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Abstract. We describe the distribution of infinite groups within the RO(G)-

graded stable homotopy groups of spheres for a finite group G.
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1. Introduction

1.1. Overview. In ordinary stable homotopy theory, one of the most basic the-
orems is Serre’s Finiteness Theorem [Ser53] stating that the n-th stable homo-
topy group of the sphere, πn(S

0), is finite for n > 0. Since we understand that
π0(S

0) ∼= Z, this means that rationally the structure of stable homotopy is very
simple, and attention is quickly focused on torsion. Equivariantly, it is still true
that rationalisation is a massive simplification, but the residual structure in the
rationalisation is worth some attention.

Let G be a finite group. If V is a real orthogonal G-representation, its one-
point compactification SV is a sphere with G-action and one can define the V -th
G-equivariant homotopy group of the sphere πG

V (X) by considering equivariant
homotopy classes of maps out of SV . Taking X = S0 and stabilising yields the
RO(G)-graded stable homotopy groups of the sphere [May96, Ch. IX]. The purpose
of this note is to identify the crudest feature of these groups: their ranks as abelian
groups. This is a straightforward deduction from well-known results, but some
interesting features emerge by giving a systematic account.

Example. Let G = C2 be the cyclic group of order two. Then

RO(C2) ∼= Z{1, σ},
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where 1 is the one-dimensional trivial representation and σ is the one-dimensional
sign representation. Computations of Araki–Iriye [AI82] show that πC2

α (S0) is infi-
nite if

α ∈ Z{2(1− σ)} ∪ Z{σ}.
Our results recover this observation, and show that these are the only degrees for
which πC2

α (S0) is infinite.

Using rational equivariant stable homotopy theory, we prove the following:

Theorem A (Theorem 2.3). Let G be a finite group and α ∈ RO(G). Then

πG
α (S

0)⊗Q = [Sα, S0]G ⊗Q =
∏
(H)

HomWG(H)(π0(S
αH

),Q),

where the WG(H)-module Q has trivial action, and the product is taken over con-
jugacy classes of subgroups H ≤ G. Thus πG

α (S
0)⊗Q is a rational vector space of

dimension rα, where

rα = |{(H) | αH = 0 and WG(H) acts trivially on π0(S
αH

)}|.

We lay the groundwork for applying Theorem A in Section 3. We then compute
the ranks of the RO(G)-graded stable homotopy groups of spheres for various G in
Section 5.

In Section 4, we discuss two natural variations where the same techniques give
information. Since the sphere is rationally an Eilenberg-MacLane spectrum for the
Burnside Mackey functor, S0 �Q HA, we may view our methods as a calculation
of the rationalisation of H�

G(S
0;A) (where � denotes RO(G)-grading). The same

methods apply to give a calculation of the rationalisation of H�
G(S

0;M) for any
Mackey functor M . For the second variation, we may consider the Picard-graded
stable homotopy groups of spheres: invertible objects are again characterised in
terms of orientations and dimension functions (see [FLM01]).

Finally, we note that our results provide a basis for understanding other large-
scale phenomena in the RO(G)-graded stable homotopy groups of spheres. For
example, Iriye [Iri83] showed that Nishida’s nilpotence theorem [Nis73] holds equiv-
ariantly: an element πG

� (S
0) is torsion if and only if it is nilpotent. Theorem A

therefore explicitly describes the regions of πG
� (S

0) in which elements can be nilpo-
tent and non-nilpotent.

1.2. Finite generation. For most of the paper we will work rationally, but we
would like to draw conclusions about the integral situation. For completeness we
include the proofs of the basic finiteness statements that permit this deduction.

Lemma 1.1. For any α ∈ RO(G), the sphere Sα is a finite G-cell spectrum.

Proof. For an actual representation V , the sphere SV is a smooth compact manifold
and hence admits the structure of a finite G-CW-complex. By exactness of Spanier–
Whitehead duality, DSV � S−V is also a finite G-CW spectrum (since by the
Wirthmüller isomorphism DG/H+ � G/H+). Now if α = V −W , Sα � SV ∧S−W ,
so the result follows. �

The following consequence fails for infinite compact Lie groups.

Lemma 1.2. For any α ∈ RO(G) the abelian group πG
α (S

0) is finitely generated.
Consequently πG

α (S
0) is finite if and only if πG

α (S
0)⊗Q = 0.
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Proof. From the Segal–tom Dieck splitting theorem [tD75], we see that πG
n (S

0) is
a finitely generated abelian group. By Lemma 1.1, it follows that πG

α (S
0) is finitely

generated. �

Theorem A describes the RO(G)-graded rational homotopy groups of the sphere.
By Lemma 1.2, this determines precisely those degrees α ∈ RO(G) for which πG

α (S
0)

is finite.

1.3. Conventions. Henceforth everything is rational. We write G for a finite
group, H for a subgroup of G, and WG(H) = NG(H)/H for the Weyl group of
H. We use ∗ to denote Z-graded groups and � to denote RO(G)-graded groups. If
V ∈ RO(G), then |V | denotes its (virtual) dimension.

2. Rational stable homotopy

For finite groups, it is easy to give a complete model of rationalG-spectra [GM95,
App. A]. We do not need the full strength of this description, so we describe what
we want in a convenient form.

First, note that for any X and Y , passage to geometric fixed points gives a map

ΦH : [X,Y ]G −→ [ΦHX,ΦHY ].

The codomain admits an action of the Weyl group WG(H) by conjugation, and ΦH

takes values in the WG(H)-equivariant maps.

Theorem 2.1. If X and Y are rational, the maps ΦH give an isomorphism

[X,Y ]G∗ =
⊕
(H)

H0(WG(H); [ΦHX,ΦHY ]∗),

where the sum is taken over conjugacy classes of subgroups H ≤ G. Furthermore,
passage to homotopy groups gives isomorphisms

H0(WG(H); [ΦHX,ΦHY ]∗) = HomWG(H)(π∗(Φ
HX), π∗(Φ

HY )).

Proof. Filtering EG+ by skeleta gives a spectral sequence

H∗(G; [X,Y ]∗) ⇒ [EG+ ∧X,Y ]G∗

for (integral) stable maps. When Y is rational, this collapses to an isomorphism

H0(G; [X,Y ]∗) = [EG+ ∧X,Y ]G∗ .

We may combine this with the splitting S0 �
∨

(H) eHS0 using the idempotents eH
of the rational Burnside ring to give the first stated isomorphism, since

[eHS0 ∧X,Y ]G = [eHS0 ∧X,Y ]NG(H) = [e{e}S
0 ∧ ΦHX,ΦHY ]WG(H)

= [EWG(H)+ ∧ ΦHX,ΦHY ]WG(H).

The second isomorphism comes from the classical version of Serre’s Theorem [Ser53].
�

Remark 2.2. An alternative approach is to use [GM95]. We observe that X �∏
n Σ

nHπG
n (X) and then use the fact that all rational Mackey functors are projec-

tive and injective to deduce

[X,Y ]G
∼=−→

∏
n

Hom(πG
n (X), πG

n (Y )).
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Now we use the structure of Mackey functors to deduce

Hom(πG
n (X), πG

n (Y )) ∼=
∏
(H)

HomWG(H)(πn(Φ
HX), πn(Φ

HY )),

as claimed.

Since G acts trivially on S0, WG(H) acts trivially on π0(S
0) = Q. We then have

the following consequence of Theorem 2.1:

Theorem 2.3. Let G be a finite group and α ∈ RO(G). Then

πG
α (S

0) = [Sα, S0]G =
∏
(H)

HomWG(H)(π0(S
αH

),Q),

where the product is taken over conjugacy classes of subgroups H ≤ G. Thus πG
α (S

0)
is a rational vector space of dimension rα, where

rα = |{(H) | αH = 0 and WG(H) acts trivially on π0(S
αH

)}|.

3. Geometry of the ranks of the RO(G)-graded stable stems

To make the answer in Theorem 2.3 explicit there are now two ingredients: (a)
the dimension of the fixed points and (b) the orientations.

3.1. Virtual representations of fixed point dimension zero. If we list the
simple real representations S1, S2, . . . , Sr of G, we may identify RO(G) = Zr. Now,
for each subgroup H ≤ G we have a dimension vector

dH = (dim(SH
1 ), . . . , dim(SH

r )),

and the space of virtual representations α with αH = 0 is

NH = {x | x · dH = 0},
which is isomorphic to Zr−1 as an abelian group. The only α for which πG

α (S
0) can

be infinite are those lying in some NH , and the maximum rank of πG
α (S

0) is the
number of conjugacy classes of H with α ∈ NH .

When H = G, the Weyl group WG(H) is trivial, and we immediately draw a
useful conclusion.

Corollary 3.1. If V is a virtual representation with V G = 0 then

rk πG
V (S

0) ≥ 1.

Remark 3.2. One special case is when V is a multiple of the reduced regular rep-
resentation ρ̄. This was observed to the second author by Bert Guillou, who noted
that it follows from the fact that ΦG(S0) � S0 and that geometric fixed points are
given by inverting the Euler class of the reduced regular representation.

On this same theme, if V is a representation with V G = 0, the inclusion of the
origin gives a map aV : S0 −→ SV whose G-fixed points generate π0(S

0). The
element aV is thus of infinite order in πG

−V (S
0). The G-component of the map

aV will not usually be invertible integrally. However, by Theorem 2.1, there is a
rational map a′V ∈ πG

V (S
0) whose G-component is the inverse of aV . The problem

of finding the smallest positive multiple of a′V that is integral is of considerable
interest; the case of the group of order 2 was studied classically by Landweber
[Lan69], but is now best treated using motivic homotopy theory [BGI21,GI20]. For
the group of odd prime order p, it was studied by Iriye [Iri89].
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3.2. Orientability. For any real representation V the group G acts on H|V |(S
V ),

giving a homomorphism

oV : G −→ Aut(Z) = μ2.

In view of the Künneth isomorphism

H|V |(S
V )⊗H|W |(S

W )
∼=−→ H|V+W |(S

V⊕W ),

this gives the orientation character, a homomorphism

o : RO(G) −→ Hom(G,μ2).

Elements of the kernel RO+(G) of o are orientable virtual representations.

Example 3.3. Clearly 2α is orientable for any α. More generally, the image
of any complex representation is orientable, as is any element in the image of
RSO(G) −→ RO(G).

Remark 3.4. It is clear that an orientable representation ρ : G −→ O(n) is one that
takes values in representations of determinant 1, so that it comes from RSO(G).
However, this is not true of virtual representations. For example, if G = Σ3, then
V − σ− 1 is orientable (where V is the reduced regular representation and σ is the
sign representation). However, only even multiples of σ or V come from RSO(Σ3).

If WG(H) is of odd order, then all the gradings in NH give infinite groups. In
general, on each such null space NH we have an orientation character

oH : NH −→ Hom(WG(H), μ2)

defined by considering the action of WG(H) on H|(SV )H |((S
V )H) for V ∈ NH . As

noted above, the kernel N+
H contains all even vectors of NH and the image of all

complex representations.
The set of α for which πG

α (S
0) is infinite is

⋃
H N+

H . The rank rα of πG
α (S

0) is

the number of conjugacy classes H with α ∈ N+
H .

3.3. Bases. If we choose a subgroup H giving an associated fixed point vector dH ,
we note that the component of the trivial representation S1 is always 1, so that
NH has basis S2 − dH(2), S3 − dH(3), . . . , Sr − dH(r). The orientation oH is thus
described by the homomorphisms

oH(2), oH(3), . . . , oH(r) : WG(H) −→ μ2,

where oH(i) = oH(Si − dH(i)). Since WG(H) always acts trivially on the trivial
representation, the orientation oH(Si − dH(i)) = oH(Si), and oH(i) is the determi-
nant of SH

i . Since oH is a homomorphism, this determines its values throughout.
All the homomorphisms factor through the largest elementary abelian 2-quotient
E2(H) of WG(H) (i.e., we factor out commutators and squares).

4. The two variations

In effect, our calculation in Theorem 2.3 was of

πG
α (S

0)⊗Q = [Sα, S0]G ⊗Q = [Sα, HA]G ⊗Q = H0
G(S

α;A)⊗Q.

We point out that the same methods allow us to calculate

[Sα, HM ]G ⊗Q = H0
G(S

α;M)⊗Q
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for any invertible spectrum Sα and rational G-Mackey functor M . Indeed we still
have

[Sα, HM ]G ⊗Q =
∏
(H)

HomWG(H)(H0(S
αH

),MeH),

where M corresponds to {MeH}H under the equivalence

G-MackeyFunctors/Q �
∏
(H)

QWG(H)-modules.

More explicitly, MeH = M(G/H)/(proper transfers). In other words,

rk[Sα, HM ]G ⊗Q =
∑
(H)

zH ·m(α,H),

where zH = 1 if αH = 0 and zH = 0 otherwise, and where m(α,H) is the multi-

plicity of the simple QWG(H)-representation H0(S
αH

) in MeH .
The only MeH which can possibly give infinite groups are those with summands

coming from a homomorphism WG(H) −→ μ2. Since the sphere corresponds to the
Burnside Mackey functor A with AeH = Q (with trivial action), it has almost as
many RO(G)-gradings which are infinite as is possible.

5. Examples

We conclude by explicitly calculating the ranks of the RO(G)-graded stable
homotopy groups of spheres for groups G with small subgroup lattices.

5.1. Cyclic group of order two. We have

RO(C2) ∼= Z{1, σ},
where 1 is the 1-dimensional trivial representation and σ is the sign representation.
Then

Ne
∼= Z{1− σ}, NC2

∼= Z{σ}.
Since WC2

(C2) = e, we have

N+
C2

= NC2
∼= Z{σ}.

On the other hand, WC2
(e) ∼= C2/e ∼= C2 acts by (−1) on 1− σ, so

N+
e

∼= Z{2(1− σ)}.
Each representation V ∈ N+

C2
∪N+

e satisfies rkπC2

V (S0) ≥ 1. Since N+
C2

∩N+
e = {0},

we also have rkπC2
0 (S0) = 2. Altogether, we find:

Proposition 5.1. We have

rk πC2

V (S0) =

⎧⎪⎨
⎪⎩

2 if V = 0,

1 if V ∈ (Z{σ} ∪ Z{2(1− σ)}) \ {0},
0 otherwise.

Remark 5.2. The fact that πC2

V (S0) is infinite for V ∈ Z{σ} ∪Z{2(1− σ)} appears

in [AI82, Thm. 7.6]. A proof that these are the only degrees for which πC2

V (S0)
is infinite using the C2-equivariant Adams spectral sequence was communicated to
the second author by Bert Guillou and Dan Isaksen.
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Figure 1. Degrees in RO(C2) where πC2

V (S0) has infinite rank.

A black • indicates a copy of Z arising from N+
C2

and a blue •
indicates a copy of Z arising from N+

e .

5.2. Cyclic group of odd prime order. Let q = p−1
2 . We have

RO(Cp) ∼= Z{1, φ1, . . . , φq},

where 1 is the 1-dimensional trivial representation and φt : Cp → Aut(R2) ∼=
Aut(C) sends the generator of Cp to ·e2πit/p. Then

Ne
∼= Z{2− φ1, . . . , 2− φq}, NCp

∼= Z{φ1, . . . , φq}.

Since WCp
(e) ∼= Cp and WCp

(Cp) = e necessarily act trivially on Z, we have

N+
e = Ne, N+

Cp

∼= NCp
.

Finally, we have

N+
e ∩N+

Cp

∼= Z{φ1 − φ2, . . . , φ1 − φq}.

Proposition 5.3. We have

rk π
Cp

V (S0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if V ∈ Z{φ1 − φ2, . . . , φ1 − φq},

1
if V ∈ (Z{2− φ1, . . . , 2− φq} ∪ Z{φ1, . . . , φq})

\ Z{φ1 − φ2, . . . , φ1 − φq},
0 otherwise.

Remark 5.4. We note that φ1, . . . , φq have similar behaviour. Thus we are consid-
ering RO(Cp) = Z⊕NCp

and the same picture as for C2, but now the vertical line
represents NCp

and the antidiagonal Ne represents another subspace isomorphic to
NG.
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Figure 2. Degrees in RO(C3) where πC3

V (S0) has infinite rank.

A black • indicates a copy of Z arising from N+
C3

and a blue •
indicates a copy of Z arising from N+

e .

5.3. Cyclic groups of odd prime power order. Let q = pn−1
2 . Then

RO(Cpn) ∼= Z{1, φ1, . . . , φq} ∼= Zq+1.

For all 0 ≤ m ≤ n, we have

N+
Cpm

= NCpm
∼= Z{2− φi : p

m | i} ⊕ Z{φj : p
m � j}.

Indeed, let γ denote a generator of Cpn , so γpn−m

is a generator for Cpm . Since

φi : γ �→ ·e 2πi
pn ,

φi : γ
pn−m �→ ·e

2πipn−m

pn = ·e 2πi
pm .

Therefore φi pulls back to a trivial Cpm -representation if and only if pm | i.
Describing the intersections of these subspaces gets complicated quickly. For

example, if 0 ≤ k < m ≤ n, then

N+
C

pk
∩N+

Cpm
∼= Z{2−φi : p

m | i}⊕Z{φj : p
k � j}⊕Z{φpk−φ� : 	 > pk, pk | 	, pm � 	}.

Here, we use that pm | i implies pk | i, and similarly, pk � j implies pm � j.

5.4. Klein four group. Let K = C2 × C2 = {e, i, j, k}. We have

RO(K) ∼= Z{1, σi, σj , σk},

where 1 is the 1-dimensional trivial representation, σi is the 1-dimensional repre-
sentation on which e and i act trivially and j and k act by (−1), and similarly for
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σj and σk. Then

Ne
∼= Z{1− σi, 1− σj , 1− σk},

N〈i〉 ∼= Z{1− σi, σj , σk},
N〈j〉 ∼= Z{σi, 1− σj , σk},
N〈k〉 ∼= Z{σi, σj , 1− σk},
NK

∼= Z{σi, σj , σk}.

The Weyl group WK(e) ∼= K acts nontrivially on σi, σj , and σk, so we have

N+
e

∼= Z{2(1− σi), σi − σj , σi − σk}.

The Weyl group WK(〈i〉) ∼= K/〈i〉 ∼= 〈j〉 ∼= 〈k〉 acts nontrivially on σi but trivially
on σj and σk, so we have

N+
〈i〉

∼= Z{2(1− σi), σj , σk},

and similarly,

N+
〈j〉

∼= Z{σi, 2(1− σj), σk},
N+

〈k〉
∼= Z{σi, σj , 2(1− σk)}.

Finally, since WK(K) ∼= e must act trivially on Z, we have

N+
K

∼= NK
∼= Z{σi, σj , σk}.

To determine the ranks of πG
α (S

0), we now compute intersections. In the following,
we let a ∈ {i, j, k}, a′ ∈ {i, j, k} \ {a}, and a′′ ∈ {i, j, k} \ {a, a′}. Then we have

N+
e ∩N+

〈a〉
∼= Z{2(1− σa), σa′ − σa′′},

N+
e ∩N+

K
∼= Z{σi − σj , σi − σk},

N+
〈a〉 ∩N+

〈a′〉
∼= Z{2(1− σa − σa′), σa′′},

N+
〈a〉 ∩N+

K
∼= Z{σa′ , σa′′},

N+
e ∩N+

〈a〉 ∩N+
〈a′〉

∼= Z{2(1− σa − σa′ + σa′′},
N+

〈a〉 ∩N+
〈a′′〉 ∩N+

K
∼= Z{σa′},

N+
e ∩N+

〈a〉 ∩N+
K

∼= Z{σa′ − σa′′},
N〈a〉 ∩N〈a′〉 ∩N〈a′′〉 ∼= Z{2(1− σa − σa′ − σa′′)},

and all 4- and 5-fold intersections are {0}.

Proposition 5.5. With a, a′, a′′ as above, we have

rkπK
V (S0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5 if V =0,

3 if V ∈(Z{σa−σa′}∪ Z{σa′}∪ Z{2(1−σa−σa′ ± σa′′)}) \ {0},
2 if V ∈(

⋃
H �=H′ N

+
H∩N+

H′) \ (
⋃

H �=H′ �=H′′ �=H N+
H∩N+

H′∩N+
H′′),

1 if V ∈(
⋃

H N+
H ) \ (

⋃
H �=H′ N

+
H∩N+

H′),

0 otherwise.
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5.5. Dihedral groups of order 2p, p odd. We have

RO(D2p) ∼= Z{1, σ, φ1, . . . , φq},

where 1 is the trivial representation, σ is the sign representation, and φt : D2p →
Aut(R2) ∼= Aut(C) sends the generator of Cp ⊆ D2p to ·e2πit/p and the generator
of C2 ⊆ D2p to reflection across the real axis. Then

Ne
∼= Z{1− σ, 2− φ1, . . . , 2− φq},

NC2
∼= Z{1− σ, 1− φ1, . . . , 1− φq},

NCp
∼= Z{1− σ, φ1, . . . , φq},

ND2p
∼= Z{σ, φ1, . . . , φq}.

Since WD2p
(C2) ∼= e ∼= WD2p

(D2p), we have N
+
C2

= NC2
and N+

D2p
= ND2p

. On the

other hand, WD2p
(e) ∼= D2p and WD2p

(Cp) ∼= C2, so

N+
e

∼= Z{2(1− σ), 1 + σ − φ1, φ1 − φ2, . . . , φ1 − φq},
N+

Cp

∼= Z{2(1− σ), 2φ1, φ1 − φ2, . . . , φ1 − φq}.

We now compute intersections:

N+
e ∩N+

C2

∼= Z{2(1− σ), φ1 − φ2, . . . , φ1 − φq},
N+

e ∩N+
Cp

∼= Z{2(1− σ), φ1 − φ2, . . . , φ1 − φq},
N+

e ∩N+
D2p

∼= Z{4σ − 2φ1, φ1 − φ2, . . . , φ1 − φq},
N+

C2
∩N+

Cp

∼= Z{2(1− σ), φ1 − φ2, . . . , φ1 − φq},
N+

C2
∩N+

D2p

∼= Z{σ − φ1, φ1 − φ2, . . . , φ1 − φq},
N+

Cp
∩N+

D2p

∼= Z{2φ1, φ1 − φ2, . . . , φ1 − φq},
N+

e ∩N+
C2

∩N+
Cp

∼= Z{2(1− σ), φ1 − φ2, . . . , φ1 − φq},
N+

e ∩N+
C2

∩N+
D2p

∼= Z{φ1 − φ2, . . . , φ1 − φq},
N+

e ∩N+
Cp

∩N+
D2p

∼= Z{φ1 − φ2, . . . , φ1 − φq},
N+

C2
∩N+

Cp
∩N+

D2p

∼= Z{φ1 − φ2, . . . , φ1 − φq},
N+

e ∩N+
C2

∩N+
Cp

∩N+
D2p

∼= Z{φ1 − φ2, . . . , φ1 − φq}.

Proposition 5.6. We have

rkπ
D2p

V (S0)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 if V ∈Z{φ1 − φ2, . . . , φ1 − φq},
2 if V ∈(

⋃
H �=H′ N

+
H∩N+

H′) \ (
⋃

H �=H′ �=H′′ �=H N+
H∩N+

H′∩N+
H′′),

1 if V ∈(
⋃

H N+
H ) \ (

⋃
H �=H′ N

+
H∩N+

H′),

0 otherwise.

5.6. Quaternion group. Let Q = Q8 denote the quaternion group of order 8. We
have

RO(Q) = Z{1, σi, σj , σk, h},
where 1, σi, σj , σk are the pullbacks of theK-representations of the same name along
the quotient map Q → Q/C2

∼= K, and h is the unique irreducible 4-dimensional
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representation of Q. Then with a, a′, and a′′ as in our analysis of K,

Ne
∼= Z{1− σi, 1− σj , 1− σk, 4− h},

NC2
∼= Z{1− σi, 1− σj , 1− σk, h},

N〈a〉 ∼= Z{1− σa, σa′ , σa′′ , h},
NQ

∼= Z{σi, σj , σk, h},
and

N+
e

∼= Z{2(1− σi), σi − σj , σi − σk, 4− h},
N+

C2

∼= Z{2(1− σi), σi − σj , σi − σk, h},
N+

〈a〉
∼= Z{2(1− σa), σa′ , σa′′ , h},

N+
Q

∼= Z{σi, σj , σk, h}.
The 2-fold intersections are as follows:

N+
e ∩N+

C2

∼= Z{2(1− σi), σi − σj , σi − σk},
N+

e ∩N+
〈a〉

∼= Z{2(1− σa), σa′ − σa′′ , h− 4σa′},
N+

e ∩N+
Q

∼= Z{σi − σj , σi − σk, 4σi − h},
N+

C2
∩N+

〈a〉
∼= Z{2(1− σa), σa′ − σa′′ , h},

N+
C2

∩N+
Q

∼= Z{σi − σj , σi − σk, h},
N+

〈a〉 ∩N+
〈a′〉

∼= Z{2(1− σa − σa′), σa′′ , h},
N+

〈a〉 ∩N+
Q

∼= Z{σa′ , σa′′ , h}.
The 3-fold intersections are as follows:

N+
e ∩N+

C2
∩N+

〈a〉
∼= Z{2(1− σa), σa′ − σa′′},

N+
e ∩N+

C2
∩N+

Q
∼= Z{σi − σj , σi − σk},

N+
e ∩N+

〈a〉 ∩N+
Q

∼= Z{σa′ − σa′′ , h− 4σa′},
N+

e ∩N+
〈a〉 ∩N+

〈a′〉
∼= Z{2(1− σa − σa′ + σa′′), h− 4σa′′},

N+
C2

∩N+
〈a〉 ∩N+

Q
∼= Z{σa′ − σa′′ , h},

N+
C2

∩N+
〈a〉 ∩N+

〈a′〉
∼= Z{2(1− σa − σa′ + σa′′), h},

N+
〈a〉 ∩N+

〈a′〉 ∩N+
Q

∼= Z{σa′′ , h},
N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉
∼= Z{2(1− σa − σa′ − σa′′), h}.

The 4-fold intersections are as follows:

N+
e ∩N+

C2
∩N+

〈a〉 ∩N+
Q

∼= Z{σa′ − σa′′},
N+

e ∩N+
C2

∩N+
〈a〉 ∩N+

〈a′〉
∼= Z{2(1− σa − σa′ + σa′′)},

N+
e ∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉
∼= Z{2(1− σa − σa′ − σa′′) + h},

N+
C2

∩N+
〈a〉 ∩N+

〈a′〉 ∩N+
Q

∼= Z{h},
N+

C2
∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉
∼= Z{h},

N+
〈a〉 ∩N+

〈a′〉 ∩N+
〈a′′〉 ∩N+

Q
∼= Z{h}.
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The 5-fold intersections are as follows:

N+
e ∩N+

C2
∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

Q
∼= {0},

N+
e ∩N+

C2
∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉
∼= {0},

N+
e ∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉 ∩N+
Q

∼= {0},
N+

C2
∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉 ∩N+
Q

∼= Z{h}.
For completeness, the unique 6-fold intersection is

N+
e ∩N+

C2
∩N+

〈a〉 ∩N+
〈a′〉 ∩N+

〈a′′〉 ∩N+
Q

∼= {0}.

Proposition 5.7. With a, a′, a′′ as above, we have

rk πK
V (S0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 if V = 0,

5 if V ∈ Z{h} \ {0},
4 if V ∈ (Z{σa′ − σa′′} ∪ Z{2(1− σa − σa′ + σa′′)}

∪Z{2(1− σa − σa′ − σa′′) + h}) \ Z{h},

3
if V ∈ (

⋃
H,H′,H′′ N

+
H ∩N+

H′ ∩N+
H′′)

\ (
⋃

H,H′,H′′,H′′′
⋂

L∈{H,H′,H′′,H′′′} N
+
L ),

2 if V ∈ (
⋃

H �=H′ N
+
H ∩N+

H′) \ (
⋃

H,H′,H′′ N
+
H ∩N+

H′ ∩N+
H′′),

1 if V ∈ (
⋃

H N+
H ) \ (

⋃
H �=H′ N

+
H ∩N+

H′),

0 otherwise.
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