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ON THE BOOLEAN ALGEBRA TENSOR PRODUCT VIA

CARATHÉODORY SPACES OF PLACE FUNCTIONS

GERARD BUSKES AND PAGE THORN

(Communicated by Stephen Dilworth)

Abstract. We show that the Carathéodory space of place functions on the
free product of two Boolean algebras is Riesz isomorphic with Fremlin’s
Archimedean Riesz space tensor product of their respective Carathéodory
spaces of place functions. We provide a solution to Fremlin’s problem 315Y(f)
[Measure Theory, Torres Fremlin, Colchester, 2004] concerning completeness in
the free product of Boolean algebras by applying our results on the Archimedean

Riesz space tensor product to Carathéodory spaces of place functions.

1. Introduction and preliminary material

Fremlin asserts in problem 315Y(f) of [6] that the Boolean algebra tensor product
of two nontrivial Boolean algebras is complete if and only if one is finite and the
other is complete. In Theorem 4.6 of [4], we prove that the Fremlin tensor product
of two Dedekind complete Riesz spaces rarely is Dedekind complete. In fact, if the
tensor product is Dedekind complete, then one of the two spaces is Riesz isomorphic
to the set of all finite-valued functions on a subset of that space. To connect 315Y(f)
of [6] with Theorem 4.6 of [4], we employ Carathéodory’s Riesz space of place
functions on a Boolean algebra. The main result is Theorem 2.1 with applications
given in Section 3.

The necessary terms for Boolean algebras, the free product, Riesz spaces, and
Carathéodory spaces of place functions are provided in this section. We reserve A,
B for Boolean algebras and E, F , G for Archimedean Riesz spaces.

Boolean algebras and their free product. For Boolean algebras, see chapter
31 of [6]. Two elements x and y of a Boolean algebra are called disjoint if x∧y = 0,
in which case we write x ⊥ y. Two subsets A and B of a Boolean algebra are called
disjoint if x ⊥ y for every x ∈ A and y ∈ B, in which case we write A ⊥ B. We
define the disjoint sum of two elements x and y in a Boolean algebra by

x⊕ y = (x ∧ y′) ∨ (x′ ∧ y).

A Boolean algebra is complete if every nonempty subset has a supremum.

Definition 1.1 (312F of [6]). Let A and B be Boolean algebras. A function
χ : A → B is said to be a Boolean homomorphism if for all x, y ∈ A,
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(i) χ(x ∧ y) = χ(x) ∧ χ(y);
(ii) χ(x⊕ y) = χ(x)⊕ χ(y);
(iii) χ(1A) = 1B.

A bijective Boolean homomorphism is called a Boolean isomorphism. If there exists
an isomorphism χ : A → B, then the Boolean algebras A and B are said to be
Boolean isomorphic.

Proposition 312H of [6] proves additionally that every Boolean homomorphism
preserves finite suprema, that is χ(x ∨ y) = χ(x) ∨ χ(y) for every x, y ∈ A.

The Stone space of a Boolean algebra A is the set Z of nonzero ring homomor-
phisms from A to Z2. Set

â = {z : z ∈ Z, z(a) = 1}.

By Stone’s Theorem (see, for instance, 311E of [6]), the canonical map

a �→ â : A → P(Z)

is an injective ring homomorphism which we call the Stone representation. For
more on Stone spaces, see [6] where Fremlin defines and utilizes Stone spaces to
define the Boolean algebra tensor product, called the free product.

Definition 1.2 (Fremlin, 315I of [6]).

(i) Let {Ai}i∈I be a family of Boolean algebras. For each i ∈ I, let Zi be the
Stone space of Ai. Set Z =

∏
i∈I Zi, with the product topology. Then the

free product of {Ai}i∈I is the algebra of open-and-closed sets in Z, denoted⊗
i∈I Ai.

(ii) For i ∈ I and a ∈ Ai, the set â ⊆ Zi representing a is an open-and-closed
subset of Zi; because z �→ z(i) : Z → Zi is continuous,

εi(a) = {z : z(i) ∈ â}

is open-and-closed, so belongs to A. In this context, εi : Ai → A is called
the canonical map.

In the following theorem, we list the necessary material from 315J and 315K of
[6] in the language of Fremlin.

Theorem 1.3. Let {Ai}i∈I be a family of Boolean algebras, with free product A.

(i) The canonical map εi : Ai → A is a Boolean homomorphism for every i ∈ I.
(ii) For any Boolean algebra B and any family {ϕi}i∈I such that ϕi is a Boolean

homomorphism from Ai to B for every i, there is a unique Boolean homo-
morphism ϕ : A → B such that ϕi = ϕ ◦ εi for each i.

(iii) Write C for the set of those members of A expressible in the form
infj∈J εj(aj), where J ⊆ I is finite and aj ∈ Aj for every j. Then ev-
ery member of A is expressible as the supremum of a disjoint finite subset
of C.

(iv) A = {0A} if and only if there is some i ∈ I such that Ai = {0Ai
}.

(v) If Ai �= {0A} for every i ∈ I, then εi is injective for every i ∈ I.
(vi) Let Ai �= {0A} for every i ∈ I. If J ⊆ I is finite and aj is a nonzero

member of Aj for each j ∈ J , then infj∈J εj(aj) �= 0.
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Archimedean Riesz spaces and their tensor product. See [11] for
Archimedean Riesz spaces and [5] for Riesz bimorphisms.

Theorem 1.4 (4.2 of [5]). Let E and F be Archimedean Riesz spaces. There
exist an Archimedean Riesz space G and a Riesz bimorphism ϕ : E × F → G such
that whenever H is an Archimedean Riesz space and ψ : E × F → H is a Riesz
bimorphism, there is a unique Riesz homomorphism T : G → H such that T ◦ϕ = ψ.

G of Theorem 1.4 is the Archimedean Riesz space tensor product of E and F ,
denoted by E⊗̄F . The “universal property of E⊗̄F” refers to the implication that
any Archimedean Riesz space paired with a Riesz bimorphism satisfying Theorem
1.4 is Riesz isomorphic to G. The Riesz bimorphism ⊗ : E × F → E⊗̄F embeds
the algebraic tensor product E⊗F into E⊗̄F via ⊗(e, f) = e⊗ f for all e ∈ E and
f ∈ F .

We define a few terms needed for the statement of Theorem 1.6.

Definition 1.5. Let E be an Archimedean Riesz space and let I be a nonempty
set. c00(I, E) is the set of all maps f : I → E for which

S(f) = {x ∈ I : f(x) �= 0}
is finite. If E = R, then c00(I, E) is written c00(I).

Let f and g be elements of a Riesz space E. The ideals generated by f and g are
denoted by Ef and Eg respectively. We denote the principal bands generated by f
and g with [f ] and [g] respectively (see, for instance, pg. 30 of [11] for definitions).

A Riesz space is Dedekind complete if every bounded subset of E has a supremum.
Every Dedekind complete Riesz space is Archimedean. In [4], we characterized when
the tensor product of two Dedekind complete Riesz spaces is Dedekind complete.

Theorem 1.6 (4.6 of [4]). Suppose E and F are Dedekind complete Riesz spaces.
The following are equivalent.

(1) Ex⊗̄Fy is Dedekind complete for every x ∈ E+ and y ∈ F+.
(2) [Ex is finite dimensional for every x ∈ E+] or [Fy is finite dimensional for

every y ∈ F+].
(3) E ∼= c00(I) for a set I ⊆ E or F ∼= c00(J) for a set J ⊆ F .
(4) E⊗̄F ∼= c00(I, F ) for a set I ⊆ E or E⊗̄F ∼= c00(J,E) for a set J ⊆ F .
(5) E⊗̄F is Dedekind complete.

As an intermediary between Archimedean Riesz spaces and Boolean algebras,
we consider Boolean algebras of bands. The following three statements are used in
Section 3 and are given for the reader’s convenience.

Theorem 1.7 (22.6, 22.8 of [10]). Let E be a Riesz space and define

B(E) = {B ⊆ E : B is a band}.
B(E) is an order complete distributive lattice. B(E), partially ordered by inclusion,
is a Boolean algebra if and only if E is Archimedean.

Lemma 1.8. Let E be a Riesz space and f , g ∈ E. Then |f | ∧ |g| = 0 implies
[f ] ⊥ [g].

Proof. Let |f | ∧ |g| = 0. Certainly, Ef ⊥ Eg. Suppose h1 ∈ [f ] and h2 ∈ [g]. Using
the fact that Ef ⊥ Eg, it is straightforward to show that |h1| ∧ |h2| = 0 via 6.1 and
7.8 of [11]. Thus, [g1] ⊥ [g2]. �
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Lemma 1.9. If E is an infinite dimensional Archimedean Riesz space, then B(E)
is not finite.

Proof. By the contrapositive of Theorem 26.10 in [10], there is an infinite subset
of mutually disjoint nonzero elements in E. Thus, there are an infinite number of
mutually disjoint bands in E by Lemma 1.8. �

Carathéodory spaces of place functions.

Definition 1.10 (pg. 40 of [1]). Let E be a Riesz space and e ∈ E+. Then x ∈ E+

is said to be a component of e whenever x ∧ (e− x) = 0.

The collection of all components of e, denoted C(e), is a Boolean algebra under
the partial ordering induced by E (pg. 40 of [1]). With e as a strong order unit (pg.
51 of [11]), a connection between Archimedean Riesz spaces and Boolean algebras
is described explicitly in the following theorem.

Theorem 1.11 (4.1 of [3]). Let A be a Boolean algebra. There exists an
Archimedean Riesz space E with a strong unit e with the following properties.

(i) There exists a Boolean isomorphism χ : A → C(e).
(ii) E is the linear span of C(e).

(E,χ) is unique up to isomorphism. It is denoted by C(A) and is called the space
of place functions on A in the sense of Carathéodory.

Let λi, γj ∈ R be nonzero; n, m ∈ N; xi ∈ A be pairwise disjoint; and yj ∈ A
be pairwise disjoint. Two elements

f =
n∑

i=1

λiχ(xi) and g =
m∑
j=1

γjχ(yj)

are equivalent if
∨n

i=1 xi =
∨m

j=1 yj and if λi = γj whenever xi ∧ yj �= 0. C(A) is

the set of all such equivalence classes. Henceforth, we take f =
∑n

i=1 λiχ(xi) to
represent all elements of C(A) that are equivalent to f .

We define addition in C(A) in the style of Goffman in [7] and Jakubik in [9]. For
a different approach, see [3]. For x, y ∈ A, let x −1 y be the complement of x ∧ y
relative to x, that is, x ∧ (x ∧ y)′. Then addition in C(A) is defined by

f + g =
n∑

i=1

m∑
j=1

(λi + γj)χ(xi ∧ yj) +
n∑

i=1

λiχ(xi −1

m∨
j=1

yj) +
m∑
j=1

γjχ(yj −1

n∨
i=1

xi)

where in the summation only those terms are taken into account in which λi+γj �= 0
and the elements xi ∧ yj , xi −1

∨
yj , and yj −1

∨
xi are nonzero. It is routine to

verify that addition is well-defined in C(A).
Jakubik proves in [9] that the completeness of a Boolean algebra is equivalent to

the Dedekind completeness of its Carathéodory space of place functions. However,
his propositions assume complete distributivity. Since this work has no need for a
Boolean algebra to be completely distributive, Theorem 1.13 is proven with credit
to Propositions 5.2(a) and 5.6 of [9] for its similarity.

Definition 1.12 (pg. 231 of [9]). Let Y be a sublattice of a lattice X. Y is said
to be a regular sublattice of X if:

(i) whenever x0 ∈ Y and ∅ �= X ⊆ Y such that x0 = supY X, then x0 =
supX X; and
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(ii) whenever x1 ∈ Y and ∅ �= X ⊆ Y such that x1 = infY X, then x1 = infX X.

Theorem 1.13. Let A be a Boolean algebra. A is complete if and only if C(A) is
Dedekind complete.

Proof. Assume that A is complete. Let D be a bounded subset of C(A). Then
there exists g ∈ C(A) such that g ≥ f for every f ∈ C(A). Find λi ∈ R, n ∈ N, and
xi ∈ A such that g =

∑n
i=1 λiχ(xi). Set

x = x1 ∨ · · · ∨ xn and λ = max{λ1, · · · , λn}.
Then D ⊆ [0, λχ(x)]. By assumption, the interval [0, x] is complete in A. It follows
from Corollary 4.4 of [9] that A is a regular subset of C(A). Then the interval
[0, χ(x)] is complete as a subset of C(A). In particular, [0, λχ(x)] is complete, so
sup(D) exists in C(A).

To prove sufficiency, assume that C(A) is complete. Let χ : A → C(e) be the
Boolean isomorphism from Theorem 1.11. Note that e = χ(1A). Let D be a
subset of A. Since C(A) is Dedekind complete, supχ(D) exists in C(A)+. For every
x ∈ D, χ(x) is a component of χ(1A). Thus, supχ(D) = 2 supχ(D) ∧ χ(1A) so
that 0 = supχ(D) ∧ (χ(1A)− supχ(D)). By definition, supχ(D) is a component
of e.

Let y = χ−1(supχ(D)). Since χ is a Boolean isomorphism, y is an upper bound
for D. Suppose there exists y′ such that x ≤ y′ < y for every x ∈ D. Then
χ(y′) ≥ supx∈D χ(x) = χ(y). Thus, χ(y′) = χ(y). Since χ is one-to-one, y′ = y.
Therefore, y = sup(D) exists in A. �

2. The Fremlin tensor product of Carathéodory spaces of place

functions

In this section, we relate Boolean algebras A, B, and A⊗B to their Carathéodory
spaces of place functions C(A), C(B), and C(A⊗B). The notation of Theorem 1.11
is used with the addition of subscripts to indicate which Boolean algebra is at work.
The symbols in (1), (2), and (3) will be used freely.

(1) χA : A → C(A), χB : B → C(B), and χ̂ : A⊗B → C(A⊗B) are the Boolean
isomorphisms from Theorem 1.11.

(2) C(A), C(B), and C(A⊗B) have units χA(1A), χB(1B), and χ̂(1A⊗B) re-
spectively.

(3) εA : A → A⊗ B and εB : B → A⊗ B are the canonical Boolean homomor-
phisms in Definition 1.2.

Theorem 2.1. C(A)⊗̄C(B) and C(A⊗ B) are Riesz isomorphic.

Proof. Assume that A and B are nontrivial Boolean algebras. For f ∈ C(A),
there exist n ∈ N, pairwise disjoint xi ∈ A, and nonzero λi ∈ R such that
f =

∑n
i=1 λiχA(xi). For g ∈ C(B), there exist m ∈ N, pairwise disjoint uj ∈ B,

and nonzero γj ∈ R so g =
∑m

j=1 γjχB(uj). Define ψ : C(A)×C(B) → C(A⊗B) by

ψ(f, g) = ψ

⎛
⎝ n∑

i=1

λiχA(xi),

m∑
j=1

γjχB(uj)

⎞
⎠

=

n∑
i=1

m∑
j=1

(λiγj)χ̂(εA(xi) ∧ εB(uj)).
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It follows from Theorem 1.3 (iv) and (vi) that the definition of ψ is independent of
the representations chosen for f and g.

Let f1 = f and f2 =
∑p

k=1 δkχA(yk) for nonzero δk ∈ R, p ∈ N and pairwise
disjoint yk ∈ A. Recall that f1 + f2 is defined to be∑

i

∑
k

(λi + δk)χA(xi ∧ yk) +
∑
i

λiχA(xi−1

∨
k

yk) +
∑
k

δkχA(yk−1

∨
i

xi).

Claim 1. ψ is bilinear.

ψ(f1 + f2, g)

= ψ

(∑
i

λiχA(xi) +
∑
k

δkχA(yk),
∑
j

γjχB(uj)

)

=
∑
i,k,j

(λi + δk)γjχ̂ (εA(xi ∧ yk) ∧ εB(uj)) +
∑
i,j

(λiγj)χ̂

(
εA(xi−1

∨
k

yk) ∧ εB(uj)

)

+
∑
k,j

(δkγj)χ̂

(
εA(yk−1

∨
i

xi) ∧ εB(uj)

)

=
∑
i,j

[∑
k

(λiγj)χ̂ (εA(xi ∧ yk) ∧ εB(uj)) + (λiγj)χ̂

(
εA(xi−1

∨
k

yk) ∧ εB(uj)

)]

+
∑
k,j

[∑
i

(δkγj)χ̂ (εA(xi ∧ yk) ∧ εB(uj)) + (δkγj)χ̂

(
εA(yk−1

∨
i

xi) ∧ εB(uj)

)]

=
∑
i,j

(λiγj)

[
χ̂

(∨
k

εA(xi ∧ yk) ∧ εB(uj)

)
+ χ̂

(
εA(xi−1

∨
k

yk) ∧ εB(uj)

)]

+
∑
k,j

(δkγj)

[
χ̂

(∨
i

εA(xi ∧ yk) ∧ εB(uj)

)
+ χ̂

(
εA(yk−1

∨
i

xi) ∧ εB(uj)

)]
(∗)

=
∑
i,j

(λiγj)χ̂(εA(xi) ∧ εB(uj)) +
∑
k,j

(δkγj)χ̂(εA(yk) ∧ εB(uj))

= ψ(f1, g) + ψ(f2, g).

(∗) is justified because yk ⊥ yk′ for all k �= k′ and xi ⊥ xi′ for all i �= i′. Symmetri-
cally, ψ(f, g1 + g2) = ψ(f, g1) + ψ(f, g2) for f ∈ C(A) and g1, g2 ∈ C(B). It follows
from the definition of ψ that ψ(λf, g) = ψ(f, λg) = λψ(f, g) for every λ ∈ R.

Claim 2. ψ is a Riesz bimorphism.

Assume f1 ∧ f2 = 0 and g ∈ C(B)+. Using the same representations for f1, f2,
and g as above, it follows that xi ⊥ yk for all i and k. Then since the maps χ̂ and
εA are Boolean homomorphisms and {xi}ni=1, {yk}

p
k=1 are each pairwise disjoint,

ψ(f1, g)∧ψ(f2, g)=ψ

⎛
⎝∑

i

λiχA(xi),
∑
j

γjχB(uj)

⎞
⎠∧ ψ

⎛
⎝∑

k

δkχA(yk),
∑
j

γjχB(uj)

⎞
⎠

=

⎛
⎝∑

i,j

(λiγj)χ̂(εA(xi)∧εB(uj))

⎞
⎠∧

⎛
⎝∑

k,j

(δkγj)χ̂(εA(yk)∧εB(uj))

⎞
⎠

= 0.
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Likewise if f ∈ C(A)+ and g1 ∧ g2 = 0 in C(B), then ψ(f, g1) ∧ ψ(f, g2) = 0. By
Theorem 19.1 of [11], ψ is a Riesz bimorphism.

It follows from the universal property of the Fremlin tensor product that there is
a unique Riesz homomorphism T : C(A)⊗̄C(B) → C(A⊗ B) such that ψ = T ◦ ⊗.

C(A)× C(B)

ψ

��

⊗ �� C(A)⊗̄C(B)

T��
C(A⊗ B)

Claim 3. T is a Riesz isomorphism.

Step 1 (T is onto). . Let h ∈ C(A⊗B). Then h =
∑n

i=1 λiχ̂(ei) for some pairwise
disjoint ei ∈ A ⊗ B, n ∈ N, and nonzero λi ∈ R. Fix i ∈ {1, · · · , n}. By Theorem
1.3(iii), there exists a finite disjoint subset {εA(ak) ∧ εB(bk)}mk=1 (m ∈ N) of A⊗B
such that

ei =
m∨

k=1

εA(ak) ∧ εB(bk).

Then it follows from the definition of ψ that

χ̂(ei) = χ̂

(
m∨

k=1

εA(ak) ∧ εB(bk)

)

=
m∨

k=1

χ̂(εA(ak) ∧ εB(bk))

=
m∨

k=1

ψ(χA(ak), χB(bk))

=
m∨

k=1

T ◦ ⊗(χA(ak), χB(bk)).

Since T preserves finite suprema, χ̂(ei) is in the image of T for every i. It follows
from the linearity of T that h is in the image of T .

Step 2 (T is one-to-one). Suppose f ∈ C(A)⊗ C(B), the algebraic tensor product
of C(A) and C(B), such that f is nonzero. Then for some n ∈ N, nonzero λk ∈ R,
and nontrivial xk ∈ A, uk ∈ B such that

f =
n∑

k=1

λkχA(xk)⊗ χB(uk).
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Since εA, εB , and χ̂ are injective Boolean isomorphisms,

T (f) = T

(
n∑

k=1

λkχA(xk)⊗ χB(uk)

)

=

n∑
k=1

λkψ (χA(xk), χB(uk))

=

n∑
k=1

λkχ̂(εA(xk) ∧ εB(uj))

�= 0.

Let g be a nonzero element of the Riesz space tensor product of C(A) and C(B), i.e.
g ∈ C(A)⊗̄C(B). By Theorem 2.2 of [2], for all δ > 0 there exists f ∈ C(A)+⊗C(B)+
such that 0 ≤ |g|−f ≤ δχ̂(1A⊗B). Since C(A)⊗̄C(B) is Archimedean, choose δ > 0
such that |g| ∧ δχ̂(1A⊗B) �= |g|. Then f is nonzero. We have shown that T (f) �= 0
when 0 �= f ∈ C(A)⊗ C(B). Since T is a Riesz homomorphism, 0 < T (f) ≤ |T (g)|.
Therefore, T (g) �= 0, and T is a Riesz isomorphism. Consequently, C(A)⊗̄C(B) is
Riesz isomorphic to C(A⊗ B).

�

3. Applications

In this section, we use Theorem 2.1 to provide a solution for Fremlin’s problem
315Y(f) in [6]. The statement leads to an observation on Dedekind completeness
in the Fremlin tensor product of place functions and a statement on bands in the
Fremlin tensor product of infinite dimensional Archimedean Riesz spaces.

Problem 3.1 (Fremlin, 315Y(f) of [6]). Let A and B be Boolean algebras. A⊗B is
complete if and only if either A = {0} or B = {0} or A is finite and B is complete
or B is finite and A is complete.

Proof. If A = {0} or B = {0}, the result is trivial. Assume A and B are nontrivial
Boolean algebras.

SupposeA⊗B is complete. It follows from Theorems 2.1 and 1.13 that C(A⊗B) ∼=
C(A)⊗̄C(B) is Dedekind complete. By Proposition 3.6 of [8], C(A) and C(B) are
Dedekind complete. From Theorem 1.13, A and B are complete. It remains to show
that one of the Boolean algebras is finite. However, the Dedekind completeness of
C(A)⊗̄C(B) implies that C(A) ∼= c00(I) for a set I ⊆ C(A) or C(B) ∼= c00(J) for a
set J ⊆ C(B) (see Theorem 1.6). Since each Carathéodory space of place functions
contains a unit, C(A) or C(B) is finite dimensional. Thus, A is finite or B is finite.

The sufficiency is proven analogously via Theorem 1.6. �

Corollary 3.2. Let A and B be nontrivial Boolean algebras. C(A)⊗̄C(B) is
Dedekind complete if and only if one of A or B is finite and the other is com-
plete.

Recall that for an Archimedean Riesz space E, its collection of bands, denoted
B(E), forms a complete Boolean algebra. Our last application shows that for
Archimedean Riesz spaces E and F , the set of bands in E⊗̄F is rarely Boolean
isomorphic to B(E)⊗B(F ). That is, if E and F are infinite dimensional, not every
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band B of E⊗̄F can be “decomposed” into the Fremlin tensor product of a band
in E and a band in F .

Corollary 3.3. Let E and F be infinite dimensional Archimedean Riesz spaces.
Then B(E)⊗ B(F ) is not Boolean isomorphic to B(E⊗̄F ).

Proof. By Lemma 1.9, neither B(E) nor B(F ) is finite. Then B(E)⊗ B(F ) is not
complete by Problem 3.1. However, Theorem 1.7 states that the Boolean algebra
of bands is complete for any Archimedean Riesz space, so B(E⊗̄F ) is complete. �
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