α-variants; using h(φ) = (tanφ)−α as the warping function produces singu-
larities at the poles since h′(π/2) �= −1 when α �= 1.

Inspired by the above-mentioned connection between Ricci curvature and sub-
Riemannian geometry, we construct a sequence of Riemannian metrics on a sphere
with Ric ≥ 1 converging to the n-dimensional Grushin hemisphere.

Theorem A. Given an integer n ≥ 2, there is a sequence of Riemannian metrics
gi on Sm+n with Ric(gi) ≥ 1, where m is sufficiently large, such that (Sm+n, gi)
Gromov-Hausdorff converges to the n-dimensional Grushin hemisphere.

As a Ricci limit space, the Grushin hemisphere carries a limit renormalized
measure from the sequence. We emphasize that this limit renormalized measure is
different from the measure induced by the almost-Riemannian metric.

It had been long believed that subRiemannian geometry cannot interact with
Ricci limit spaces (or the RCD(K,N) condition, or the even weaker CD(K,N)
condition). In fact, by a result of Juillet [6], any complete subRiemannian mani-
fold with a distribution of non-maximal rank everywhere and a measure of smooth
positive density does not satisfy the CD(K,N) condition. By a recent result of
Magnabosco and Rossi [8], any complete 2-dimensional almost-Riemannian man-
ifold with a measure of smooth positive density does not satisfy the CD(K,N)
condition.

With the Grushin halfplanes and the Grushin hemispheres constructed as Ricci
limit spaces, we establish a surprising connection. We remark that the full Grushin
plane or sphere cannot be RCD(K,N) (see Remark 1.4). As a consequence of
Theorem A, we also show that the Hausdorff dimension of RCD(1, N) spaces may
not satisfy lower semi-continuity under measured Gromov-Hausdroff convergence
(see Remark 1.2).

Comparing Theorem A with Pan-Wei’s construction [9], one of the main dif-
ferences here is the positive Ricci curvature lower bound. In [9], compact Ricci
limit spaces with large Hausdorff dimension were constructed, but they must have
negative Ricci curvature somewhere. On a technical note, we remark that the fun-
damental group plays an essential role in Pan-Wei’s construction, while in Theorem
A we directly construct the metrics on a sphere.
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1. Construction

Let n ≥ 2 and m to be determined later. We construct a family of Riemannian
metrics {gλ}λ≥1 as doubly warped products:

M = [0, π/2]×fλ Sm ×hλ
Sn−1, gλ = dr2 + fλ(r)

2ds2m + hλ(r)
2ds2n−1,

where ds2k denotes the standard metric on the sphere Sk. We use the warping
functions as

fλ(r) =
sin r

(1 + λ2 sin2 r)1/4
, hλ(r) =

(
1

λ2
+ tan2 r

)−1/2

.

fλ and hλ satisfy

fλ(0) = 0, f ′
λ(0) = 1, f

(even)
λ (0) = 0, fλ(π/2) > 0, f

(odd)
λ (π/2) = 0;

hλ(0) > 0, h
(odd)
λ (0) = 0, hλ(π/2) = 0, h′

λ(π/2) = −1, h
(even)
λ (π/2) = 0.

Therefore, gλ defines a smooth Riemannian metric on M . Topologically, M is a
quotient

M = [0, π/2]× Sm × Sn−1/ ∼,

where ∼ is given by

(0, x, y) ∼ (0, x′, y), (π/2, x, y) ∼ (π/2, x, y′)

for all x, x′ ∈ Sm and all y, y′ ∈ Sn−1. M is diffeomorphic to the sphere Sm+n.
Let H = ∂r, U a unit vector tangent to Sm, V a unit vector tangent to Sn−1.

Then (M, gλ) has Ricci curvature

Ric(H,H) =−m
f ′′
λ

fλ
− (n− 1)

h′′
λ

hλ
,

Ric(U,U) =− f ′′
λ

fλ
+ (m− 1)

1− f ′2
λ

f2
λ

− (n− 1)
f ′
λh

′
λ

fλhλ
,

Ric(V, V ) =− h′′
λ

hλ
+ (n− 2)

1− h′2
λ

h2
λ

−m
f ′
λh

′
λ

fλhλ
.

We provide detailed calculations here. For convenience, we write

A = λ2 sin2 r + cos2 r, B = λ2 sin2 r + 1.

By direct calculation and simplification, we have

f ′
λ =

(cos r)(B + 1)

2B5/4
∈ [0, 1].

−f ′′
λ

fλ
=

λ4 sin4 r + λ4 sin2 r + 6λ2 + 4

4B2
≥ 1.

−f ′
λh

′
λ

fλhλ
=

λ2(B + 1)

2AB
≥ 1

2
.

The above three imply that Ric(U,U) ≥ 1.
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Next, we check Ric(H,H). We have

−h′′
λ

hλ
=

λ2

A2

(
(−2λ2 + 2) sin2 r + 1

)
≥ −2λ4 sin2 r

A2
+ 1.

Ric(H,H) = −m
f ′′
λ

fλ
− (n− 1)

h′′
λ

hλ

≥ m · λ
4 sin4 r + λ4 sin2 r + 6λ2 + 4

4B2
− (n− 1)

2λ4 sin2 r

A2
+ 1

=
1

4A2B2

[
mA2(λ4 sin4 r+λ4 sin2 r + 6λ2+4)− 8(n− 1)B2λ4 sin2 r

]
+1.

We show that the term in the above [·], denoted as I, is nonnegative for large m.
We pick suitable positive terms to control the negative terms. When r ∈ [π/4, π/2],

I ≥ m
(
λ8 sin6 r + 6λ6 sin4 r + 4λ4 sin4 r

)
− 8(n− 1)

(
λ8 sin6 r + 2λ6 sin4 r + λ4 sin2 r

)
≥ 0

provided m ≥ 8(n− 1). When r ∈ [0, π/4], :

I ≥ m
(
λ8 sin6 r + 6λ6 sin4 r + 12λ4 sin2 r cos2 r

)
− 8(n− 1)

(
λ8 sin6 r + 2λ6 sin4 r + λ4 sin2 r

)
≥ 0

provided m ≥ 8(n− 1). This shows Ric(H,H) ≥ 1.
Now we check Ric(V, V ). We have

1− h′2
λ

h2
λ

=
A3 − λ6 sin2 r

λ2A2 cos2 r
≥ λ6 sin6 r − λ6 sin2 r

λ2A2 cos2 r
= −λ4 sin2 r(sin2 r + 1)

A2
.

Ric(V, V ) = −h′′
λ

hλ
+ (n− 2)

1− h′2
λ

h2
λ

−m
f ′
λh

′
λ

fλhλ

≥ −2λ4 sin2 r

A2
+ 1− (n− 2)

λ4 sin2 r(sin2 r + 1)

A2
+m

λ2

2A

≥ λ2

A2

[m
2
λ2 sin2 r − 2nλ2 sin2 r

]
+ 1 ≥ 1

provided m ≥ 4n.
To summarize, we choose an integer m ≥ 8(n − 1), then Ric(gλ) ≥ 1 holds for

all λ ≥ 1.
Let λ → ∞. Then

fλ(r) → 0, hλ(r) → tan−1 r.

Therefore, (M, gλ) Gromov-Hausdorff converges to the n-dimensional Grushin hemi-
sphere as λ → ∞. This proves Theorem A.

Remark 1.1. The limit space has rectifiable dimension n and Hausdorff dimension
2(n − 1). Therefore, this also gives examples of Ricci limit spaces with Hausdorff
dimension exceeding rectifiable dimension. When n = 2, both Hausdorff and rec-
tifiable dimension equal 2, but the 2-dimensional Hausdorff measure is not locally
finite along the equator.

Remark 1.2. Let P be the north pole of the n-dimensional Grushin hemisphere.
The closed metric ball Br(P ) with radius r is a convex subset, thus is RCD(1, N)
with a measure induced by the limit renormalized measure. As r → π/2, Br(P )
converges to the Grushin hemisphere. Note that Br(P ) has Hausdorff dimension n
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when r < π/2, and 2(n − 1) when r = π/2. For n ≥ 3, this shows that the Haus-
dorff dimension of RCD(1, N) spaces does not have lower semi-continuity under
the measured Gromov-Hausdorff convergence. This is different from the rectifiable
dimension, which satisfies the lower semi-continuity [7].

Remark 1.3. Let x be a point on the equator of the n-dimensional Grushin hemi-
sphere. Then the tangent cone at x is isometric to the n-dimensional Grushin
halfspace with α = 1.

Remark 1.4. The full Grushin n-sphere cannot be an RCD(K,N) space for any
K ∈ R and N ∈ (1,∞), regardless of the choice of a measure m. In fact, suppose
that it is RCD(K,N). We consider a point y on the equator. The tangent cone
at y is RCD(0, N) and isometric to the full Grushin n-space. This tangent cone
contains a line but does not split off isometrically; a contradiction to the splitting
theorem in RCD(0, N) spaces [5].
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