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Abstract. Riesz space (non-pointwise) generalizations for iterative processes
are given for the concepts of recurrence, first recurrence and conditional er-
godicity. Riesz space conditional versions of the Poincaré Recurrence Theorem
and the Kac formula are developed. Under mild assumptions, it is shown that
every conditional expectation preserving process is conditionally ergodic with
respect to the conditional expectation generated by the Cesàro mean associated
with the iterates of the process. Applied to processes in L1(Ω,A, μ), where μ
is a probability measure, new conditional versions of the above theorems are
obtained.

1. Introduction

Riesz space generalizations of stochastic processes have been well studied, see
for example [10,17,18] for some of the earliest and recently [7]. In this setting ana-
logues of the Hopf-Garsia, Birkhoff and Wiener-Kakutani-Yoshida ergodic theorems
were given. More recently mixing processes were considered, see [14] and [8], which
revisited the concept of ergodicity in Riesz space, see [9]. The current work builds
on this foundation to consider, in the Riesz space setting, a Poincaré Recurrence
Theorem and Kac formula for the (conditional) mean of the recurrence time of a
conditionally ergodic process. We refer the reader to [6, pages 67-103] and [16, pages
33-48], for the measure theoretic (non-conditional) versions of these results. Fun-
damental to our considerations is the Riesz space analogue of the Lp spaces (in
particular L1), introduced in [11] and further studied in [2] and [14]. The measure
theoretic version of this spatial extension with respect to a conditional expectation
operator was considered in [3–5]. It is also shown, under mild assumptions, that
every conditional expectation preserving process is conditionally ergodic with re-
spect to the conditional expectation generated by the Cesàro mean associated with
the iterates of the process. When applied to processes in L1(Ω,A, μ), where μ is a
probability measure, new conditional versions of the above theorems are obtained.
In particular, the Riesz space version of the Kac formula yields a conditional Kac
formula for measure preserving system.
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The starting point of working with stochastic processes in a Riesz space is the
definition of conditional expectation operators on Riesz spaces. We use the defini-
tion of [10], which when restricted to a probability space with the preferred weak
order unit the a.e. constant 1 function yields the classical definition of a conditional
expectation.

Definition 1.1. Let E be a Riesz space with weak order unit. A positive order
continuous projection T : E → E, with range, R(T ), a Dedekind complete Riesz
subspace of E, is called a conditional expectation if Te is a weak order unit of E
for each weak order unit e of E.

We recall, see [16], that (Ω,A, μ, τ ) is called a measure preserving system if
(Ω,A, μ) is a probability space and τ : Ω → Ω is a mapping with μ

(
τ−1 (A)

)
=

μ (A) for each A ∈ A. A Riesz space generalization of the concept of a measure
preserving system was introduced in [8] as a conditional expectation preserving
system, see below.

Definition 1.2. The 4-tuple, (E, T, S, e), is called a conditional expectation pre-
serving system if E is a Dedekind complete Riesz space, e is a weak order unit for
E, T is a conditional expectation operator in E with Te = e and S is an order
continuous Riesz homomorphism on E with Se = e and TS = T .

By Freudenthal’s theorem the condition TSf = Tf for all f ∈ E in Definition
1.2 is equivalent to TSPe = TPe for all band projections P on E.

Let (E, T, S, e) be a conditional expectation preserving system. For f ∈ E and
n ∈ N we denote

(1.1) Snf :=
1

n

n−1∑
k=0

Skf.

We set

(1.2) LSf := lim
n→∞

Snf,

where the above limit is the order limit and f ∈ ES where ES is the set of f ∈ E
for which the above order limit exists. Thus LS : ES → E. The set of S-invariant
f ∈ E will be denoted IS := {f ∈ E | Sf = f}. By [9, Lemma 2.3], IS ⊂ ES and
LSf = f for all f ∈ IS . Further, it is easily seen that if f ∈ ES and LSf = f then
f ∈ IS , see [9, Theorem 2.4]. These ideas are further expanded in Section 2.

In a measure preserving system (Ω,A, μ, τ ), a set B ∈ A is said to be τ -invariant
if μ(τ−1(B)ΔB) = 0, i.e. χB = χτ−1(B) a.e. If we take Sf := f ◦ τ then χτ−1(B) =

SχB and, in the L1(Ω,A, μ) sense, τ invariance of B is equivalent to S invariance
of χB. The measure preserving system (Ω,A, μ, τ ) said to be ergodic, see [16, page
42], if every τ -invariant set has measure 0 or 1. This is equivalent to χB being
the zero or 1 constant function in the L1(Ω,A, μ) sense. This can be equivalently
stated as χB being a constant function in the L1(Ω,A, μ) sense, since the 0 and
the 1 functions are the only available possibilities in the a.e. sense. Taking T as
the expectation operator on L1(Ω,A, μ), with range the a.e. constant functions,
we have that (Ω,A, μ, τ ) is ergodic if and only if χB ∈ R(T ) for each S invariant
χB. This equates in the Riesz space sense to each S invariant component of the
weak order unit e being in R(T ). However, as S is a Riesz homomorphism, the S
invariant elements form a Riesz subspace generated by the S invariant components
of e. Applying Freudenthal’s Theorem and using that e is a weak order unit, we
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have that IS ⊂ R (T ) if and only of each S invariant component of e is in R(T ).
Thus we have Definition 1.3 of conditional ergodicity in a Riesz space, which is
equivalent to that given in [9], since LSf = f if and only if f ∈ IS .

Definition 1.3 (Ergodicity). The conditional expectation preserving system
(E, T, S, e) is said to be T -conditionally ergodic if IS ⊂ R (T ).

The notion of recurrence appears in ergodic theory, but only a measure preserving
system is required to define recurrence. In particular, see [16, Definition 3.1, page
34], for (Ω,A, μ, τ ) a measure preserving system and B ∈ A, a point x ∈ B is said
to be recurrent with respect to B if there is a k ∈ N for which τkx ∈ B. In this
setting, see [16, Theorem 3.2, page 34], the Poincaré Recurrence Theorem gives
that for each B ∈ A almost every point of B is recurrent with respect to B.

The concept of recurrence in a Riesz space will be given in terms of components
of a chosen weak order unit. A component p of q which is a component of e will
be said to be recurrent with respect to q if p can be decomposed into a countable
sequence of components, each one of which maps to a component of q under some
iterate of the map S. This is formally defined below.

Definition 1.4 (Recurrence). Let (E, T, S, e) be a conditional expectation pre-
serving system and p, q be components of e with p ≤ q. We say that p is recurrent

with respect to q if there are components pn, n ∈ N, of p so that
∨
n∈N

pn = p and

Snpn ≤ q for each n ∈ N.

To understand the connection with the classical measure theoretic definitions we
consider the simplest case, that of (Ω,A, μ) a probability space with a set B ∈ A
having μ(B) > 0. We take as the Riesz space E = L1(Ω, A, μ), e as the function on
Ω which takes the value 1 a.e. on Ω. If τ is a measure preserving transformation on
Ω we take Sf(x) = f(τ (x)) for each x ∈ Ω and f ∈ E. For A,B ∈ A with B ⊂ A
let p = χB and q = χA then we have that B is recurrent with respect to A if and
only if B can be decomposed into a countable union of measurable sets Bn so that
τn(Bn) ⊂ A, which is equivalent to

B ⊂
∞⋃
n=1

τ−n(A).

Here the Poincaré Recurrence Theorem gives that if x ∈ A ∈ A then τkx ∈ A for
some k ∈ N, and k is a time taken to recur. These ideas are taken to the Riesz
space setting in Section 3 where a Riesz space version of the Poincarè Recurrence
Theorem is presented in Theorem 3.2.

If x is recurrent with respect to A there will be multiple recurrence times, but
what is of interest to us is the first recurrence time. The time of first entry of x
into A is given by

nA(x) := inf{n ∈ N | τnx ∈ A},
for x ∈ A and for x /∈ A we set nA(x) = 0. The function nA is called the first
recurrence time with respect to A.

If we take

NA(n) =
n⋂

j=1

(A \ τ−j(A)) =
⋃

{B ∈ A |B ⊂ A, A ∩ τ j(B) = ∅ ∀j = 1, . . . , n},
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then NA(n) is the set of points of A not recurrent in the first n iterates. Thus for
x ∈ Ω, the first recurrence time of x with respect to A is

nA(x) =
∑

x∈NA(k−1)\NA(k)
k∈N

k,

where we have set NA(0) = A. The Kac Formula [16, Theorem 4.6, page 46] gives
that the spatial average over Ω of the first recurrence time with respect to A, with
μ(A) > 0, is 1, i.e.

∫
Ω
nA dμ = 1.

We now extend these concepts to the Riesz space setting. For S a bijective Riesz
homomorphism and p a component of e in E, we set

(1.3) Np(n) =
∨

{q | q a component of p in E, p ∧ Sjq = 0 for all j = 1, . . . n}
and

(1.4) Np(0) = p.

Here Np(n) is the maximal component of p to have no component recurrent with
respect to p in under (less than) n+ 1 iterates of S. Further Np(n− 1)−Np(n) is
the maximal component of p to be recurrent with respect to p in exactly n iterates
of S. We thus define first recurrence time as

np =

∞∑
k=1

k(Np(k − 1)−Np(k)).

Here np exists in E+
u , the positive cone of the universal completion of E, as Np(k−

1) − Np(k), k ∈ N, are disjoint components of e in E, see [15, page 363]. Having
given a form for np which exists in E+

u we can conveniently rewrite np as

(1.5) np =

∞∑
k=0

Np(k).

These concepts form the focus of Section 4 which culminates in Theorem 4.4, a
conditional Riesz space version of Kac’s Lemma which does not require the concept
of ergodicity. For conditionally ergodic processes Theorem 4.4 yields Corollary 4.5,
which is a conditional Riesz space analogue of the classical Kac Lemma.

We complete the work with an application of these results to probabilistic sys-
tems in Section 5. Of particular interest here is the extension of Kac’s Lemma to
conditionally ergodic processes.

2. Preliminaries

Background material on Riesz spaces can be found in [1]. We say that a positive
operator U on the Riesz space, E, is strictly positive if Uf = 0 for f ∈ E+ implies
f = 0. We denote by Cp(E) the set of components of p in E. We note that if
e is a weak order unit for E, then Ee, the ideal in E generated by e, has an f -
algebra structure in which e is the algebraic unit and for p, q ∈ Ce(E) we have that
p ∧ q = pq.

Lemma 2.1. Let (E, T, S, e) be a conditional expectation preserving system with T
strictly positive, then S is injective.

Proof. As S is a Riesz homomorphism S(|f |) = |Sf |. Thus if f ∈ E with Sf = 0,
then S(|f |) = |Sf | = 0. Hence T |f | = TS|f | = 0, but T is strictly positive so
|f | = 0 giving f = 0. �
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For (E, T, S, e) a conditional expectation preserving system, if S is bijective then
the map S−1 is a bijective lattice homomorphism which has S−1e = e and TS−1 =
T making

(
E, T, S−1, e

)
a conditional expectation preserving system. Further, if

Sa ∧ Sb = 0 then a ∧ b = 0 and Su is a component of Sx if and only if u is a
component of x. In particular, S and S−1 map components of e to components of
e.

Lemma 2.2. Let S be a bijective Riesz homomorphism, p be a component of e
and let a be a component of p. Then a has a unique decomposition a = b + c in
two disjoint components of a (and hence also of p and of e) with p ∧ Sb = Sb and
p ∧ Sc = 0.

Proof. Let b = a ∧ S−1p and c = a ∧ S−1(e − p). As S−1e = e, and p, e − p
are components of e, we have that S−1p and S−1(e − p) are components of e.
Thus b and c are components of a with b ∧ c = a ∧ S−1(p ∧ (e − p)) = 0. Here
b+c = a∧S−1(p+(e−p)) = a∧S−1e = a with Sc = Sa∧(e−p) making Sc ≤ e−p
so p∧Sc = 0 and S−1(p∧Sb) = S−1p∧a∧S−1p = a∧S−1p = b giving p∧Sb = Sb.

As for uniqueness, if a = b′ + c′ with b′ ∧ c′ = 0, where b′ and c′ are components
of a, with Sb ∧ Sc = 0, Sb′ ∧ Sc′ = 0, p ∧ Sb′ = Sb′ and p ∧ Sc′ = 0 then
Sb+ Sc = Sb′ + Sc′ and as

Sb = p ∧ (Sb+ Sc) = p ∧ (Sb′ + Sc′) = Sb′,

making b = b′ and thus c = c′. �

Note 2.3. If Sa ≤ a or a ≤ Sa for some component a, then a = Sa. To see this,
observe that T (a− Sa) = Ta− TSa = 0 but as a− Sa ≥ 0 or Sa− a ≥ 0 from the
strict positivity of T this gives Sa− a = 0.

The following result from [12, Corollary 2.3] is needed in the current work.

Lemma 2.4. If T is a strictly positive conditional expectation operator on a
Dedekind complete Riesz space with weak order unit e = Te, then for each g ∈ E+

we have that PTg ≥ Pg where PTg and Pg denote the band projections onto the
bands generated by Tg and g, respectively.

The Dedekind complete Riesz space E is said to be universally complete with
respect to T (T -universally complete) if, for each increasing net (fα) in E+ with
(Tfα) order bounded, we have that (fα) is order convergent in E. In this case E is
an R(T ) module and R(T ) is an f -algebra with the multiplication discussed earlier,
see [14].

We recall Birkhoff’s ergodic theorem for a T -universally complete Riesz space
from [13, Theorem 3.9].

Theorem 2.5 (Birkhoff’s (complete) ergodic theorem). Let (E, T, S, e) be a con-
ditional expectation preserving system with T strictly positive and E T -universally
complete then E = ES and hence LS = SLS. In addition, TLS = T and LS is a
conditional expectation operator on E.

Applying Theorem 2.5 to the concept of conditional ergodicity as defined in
Definition 1.3 we have that (E, T, S, e) is conditionally ergodic if and only if LSf =
Tf for all f ∈ IS . This leads to the following characterization of conditional
ergodicity.
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Corollary 2.6. Let (E, T, S, e) be a conditional expectation preserving system with
T strictly positive and E T -universally complete. The conditional expectation pre-
serving system (E, T, S, e) is conditionally ergodic if and only if T = LS.

Combining Theorem 2.5 and Corollary 2.6 we obtain Corollary 2.7 which is
fundamental to the proof of a conditional Riesz space version of the Kac formula,
Theorem 4.4.

Corollary 2.7. If (E, T, S, e) is a conditional expectation preserving system with
T strictly positive, E T -universally complete and S surjective then (E, T, S−1, e)
is a conditional expectation preserving system, E = ES = ES−1 , R(T ) ⊂ R(LS) =
IS = IS−1 = R(LS−1) and LS−1 = LS.

Proof. As E is T -universally complete, by Theorem 2.5, E = ES .
As T is strictly positive, S is injective, so by the surjectivity assumption, S is

bijective. Thus S−1 exists and is a Riesz homomorphism. Further Se = e gives
e = S−1e while from TS = T we have T = TSS−1 = TS−1 making (E, T, S−1, e)
a conditional expectation preserving system and again E = ES−1 .

Finally f ∈ IS if and only if Sf = f which is equivalent to (after applying
S−1) f = S−1f . Thus IS = IS−1 . For f ∈ IS and LSf = f which gives f =
LSf ∈ R(LS) so IS ⊂ R(LS). However, from Theorem 2.5 SLS = LS giving that
R(LS) ⊂ IS so R(LS) = IS . Hence R(LS) = IS = IS−1 = R(LS−1).

For each component p of e with p ∈ R(T ) we have that 0 ≤ LSp ≤ LSe = e
giving that LSp ∈ Ee. Thus (p−LSp)

2 ∈ Ee and by the averaging property of LS ,
along with p2 = p, we have

(p− LSp)
2 = p2 − 2p · LSp+ (LSp)

2 = p− 2p · LSp+ LS(p · LSp)

which after applying T and using that TLS = T , Tp = p and the averaging property
of T gives

T (p− LSp)
2 = Tp− 2T (p · LSp) + TLS(p · LSp)

= p− T (p · LSp)

= p− p · TLSp

= p− p · Tp = p− p2 = 0.

From strict positivity of T , (p−LSp)
2 = 0 giving p = LSp. Hence each component

of e which is in R(T ) is also in R(LS). But every element of R(T ) can be expressed
as an order limit of a net of linear combinations of components of e which are
in R(T ) and R(LS) is a Dedekind complete Riesz subspace of E. Hence R(T ) ⊂
R(LS) = IS . Now from [19], LS = LS−1 . �

3. Poincaré’s recurrence theorem in Riesz spaces

We begin by characterizing recurrence, in Definition 1.4, for the case of S bijec-
tive.

Lemma 3.1. Let (E, T, S, e) be a conditional expectation preserving system with S
bijective, then a component p of q is recurrent with respect to q a component of e if
and only if

p ≤
∨
n∈N

S−nq.
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Proof. For n ∈ N, let

mn =
∨

{g ∈ Cp(E) |Sng ≤ q}.

Here mn is the maximal component of p with Snmn ≤ q and hence the maximal
component of p to recur at n iterates of S. So in terms of mn, p is recurrent with

respect to q if and only if
∨
n∈N

mn ≥ p. As S is bijective, mn = p ∧ S−nq, making

p recurrent with respect to q if and only if p ≤
∨
n∈N

p ∧ S−nq from which the result

follows. �

Theorem 3.2 (Poincaré). Let (E, T, S, e) be a conditional expectation preserving
system with T strictly positive and S surjective then each component p of q where
q is a component of e is recurrent with respect to q.

Proof. By Lemma 2.1 and the surjectivity of S, S is bijective. From Lemma 3.1, it
suffices to prove that

p ≤
∨
n∈N

S−nq.

This however follows from q ≤
∞∨

n=1

S−nq, which we prove below.

Here
∞∨

n=1

S−nq exists in E as E is Dedekind complete and S−nq ≤ S−ne = e for

all n ∈ N. Further

∞∨
n=1

S−nq is a component of e, giving that

r := q ∧
(
e−

∞∨
n=1

S−nq

)
= q ∧

j=−1∧
−∞

(e− Sjq) ≥ 0

is a component of q. Thus Snr is a component of e (as S maps components of e to
components of e). Since Se = e we have

0 ≤ q ∧ Snr = q ∧ Snq ∧
j=n−1∧
−∞

(
e− Sjq

)
≤ q ∧ (e− q) = 0

which, after application of S−n, gives r∧S−nq = 0 for all n ≥ 1. However 0 ≤ r ≤ q
so r ∧ S−nr = 0 for all n ≥ 1. Applying Sn+k to the above gives Sn+kr ∧ Skr = 0
for all n ∈ N, k ≥ 0, making (Snr)n≥0 a sequence of disjoint components of e. Thus

N∑
n=1

Snr =

N∨
n=1

Snr ≤ e

for all N ∈ N. Now, applying T to the above equation gives

NTr =
N∑

n=1

Tr =
N∑

n=1

TSnr ≤ Te = e

for all N ∈ N. Since E is Archimedean, this gives Tr = 0. As T is strictly positive
and r ≥ 0 it follows that r = 0. �
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4. Kac’s formula in Riesz spaces

Lemma 4.1. Let (E, T, S, e) be a conditional expectation preserving system with T
strictly positive and S surjective then

(4.1) Np(n) = p
n∧

j=1

(e− S−jp)

and

(4.2) np =
∞∑
k=1

kS−kp ∧Np(k − 1).

Proof. From (1.3) we have

Np(n) =
∨

{q ∈ Cp(E) |S−jp ∧ q = 0∀j = 1, . . . n}

=
∨

{q ∈ Cp(E) | (e− S−jp) ≥ q∀j = 1, . . . n}

=

n∧
j=1

p ∧ (e− S−jp)

and hence (4.1). Further

Np(k − 1)−Np(k) = p ∧ (e− (e− S−kp)) ∧
k−1∧
j=1

(e− S−jp)

= S−kp ∧Np(k − 1)

from which (4.2) follows. �

Lemma 4.2. Let (E, T, S, e) be a conditional expectation preserving system where
T is strictly positive and S is surjective. Let LS be as defined in Theorem 2.5. If E
is T -universally complete then for each component p of e we have that np ∈ E and

LSnp = LS

( ∞∨
k=0

S−kp

)
.

Proof. Let r ∈ Ce(E). For convenience we set
0∧

j=1

S−j(e− r) = e. We begin by

proving by induction on n ∈ N that

(4.3) LSr =
n∑

k=1

LS

⎛
⎝(e− r) ∧

k∧
j=1

S−jr

⎞
⎠+ LS

(
n∧

k=0

S−kr

)
.

Since LSS = SLS = LS we have LS = LSSS
−1 = LSS

−1 and thus

LSr = LSS
−1r = LS((e− r) ∧ S−1r) + LS(r ∧ S−1r),
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from which it follows that (4.3) holds for n = 1. Further,

LS

(
n∧

k=0

S−kr

)
= LSS

(
n∧

k=0

S−kr

)

= LS

(
n+1∧
k=1

S−kr

)

= LS

(
(e− r) ∧

n+1∧
k=1

S−kr

)
+ LS

(
r ∧

n+1∧
k=1

S−kr

)

= LS

(
(e− r) ∧

n+1∧
k=1

S−kr

)
+ LS

(
n+1∧
k=0

S−kr

)

which if (4.3) holds for n gives that (4.3) holds for n+ 1. Hence giving that (4.3)
holds by induction for all n ∈ N.

For p ∈ Ce(E) we set r = e− p in (4.3) to give

LS(e− p) =

n∑
k=1

LS

⎛
⎝p ∧

k∧
j=1

S−j(e− p)

⎞
⎠+ LS

(
n∧

k=0

S−k(e− p)

)

=

n∑
k=1

LS(Np(k)) + LS

(
n∧

k=0

S−k(e− p)

)
.

So by (1.4),

e = LS(e− p) + LSp =

n∑
k=0

LS(Np(k)) + LS

(
n∧

k=0

S−k(e− p)

)
.(4.4)

Here we note that

(
n∑

k=0

Np(k)

)
n∈N0

is an increasing sequence in E+
u and by (4.4),

T

(
n∑

k=0

Np(k)

)
≤ e, so from the T -universal completeness of E,

(
n∑

k=0

Np(k)

)
n∈N0

converges in order in E, i.e. np =

∞∑
k=0

Np(k) ∈ E. Now taking the order limit as

n → ∞ in (4.4) gives

(4.5) e = LSnp + LS

( ∞∧
k=0

S−k(e− p)

)
.

However Se = e so e = S−ke giving S−k(e− p) = e− S−kp and thus

(4.6)

∞∧
k=0

S−k(e− p) =

∞∧
k=0

(e− S−kp) = e−
∞∨
k=0

S−kp.

Combining (4.5) and (4.6), and using that LSe = e we have

e = LSnp + e− LS

( ∞∨
k=0

S−kp

)

from which the lemma follows. �
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As TLS = T , applying T to

LSnp = LS

( ∞∨
k=0

S−kp

)

in Lemma 4.2 gives Corollary 4.3.

Corollary 4.3. Let (E, T, S, e) be a conditional expectation preserving system where
T is strictly positive and S is surjective. If E is T -universally complete then for
each component p of e we have that np ∈ E and

Tnp = T

( ∞∨
k=0

S−kp

)
.

Example. Take E = �1(4) with e(x) = 1 for all x ∈ {1, 2, 3, 4}, τ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2, x = 1

1, x = 2,

4, x = 3,

3, x = 4

with components of e, pi(x) = δi(x) where δ is the Kronecker symbol. The surjective
Riesz homomorphism S on E is given by Sf(x) = f(τ (x)). Set Tpi =

1
2 (p1 + p2) if

i ∈ {1, 2} and Tpi =
1
2 (p3 + p4) if i ∈ {3, 4}. Take q1 = p1 + p2 and q2 = p1 + p3.

(a) A direct computation gives nq1 = q1 with Tq1 = Tnq1 here
∨∞

k=0 S
−kq1 =

q1 so indeed verifying Kac.
(b) Now consider nq2 = 2q2 and Tq2 = 1

2e so Tnq2 = 2Tq2 but here
∨∞

k=0 S
−kq2

= e so Kac gives Tnq2 = Te = 2Tq2 indeed verifying Kac.

This example shows that the conditional version of the Kac formula is not as
simple as that for expectations (where only case (b) appears).

Theorem 4.4 (Kac). Let (E, T, S, e) be a conditional expectation preserving sys-
tem, where T is strictly positive, E is T -universally complete and S is surjective.
Let LS be as defined in Theorem 2.5. For each p a component of e we have

LSnp = PLSpe.

Proof. Let

w =

∞∨
k=0

S−kp.

From Lemma 4.2, we have LSnp = LSw, so it remains to show that LSw = PLSpe.
We recall that R(LS) = IS = IS−1 = R(LS−1). Here w ≤ e is a component of e
and

S−1w =

∞∨
k=1

S−kp ≤
∞∨
k=0

S−kp = w.

Thus w ≤ Sw, so, by Note 2.3, Sw = w giving w ∈ IS = R(LS) and so LSw = w.
From the definition of w we have w ≥ p so w = LSw ≥ LSp and thus w = Pwe ≥

PLSpe. But PLSpe ≥ Ppe = p, Lemma 2.4. Here PLSpe ∈ R(LS) = IS = IS−1 , so
PLSpe is S−1 invariant. Hence

PLSpe = S−kPLSpe ≥ S−kp

for each k = 0, 1, 2, . . . . Taking suprema over k = 0, 1, 2, . . . gives

PLSpe ≥ w.
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Hence PLSpe = w. �

Applying T to the above result gives

Tnp = TPLSpe

while in the case of (E, T, S, e) being conditionally ergodic LS = T so Theorem 4.4
gives Corollary 4.5.

Corollary 4.5 (Kac). Let (E, T, S, e) be a conditionally ergodic conditional expec-
tation preserving system, where T is strictly positive, E is T -universally complete
and S is surjective. For each p a component of e we have

Tnp = PTpe.

5. Application to probabilistic processes

Consider a probability space (Ω,A, μ) where μ is a complete measure (i.e. all
subsets of sets of measure zero are measurable). Take Σ a sub-σ-algebra of A. Let
E denote the space of a.e. equivalence classes of measurable functions f : Ω → R

for which the sequence (E[min(|f(x)|,n)|Σ])n∈N is bounded above by an a.e. finite
valued measurable function. Here n is the (equivalence class of the) function with
value n a.e. Then E is the natural domain of the conditional expectation operator
T = E[·|Σ]. Here L1(Ω,A, μ) ⊂ E and the extension of E[·|Σ] to E is given by the
a.e. pointwise limits

Tf = lim
n→∞

E[min(f+,n)|Σ]− lim
n→∞

E[min(f−,n)|Σ], f ∈ E.

The space E is a T -universally complete Riesz space with weak order unit 1 and
T is a strictly positive Riesz space conditional expectation operator on E having
T1 = 1. If Σ = {A ⊂ Ω |μ(A) = 0 or μ(A) = 1} then T is the expectation operator
and E = L1(Ω,A, μ).

Let τ : Ω → Ω be a map with τ−1(A) ∈ A (i.e. τ is μ-measurable) and
E[χτ−1(A)|Σ] = E[χA|Σ], for all A ∈ A. Further we require that for each A ∈ A
there is BA ∈ A so that μ(AΔτ−1(BA)) = 0. Now Sf := f ◦ τ is a surjective
Riesz homomorphism on E with S1 = 1 and TS = T . The system (E, T, S, e) is
a conditional expectation preserving system, with S surjective. Theorem 2.5 gives
that

LSf = lim
n→∞

1

n

n−1∑
k=0

Skf = lim
n→∞

1

n

n−1∑
k=0

f ◦ τk

converges a.e. pointwise to a conditional expectation operator on E (which when
restricted to L1(Ω,A, μ) is a classical conditional expectation operator). The system
(E, T, S, e) is conditionally ergodic if and only if LS = T which is equivalent to
τ−1(A) = A with A ∈ A, if and only if A ∈ Σ. Here nA = nχA

in the a.e. sense on
A, and applying Corollary 4.5 we obtain that

E[nA|Σ] = χ{x∈Ω|P[A|Σ](x)>0},

where P[A|Σ] = E[χA|Σ] is the conditional probability of A given Σ.
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