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CHARACTERIZATION OF POSITIVE DEFINITE, RADIAL

FUNCTIONS ON FREE GROUPS
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(Communicated by Adrian Ioana)

Abstract. This article studies the properties of positive definite, radial func-
tions on free groups following the work of Haagerup and Knudby [Proc. Amer.
Math. Soc. 143 (2015), pp. 1477–1489]. We obtain characterizations of ra-
dial functions with respect to the �2 length on the free groups with infinite
generators and the characterization of the positive definite, radial functions
with respect to the �p length on the free real line with infinite generators for

0 < p ≤ 2. We obtain a Lévy-Khintchine formula for length-radial condition-
ally negative functions as well.

1. Introduction

Let G be a group. A function ϕ : G → C is called positive definite if the
associated Toeplitz-type matrix

[ϕ(x−1
i xj)]1≤i,j≤n

is positive definite for any n ∈ N and any (xi)
n
i=1 ∈ G, i.e.

n∑
i,j=1

c̄icjϕ(x
−1
i xj) ≥ 0

for any complex numbers (ci)
n
i=1. The classical Bochner-Herglotz theorem ([2,

5.5.2]) says that a function on the integer group is positive definite if and only if it
is the Fourier transform of a finite nonnegative Borel measure on the torus.

There is a similar concept of positive definiteness on semigroups. Let G+ be a
semigroup. A function ϕ̇ : G+ → C is called positive definite in the semigroup sense
if the associated Hankel-type matrix

[ϕ̇(xixj)]1≤i,j≤n

is positive definite for any n ∈ N and any n elements xi ∈ G+. This is equivalent
to saying that

∑n
i,j=1 c̄icjϕ̇(xixj) ≥ 0 for any complex numbers ci, 1 ≤ i ≤ n. The

Hamburger theorem ([12, Chapter 1, Theorem 7.1]) says that a bounded function
ϕ̇ is positive definite on the semigroup Z+ = N∪{0} if and only if ϕ̇ is the moment
of a nonnegative Borel measure μ on [−1, 1], i.e. there exists μ such that

(1.1) ϕ̇(k) =

∫ 1

−1

tkdμ(t),

Received by the editors March 24, 2022, and, in revised form, February 7, 2023, February 20,
2023, and February 28, 2023.

2020 Mathematics Subject Classification. Primary 20E05, 43A35.
The authors were partially supported by the NSF Grant DMS 1700171.

c©2023 by the author(s) under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 License (CC BY NC ND 4.0)

168

https://www.ams.org/bproc/
https://www.ams.org/bproc/
https://doi.org/10.1090/bproc/158


RADIAL FUNCTIONS ON FREE GROUPS 169

for k ∈ Z+. Note that the support of μ is a subset of [−1, 1] as ϕ̇ is bounded.
Given any bounded positive definite function ϕ̇ on Z+, the formula ϕ(k) = ϕ̇(|k|)
defines a symmetric positive definite function on Z. This can be seen by (1.1) and
the well-known fact that k �→ t|k| is positive definite on Z for any −1 ≤ t ≤ 1.
However, not every symmetric positive definite function ϕ on Z is of the form of
ϕ(k) = ϕ̇(|k|). In fact, Haagerup and Knudby proved in [9, Theorem 3.3] that
there is a one to one correspondence between the class of bounded positive definite
functions on Z+ and the class of radial positive definite functions on the infinite
free product of Z. The notion of radial (or spherical) functions is first introduced
and studied in [11]. We restate Haagerup’s result as follows.

Theorem 1.1 (Haagerup-Knudby [9, Theorem 3.3]). Let F∞ be the free group
of countable many infinite generators. Let ‖g‖1 be the reduced word length of an
element g ∈ F∞. Given a bounded function ϕ̇ on Z+, the following are equivalent.

(1) The function ϕ(g) = ϕ̇(‖g‖1) is positive definite on F∞.
(2) There is a finite positive Borel measure μ on [−1, 1] such that

ϕ̇(n) =

∫ 1

−1

sn dμ(s), n ∈ N.

Together with the Hamberger theorem (1.1), Haagerup-Knudby’s theorem gives
a one to one correspondence between the class of bounded positive definite functions
on Z+ and the class of radial positive definite functions on the infinite free product
of Z, though the article does not provide a direct proof of this correspondence.

In this article, we give a direct argument for this correspondence. Our argument
works for more general settings (see Lemma 3.2) including the �p-length radial
functions on the infinitely generated free real line for all 0 < p ≤ 2. The p = 2 case
can be viewed as a free analogue of the classical Schoenberg-Bochner theorem (see
e.g. [14, Theorem 13.14]) which says that a function f is conditionally negative
definite on [0,∞) in the semigroup sense if and only if the function ξ �→ f(‖ξ‖2),
ξ ∈ Rd, is conditionally negative definite for all d ∈ N.

Definition 1.2. Fix a set of generators {gi, i ∈ N} of the free group F∞. Let

0 < p ≤ 2. For a reduced word g = gk1
i1
gk2
i2

. . . gkn
in

∈ F∞, define the �p length of g,
denoted by ‖g‖p as:

‖g‖p =

⎛⎝ n∑
j=1

|kj |p
⎞⎠ 1

p

.

The maps g �→ ‖g‖pp are still conditionally negative definite (see Definition 2.3)

on the free group (see Proposition 4.8). We say a function ϕ on F∞ is ‖ · ‖p-radial
if the value of ϕ(g) only depends on ‖g‖p. Our first main result is stated as follows.

Theorem 1.3. Suppose ϕ is a ‖ · ‖2-radial function on F∞ with ϕ(e) = 1, where e
is the identity of F∞. The following are equivalent.

(1) ϕ(g) defines a positive definite function on F∞.
(2) There is a probability measure μ on [−1, 1] such that

ϕ(g) =

∫ 1

−1

s‖g‖
2
2 dμ(s).

Moreover, if (2) holds, then μ is uniquely determined by ϕ.
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Theorem 1.4. Suppose ψ : F∞ → C is an ‖ · ‖2-radial function with ψ(e) = 0,
where e is the identity of F∞. Then, the following are equivalent:

(1) ψ is conditionally negative definite on F∞.
(2) There is a probability measure ν on [−1, 1] such that

ψ(g) =

∫ 1

−1

1− s‖g‖
2
2

1− s
dν(s).

Moreover, if (2) holds, then ν is uniquely determined by ψ.

We obtain characterizations for ‖ · ‖p-radial, positive definite and ‖ · ‖p-radial
conditionally negative definite functions on the infinite free product of the group
of real numbers as well. See Corollary 4.12 and Corollary 4.13. Similar results for
the commutative case is also generalized in Corollary 4.14.

Positive definite functions are closely connected to completely positive maps of
the Fourier multiplier type. Let G be a group and ϕ : G → C a bounded function.
Let λs be the left regular representation of s ∈ G. Consider the associated multiplier
Mϕ on Span[λ(G)] defined as:

(1.2) Mϕ

(∑
csλs

)
=

∑
ϕ(s)csλs.

Then Mϕ extends to a completely positive map on C∗
r (G) if and only if ϕ is positive

definite. In this case, Mϕ is also completely bounded on C∗
r (G) with norm ϕ(e).

Following Haagerup’s pioneer work ([8]), the completely positivity and the com-
pletely boundedness of the map Mϕ, with ϕ being a radial function with respect
to the �1-length, are fully characterized ([9, 10]). For more information about the
study of positive definite functions on free groups, the reader can refer to [5] and [4].
These works significantly improve the understanding of the approximation proper-
ties of the free groups and the associated noncommutative Lp-spaces. Nevertheless,
our understanding is still incomplete. For instance, the existence of a Schauder ba-
sis for the reduced free group C∗ algebra is still a mystery. Bożejko and Fendler’s
work in [6] implies that the sequence of {lg : g ∈ Fn}, enumerated in an order
compatible with the word length, is not a Schauder basis of the non-commutative
Lp spaces associated with the von Neumann algebra of the rank n free group Fn if
p > 3 or 1 ≤ p < 3

2 and n ≥ 2. A better understanding of positive definite functions
beyond ‖ · ‖1-radial type would help. The main results of this article (Theorems
1.3 and 1.4) complement Haagerup and Knudby’s work ([9]) and provide charac-
terizations of the complete positivity of the corresponding multipliers Mϕ defined
as in (1.2) with ϕ being ‖ · ‖2-radial. The classical ‖ · ‖2-radial Fourier multipliers
are those associated with the Laplacian operators. We hope the results obtained
in this article will shed light on determining an appropriate Laplace-type operator
on the free group C∗-algebras.

2. Preliminaries

First, we recall the general definition of a positive definite function and a condi-
tionally negative definite function.

Definition 2.1. Let G be a group. A function ϕ : G → C is Hermitian if ϕ(g−1) =

ϕ(g) for all g ∈ G.
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Definition 2.2. Let G be a group. A function ϕ : G → C is positive definite if for
each n ∈ N, {x1, . . . , xn} ⊆ G and {c1, . . . , cn} ⊆ C,

n∑
j,k=1

cj ck ϕ(x−1
j xk) ≥ 0.

Definition 2.3. Let G be a group. A function ψ : G → C is conditionally negative
definite if

(1) ψ is Hermitian.
(2) For each n ∈ N, {x1, . . . , xn} ⊆ G and {c1, . . . , cn} ⊆ C satisfying

n∑
j=1

cj = 0, we have that
n∑

j,k=1

cj ck ϕ(x−1
j xk) ≤ 0.

Lemma 2.4 (Bochner’s theorem, see [13, page 19]). Let G be a locally compact,
abelian group and let φ : G → C be a continuous function. Then, φ is positive
definite on G if and only if there exists a nonnegative, finite Radon measure μ on
the dual group Γ of G such that

φ(x) =

∫
Γ

γ(x) dμ(γ) (x ∈ G),

where γ is the character function on G.

Now, we recall Schoenberg’s theorem which characterizes the conditionally neg-
ative definite functions on G, see [1].

Lemma 2.5 (Schoenberg). Let G be a group. Let ψ : G → C be a Hermitian
function. Then, the following are equivalent.

(1) ψ is conditionally negative definite on G.
(2) For each t > 0, the function ϕt : G → C defined by ϕt(g) := e−tψ(g) is

positive definite.

Besides Schoenberg’s theorem, there is also another classical result which relates
a conditionally negative definite kernel with a function on a Hilbert space. However,
this requires some additional assumption that the kernel is real valued and is zero
on the diagonal.

Lemma 2.6. Let G be a group. Let ψ : G → R be a real-valued function where
ψ(e) = 0. Then, the following are equivalent.

(1) ψ is conditionally negative definite on G.
(2) There exist a Hilbert space H and a function f : G → H such that ψ(x−1y)

= ‖f(y)− f(x)‖2 for all x, y ∈ G.

Definition 2.7. Let G be a group and θ : G → R+ be a function. A function
ϕ : G → C is said to be radial with respect to θ if there exists ϕ̇ : ran(θ) → R+

such that for all g ∈ G, ϕ(g) = ϕ̇[θ(g)].

Apart from the case for groups, there is also an analogous definition of positive
definite functions in the setting of an abelian semigroup. However, care must be
taken since in general a semigroup does not have an inverse. As a remark, one can
prove the theory for a general involution semigroup. However, for our purpose, we
always assume the involution operator to be the identity operator.
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Definition 2.8. Let S be an abelian semigroup. A function ϕ : S → C is pos-
itive definite in the semigroup sense if for each n ∈ N, {s1, . . . , sn} ⊆ N and
{c1, . . . , cn} ⊆ C,

n∑
j,k=1

cj ck ϕ(sj + sk) ≥ 0.

Definition 2.9. Let S be an abelian semigroup. A function ψ : S → C is condi-
tionally negative definite in the semigroup sense if

(1) ψ is real-valued.
(2) For each n ∈ N, {s1, . . . , sn} ⊆ S and {c1, . . . , cn} ⊆ C satisfying

n∑
j=1

cj = 0, we have that

n∑
j,k=1

cj ck ϕ(sj + sk) ≤ 0.

Definition 2.10. A function ρ : S → R is called a semicharacter on the abelian
semigroup S if

(1) ρ(0) = 1.
(2) ρ(s+ t) = ρ(s)ρ(t) for s, t ∈ S.

Definition 2.11. Let S be an abelian semigroup. The set S∗ := {ρ : ρ is a
semicharacter} equipped with the topology of pointwise convergence is called the
dual semigroup of S.

It turns out that being equipped with the topology of pointwise convergence, S∗

becomes a completely regular space, in particular it is a Hausdorff space. Moreover,
it forms a topological semigroup, with the multiplication defined via pointwise
multiplication and the constant function 1 being the identity.

Definition 2.12. Let S be an abelian semigroup. The set Ŝ := {ρ ∈ S∗ : |ρ(s)| ≤ 1
for s ∈ S} is called the restricted dual semigroup.

By inheriting the subspace topology of S∗, Ŝ becomes a compact subsemigroup
of S∗, we need the following result.

Lemma 2.13 ([1, Theorem 4.2.8, page 96]). Let S be an abelian semigroup. A
function ϕ : S → C is positive definite and bounded on S if and only if

ϕ(s) =

∫
̂S

ρ(s) dμ(ρ) (s ∈ S),

where μ is a Radon measure on Ŝ. Moreover, if we assume that ϕ(e) = 1, then μ
is a probability measure.

Remark 2.14. Note that there is a slight difference between the formulation of the
results for case of groups and semigroups.

3. Key lemma

Definition 3.1. Let G be a group and θ : G → R+ be a function on G such that
the range of θ, ran(θ), is a semigroup. Then, θ is said to be a partial morphism on
G if it satisfies the following property:

Given N ∈ N, M ∈ N and s1, · · · , sM ∈ ran(θ), there exist elements {gn,sk ∈
G : 1 ≤ n ≤ N and 1 ≤ k ≤ M} such that θ(g−1

n,sjgm,sk) = sk + sj for n �= m.
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Lemma 3.2. Let θ : G → R+ be a partial morphism. Let ϕ : G → R be a
positive definite, radial function with respect to θ. Then, the corresponding function
ϕ̇ : ran(θ) → R satisfying ϕ̇[θ(g)] = ϕ(g) is positive definite in the semigroup sense
and is bounded.

Proof. Fix N ∈ N, K ∈ N. Consider {s1, · · · , sK} ⊆ ran(θ), {c1, · · · , cK} ⊆ C.
Next, we set d1,1 = d2,1 = · · · = dN,1 :≡ c1, d1,2 = d2,2 = · · · = dN,2 :≡ c2,

· · · , d1,K = d2,K = · · · = dN,K :≡ cK .
Since θ is a partial morphism on G, there exist elements {gn,sk ∈ G : 1 ≤ n ≤

N and 1 ≤ k ≤ K} such that θ(g−1
n,sjgm,sk) = sk + sj for n �= m.

Since ϕ is positive definite on G,
∑N

n,m=1

∑K
k,j=1 dm,kdn,jϕ(g

−1
n,sjgm,sk) ≥ 0.

Next, we perform some calculation.
For each 1 ≤ n,m ≤ N , we have that

K∑
j,k=1

dm,kdn,jϕ(g
−1
n,sjgm,sk) =

K∑
j,k=1

dm,kdn,jϕ̇[θ(g
−1
n,sjgm,sk)].

If m �= n, then

K∑
j,k=1

dm,kdn,jϕ(g
−1
n,sjgm,sk)=

K∑
j,k=1

dm,kdn,jϕ̇[θ(g
−1
n,sjgm,sk)]=

K∑
j,k=1

dm,kdn,jϕ̇(sj+sk).

Taking the sum of m, n from 1 to N , we obtain

N∑
m,n=1

K∑
j,k=1

dm,kdn,jϕ(g
−1
n,sjgm,sk)

=

N∑
n=1

K∑
j,k=1

dn,kdn,jϕ(g
−1
n,sjgm,sk) +

∑
1≤m �=n≤N

K∑
k,j=1

dm,kdn,jϕ̇(sj + sk).

Using the relationship between dn,k and ck, we have

0 ≤
N∑

m,n=1

K∑
j,k=1

dm,kdn,jϕ(g
−1
n,sjgm,sk) =

N∑
m,n=1

K∑
j,k=1

ckcjϕ(g
−1
n,sjgm,sk)

=
N∑

n=1

K∑
j,k=1

ckcjϕ(g
−1
n,sj

gn,sk) + (N2 −N)
M∑

k,j=1

ckcjϕ̇(sj + sk)

≤
N∑

n=1

K∑
j,k=1

|ck||cj ||ϕ(g−1
n,sjgn,sk)|+ (N2 −N)

M∑
k,j=1

ckcjϕ̇(sj + sk)

≤
N∑

n=1

K∑
j,k=1

|ck||cj |ϕ(0) + (N2 −N)
M∑

k,j=1

ckcjϕ̇(sj + sk)

= N
K∑

j,k=1

|ck||cj |ϕ(0) +N(N − 1)
M∑

k,j=1

ckcjϕ̇(sj + sk).
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Thus,

− 1

N − 1

⎡⎣ K∑
j,k=1

|ck||cj |ϕ(0)

⎤⎦ ≤
M∑

k,j=1

ckcjϕ̇(sj + sk).

Since the above inequality holds true for all N ∈ N, we have
∑M

k,j=1 ckcjϕ̇(sj +

sk) ≥ 0. Since the above inequality holds true for any {s1, · · · , sK} ⊆ G and any
{c1, · · · , cK} ⊆ C, ϕ̇ is positive definite in the semigroup sense on S. Finally, ϕ̇ is
bounded because ϕ is bounded. �

Remark 3.3. It turns out that Lemma 3.2 still holds true under a slightly weaker
assumption. We will state the theorem and leave the proof to the readers.

Lemma 3.4. Given a group G, suppose the function θ : G → R+ satisfies that for
any subset U = {s1, · · · , sK} of ran(θ), there exists a sequence

VN = {gn,sk ∈ G : 1 ≤ n ≤ N, 1 ≤ k ≤ K}, N ∈ N

such that

lim
N→∞

#{(m,n) ∈ N2 : 1 ≤ m,n ≤ N, θ(g−1
m,jgn,k) = sj + sk, ∀1 ≤ j, k ≤ K}

N2
= 1.

Then, for each positive definite function ϕ : G → R which is radial with respect
to θ, the corresponding function ϕ̇ : ran(θ) → R satisfying ϕ̇[θ(g)] = ϕ(g) is positive
definite in the semigroup sense.

Corollary 3.5. Let θ : G → C be a function. Let ψ : G → R be a conditionally
negative definite, radial function with respect to θ. Suppose that θ is a partial
morphism on G. Then, the corresponding function ψ̇ : ran(θ) → R satisfying

ψ̇[θ(g)] = ψ(g) is conditionally negative definite in the semigroup sense and bounded
below.

Proof. Since ψ is a conditionally negative definite function on the group G, by
Schoenberg’s theorem, for all t > 0, the function ϕt : G → C defined by ϕt(g) :=
e−tψ(g) is positive definite on G. By Lemma 3.2, the function ϕ̇t : ran(θ) → R de-

fined by ϕ̇t[θ(g)] := e−tψ̇[θ(g)] is positive definite on ran(θ). Again, by Schoenberg’s

theorem, the function ψ̇ is conditionally negative definite in the semigroup sense
on ran(θ). Finally, ψ̇ is bounded below because ψ is bounded below. �

Theorem 3.6. Let G be a group and θ : G → R+ be a partial morphism on G. Let
ϕ : G → R be a radial function with respect to θ where ϕ(e) = 1, If ϕ is positive

definite on G, then there exists a unique probability measure μ on r̂an(θ) such that

ϕ(g) = ϕ̇[θ(g)] =

∫
̂S

ρ[θ(g)] dμ(ρ).

Proof. Since ϕ is positive definite on G, ϕ̇ is positive definite in the semigroup sense
on ran(θ) by Lemma 3.2. Then, by Lemma 2.13, there exists a unique probability

measure μ on Ŝ such that

ϕ(g) = ϕ̇[θ(g)] =

∫
̂S

ρ[θ(g)] dμ(ρ).

�
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4. Proof of main theorems

4.1. Case of �2 length for F∞. We consider the case where the group G = F∞,
the free group with infinite generators, and the function θ = ‖·‖22 is the �2 length
of an element in F∞.

In this case, ran(θ) = N and hence, r̂an(θ) ∼= [−1, 1]. More precisely, given

ρ ∈ N̂, there exists a unique x ∈ [−1, 1] such that ρ(n) = xn. First, we show that
the �2 length function is indeed a partial morphism on F∞.

Proposition 4.1. The function ‖ · ‖22 : F∞ → N is a partial morphism on F∞.

Proof. We label the infinite generators of F∞ as the entries of the following infinite
matrix ⎛⎜⎜⎜⎜⎝

g1,1 · · · g1,n · · ·
...

. . .
... · · ·

gn,1 · · · gn,n · · ·
...

...
. . .

⎞⎟⎟⎟⎟⎠ .

For each n ∈ N, define qn : N+ → F∞ by

qn(j) := gn,jgn,j−1 · · · gn,1.

Then, for each m, n, j, k ∈ N, there is

‖[qn(j)]−1qm(k)‖22 =

{
0, if m = n and k = j,

j + k, otherwise.

Hence, the proposition is proved. �

Proposition 4.2. Let Fr be a free group with generators g1, g2, · · · , gr, where r ∈
N ∪ {∞}.

(1) Let s ∈ [0, 1]. Then, the function ψ : Fr → R defined by ψ(g) := s‖g‖
2
2 is

positive definite on Fr, i.e. the function ϕ : Fr → R defined by ϕ(g) := ‖g‖22
is conditionally negative definite on Fr.

(2) The function ϕ : Fr → R defined by ϕ(g) := (−1)‖g‖
2
2 is positive definite on

Fr.

Moreover, g → s‖g‖
2
2 , s ∈ [−1, 1], is a positive definite function on Fr.

Proof. (1) follows from Proposition 4.8. (2) can be directly verified by definition.
Since a product of two positive definite functions is also positive definite, we con-

clude that for −1 ≤ s ≤ 1, the function g → s‖g‖
2
2 is positive definite on Fr. �

Corollary 4.3. Given ϕ : F∞ → R a radial function where ϕ(e) = 1, the following
are equivalent.

(1) ϕ is positive definite on F∞.
(2) There is a probability measure μ on [−1, 1] such that

ϕ(g) = ϕ̇(‖g‖22) =
∫ 1

−1

s‖g‖
2
2 dμ(s).

Moreover, if (2) holds, then μ is uniquely determined by ϕ.



176 CHIAN YEONG CHUAH, ZHENCHUAN LIU, AND TAO MEI

Proof. (1) =⇒ (2) follows from Theorem 3.6. To prove (2) =⇒ (1), let μ be a

probability measure on [−1, 1]. For each s ∈ [−1, 1], the function ψs(g) := s‖g‖
2
2

is positive definite on F∞ by Proposition 4.2. Taking finite sums and limits, we

deduce that the function ϕ : F∞ → R defined by ϕ(g) :=
∫ 1

−1
s‖g‖

2
2 dμ(s) is positive

definite. �

Theorem 4.4. Let ψ : F∞ → C be an �2-radial function where ψ(e) = 0. Then,
the following are equivalent:

(1) ψ is conditionally negative definite on F∞.
(2) There is a probability measure ν on [−1, 1] such that

ψ(g) =

∫ 1

−1

1− s‖g‖
2
2

1− s
dν(s).

Moreover, if (2) holds, then ν is uniquely determined by ψ.

Proof. ((1) =⇒ (2)) By Schoenberg’s theorem, since ψ is conditionally negative
definite and ψ(e) = 0, the function ϕt : F∞ → C defined by ϕt(g) := e−tψ(g) is
positive definite for each t > 0. Also, ϕt(g) = 1. By Corollary 4.3, there exists a
unique probability measure μt on [−1, 1] such that

e−tψ(g) = ϕt(g) =

∫ 1

−1

s‖g‖
2
2 dμt(s).

Now, let t > 0 and define a new measure on the Borel σ-algebra of [−1, 1], νt by

νt(E) :=
∫ 1

−1
χE(s)

1−s
t dμt(s). Note that

1− e−tψ(g)

t
=

∫
[−1,1)

1− s‖g‖
2
2

t
dμt(s) +

∫
{1}

1− s‖g‖
2
2

t
dμt(s)

=

∫
[−1,1)

1− s‖g‖
2
2

t
dμt(s) (since

1− s‖g‖
2
2

t
= 0 at x = 1)

=

∫
[−1,1)

1− s‖g‖
2
2

1− s

1− s

t
dμt(s) =

∫
[−1,1)

1− s‖g‖
2
2

1− s
dνt(s)

=

∫
[−1,1)

1− s‖g‖
2
2

1− s
dνt(s) +

∫
{1}

1− s‖g‖
2
2

1− s
dνt(s) (since νt({1}) = 0)

=

∫
[−1,1]

1− s‖g‖
2
2

1− s
dνt(s).

Applying the identity for h ∈ F∞ where ‖h‖22 = 1, we obtain:

νt([−1, 1]) =
1− e−tψ(h)

t
.

Taking the supremum over all t > 0,

sup
t>0

‖νt‖var = sup
t>0

1− e−tψ(h)

t
= ψ(h).

So, the set {νt : t > 0} is uniformly bounded in the space of Radon measures on

[−1, 1]. Note that for each g ∈ F∞, 1−e−tψ(g)

t → ψ(g) as t → 0. Next, we focus on
the terms νt.
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Consider Λ = {t ∈ R : 0 < t ≤ 1} as a directed set with partial order, ≤̇ defined
as follows: s≤̇t means that s > t. So, νt is a net in M+([−1, 1]), the space of
positive Radon measure on [−1, 1].

Since (νt)t∈Λ is a bounded set in M([−1, 1]), the space of Radon measures on
[−1, 1], by the Banach-Alaoglu theorem, there exists a subnet (νtα)α∈E and ν ∈
M([−1, 1]) such that νtα → ν in the weak-* topology of M([−1, 1]).∫ 1

−1

1− s‖g‖
2
2

1− s
dν(s) = lim

α

∫ 1

−1

1− s‖g‖
2
2

1− s
dνtα(s)

= lim
α

1− e−tαψ(g)

tα
= lim

t→0

1− e−tψ(g)

t
= ψ(g)

The equality lim
α

1− e−tαψ(g)

tα
= lim

t→0

1− e−tψ(g)

t
holds true due to the following:

• tα≤̇tβ whenever α < β (in E).

• For each r ∈ Λ, there exits α ∈ E such that r≤̇tα.

For the direction (2) =⇒ (1), let ν be a probability measure on [−1, 1]. Note

that for each s ∈ [−1, 1], the function g �→ 1−s‖g‖
2
2

1−s is conditionally negative definite.

Taking finite sums and limits, we deduce that g �→
∫ 1

−1
1−s‖g‖

2
2

1−s dν(s) is conditionally
negative definite. �

4.2. Case of �p length of the free real line with infinite generators for
0 < p ≤ 2. Now, we focus on the case where the group G is the free real line R∞
which is defined as R∞ := ∗∞i=1R where ∗ denotes the free product of group and
the function θ = ‖·‖pp is the �p length of an element in R∞ for p ∈ (1, 2].

In this case, ran(θ) = R+ and hence, r̂an(θ) ∼= [0,∞]. More precisely, given

ψ ∈ R̂+, either there exists a unique a ∈ [0,∞) such that ψ(s) := ρa(s) = e−as or
ψ(s) = ρ∞(s) := χ{0}(s). We have the following characterization of the positive
definite functions and the conditionally negative definite functions on R+, as given
in [1, Proposition 4.4.2, 4.4.3].

Lemma 4.5. A function ϕ : R+ → R is positive definite and bounded if and only
if it has the form

ϕ(s) =

∫ ∞

0

e−asdμ(a) + bχ{0}(s), s ≥ 0,

where μ ∈ M b
+(R+) is a bounded positive Radon measure and b ≥ 0. The pair (μ, b)

is uniquely determined by ϕ.

Lemma 4.6. Let ψ : R+ → R be a function. Then, ψ is conditionally negative
definite and bounded below if and only if it has the form

ψ(s) = ψ(0) + cs+ bχ(0,∞)(s) +

∫ ∞

0

(
1− e−as

)
dμ(a), s ≥ 0,

where b, c ≥ 0 and μ, a positive Radon measure on (0,∞) (possibly infinite), are
uniquely determined by ψ.

Next, we show that the �p length function is indeed a partial morphism on R∞.

Proposition 4.7. The function ‖ · ‖pp : R∞ → R+ is a partial morphism on R∞.
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Proof. Let M ∈ N, r1, · · · , rM ∈ S. First, we enumerate the generators as

{g1,1, g1,2, · · · , g2,1, g2,2, · · · , gM,1, gM,2, · · · }.

Now, let 1 ≤ j ≤ M . There exists λj ∈ R such that (λj)
p = rj . Then, define

qn : {r1, · · · , rM} → R∞ by qn(rj) := g
λj

j,n. We note the following observation: For
each n,m ∈ N and 1 ≤ j, k ≤ M ,

‖[qn(rj)]−1qm(rk)‖pp =

{
0 if m = n and rj = rk,

rj + rk otherwise.

�

Now, we provide a proof that for each t > 0, the function r �→ e−t‖r‖p
p is positive

definite on R∞.

Proposition 4.8 ([3], Corollary 1). Let Fq (resp. Rq) be the free group (resp. free
real line) with generators r1, r2, · · · , rq, where q ∈ N ∪ {∞}. Let 0 < p ≤ 2. Then,

for all t > 0, the function ϕ defined by ϕ(x) := e−t‖x‖p
p is positive definite on Fq

(resp. Rq).

Proof. First, let t > 0. Observe that the function φ : R → R defined by φ(s) :=
e−t|s|p is positive definite for each 0 < p ≤ 2. The p = 2 case is well known. The

p < 2 cases follow from the fact that e−|s|p is an average of e−t|s|2 in t. Since

Rq = ∗qi=1R (where ∗ denotes the free product of groups) and ϕ(r) = e−t‖r‖p
p =

e−t|rj1 |
p · · · e−t|rjn |p = (∗ni=1φ) (r), we deduce that ϕ is a positive definite function.

Here we use the fact that a free product of unital positive definite functions is
positive definite (see [3, Corollary 1]). �

Next, we can verify that the function ψ∞ : R∞ → R+ defined by ψ∞(r) :=
χ{e}(r) is positive definite. With all these, we obtain the following characterization.

Corollary 4.9. Let 0 < p ≤ 2. Given ϕ : R∞ → R an �p radial function, the
following are equivalent.

(1) ϕ is positive definite on R∞.
(2) There exist a bounded, positive, Radon measure μ on [0,∞) and b ≥ 0 such

that

ϕ(r) = ϕ̇(‖r‖pp) =
∫ ∞

0

e−t‖r‖p
p dμ(t) + bχ{e}(r).

Moreover, if (2) holds, then μ is uniquely determined by ϕ.

Proof. (1) =⇒ (2) follows from Theorem 3.6, Lemma 4.5 and Proposition 4.7. To
prove (2) =⇒ (1), let μ be a bounded, positive, Radon measure on [0,∞). By

Corollary 4.9, for each t ∈ [0,∞), the function ψt(r) := e−t‖r‖p
p is positive definite

on R∞. Also, the function defined by ψ∞(r) := χe(r) is positive definite on R∞.
Taking finite sums and limits, we deduce that the function ϕ : R∞ → R defined by:
ϕ(r) :=

∫∞
0

e−t‖r‖p
p dμ(t) + bχe(r) is positive definite on R∞. �

Corollary 4.10. Let 0 < p ≤ 2. Let ψ : R∞ → R be an �p-radial function. Then,
the following are equivalent:

(1) ψ is conditionally negative definite and bounded below on R∞.
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(2) There exist unique b, c ≥ 0 and a positive Radon measure ν on (0,∞)
(possibly infinite) such that

ψ(r) = ψ̇
(
‖r‖pp

)
= ψ(e) + c‖r‖pp + bχR∞\{e}(r) +

∫ ∞

0

1− e−t‖r‖p
p dν(t).

Proof. (1 =⇒ 2) By Proposition 4.7, the function ‖ · ‖pp : R∞ → R+ is a par-

tial morphism on R∞. By Corollary 3.5, the function ψ̇ : R+ → R defined by

ψ̇
(
‖r‖pp

)
:= ψ(r) is conditionally negative definite in the semigroup sense and

bounded below on R+. By Proposition 4.6, we obtain (2).
To prove (2 =⇒ 1), we note that the function ‖ · ‖pp : R∞ → R+ is conditionally

negative definite for all 0 < p ≤ 2 by Schoenberg’s theorem and 178 4.8. Also, since
the function χ{e} : R∞ → R+ is positive definite and χR∞\{e} = 1− χ{e}, χR∞\{e}
is conditionally negative definite on R∞. Finally, since e−t‖·‖p

p is positive definite
for all t > 0 by Proposition 4.7, 1− e−t‖·‖p

p is conditionally negative definite on R∞
for all t > 0. Taking finite sums and limits,

∫∞
0

1 − e−t‖·‖p
p dν(t) is conditionally

negative definite on R∞. �

4.3. Case of �p length of RN for 0 < p ≤ 2. Now, we focus on the case of the
group G = RN, the infinite direct product of countably many copies of R and the
function θ = ‖·‖pp is the �p length of an element in RN, where 0 < p ≤ 2. More

precisely, RN := {(an)∞n=1 : (an)
∞
n=1 has finite support}. The proof is essentially

similar to the case for the free real line with infinite generators. We will only state
the theorems whose proofs are similar to the previous case.

Proposition 4.11. The function ‖ · ‖pp : RN → R+ is a partial morphism RN.

Corollary 4.12. Let 0 < p ≤ 2. Given ϕ : RN → R an �p radial function, the
following are equivalent.

(1) ϕ is positive definite on RN.
(2) There exist a bounded, positive, Radon measure μ on [0,∞) and b ≥ 0 such

that

ϕ(r) = ϕ̇(‖r‖pp) =
∫ ∞

0

e−t‖r‖p
p dμ(t) + bχ{e}(r).

Moreover, if (2) holds, then μ is uniquely determined by ϕ.

Corollary 4.13. Let 0 < p ≤ 2. Let ψ : RN → R be an �p-radial function. Then,
the following are equivalent:

(1) ψ is conditionally negative definite and bounded below on RN.
(2) There exist unique b, c ≥ 0 and a positive Radon measure ν on [0,∞)

(possibly infinite) such that

ψ(r) = ψ̇
(
‖r‖pp

)
= ψ(0) + c‖r‖pp + bχRN\{0}(r) +

∫ ∞

0

(
1− e−t‖r‖p

p

)
dν(t).

With these results, we obtain the classical Schoenberg-Bochner theorem (see e.g.
[14, Theorem 13.14]) as a corollary.

Corollary 4.14. Let f : [0,∞) → [0,∞) be a function. Then, the following are
equivalent.

(1) There exists 0 < p ≤ 2 such that for all d ∈ N, the function ξ �→ f(|ξ|p),
ξ ∈ Rd is conditionally negative definite.
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(2) f is conditionally negative definite in the semigroup sense on [0,∞).

Proof. (1) =⇒ (2). If f ◦ ‖ · ‖pp : Rd → R is conditionally negative definite and

bounded below for all d ∈ N, then f ◦ ‖ · ‖pp : RN → [0,∞) is conditionally negative

definite and bounded below on RN because the sum in Definition 2.8 is a finite sum.
By Lemma 3.2 and Proposition 4.7, (2) is true.

(2) =⇒ (3) is Lemma 4.6. �
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[6] Marek Bożejko and Gero Fendler, A note on certain partial sum operators, Quantum proba-
bility, Banach Center Publ., vol. 73, Polish Acad. Sci. Inst. Math., Warsaw, 2006, pp. 117–125,
DOI 10.4064/bc73-0-7. MR2423120

[7] Jorge Buescu and A. C. Paixão, Complex variable positive definite functions, Complex Anal.
Oper. Theory 8 (2014), no. 4, 937–954, DOI 10.1007/s11785-013-0319-1. MR3178039

[8] Uffe Haagerup, An example of a nonnuclear C∗-algebra, which has the metric approximation
property, Invent. Math. 50 (1978/79), no. 3, 279–293, DOI 10.1007/BF01410082. MR520930
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[11] Alessandro Figà-Talamanca and Massimo A. Picardello, Spherical functions and harmonic
analysis on free groups, J. Functional Analysis 47 (1982), no. 3, 281–304, DOI 10.1016/0022-
1236(82)90108-2. MR665019

[12] Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Math-
ematics, Springer-Verlag, New York, 2003, DOI 10.1007/978-0-387-21681-2. MR1949210

[13] Walter Rudin, Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons,
Inc., New York, 1990. Reprint of the 1962 original; A Wiley-Interscience Publication, DOI
10.1002/9781118165621. MR1038803
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