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A SHORT NOTE ON SIMPLICIAL STRATIFICATIONS

DOMINIK J. WRAZIDLO

(Communicated by Julie Bergner)

Abstract. We show that the simplicial stratification associated to a triangu-
lation of a PL pseudomanifold possesses a canonical system of trivializations
of link bundles that satisfies a natural compatibility condition over nested sin-
gular strata. Consequently, Agust́ın Vicente and Fernández de Bobadilla’s
generalization of Banagl’s intersection space construction is applicable to all
PL pseudomanifolds (and in particular, to all complex algebraic varieties).

1. Introduction

The purpose of this paper is to show that Agust́ın Vicente and Fernández de
Bobadilla’s generalization [1] of Banagl’s intersection space construction applies to
every triangulated PL pseudomanifold which is equipped with its simplicial strati-
fication and a canonical system of trivializations of link bundles that we construct.
Since any complex algebraic variety can be canonically Whitney stratified (and
hence triangulated, see [12]), we can therefore assign to it the family of intersec-
tion spaces associated to all possible triangulations. The informational content of
this family, seen as an invariant of the complex algebraic variety, can be subject to
future study.

Many spaces arising in topology and geometry are not manifolds, but have sin-
gularities, so that essential tools like classical Poincaré duality on (co)homology
are no longer available. To overcome this issue for the important class of stratified
pseudomanifolds, Goresky and MacPherson introduced intersection (co)homology
groups that depend on an additional parameter called a perversity (see [13,14]). As
an important feature of intersection homology theory, they showed that intersec-
tion (co)homology groups of stratified pseudomanifolds satisfy a generalized form
of Poincaré duality with respect to complementary perversities. More recently, in-
tersection spaces were introduced by Banagl in [3, 4] as a spatial imitation of the
intersection chain complex that underlies the definition of intersection homology
groups. While the singular homology of intersection spaces is not isomorphic to
intersection homology of singular spaces, Banagl showed that both theories are
related by mirror symmetry on Calabi-Yau 3-folds.

Received by the editors October 18, 2022, and, in revised form, March 22, 2023, March 23,
2023, and March 23, 2023.

2020 Mathematics Subject Classification. Primary 55N33, 57N80, 32S60, 32S20, 57P10.
Key words and phrases. Singularities, stratified spaces, intersection homology, Poincaré dual-
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The method of intersection spaces assigns generalized reduced Poincaré duality
spaces depending on a perversity to certain stratified pseudomanifolds by perform-
ing a homotopy theoretic modification in a neighborhood of the singular set. The
missing fundamental class of these generalized reduced Poincaré duality spaces
has been constructed for certain depth one stratifications (see [17] and [20]). By
construction, intersection spaces of stratified spaces depend on the choice of ho-
mology truncations (Moore approximations) of (recursively modified) links. Over
the rationals, results in the isolated singularities case (see [19]) suggest neverthe-
less that different choices of homology truncations might still result in intersection
spaces with weakly equivalent differential graded algebras. In [14], Goresky and
MacPherson show that intersection homology of a singular space is independent of
the underlying stratification. On the other hand, the Betti numbers of intersection
spaces depend in general heavily on the choice of the stratification.

Intersection spaces are rich homotopy theoretic invariants of stratified spaces,
and their rational cohomology has been studied from the perspectives of linear al-
gebra [11], sheaf theory [1, 6, 9, 10, 18], Sullivan’s PL polynomial differential forms
[19], smooth differential forms [5], and L2 harmonic forms [7]. However, the exis-
tence of intersection spaces is generally obstructed, and the obstruction vanishes
for example for spaces having one manifold stratum with trivial link budle (see
e.g. Banagl-Chriestenson [8]). In [1], Agust́ın Vicente and Fernández de Bobadilla
extended Banagl’s construction to make it applicable to stratifications of arbitrary
depth with compatibly trivializable link bundles. They adopt a relative viewpoint
by providing a recursive construction of intersection space pairs, which are space
pairs whose relative cohomology generalizes the cohomology of intersection spaces.
Their construction requires as input a stratified space with a trivial conical struc-
ture (see Definition 2.8), that is, a choice of a system of trivializations of link bun-
dles satisfying a natural compatibility condition over nested singular strata that is
shown in diagram (2.12). So far, only specific classes of stratified pseudomanifolds
with trivial link bundles are known to satisfy this compatibility condition, and can
hence serve as possible input for the intersection space pair construction of [1]. For
instance, toric varieties are known to admit a stratification together with an appro-
priate system of trivializations of link bundles, which are both naturally induced
by the torus action (see [1, Corollary 3.32]). We also point out that any stratified
pseudomanifold with trivial link bundles (including the case that all singular strata
are contractible, see e.g. Corollary 9.9 in [1]) possesses an intersection space com-
plex, which is constructed in [1] as a sheaf theoretic counterpart of the intersection
space pair without requiring the compatibility condition for trivializations of link
bundles. However, the intersection space complex is a much weaker invariant than
the intersection space pair itself. (For example, it does not capture the rational
homotopy type or even the cohomological cup product structure of the intersection
space pair.)

In this paper, we show that the intersection space pair construction of [1] ap-
plies to every triangulated PL pseudomanifold which is equipped with its simplicial
stratification and the canonical system of trivializations of link bundles that we
construct. Recall that an n-dimensional PL pseudomanifold X is by definition a
PL-space such that for some (and hence every) triangulation of X by a simplicial
complex, every simplex is contained in an n-simplex, and every (n− 1)-simplex is
a face of exactly two n-simplices. Moreover, the simplicial stratification associated
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to a fixed triangulation of X is given by the filtration

(1.1) X = Xn ⊃ Xn−2 ⊃ · · · ⊃ X0

whose ith part Xi is the union of all closed i-simplices of the triangulation. Thus,
the singular strata of dimension i are the open i-simplices of the triangulation, and
the regular part X \Xn−2 is the union of all open n- and (n− 1)-simplices. Since
the singular strata of a simplicial triangulation are contractible, all link bundles
are automatically trivial. In our main result below, we employ the first barycentric
subdivision of the given triangulation to construct in a canonical way a system of
link bundles and trivializations that give rise to a trivial conical structure. The
compatibility condition for the system of trivializations of link bundles will follow
essentially from associativity of the join operation.

The main result of this paper, which we prove in Section 4, is the following.

Theorem 1.1. Let X be a PL pseudomanifold. Fix a triangulation T of X, and
let XT be the simplicial stratification (1.1) of X associated to T . Then, the strat-
ified space (X,XT ) possesses a canonical trivial conical structure in the sense of
Definition 2.8.

As an immediate consequence of Theorem 1.1, we obtain

Corollary 1.2. The intersection space pair construction of Agust́ın Vicente and
Fernández de Bobadilla [1] is applicable to all PL pseudomanifolds by choosing the
simplicial stratification associated to a triangulation and our system of canonical
trivializations of link bundles.

2. Compatibility for trivial link bundles of stratified spaces

2.1. Stratified spaces. In this section, we recall the notion of a topologically
stratified space to fix terminology.

Definition 2.1 (Topologically stratified spaces). A 0-dimensional topologically
stratified space X is a countable set with the discrete topology. For d > 0, a
d-dimensional topologically stratified space is a paracompact Hausdorff topological
space X equipped with a filtration

(2.1) X = Xd ⊃ Xd−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

of X by closed subsets Xj such that Xd \ Xd−1 �= ∅, for every 0 ≤ j ≤ d the
complement Xj \ Xj−1 is a j-dimensional topological manifold (that is, a second
countable Hausdorff topological space that is locally Euclidean), and for each point
x ∈ Xj \Xj−1 there exist an open neighborhood U of x in X, a compact (d−j−1)-
dimensional topologically stratified space L (called a link of Xj \Xj−1 at x in X)
with filtration

(2.2) L = Ld−j−1 ⊃ Ld−j−2 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅,

and a homeomorphism φ : U
∼=−→ R

j × c◦(L), where c◦(Z) = (Z × [0, 1))/(Z × {0})
is the open cone on a topological space Z (with the convention that c◦(∅) consists
only of the vertex point), such that φ takes U ∩ Xj+i+1 homeomorphically onto
R

j × c◦(Li) (⊂ R
j × c◦(L)) for −1 ≤ i ≤ d− j − 1.

Remark 2.2 (Topological stratified pseudomanifolds). A d-dimensional topologi-
cally stratified space X with filtration (2.1) is called a d-dimensional topological
stratified pseudomanifold if Xd−1 = Xd−2 and X \ Xd−1 is dense in X (see e.g.
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Definition 4.1.1 in [2]). If X is a topological stratified pseudomanifold, then it fol-
lows that the links with filtration (2.2) are topological stratified pseudomanifolds
as well.

Remark 2.3. Note that the notion of pseudomanifold introduced in Definition 3.4
in [1] differs in the following two ways. First, it contains the additional assumption
that the pairs (Xj , Xj−1) are locally finite relative CW-complexes. Second, as
remarked right before [1, Definition 3.4], the singular set of a pseudomanifold is not
assumed to have codimension at least 2.

From now on, we reserve the terminology “stratified space” to refer to a topolog-
ically stratified space. For a d-dimensional stratified space X with filtration (2.1),
the connected components of the j-dimensional manifold Xj \Xj−1 are called the
strata of dimension j (or of codimension d− j). The strata contained in Xd \Xd−1

are called regular, and the other strata are called singular.

If V is a union of regular strata of X, then it is easy to see that the closure V
X

of V in X is a d-dimensional stratified space with filtration

Xd ∩ V
X ⊃ Xd−1 ∩ V

X ⊃ · · · ⊃ X0 ∩ V
X ⊃ X−1 ∩ V

X
= ∅.

Moreover, by induction on the dimension of X, we can show that if X has singular
strata of dimension j, then Xj is a j-dimensional stratified space with filtration

Xj ⊃ Xj−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅.

We write S(X) for the set of singular strata of a stratified space X with fixed
filtration (2.1). For S, S′ ∈ S(X), we write S ≺ S′ if S �= S′ and S is contained
in (or, equivalently, has nonempty intersection with) the closure of S′ in X. Then,
note that we have dim(S) < dim(S′). We write S 
 S′ if S = S′ or S ≺ S′. Then,
(S(X),
) is a partially ordered set.

2.2. Conical structures and trivializations. The notion of conical structures
was introduced by Agust́ın Vicente and Fernández de Bobadilla for pairs of topo-
logical spaces (X,Y ) with respect to a stratified space Xd−k contained in Y (see
Definition 3.5 of [1]). In Definition 2.4, we restate the definition of conical struc-
tures by using a different terminology, and only for the special case that X is a d-
dimensional stratified space with subspace the stratified space Y = Xd−1 (= Xd−k)
(compare Remark 3.14 in [1]). In the present paper, we show that triangulated PL
pseudomanifolds give rise to conical structures that are trivial in the sense of Defini-
tion 2.8, and can hence be used as input for the intersection space pair construction
of [1].

The following notation will be used in Definition 2.4. For a fiber bundle π : E →
B with fiber F , we denote by c(π) : cπ(E) → B the associated cone bundle. That
is, c(π) is the fiber bundle over B with total space cπ(E) = (E × [0, 1])/ ∼π,
where (x, t) ∼π (x′, t′) if and only if π(x) = π(x′) and t = 0 = t′, projection

map c(π) induced by the composition E × [0, 1]
prE−−→ E

π−→ B, and fiber c(F ) =
(F×[0, 1])/(F×{0}) the closed cone on F . For subsets A ⊂ E, we obtain subspaces
cπ(A) ⊂ cπ(E) of the form cπ(A) = (A× [0, 1])/ ∼π. In particular, we can identify
cπ(∅) = B, which is the subspace of the cone points of the fibers because the cone
on the empty set ∅ consists by convention only of the cone point. In the following,
we consider B naturally as a subspace of cπ(E) via B = cπ(∅) ⊂ cπ(E). Moreover,
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we consider E naturally as a subspace of cπ(E) via E = E × {1} ⊂ cπ(E). Thus,
we have c(π)|E = π.

Definition 2.4 (Conical structures; compare Definition 3.5 in [1]). A conical struc-
ture for a d-dimensional stratified space X with stratification (2.1) is a family
{(CS, ∂πS , θS)}S∈S(X) of triples consisting for every S ∈ S(X) of

• a closed neighborhood CS of S in X \Xdim(S)−1 such that

– for all S, T ∈ S(X) we have1 CS ∩ CT �= ∅ if and only if S 
 T or
T 
 S,

• a fiber bundle ∂πS : ∂CS → S with total space ∂CS the boundary of CS in
X \Xdim(S)−1, with structure group denoted by GS , and with fiber XS a
compact stratified space of dimension codim(S)− 1 with stratification

XS = XS
codim(S)−1 ⊃ XS

codim(S)−2 ⊃ · · · ⊃ XS
0 ⊃ XS

−1 = ∅,

such that
– for all S, T ∈ S(X) with T ≺ S there exists a pair (CT

S , Z
T
S ), where

ZT
S is a union of singular strata of XT of codimension codimX(S) in

XT , and CT
S is a closed neighborhood of ZT

S in XT \XT
dim(ZT

S )−1
with

boundary ∂CT
S , such that the structure group GT of ∂πT consists of

homeomorphisms α : XT
∼=−→ XT that satisfy α(ZT

S ) = ZT
S , α(C

T
S ) =

CT
S , and α(∂CT

S ) = ∂CT
S , and the subbundles of ∂πT induced by the

inclusions ZT
S ⊂ XT , CT

S ⊂ XT , and ∂CT
S ⊂ XT have total spaces

∂CT ∩ S, ∂CT ∩ CS , and ∂CT ∩ ∂CS , respectively, and

• a homeomorphism θS : CS

∼=−→ c∂πS
(∂CS) that extends the identity maps

on ∂CS and S,

such that for all T ≺ S in S(X), we have

(2.3) θT (CT ∩ S) = c∂πT
(∂CT ∩ S) \ T

and

(2.4) θT (CT ∩ CS) = c∂πT
(∂CT ∩ CS) \ T,

the composition

πS = c(∂πS) ◦ θS : CS → S

satisfies

(2.5) (πS)
−1(CT ∩ S) = CT ∩ CS

and

(2.6) (πS)
−1(∂CT ∩ S) = ∂CT ∩ CS ,

and the diagrams

(2.7)

CT ∩ CS CT ∩ S

(∂CT ∩ CS)× (0, 1] (∂CT ∩ S)× (0, 1]

πS |

θT |∼= θT |∼=
πS |×id(0,1]

1This assumption implies that for S, T ∈ S(X) we have CT ∩ S �= ∅ if and only if T � S.
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and

(2.8)

∂CT ∩ CS ∂CT ∩ S

T

πS |

∂πT |
∂πT |

commute.

Remark 2.5. We point out that our diagrams (2.7) and (2.8) correspond to the
properties (3) and (4) of Definition 3.5 in [1], respectively.

Remark 2.6. For S ∈ S(X), it follows from the definition of πS that πS |∂CS
= ∂πS

because θS extends the identity map on ∂CS . Hence, for all T ≺ S in S(X), (2.5)
and (2.6) imply that

(2.9) (∂πS)
−1(CT ∩ S) = CT ∩ ∂CS

and

(2.10) (∂πS)
−1(∂CT ∩ S) = ∂CT ∩ ∂CS ,

respectively.

Remark 2.6 implies that, for all T ≺ S in S(X), diagram (2.8) restricts to a
commutative diagram

(2.11)

∂CT ∩ ∂CS ∂CT ∩ S

T.

∂πS |

∂πT |
∂πT |

We note that the map ∂πS | in diagram (2.11) is a fiber bundle with fiber XS .

Definition 2.7 (Trivializations of conical structures). Let X be a d-dimensional
stratified space with conical structure {(CS, ∂πS , θS)}S∈S(X). A trivialization of the
conical structure {(CS, ∂πS , θS)}S∈S(X) is a family {ψS}S∈S(X) of trivializations

ψS : ∂CS

∼=−→ XS ×S of the fiber bundles ∂πS : ∂CS → S such that for all T ≺ S in

S(X), there exists a homeomorphism βT
S : ∂CT

S

∼=−→ XS ×ZT
S such that the diagram

(2.12)

∂CT ∩ ∂CS XS × (∂CT ∩ S)

∂CT
S × T XS × ZT

S × T

ψS |
∼=

ψT |∼= idXS ×ψT |∼=

βT
S ×idT

∼=

commutes2.

Definition 2.8. Let X be a d-dimensional stratified space. A trivial conical struc-
ture for X is a family {(CS, ∂πS , θS , ψS)}S∈S(X), where {(CS, ∂πS , θS)}S∈S(X) is a
conical structure for X with trivialization {ψS}S∈S(X).

2There exists a unique homeomorphism ∂CT
S × T

∼=−→ XS × ZT
S × T such that diagram (2.12)

commutes, and by commutativity of diagram (2.11), this homeomorphism is of the form (x, y) �→
(βT

S (x, y), y). Thus, the claim means that βT
S (x, y) does not depend on y.
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3. Link bundles in simplicial stratifications

For a background on locally finite simplicial complexes in R
∞, see Hudson [16,

Chapter III]. We will not distinguish formally between a simplicial complex and its
geometric realization as a subset of R∞, which should not lead to any confusion.
The join of two compact simplicial complexes A and B in R

∞ is denoted by A ∗B,
where the notation implicitly means that A and B are joinable (see [16, p. 6]).
Note that A,B ⊂ A ∗B, and the join operator is commutative and associative.

Let T be a locally finite simplicial complex. We introduce some terminology
that is also used by Haefliger [15, Proposition 1.4]. We denote the barycenter of a
closed simplex σ of T by σ̂. Note that we have σ = σ̂ ∗ ∂σ. Let T ′ denote the first
barycentric subdivision of T . For a closed simplex σ of T , we define with respect
to T ′

• the dual complex D′(σ) of σ to be the full simplicial subcomplex of T ′

consisting of those simplices whose vertices are the barycenters τ̂ of the
simplices τ of T containing σ,

• the link L′(σ) of σ to be the full simplicial subcomplex of T ′ consisting of
those simplices whose vertices are the barycenters τ̂ of the simplices τ of T
containing σ and different from σ, and

• the star St′(σ) of σ to be the full3 simplicial subcomplex of T ′ consisting of
those simplices that are a face of a simplex of T ′ containing the barycenter
σ̂ of σ.

Then, we have D′(σ) = σ̂ ∗L′(σ), ∂St′(σ) = ∂σ ∗L′(σ), and St′(σ) = ∂σ ∗D′(σ) =
σ̂ ∗ ∂St′(σ).

Let σ be a closed simplex of T . For closed simplices α and β of T ′ with α ⊂ L′(σ)
and β ⊂ ∂σ, we define the continuous map

Φα,β : α× (σ̂ ∗ β) −→ α ∗ β, Φα,β(a, tσ̂ + (1− t)b) = ta+ (1− t)b.

Remark 3.1. If b1, . . . , bp are the vertices of β, then σ̂, b1, . . . , bp are the vertices
of the simplex σ̂ ∗ β of T ′. Hence, using barycentric coordinates, every point x ∈
σ̂ ∗ β can be written uniquely as x = x0σ̂ +

∑p
i=1 xibi with x0, . . . , xp ≥ 0 and

x0 + · · ·+xp = 1. Note that for x0 �= 1, we may write x = tσ̂+(1− t)b with t = x0

and b =
∑p

i=1
xi

1−x0
bi ∈ β. Thus, it follows that Φα,β(a, x) = x0a +

∑p
i=1 xibi for

a ∈ α and x ∈ σ̂ ∗ β.
Note that the map Φα,β restricts to a homeomorphism

φα,β : α× ((σ̂ ∗ β) \ β)
∼=−→ (α ∗ β) \ β, φα,β(a, tσ̂ + (1− t)b) = ta+ (1− t)b.

By gluing the maps Φα,β for α ⊂ L′(σ) and β ⊂ ∂σ, we obtain a continuous map

Φσ : L
′(σ)× σ = L′(σ)× (σ̂ ∗ ∂σ) −→ L′(σ) ∗ ∂σ = ∂St′(σ).

Similarly, by gluing the homeomorphisms φα,β for all closed simplices α ⊂ L′(σ)
and β ⊂ ∂σ of T ′, we obtain a homeomorphism

φσ : L
′(σ)× σ◦ = L′(σ)× ((σ̂ ∗ ∂σ) \ ∂σ)

∼=−→ (L′(σ) ∗ ∂σ) \ ∂σ =: E′(σ),

where σ◦ := σ\∂σ and E′(σ) := ∂St′(σ)\∂σ. By construction, φσ is the restriction
of Φσ to L′(σ)× (σ \ ∂σ).

3Indeed, let σ′ be a simplex of T ′ whose vertices are all contained in St′(σ). Then, we have
σ′ ⊂ τ for some simplex τ of T , where τ̂ is a vertex of σ′. Since τ̂ ∈ St′(σ), τ̂ is a face (vertex) of
a simplex ρ′ of T ′ containing the barycenter σ̂ of σ.
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Since the maps Φα,β are simplicial, it follows that the map Φσ is a PL map.
Consequently, φσ is a PL homeomorphism. (Recall that the property of being a
PL map is stable under restriction to open subsets, and that a homeomorphism is
a PL map if and only if its inverse is a PL map.)

Lemma 3.2. Let K ⊂ T ′ be a full simplicial subcomplex, that is, a simplicial
subcomplex such that every simplex of T ′ whose vertices lie in K is contained in K.
Then, for any closed simplices α and β of T ′ such that α ∗ β is a simplex of T ′, we
have α ∗ β ⊂ K if and only if α ⊂ K and β ⊂ K.

Proof. Since α, β ⊂ α ∗ β, it is clear that α ∗ β ⊂ K implies α, β ⊂ K. Conversely,
suppose that α, β ⊂ K. Then, α ∗β is a simplex of T ′ whose vertices are contained
in K, and it follows that α ∗ β ⊂ K. �

Proposition 3.3. Let K ⊂ T ′ be a full simplicial subcomplex such that ∂σ ⊂ K.
Then, the map Φσ restricts to a map

Φσ| : (L′(σ) ∩K)× σ −→ ∂St′(σ) ∩K,

and the homeomorphism φσ restricts to a homeomorphism

φσ| : (L′(σ) ∩K)× σ◦ ∼=−→ E′(σ) ∩K.

Proof. Let α and β be closed simplices of T ′ with α ⊂ L′(σ) and β ⊂ ∂σ. Since
β ⊂ ∂σ ⊂ K, Lemma 3.2 implies that we have α ∈ K if and only if α ∗ β ∈ K.
Consequently, by gluing the maps Φα,β for α ⊂ L′(σ) ∩K and β ⊂ ∂σ, we obtain
a continuous map

(L′(σ) ∩K)× σ = (L′(σ) ∩K)× (σ̂ ∗ ∂σ) −→ ∂St′(σ) ∩K.

Similarly, by gluing the homeomorphisms φα,β for α ⊂ L′(σ) ∩K and β ⊂ ∂σ, we
obtain a homeomorphism

(L′(σ) ∩K)× (σ \ ∂σ) = (L′(σ) ∩K)× ((σ̂ ∗ ∂σ) \ ∂σ)
∼=−→ (∂St′(σ) ∩K) \ ∂σ.

�

Proposition 3.4. Let K ⊂ T ′ be a full simplicial subcomplex such that σ̂ ∈ K and
L′(σ) ⊂ K. Then, the map Φσ restricts to a map

Φσ| : L′(σ)× (σ ∩K) −→ ∂St′(σ) ∩K,

and the homeomorphism φσ restricts to a homeomorphism

φσ| : L′(σ)× (σ◦ ∩K)
∼=−→ E′(σ) ∩K.

Proof. Let α and β be closed simplices of T ′ with α ⊂ L′(σ) and β ⊂ ∂σ. Since
σ̂ ∈ K, Lemma 3.2 implies that we have β ∈ K if and only if σ̂ ∗ β ∈ K. Hence,

(3.1) σ ∩K = σ̂ ∗ (∂σ ∩K).

Moreover, since α ⊂ L′(σ) ⊂ K, Lemma 3.2 implies that we have β ∈ K if and only
if α ∗β ∈ K. Altogether, we have σ̂ ∗β ∈ K if and only if α ∗β ∈ K. Consequently,
by gluing the maps Φα,β for α ⊂ L′(σ) and β ⊂ ∂σ ∩ K, we obtain a continuous
map

L′(σ)× (σ ∩K)
(3.1)
= L′(σ)× (σ̂ ∗ (∂σ ∩K)) −→ ∂St′(σ) ∩K.
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Similarly, by gluing the homeomorphisms φα,β for α ⊂ L′(σ) and β ⊂ ∂σ ∩K, we
obtain a homeomorphism

L′(σ)× ((σ \ ∂σ) ∩K)
(3.1)
= L′(σ)× ((σ̂ ∗ (∂σ ∩K)) \ ∂σ)

∼=−→ (∂St′(σ) ∩K) \ ∂σ.
�

Theorem 3.5. Let σ and τ be simplices of T such that τ is a proper face of σ.
Then, the homeomorphisms φσ and φτ induce a commutative diagram

(3.2) L′(σ)× (σ◦ ∩ L′(τ ))× τ◦
∼=

φσ|×idτ◦
��

∼=idL′(σ) ×φτ |
��

(E′(σ) ∩ L′(τ ))× τ◦

∼=φτ |
��

L′(σ)× (σ◦ ∩E′(τ ))
∼=
φσ|

�� E′(σ) ∩E′(τ ).

Proof. First, let us show that the homeomorphisms φσ and φτ restrict in the desired
ways:

• To produce the vertical maps in diagram (3.2), we have to show that φτ

restricts to homeomorphisms

(σ◦ ∩ L′(τ ))× τ◦
∼=−→ σ◦ ∩E′(τ ),(3.3)

(E′(σ) ∩ L′(τ ))× τ◦
∼=−→ E′(σ) ∩ E′(τ ).(3.4)

In fact, since σ◦ = σ \∂σ and E′(σ) = ∂St′(σ) \∂σ, it suffices to show that
φτ restricts to homeomorphisms

(σ ∩ L′(τ ))× τ◦
∼=−→ σ ∩ E′(τ ),

(∂St′(σ) ∩ L′(τ ))× τ◦
∼=−→ ∂St′(σ) ∩E′(τ ),

(∂σ ∩ L′(τ ))× τ◦
∼=−→ ∂σ ∩E′(τ ).

We show that these restrictions exist by applying Proposition 3.3 forK = σ,
K = ∂St′(σ) = L′(σ) ∗ ∂σ, and K = ∂σ, respectively. (Note that these
choices of K are full simplicial subcomplexes of T ′ such that ∂τ ⊂ K since
τ ⊂ σ.)

• To produce the horizontal maps in diagram (3.2), we have to show that φσ

restricts to homeomorphisms

L′(σ)× (σ◦ ∩ L′(τ ))
∼=−→ E′(σ) ∩ L′(τ ),

L′(σ)× (σ◦ ∩ ∂St′(τ ))
∼=−→ E′(σ) ∩ ∂St′(τ ),

where note that the second map coincides with the lower horizontal map
in diagram (3.2) because we have σ◦ = σ \∂σ and E′(σ) = ∂St′(σ) \∂σ, so
that we may replace ∂St′(τ ) by ∂St′(τ ) \ ∂τ = E′(τ ) since ∂τ ⊂ ∂σ. We
show that these restrictions exist by applying Proposition 3.4 for K = L′(τ )
and K = ∂St′(τ ) = L′(τ ) ∗ ∂τ , respectively. (Note that these choices of K
are full simplicial subcomplexes of T ′, and we conclude from the definition
of L′(−) that L′(σ) ⊂ L′(τ ) ⊂ K since τ ⊂ σ, and σ̂ ∈ L′(τ ) ⊂ K.)

To show that diagram (3.2) commutes, we fix a point (x, y, z) ∈ L′(σ) × (σ◦ ∩
L′(τ ))× τ◦, and have to show that

(3.5) φτ (φσ(x, y), z) = φσ(x, φτ (y, z)).
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For this purpose, we fix simplices α ∈ L′(σ), β ∈ ∂σ ∩ L′(τ ), and γ ∈ ∂τ of T ′

such that x ∈ α, y ∈ σ̂ ∗ β, and z ∈ τ̂ ∗ γ. (We note that y ∈ σ◦ and z ∈ τ◦

imply y ∈ (σ̂ ∗ β) \ β and z ∈ (τ̂ ∗ γ) \ γ, respectively.) Let a1, . . . , ap, b1, . . . , bq,
and c1, . . . , cr be the vertices of α, β, and γ, respectively. Then, using barycentric
coordinates, we can uniquely write

x =

p∑
i=1

xiai, x1, . . . , xp ≥ 0, x1 + · · ·+ xp = 1,

y = y0σ̂ +

q∑
j=1

yjbj , y0, y1, . . . , yq ≥ 0, y0 + y1 + · · ·+ yq = 1,

z = z0τ̂ +

r∑
k=1

zkck, z0, z1, . . . , zr ≥ 0, z0 + z1 + · · ·+ zr = 1.

We show (3.5) by computing both sides separately:

• To evaluate the left hand side of (3.5), we note that φσ restricts to the
homeomorphism

φα,β : α× ((σ̂ ∗ β) \ β)
∼=−→ (α ∗ β) \ β,

and φτ restricts to the homeomorphism

φα∗β,γ : (α ∗ β)× ((τ̂ ∗ γ) \ γ)
∼=−→ (α ∗ β ∗ γ) \ γ.

Since x ∈ α and y ∈ (σ̂ ∗ β) \ β, we obtain

φσ(x, y) = φα,β(x, y) = φα,β(

p∑
i=1

xiai, y0σ̂ +

q∑
j=1

yjbj) =

p∑
i=1

xiy0ai +

q∑
j=1

yjbj .

As α ∈ L′(σ) and β ∈ ∂σ are independent, α ∗ β is a simplex of T ′ with
vertices a1, . . . , ap, b1, . . . , bq. Since φσ(x, y) ∈ α ∗ β and z ∈ (τ̂ ∗ γ) \ γ, we
conclude that

φτ (φσ(x, y), z) = φα∗β,γ(φσ(x, y), z)

= φα∗β,γ(

p∑
i=1

xiy0ai +

q∑
j=1

yjbj , z0τ̂ +

r∑
k=1

zkck)

=

p∑
i=1

xiy0z0ai +

q∑
j=1

yjz0bj +

r∑
k=1

zkck.

• To evaluate the right hand side of (3.5), we note that φτ restricts to the
homeomorphism

φσ̂∗β,γ : (σ̂ ∗ β)× ((τ̂ ∗ γ) \ γ)
∼=−→ (σ̂ ∗ β ∗ γ) \ γ,

and φσ restricts to the homeomorphism

φα,β∗γ : α× ((σ̂ ∗ β ∗ γ) \ (β ∗ γ))
∼=−→ (α ∗ β ∗ γ) \ (β ∗ γ).
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Since y ∈ σ̂ ∗ β, and z ∈ (τ̂ ∗ γ) \ γ, we obtain

φτ (y, z) = φσ̂∗β,γ(y, z) = φσ̂∗β,γ(y0σ̂ +

q∑
j=1

yjbj , z0τ̂ +

r∑
k=1

zkck)

= y0z0σ̂ +

q∑
j=1

yjz0bj +
r∑

k=1

zkck.

As β ∈ L′(τ ) and γ ∈ ∂τ are independent, β ∗ γ is a simplex of T ′ with
vertices b1, . . . , bq, c1, . . . , cr. Since x ∈ α and φτ (y, z) ∈ (σ̂ ∗ β ∗ γ) \ (β ∗ γ)
(where note that φτ (y, z) �∈ β ∗ γ because y ∈ σ◦ and z ∈ τ◦ imply that
y0z0 > 0), we conclude that

φσ(x, φτ (y, z)) = φα,β∗γ(x, φτ (y, z))

= φα,β∗γ(

p∑
i=1

xiai, y0z0σ̂ +

q∑
j=1

yjz0bj +

r∑
k=1

zkck)

=

p∑
i=1

xiy0z0ai +

q∑
j=1

yjz0bj +
r∑

k=1

zkck.

This completes the proof of Theorem 3.5. �

4. Proof of Theorem 1.1

Let X be a PL pseudomanifold. Fix a triangulation T of X, and let XT be the
simplicial stratification (1.1) of X associated to T . Recall that S(X) denotes the
set of singular strata of the stratified space X. Using the notation of Section 3, the
following table provides the data that define a canonical trivial conical structure
(in the sense of Definition 2.8) on the stratified space (X,XT ).

S ∈ S(X) open simplices σ◦ of T of codimension ≥ 2

CS
̂E′(σ) := St′(σ) \ ∂σ = (D′(σ) ∗ ∂σ) \ ∂σ

∂CS E′(σ) = ∂ St′(σ) \ ∂σ = (L′(σ) ∗ ∂σ) \ ∂σ

trivial fiber bundle

∂CS S

XS×S

∂πS

ψS

∼= pr2

E′(σ) σ◦

L′(σ)× σ◦

=:∂ρσ

φ−1
σ

∼= pr2

with fiber XS and (the full simplicial subcomplex L′(σ) ⊂ T ′

structure group GS = {idXS} is stratified by its simplicial stratification)

homeomorphism θS : CS

∼=→ c∂πS (∂CS) ησ: ̂E
′(σ)=((σ̂ ∗ L′(σ)) ∗ ∂σ) \ ∂σ∼=c∂ρσ (E

′(σ))

ZT
S σ◦ ∩ L′(τ)

CT
S

̂E′(σ) ∩ L′(τ)

∂CT
S E′(σ) ∩ L′(τ)

Using the data from the above table, it is now straightforward to check that

{(CS, ∂πS , θS)}S∈S(X) := {(Ê′(σ), ∂ρσ, ησ)}σ◦∈T

is a canonical conical structure (in the sense of Definition 2.4) on the stratified
space (X,XT ). For example, for S, T ∈ S(X) with T ≺ S, the subbundles of ∂πT

induced by the inclusions ZT
S ⊂ XT and ∂CT

S ⊂ XT have total spaces ∂CT ∩S and
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∂CT ∩ ∂CS by (3.3) and (3.4), respectively. (Similarly, by applying Proposition 3.3
to K = St′(σ) and K = ∂σ, it can be shown that the subbundle of ∂πT induced by
the inclusion CT

S ⊂ XT has total space ∂CT ∩ CS .) Furthermore, we see that

{ψS}S∈S(X) := {φ−1
σ }σ◦∈T

is a trivialization (in the sense of Definition 2.7) of the above conical structure,
where the commutative diagram (2.12) is canonically provided by Theorem 3.5.

This completes the proof of Theorem 1.1.
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