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Abstract. We generalize Krust’s theorem to an anisotropic setting by show-
ing the following. If Σ is an anisotropic minimal surface in an axially sym-
metric normed linear space which is a graph over a convex domain contained
in a plane orthogonal to the axis of symmetry, then its conjugate anisotropic
minimal surface must also be a graph.

We also generalize a reflection principle of Lawson relating symmetries of
an anisotropic minimal surface with symmetries of its conjugate surface.

1. Introduction

Most of the surfaces we see in the real world occur as interfaces. They serve as
boundaries between immiscible materials or between distinct phases of one material.
The geometry of the interface forms so as to attempt to minimize an appropriate
surface energy subject to whatever constraints are imposed by the environment of
the interface. When one of the materials is in an ordered phase (i.e crystalline or
liquid crystalline), the surface energy is anisotropic, i.e. it depends on the direction
of the surface at each point. A particular type of anisotropic surface energy, which
we will use here, is a homogeneous one that is independent of position. Its equilibria
are called anisotropic minimal surfaces.

Krust’s theorem states that if a minimal surface can be represented as a graph
over a convex domain, its conjugate minimal surface is also a graph [3]. The signifi-
cance of the conclusion of this theorem comes from the fact that any minimal graph
over a convex domain minimizes area with respect to its boundary values. Recently,
Krust’s theorem was generalized to maximal surfaces in Lorentz-Minkowski space
by R. López [7], see also the paper by Akamine and Fujino [8].

In this note, we will give a generalization of Krust’s theorem to the anisotropic
setting. Although an anisotropic minimal surface cannot, in general, be embedded
in a one-parameter ‘associated family’ of such surfaces, there is still a notion of
conjugate anisotropic minimal surface. However this conjugate anisotropic mini-
mal surface is an equilibrium for a distinct energy functional that is dual to the
original one. Under the assumption that the original anisotropic functional is axi-
ally symmetric, we show that Krust’s theorem still holds, the conjugate surface is a
graph if the original anisotropic minimal surface is a graph over a convex domain.
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2. Preliminaries

Let ‖·‖∗ be a norm that is smooth onR3\{0}. For a sufficiently smooth, oriented
immersed surface X : Σ → R3 with unit normal field ν, we have the corresponding
anisotropic energy functional

F [X] =

∫
Σ

‖ν‖∗ dΣ.

Such a functional is sometimes referred to as an even constant coefficient parametric
elliptic functional.

Let ‖ ·‖ denote the dual norm to ‖ ·‖∗. The sphere of this norm W := {‖y‖ = 1}
will be called the Wulff shape. We assume that W is smooth and uniformly convex
so that the Gauss map of W is a bijection from W to S2. If γ denotes the support
function of W pulled back to S2, then the inverse of the Gauss map of W is given
by χ : S2 → R3, ν �→ Dγ|ν + γ(ν)ν ∈ W ⊂ R3. If γ is a positive function on S2,
the Wulff shape W can be recovered from the formula

(1) W = ∂
⋂

ν∈S2

{Y ∈ R3 | Y · ν ≤ γ(ν)}.

For an oriented surface with Gauss map ν, we define the Cahn-Hoffman field by
ξ = χ ◦ ν. This is a type of anisotropic normal field that was introduced in [1].
Note that γ = ξ · ν.

It is then easy to see that

F [X] =

∫
Σ

γ(ν) dΣ.

For any relatively compact Ω ⊂ Σ with sufficiently smooth boundary, the first
variation of F in the direction δX is given by

(2) δF [X] = −
∫
Ω

Λψ dΣ−
∮
∂Ω

ξ × dX · δX ds,

where

(3) Λ = 2Hγ −∇ ·Dγ

is the anisotropic mean curvature. Here Dγ is the gradient of γ on S2 evaluated
at ν. The surfaces with Λ ≡ 0 are exactly the anisotropic minimal surfaces for the
given functional.

If a surface is represented as a graph over a plane, the hypothesis that the Wulff
shape W is smooth and convex implies the absolute ellipticity of the operator
expressing the anisotropic mean curvature in terms of the height function over the
plane. Here, absolute ellipticity means that the linearization of this operator is
elliptic for any sufficiently smooth surface.

Proposition 2.1. Λ ≡ 0 if and only if the vector valued 1-form ξ × dX is closed
on Σ.

Proof. Take δX = Ei = usual basis vectors. Since all translations preserve the
value of the functional on any relatively compact Ω ⊂ Σ, we get

0 = −
∫
Ω

Λνi dΣ−
∮
∂Ω

ξ × dX · Ei ds,

so if Λ ≡ 0, the integral of the vector valued 1-form ξ×dX vanishes over any closed
curve.
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Conversely, if ξ× dX is closed and p is a point with Λ(p) �= 0, we choose a small
neighborhood U of p in Σ with νi �= 0 and Λ �= 0 in U . Then the first variation
formula gives

0 = −
∫
U

Λνi dΣ �= 0,

which is a contradiction. �

If Σ is simply connected, then we define the conjugate surface X̂ by the formula

dX̂ = −ξ × dX.

Note that X̂ : Σ → (R3)∗, since both ξ and dX are R3 valued. The cross product
of vectors a, b ∈ R3 defines a× b ∈ (R3)∗ by 〈c, a× b〉 = det(a, b, c). Note also that

ξ∗ is the Cahn-Hoffman field of X̂, since ξ · dX̂ = 0 and ‖ξ∗‖∗ = 1.

For surfaces in Ỹ : Σ → (R3)∗, we have the dual functional

F∗[Y ] =

∫
Σ

‖νY ‖ dΣ.

Proposition 2.2. If X is defined on a simply connected surface and Λ = 0 holds,
then X̂ is an equilibrium surface for F∗.

In the case where W is smooth and convex, there is a bijection W → W ∗ :=
{Y ∈ R3| ‖Y ‖∗ = 1}, given by ξ → ξ∗, where ξ∗ is the unique element of W ∗

satisfying

(4) 〈ξ, ξ∗〉 = 1.

By the previous proposition, the surface X̂ will be an equilibrium for F∗ exactly
when d(ξ∗ × dX̃) = 0 holds. However using (4) and the fact that dξ and dX have
parallel images, we get

ξ∗ × dX̂ = ξ∗ × d(−ξ × dX)

= 〈ξ, ξ∗〉dX − 〈dX, ξ∗〉ξ
= dX,

so d(ξ∗ × dX̂) = ddX = 0 holds. �
An interesting feature of the duality, which mimics the classical case of the area

functions, is that for any anisotropic minimal surface Σ for which the dual surface
is defined we have

F [Σ] = F∗[Σ∗].

To see this, we note the following formulas

γ = ξ · ν, ξ∗ =
ν

γ
, ν̂ =

ξ

|ξ| ,

where ν̂ is the normal to W ∗ at ξ∗.
Let ei, i = 1, 2, be any locally defined orthonormal frame on Σ with dual frame

ωi. Using | · | for the Euclidean norm and the formula (u1 × u2)× y = (u1 · y)u2 −
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(u2 · y)u1, we get

ξ∗ · ν̂ dΣ̂ =
1

|ξ| |dX̂(e1)× dX̂(e2)| dΣ

=
1

|ξ| |(ξ × dX(e1))× (ξ × dX(e2))| dΣ

=
1

|ξ| | (ξ × dX(e1)) · ξdX(e2)− (ξ × dX(e1)) · dX(e2)ξ | dΣ

=
1

|ξ| | − (ξ × dX(e1)) · dX(e2)ξ | dΣ

=
1

|ξ| | (ξ · ν)ξ | dΣ

= γ dΣ.

2.1. The axially symmetric case. In the case where the functional F is axially
symmetric, we can assume γ = γ(ν3). In this case, the Wulff shape will be axially
symmetric and, with respect to the inward pointing normal, the principal radius of
curvature of a parallel is μ−1

2 := γ−ν3γ
′(ν3), while the principal radius of curvature

of a meridian is μ−1
1 = (1 − ν23)γ

′′(ν3) + μ−1
2 . These radii are positive due to the

convexity of W . The inverse of the Gauss map of W can then be expressed

(5) χ =
1

μ2
ν + γ′(ν3)E3.

We refer the reader to [4] for details. A consequence of the previous formula, which
we will use later, is that the third coordinate of χ is

(6) χ · E3 =
ν3
μ2

ν + γ′(ν3).

Since ‖ν‖∗ = γ(ν3), γ(ν3) must be even so γ′(0) = 0 and χ ·E3 ≡ 0 along the arc in
W where ν3 = 0. This forces χ3 to be positive for ν3 positive. Up to rescaling and
translation, there is a unique non planar axially symmetric anisotropic, minimal
surface called the anisotropic catenoid. Since the Wulff shape W is axially sym-
metric, it can be parameterized χ = χ(V, θ) = (U(V ) cos θ, U(V ) sin θ, V ). Then,
the anisotropic catenoid can be expressed

X(V, θ) = (r(U(V )) cos θ, r(U(V )) sin θ, z(V )),

where

r(V ) =
1

2U(V )
, dz = − 1

2U(V )2
dV.

Straightforward calculations show that the conjugate surface is the helicoidal sur-
face given by

X̂(V, θ) = (
V

U
sin θ,−V

U
cos θ,−θ).

Since V �→ (V/U(V ), V/U(V )), V > 0 is just a parameterized ray, this shows the
remarkable fact that for any axially symmetric anisotropic energy, the conjugate of
its anisotropic catenoid is the usual helicoid. (See Figure 1.)

The following result, which is probably well known, is supplied for motivation
but will not be essential for the remainder of the paper.
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Figure 1. left: A Wulff shape center: its anisotropic catenoid;
right: helicoid. In Proposition 4.1, the waist of the catenoid is a
curve of planar reflection that corresponds to the vertical line of
the helicoid which is an arc of geodesic reflection.

Theorem 2.3. Let Σ → R3 be a sufficiently smooth compact orientable surface
with boundary which is an equilibrium for the axially symmetric functional F . If Σ
can be represented as a graph over a convex planar domain Ω contained in a plane
perpendicular to the axis of symmetry of F , then Σ minimizes F with respect to its
boundary values, i.e.

F [Σ] ≤ F [S]

holds for any orientable surface S with ∂S = ∂Σ.

The proof will be presented in the Appendix.

3. Krust’s theorem

The following result generalizes Krust’s theorem to axially symmetric anisotropic
surface energies. Our proof is a modification of a proof given by López to generalize
Krust’s theorem to maximal surface in three-dimensional Lorentz-Minkowski space
L3. In [7], López gives three proofs for surfaces in L3. Ideas from his second are
employed here since they do not rely on complex analytic tools which are unavailable
in the anisotropic case.

Theorem 3.1. Let Σ be an anisotropic minimal surface for an axially symmetric
functional F that can be represented as a graph over a convex domain Ω in a plane
orthogonal to the axis of symmetry of the functional. Then its conjugate anisotropic
minimal surface X̂ is also a graph.

Proof. We may assume that the axis of symmetry is the vertical axis. We express
Σ as the image of the embedding

X : Ω → R3, (x, y) �→ (x, y, z(x, y)).
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Then the conjugate surface Σ̂ is the image of the immersion X̂ : Ω → R3, with
dX̂ = −ξ × dX on Ω. For distinct points pi ∈ Ω, we show that their images X̂(pi)
have distinct orthogonal projections to the plane z = 0.

Let w denote the unit vector in the direction of the line segment from p1 to p2
and define a := w×E3 which is a unit normal to the plane span{w,E3}. Note that
dX(w) = w + z′(t)E3, where z′(t) = ∂tz(p1 + tw). By (5)

∂tX̂(p1 + tw) = −ξ × dX(w)

= −ξ × w − z′(t)ξ × E3

= −(
1

μ2
ν × w + γ′(ν3)E3 × w +

z′(t)

μ2
ν × w)

,

Using the formula u1 × v1 · u1 × v2 = (u1 · v1)(u2 · v2)− (u1 · v2)(u2 · v1), we then
obtain

∂tX̂(p1 + tw) · a = ∂tX̂(p1 + tw) · w × E3

= −(
1

μ2
ν×w · w×E3+γ′(ν3)E3×w · w×E3+

z′(t)

μ2
ν×w · w×E3)

= |w|2( ν3
μ2

+ γ′(ν3)) +
(z′(t))2ν3

μ2
.

The second term above is clearly positive and by (6), the first term equates to

|w|2ξ3 which is also positive. Therefore ∂tX̂(p1 + tw) · a > 0 holds. Therefore

0 <

∫ |p1−p2|

0

∂tX̂(p1 + tw) · a dt = (X̂(p2)− X̂(p1)) · a.

Since a is a horizontal vector, this shows that the points X̂(pi), i = 1, 2, have
distinct projections to the plane z = 0, proving the result. �

Another consequence of Σ̂ being a graph is that it is stable as an anisotropic
minimal surface. Also, it is shown in [5] that the Gauss map ν̂ of Σ̂ is critical for
an energy functional

E[f ] =

∫
Σ̂

〈(D2γ̂ + γ̂I)∇f,∇f〉dΣ̂,

where γ̂ := ξ∗ ·ν̂ is the support function ofW ∗ regarded as a function on S2 andD2γ̂
is its Hessian on S2. The competing maps are those mapping Σ̂ to S2 having the
same boundary values as ν̂. Since Σ̂ is stable, ν̂ is in fact the absolute minimizer of
this energy functional among all smooth maps Σ̂ → S2 having the same boundary
values as Σ̂ (see [5] for details).

4. Reflection principle

In [6], Lawson formulated a reflection principle for minimal surfaces in space
forms that we will now consider in the anisotropic case. A non trivial planar arc C
contained in a surface Σ is called an arc of planar symmetry if Σ is invariant with
respect to reflection through the plane containing the arc. A vertical line segment
� ⊂ Σ, given by x = 0 = y, will be called an arc of geodesic symmetry if the map
(x, y, z) �→ (−x,−y, z) restricted to Σ is a symmetry of Σ.
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We will only consider rotationally symmetric energy functionals having a density
γ(ν3). Because of this, we may assume that any arc of planar symmetry is contained
in a horizontal plane, since the functional is only invariant with respect to reflection
through horizontal planes. We will show the following:

Proposition 4.1. Let Σ be an anisotropic minimal surface with energy density
γ = γ(ν3) being real analytic. A non trivial arc C ⊂ Σ is a horizontal arc of planar

symmetry if and only if its corresponding arc in the conjugate surface Σ̂ is a vertical
arc of geodesic symmetry.

Proof. The method of proof is similar to that used in [6] although there are signif-
icant differences with the isotropic case.

First assume C is a planar curve in Σ and that Σ is invariant under reflection
across the plane. Then Σ meets the plane in a right angle and it is clear from the
reflective symmetry that ν3 ≡ 0 along C. Recall that ξ := χ ◦ ν where ν is the
Gauss map of Σ. If C ′ denotes the unit tangent vector to C, then since both ν and
C ′ are horizontal vectors, we get

dX̂(C ′) = −ξ × C ′

= −(
1

μ2
ν + γ′(0)E3)× C ′

= ±γ(0)E3.

It follows that the image Ĉ of C in Σ̂ is a vertical line segment.
Conversely, if Ĉ is a vertical line, then it follows from the previous calculation

that along C both C ′ and ξ are lie in a horizontal plane. Since χ : S2 → W maps
the equator ν3 = 0 onto the circle χ3 = 0, this means that ν3 ≡ 0 along C. So Σ
meets the plane containing C in a right angle.

In order to complete the proof, it remains to show that if Σ contains a vertical
line (resp. if Σ meets a horizontal plane in a right angle), then Σ is invariant
with respect to geodesic reflection across the horizontal line (resp. with respect to
reflection across the horizontal plane).

Let D denote the unit disc in the (x1, x2) plane and let D± be the half disc with
(−1)±1x1 > 0. We may assume that a neighborhood of a point in the vertical line
� is the image of D under a conformal embedding X : D → R3, with the points
of D+ located on one side of �. Set S± = X(D±). We claim that the reflection
ψ(x, y, z) = (−x,−y, z) extends S+ to a smooth anisotropic minimal immersion
X∗ : D → R3.

If ν = (ν1, ν2, ν3) denotes the normal of Σ, then a direct calculation shows that
the normal of ψ ◦ X is (ν1, ν2,−ν3). Recall that γ(−ν3) = γ(ν3) and note that
ν3 ≡ 0 holds on S+ ∩ � since � is a vertical line tangent to Σ. Since the map ψ is an
isometry of R3 and its effect on the normal leaves γ invariant, it follows that the
surface D− �→ R3, (x1, x2) �→ (ψ ◦ X)(−x1, x2) is an anisotropic minimal surface
which extends X|D+

to a C1 immersion of X∗ : D → R3.
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We will show that X∗ is, in fact, of class C2. To see this we first claim that the
mean curvature H of Σ vanishes on the line segment {x1 = 0} ∪D. Using (3), we
get

0 = ∇ ·Dγ − 2Hγ

= ∇ · (γ′(ν3)∇z)− 2Hγ

= γ′′(ν3)∇ν3 · ∇z + 2Hν3γ
′(ν3)− 2Hγ.

Now use that ν3 ≡ 0 when x1 = 0 and as explained above γ′(0) = 0. Also, on the
segment x1 = 0, we have ν3 ≡ 0 and so ∇ν3 · ∇z ≡ 0 along �. Since γ is positive,
it then follows that H ≡ 0 along �.

It is clear that (∂2x/∂x2
2)(0, x2) ≡ 0 ≡ (∂2y/∂x2

2)(0, x2). Since H ≡ 0 on �,
the Laplacians of all three coordinate functions vanish also and it then follows that
(∂2x/∂x2

1)(0, x2) ≡ 0 ≡ (∂2y/∂x2
1)(0, x2) also. This implies that these derivatives

can be continuously extended to continuous functions in D which are odd with
respect to x1. It is straightforward to check that they are the derivatives of the
reflected functions x and y on D−. In a similar way, (∂2z/∂x2

i ), i = 1, 2, can be
extended as an even continuous function. A similar statement holds for the mixed
second order partial derivatives of the three coordinate functions.

Since all of the coordinates are of class C2, it follows that Σ∗ is a classical solution
of the variational problem. �

In Figure 1 the waist of the anisotropic catenoid is an arc of planar reflection
which corresponds to the vertical line in the helicoid. The vertical line is an arc of
linear reflection.

Remark. Brian White [9] has shown the solvability of the Plateau problem for
smooth even parametric elliptic functionals with arbitrary prescribed simple closed
boundary curve C which lies on the boundary of a convex set in R3. Because of
this, we can find many examples of anisotropic minimal surfaces containing a line
in their boundaries to which the previous result can be applied.

5. Appendix

We present here the proof of Theorem 2.3. The idea of approximating Ω by a
polygonal domain and then applying the compactness theorem was provided to us
by Frank Morgan. We wish to express our gratitude for his help.

Proof of Theorem 2.3. First assume that a comparison surface S is contained in
the solid cylinder Ω×R. We can assume that S is oriented in such a way so that
the induced orientation of the boundary agrees with the induced orientation of
∂Σ. Assume S satisfies the conditions stated above. Since Σ is a graph (x, y) �→
(x, y, z(x, y)), we can extend its Cahn-Hoffman field to a vector field ξ̃ on Ω×R by

ξ̂(x, y, z) = ξ(x, y). The vanishing of the anisotropic mean curvature on Σ implies

that ∇ · ξ ≡ 0 holds on Σ which is the same as ∇ · ξ̃ ≡ 0 on Ω×R.
The two-chain Σ− S is the oriented boundary of an oriented three-chain U . By

the divergence theorem

0 =

∫
U

∇ · ξ̃ dV =

∫
Σ

ξ̃ · ν dΣ−
∫
S

ξ̃ · ν1 dS.
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Therefore, if ξ1 denotes the Cahn-Hoffman field of S, then

F [Σ] =

∫
Σ

ξ · ν dΣ

=

∫
Σ

ξ̃ · ν dΣ

=

∫
S

ξ̃ · ν1 dS

≤
∫
S

ξ1 · ν1 dS

= F [S].

by (1).
Now consider the case where the comparison surface S intersects the exterior of

the solid cylinder Ω×R. In order to handle this we will need to extend F to the
category of integral currents. We refer the reader to Chapter 5 of [2] for details.

By the convexity of Ω, we can find a sequence of convex polygonal domains Pi

such that ∂Ω is inscribed in ∂Pi, P1 ⊃ P2 ⊃ P3 ⊃ · · · and
(7) distance(∂Pi,Ω) < 1/i.

Let πi : R
3 → Pi ×R denote the Lipschitz map which sends each point to its

nearest point in Pi ×R. We decompose the compliment of Pi ×R in R3 as Ei∪Φi

where Ei is the set of points q with π(q) lying on an edge of Pi ×R in R3 and Φi is
the set of points q with πi(q) lying in an open face. Let F be any face of ∂Pi ×R.
We claim that the restriction of π to S ∪ π−1

i (F ) is energy non increasing.

Assume first that S ∩ π−1
i (F ) has only one component which we’ll denote by

SF . Note that F is a vertical plane having a horizontal normal vector νo. The
Cahn-Hoffman field of F is therefore

(8) ξo := ξ(νo) = Dγ|νo
+ γ(0)νo = γ′(0)E3 + γ(0)νo = γ(0)νo

since γ′(0) = 0. Note also that S∩π−1
i (F ) lies in the infinite rectangular box F×R.

Each point m ∈ SF either lies in F or it is joined by a line segment parallel to
νo which connects it to πi(m). The union of all such line segments mπi(m) is a
three-dimensional domain U ⊂ F ×R. The boundary of U consists of SF , πi(SF )
and a union of planar domains having normals equal to ±E3 × νo.

We now apply the divergence theorem using the constant vector field ξo in U to
get

0 =

∫
U

∇ · ξo dV

=

∫
πiSF

ξo · dS −
∫
∂U\πiSF

ξo · dS

= F [πiSF ]−
∫
SF

ξo ·N dS

since ξo is perpendicular to E3 × νo. Here N is the normal to SF pointing out of
U . Again, by (1) we get

F [πiSF ] =

∫
SF

ξo ·N dS ≤
∫
SF

γ(N) dS = F [SF ].



100 BENNETT PALMER

If S ∩ π−1
i (F ) has multiple boundary components, we apply the same argument

to each component. This proves the claim and it follows that πi|S is energy non
increasing since πi(S ∩ Φi) has Hausdorff 2 measure zero.

We choose a compact set K ⊂ R3 which contains π1S. Since πi is Lipschitz,
each πiS is an integral current contained in K. Further, the masses M(πiS) and
M(∂πiS) are uniformly bounded by M(S)+M(∂S). By the compactness theorem
([2] Theorem 4.2.17), we can extract a subsequence, again denoted by {πiS}, which
converges with respect to the weak topology on the space of currents. If π denotes
projection into Ω×R, then, because of (7), it is clear that πiS → πS in this
topology.

We then obtain

F [S] ≥ lim inf F [πiS] ≥ F [πS] ≥ F [Σ].

The first inequality holds since π is energy non increasing, the second follows from
the lower semicontinuity of F ([2] Th. 5.15), and the third follows from the first
part of the proof since πS is contained in the cylinder Ω×R. �
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