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Abstract. A Banach space theoretical characterization of abelian C∗-
algebras among all C∗-algebras is given. As an application, it is shown that
if A and B are C∗-algebras (nonlinearly) isomorphic to each other with re-
spect to the structure of Birkhoff-James orthogonality, and if either A or B
is abelian, then they are ∗-isomorphic. Moreover, it is pointed out that the
same kind of characterization is not valid for preduals of abelian von Neumann
algebras.

1. Introduction

The study on characterizations of abelian C∗-algebras among all C∗-algebras
has a long history. Various kinds of characterizations have been obtained up to the
present. For example, Ogasawara [18] showed that a C∗-algebra A is abelian if and
only if a2 ≥ b2 whenever a, b ∈ A and a ≥ b ≥ 0 (that is, if t �→ t2 is operator
monotone on A). In this direction, it was also shown by Wu [24] that the operator
monotonicity of t �→ et characterizes abelian C∗-algebras. Moreover, as a corollary
to this result, it turns out that A is abelian if and only if ea+b = eaeb for each a, b
in (the unitization of) A. Later, this result was generalized by Jeang and Ko [10].
Meanwhile, there exists a characterization of the Stinespring type. Namely, abelian
C∗-algebras A are characterized by the property that every positive linear map from
A into another C∗-algebra B becomes completely positive; actually, according to
[23, Theorem 1.2], the complete positivity can be replaced with the two-positivity.
The above mentioned results by Ogasawara and Wu, and of the Stinespring type,
were put together and further improved by Ji and Tomiyama [11]. In addition,
Kato [14] and Nakamoto [17] gave characterizations in terms of spectrum. Another
very simple characterization of abelian C∗-algebras is based on the existence of
nonzero nilpotent, that is, A is abelian if and only if there exists no nonzero a ∈ A
with a2 = 0; see, for example, [5, Proposition II.6.4.14]. The readers interested in
this topic are referred to a brief survey by Pinter-Lucke [19] and references therein;
see also [1, 15] for recent developments.

As is natural, basically, the existing characterizations of abelian C∗-algebras are
based on (a part of) the algebraic structure of them. At least, they required the
existence of natural multiplication operations on objects. Under this circumstance,
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we try to remove this structural requirement in the present paper, and give a
purely Banach space theoretical characterization of abelian C∗-algebras among all
C∗-algebras, where “purely Banach space theoretical” means that the machinery
for characterization can be defined in general Banach spaces. Practically, we refer
to the topologizability of geometric structure spaces of C∗-algebras. The notion
of geometric structure spaces was first introduced in [21] for classifying Banach
spaces with respect to their structure of Birkhoff-James orthogonality. Although
its original definition was given in terms of the Birkhoff-James orthogonality, it
turned out from [21, Theorem 4.15] that geometric structure spaces of Banach
spaces are determined by their facial structure of unit balls; see also [22] for further
developments on geometric structure spaces. As an application of the results in
this paper, it is shown that if A and B are C∗-algebras (nonlinearly) isomorphic
to each other with respect to the structure of Birkhoff-James orthogonality, and if
either A or B is abelian, then they are ∗-isomorphic. Meanwhile, it is pointed out
in the last section that the same kind of characterization is not valid for preduals
of abelian von Neumann algebras. More precisely, it is shown that the predual of
a von Neumann algebra A has the topologizable geometric structure space if and
only if A = C.

2. Notation and preliminaries

For a Banach space X, let BX and SX denote the unit ball and unit sphere of X,
respectively. The symbol X∗ represents the (continuous) dual of X. For a subset S
of X, let S denote the closure of S with respect to the norm topology. The linear
span of S is denoted by 〈S〉.

Let C be a nonempty convex subset of a vector space X, and let D be a convex
subset of C. Then, D is called a face of C if, whenever x, y ∈ C and tx+(1−t)y ∈ D
for some t ∈ (0, 1), we obtain x, y ∈ D. Further, if D 	= C, the face D is proper.
An element x of C is called an extreme point of C if the set {x} is a face of C.
The set of all extreme points of C is denoted by ext(C). In particular, we have
ext([−1, 1]) = {−1, 1} and ext({c ∈ C : |c| ≤ 1}) = {c ∈ C : |c| = 1}. For a Banach
space X, let

F(X) = {F ⊂ BX : F is a closed proper face of BX},
F∗(X∗) = {G ⊂ BX∗ : G is a weakly∗ closed proper face of BX∗}.

If F ∈ F(X) then the facear Φ∗(F ) of F is defined as

Φ∗(F ) = {f ∈ BX∗ : f(x) = 1 for each x ∈ F},
while the prefacear Φ∗(G) of G is defined as

Φ∗(G) = {x ∈ BX : f(x) = 1 for each f ∈ G}
for each G ∈ F∗(X∗). We note that Φ∗(F ) ∈ F∗(X∗) and Φ∗(G) ∈ F(X) whenever
F ∈ F(X) and G ∈ F∗(X∗).

A C∗-algebra A is a complex Banach algebra with involution x �→ x∗ satisfying
the Gelfand-Naimark axiom ‖x∗x‖ = ‖x‖2 for each x ∈ A. Let A be a C∗-algebra.
An element x of A is said to be self-adjoint if x∗ = x, and is said to be positive,
denoted by x ≥ 0, if x = y2 for some self-adjoint element y of A. Let ρ ∈ A∗. Then,
the formula ρ∗(x) = ρ(x∗) defines an element of A∗. We say that ρ is hermitian
if ρ∗ = ρ, and is positive if ρ(x) ≥ 0 whenever x ≥ 0. In particular, a positive
linear functional ρ on A with ‖ρ‖ = 1 is called a state of A. Let S(A) denote
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the family of all states of A, and let P(A) = ext(S(A)). An element of P(A) is
called a pure state of A. If A is unital, then S(A) = {ρ ∈ A∗ : ρ(1) = ‖ρ‖ = 1}
[12, Theorem 4.3.2]. We also note that the sets Asa = {x ∈ A : x∗ = x} and
(A∗)sa = {ρ ∈ A∗ : ρ∗ = ρ} form real Banach spaces. Moreover, since A = 〈Asa〉
and ‖ρ‖ = sup{|ρ(x)| : x ∈ BAsa

} for each ρ ∈ (A∗)sa, we obtain (A∗)sa = A∗
sa

under the (real-linear) isometric isomorphism ρ �→ ρ|Asa.
Let A,B be C∗-algebras. A mapping ϕ : A → B is called a ∗-homomorphism

if it is an algebra homomorphism and ϕ(x∗) = ϕ(x)∗ for each x ∈ A. A bijective
∗-homomorphism is called a ∗-isomorphism. If B is the C∗-algebra B(H) of all
bounded linear operators on a complex Hilbert space H, then a ∗-homomorphism
ϕ : A → B(H) is called a ∗-representation of A on H. An injective ∗-representation
is said to be faithful. If ρ ∈ S(A), then we can generate a ∗-representation πρ of
A by the Gelfand-Naimark-Segal construction [6, Theorem I.9.6]. More precisely,
for each ρ ∈ S(A), there exists a ∗-representation πρ of A on a Hilbert space Hρ

with a unit cyclic vector ξρ for πρ (that is, ‖ξρ‖ = 1 and πρ(A)ξρ = Hρ) such
that ρ(x) = 〈πρ(x)ξρ, ξρ〉 for each x ∈ A, where πρ(A)ξρ = {πρ(x)ξρ : x ∈ A}.
It is known that the universal representation

∑
ρ∈S(A) ⊕πρ of A on the Hilbert

space
∑

ρ∈S(A) ⊕Hρ is faithful; hence, each C∗-algebra can be considered as a C∗-

subalgebra of B(H) for some complex Hilbert space H [6, Theorem I.9.12].
Let H be a complex Hilbert space. If ξ, ζ ∈ H, then the formulas pξ(T ) = ‖Tξ‖

and qξ,ζ(T ) = |〈Tξ, ζ〉| define seminorms on B(H). The topology on B(H) induced
by the (separating) family of seminorms {pξ : ξ ∈ H} is called the strong-operator
topology, while the family {qξ,ζ : ξ, ζ ∈ H} induces the weak-operator topology on
B(H). A von Neumann algebra is a weak-operator closed C∗-subalgebra of B(H)
containing the unit of B(H). Let A be a von Neumann algebra acting on H. Then,
a functional ρ on A is said to be normal if it is weak-operator continuous on BA.
In particular, each functional on B(H) of the form T �→ 〈Tξ, ζ〉, where ξ, ζ ∈ H,
is restricted to a normal functional on A. The set A∗ of all normal functionals
on A is a norm-closed subspace of A∗. For each x ∈ A and each ρ ∈ A∗, let
ϕx(ρ) = ρ(x). Then, the mapping x �→ ϕx is an isometric isomorphism from A
onto (A∗)

∗ whose restriction to BA is a weak-operator to weak∗ homeomorphism
from BA onto B(A∗)∗ [13, Theorem 7.4.2]. The Banach space A∗ is called the predual
of A. Now, let (A∗)sa = A∗ ∩ (A∗)sa. We can see that the mapping x �→ ϕx|(A∗)sa
is an isometric isomorphism from Asa onto (A∗)

∗
sa whose restriction to BAsa

is a
weak-operator to weak∗ homeomorphism from BAsa

onto B(A∗)∗sa
. Based on this

identification, we represent (A∗)sa by the symbol (Asa)∗.
The notion of geometric structure spaces of Banach spaces plays central roles

in this paper. Let X be a Banach space. For each maximal face F of BX , let
IF =

⋃
f∈Φ∗(F ) ker f . The geometric structure space S(X) of X is defined as the

set

S(X) = {IF : F is a maximal face of BX}
equipped with the closure operator S �→ S= given by

S= = {I ∈ S(X) :
⋂

J∈S J ⊂ I}.
We remark that the closure operator onS(X) does not induce a topology in general.
The geometric space S(X) of X is said to be topologizable if the closure operator
S �→ S= satisfies the Kuratowski closure axioms, or equivalently, if the set C(X) =
{S ⊂ S(X) : S= = S} satisfies the axioms of closed sets. The following two results
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on topologizability of geometric structure spaces will be useful in the rest of this
paper; see [21, Corollary 4.12, and Theorem 5.2].

Theorem 2.1. Let X be a Banach space. If S(X) is topologizable, then S ∈ C(X)
for each finite subset S of S(X).

Theorem 2.2. Let K be a locally compact Hausdorff space. Then, S(C0(K)) is
topologizable, and is homeomorphic to K.

Remark 2.3. Theorem 2.2 is valid for both the real and complex cases.

The readers interested in geometric structure spaces of Banach spaces are referred
to [21, 22].

3. A characterization of abelian C∗
-algebras

The aim of this section is to obtain a purely Banach space theoretical charac-
terization of abelian C∗-algebras. To this end, we make use of geometric structure
spaces of Banach spaces. We begin with identifying the set S(A) for a C∗-algebra
A with the help of the detailed study on facial structure in operator algebras that
was conducted by Edwards and Rüttimann [7] and Akemann and Pedersen [2].

Theorem 3.1 ([2, 1992]). Let A be a C∗-algebra. Then, the facear mapping F �→
Φ∗(F ) is an order reversing isomorphism from F(A) onto F∗(A∗) (or F(Asa) onto
F∗(A∗

sa)) with its inverse G �→ Φ∗(G).

We note that if C is a compact subset of a locally convex space X and D is a
closed minimal face of D, then D is a singleton of an extreme point of C. Indeed,
a compact convex set D has an extreme point x, and {x} is a (closed) face of C
since D is a face of C. Hence, x ∈ ext(C) and D = {x} holds by the minimality of
D. This fact is used in the proof of Proposition 3.2.

Proposition 3.2. Let A be a C∗-algebra, and let X ∈ {A,Asa}. Then, S(X) =
{ker ρ : ρ ∈ ext(BX∗)}.

Proof. By Theorem 3.1, a subset F of BX is a maximal face of BX if and only if
Φ∗(F ) = {ρ} for some ρ ∈ ext(BX∗). Hence, we have

S(X) = {IF : F is a maximal face of BX}
= {ker ρ : ρ ∈ ext(BX∗)},

as desired. �

To obtain a characterization of abelian C∗-algebras in terms of their geometric
structure spaces, some auxiliary results will be needed. First, we recall that if
ρ ∈ A∗ is hermitian, then ‖ρ‖ = ‖ρ|Asa‖. Indeed, for any ε > 0, there exists an
x ∈ BA such that ‖ρ‖ − ε < ρ(x). Since ρ is hermitian, setting y = 2−1(x + x∗)
yields that y ∈ BAsa

, and ρ(y) = 2−1(ρ(x) + ρ(x∗)) = Re ρ(x) = ρ(x), that is,
‖ρ‖ − ε < ρ(x) = ρ(y) ≤ ‖ρ|Asa‖. Hence, we have ‖ρ‖ ≤ ‖ρ|Asa‖. The converse
inequality is obvious. This fact is used in the proof of Lemma 3.3.

Lemma 3.3. Let A be a C∗-algebra, and let ρ be a pure state of A. Then, ρ|Asa ∈
ext(BA∗

sa
).
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Proof. Suppose that ρ|Asa = tρ1 + (1 − t)ρ2 for some ρ1, ρ2 ∈ BA∗
sa

and some
t ∈ (0, 1). Let

ρj(x) = ρj

(
x+ x∗

2

)
+ iρj

(
x− x∗

2i

)

for each x ∈ A and j = 1, 2. Then, ρ1, ρ2 ∈ BA∗ and ρ = tρ1 + (1 − t)ρ2, which
implies that ρ = ρ1 = ρ2 since ρ is pure. Thus, ρ|Asa = ρ1 = ρ2. This proves that
ρ|Asa ∈ ext(BA∗

sa
). �

It is known that an element ρ of A∗ is a state of A if and only if limλ ρ(eλ) = 1 =
‖ρ‖, where (eλ)λ is any approximate unit for A; see [6, Lemmas I.9.5 and I.9.9].
From this, we obtain another auxiliary result.

Lemma 3.4. Let A be a C∗-algebra, and let ρ, τ be states of A. Then, the following
are equivalent:

(i) ρ = τ .
(ii) ker ρ = ker τ .
(iii) ker(ρ|Asa) = ker(τ |Asa).

Proof. It is sufficient to show that (iii) ⇒ (i). If ker(ρ|Asa) = ker(τ |Asa) holds,
then ρ|Asa = λτ |Asa for some λ. Moreover, since ρ, τ are states of A, we obtain
lima ρ(ea)a = lima τ (ea) = 1 for an approximate unit (ea)a for A. In particular,
(ea)a ⊂ Asa implies that λ = 1. From this, ρ|Asa = τ |Asa, which together with
A = 〈Asa〉 implies that ρ = τ . �

Now, we prove the main theorem in this paper.

Theorem 3.5. Let A be a C∗-algebra. Then, the following are equivalent:

(i) A is abelian.
(ii) Asa is abelian.
(iii) S(A) is topologizable.
(iv) S(Asa) is topologizable.

Proof. It is obvious that (i) ⇔ (ii) since A = 〈Asa〉. Moreover, if A is abelian,
then the Gelfand-Naimark theorem ensures that A is ∗-isomorphic to C0(K) for
some locally compact Hausdorff space K, in which case Asa corresponds to the
real subspace of C0(K) consisting of all real-valued continuous functions on K that
vanish at infinity. Combining this with Theorem 2.2, we can conclude that S(A)
and S(Asa) are both topologizable. Hence, the implications (i) ⇒ (iii) and (i) ⇒
(iv) hold true.

To prove the implications (iii) ⇒ (i) and (iv) ⇒ (i), suppose that A is not
abelian. Since the ∗-representation

∑
ρ∈P(A) ⊕πρ of A is faithful [6, Proof of Corol-

lary I.9.13], there exists a pure state ρ of A such that πρ(A) is not abelian, where
πρ is the ∗-representation of A obtained from ρ by the Gelfand-Naimark-Segal con-
struction. Let Hρ be a complex Hilbert space on which πρ(A) acts, and let ξρ be
a cyclic vector for πρ such that ρ(a) = 〈πρ(a)ξρ, ξρ〉 for each a ∈ A. Since ρ is
pure, the representation πρ is irreducible [16, Theorem 5.1.6 (1)], and hence, πρ(A)
is strong-operator dense in B(Hρ) [16, Theorems 4.1.12 and 5.1.5]. In particular,
dimHρ ≥ 2 because πρ(A) is not abelian. Moreover, each nonzero vector ξ ∈ Hρ

is cyclic for πρ. Indeed, since πρ(A) acts irreducibly on Hρ, we have a u ∈ A
such that πρ(u)ξ = ξρ. This shows that πρ(A)ξρ ⊂ πρ(A)ξ, which implies that

πρ(A)ξ = Hρ. Therefore, by [16, Theorem 5.1.7], the formula ρξ(x) = 〈πρ(x)ξ, ξ〉
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defines a pure state of A for each ξ ∈ SHρ
. We note that, for ξ, ζ ∈ SHρ

, the
following are equivalent:

(a) ρξ|Asa = ρζ |Asa.
(b) ρξ = ρζ .
(c) 〈Tξ, ξ〉 = 〈Tζ, ζ〉 for each T ∈ B(Hρ).
(d) {ξ, ζ} is linearly dependent.

Here, (b) ⇒ (c) follows from the fact that πρ(A) is strong-operator dense in B(Hρ).
If (c) holds, the rank one projection Eζ onto 〈{ζ}〉 satisfies ‖Eζξ‖2 = 〈Eζξ, ξ〉 =
〈Eζζ, ζ〉 = 1. Hence, it follows that ξ = Eζξ ∈ 〈{ζ}〉, that is, (c) ⇒ (d). The other
implications are obvious.

Suppose that ξ0 is a unit vector in Hρ such that ξρ ⊥ ξ0. For each (s, λ) ∈
[0, 1] × C with s2 + |λ|2 = 1, let ξ(s,λ) = sξρ + λξ0. If (t, μ) ∈ [0, 1] × C, and if

t2 + |μ|2 = 1, then {ξ(s,λ), ξ(t,μ)} is linearly dependent if and only if (s, λ) = (t, μ).

Set p1 = (1, 0), p2 = (0, 1), p3 = 2−1/2(1, 1) and p4 = 2−1/2(1, i). Then, there are
infinitely many (s, λ) ∈ [0, 1]× C with s2 + |λ|2 = 1 such that ρξ(s,λ)

	= ρξpj for all

j ∈ {1, 2, 3, 4}.
Now, let X ∈ {A,Asa}. To show that S(X) is not topologizable, suppose to

the contrary that the closure operator S �→ S= satisfies the Kuratowski closure
axioms. Then, each finite subset S of S(X) satisfies S= = S by Theorem 2.1. Set
S = {ker(ρξpj |X) : j = 1, 2, 3, 4}. We note that S ⊂ S(X) by Lemma 3.3. Take an

arbitrary (s, λ) ∈ [0, 1]×C with s2+ |λ|2 = 1. If x ∈
⋂4

j=1(ker ρξpj |X), then we get

(ρξp1 |X)(x) = 〈πρ(x)ξρ, ξρ〉 = 0,

(ρξp2 |X)(x) = 〈πρ(x)ξ0, ξ0〉 = 0,

(ρξp3 |X)(x) = 2−1〈πρ(x)(ξρ + ξ0), ξρ + ξ0〉 = 0, and

(ρξp4 |X)(x) = 2−1〈πρ(x)(ξρ + iξ0), ξρ + iξ0〉 = 0.

It follows that

〈πρ(x)ξρ, ξρ〉 = 〈πρ(x)ξ0, ξ0〉 = 〈πρ(x)ξρ, ξ0〉 = 〈πρ(x)ξ0, ξρ〉 = 0,

and hence, (ρξ(s,λ)
|X)(x) = 0. This shows that ker(ρξ(s,λ)

|X) ∈ S= = S, that is,

by Lemma 3.4, ρξ(s,λ)
|X = ρξpj |X for some j ∈ {1, 2, 3, 4}. However, as was noted

in the preceding paragraph, there are (infinitely many) (s, λ) ∈ [0, 1] × C with
s2+ |λ|2 = 1 such that ρξ(s,λ)

	= ρξpj for all j ∈ {1, 2, 3, 4}, which is a contradiction.

Thus, S(X) cannot be topologizable. This proves the implications (iii) ⇒ (i) and
(iv) ⇒ (i). �

We conclude this section with an application of Theorem 3.5 to the theory of
geometric nonlinear classification of Banach spaces. Recall that an element x of a
Banach space X over K is said to be Birkhoff-James orthogonal to another y ∈ X,
denoted by x ⊥BJ y, if ‖x+λy‖ ≥ ‖x‖ for each λ ∈ K. The Birkhoff-James orthog-
onality is a generalization of orthogonality in Hilbert spaces from the viewpoint
of best approximation that was first introduced by Birkhoff [4] and was studied
in detail by James [8, 9]; see [3] for a comprehensive survey of generalized or-
thogonality types in Banach spaces. The geometric structure of Banach spaces is
closely related to the behavior of Birkhoff-James orthogonality in them. Recently,
in [20,21], some results on the classification of Banach spaces based on the structure
of Birkhoff-James orthogonality were given. More precisely, the classes of classical
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sequence spaces and spaces of continuous functions were classified by using a non-
linear equivalence “∼BJ ,” where we declare that X ∼BJ Y for Banach spaces X
and Y if there exists a Birkhoff-James orthogonality preserver T : X → Y , that is,
if there exists a bijection T : X → Y such that x ⊥BJ y if and only if Tx ⊥BJ Ty.
A key ingredient of the theory is the fact that each Birkhoff-James orthogonality
preserver induces a homeomorphism between geometric structure spaces. Recall
that a mapping Φ : S(X) → S(Y ) is called a homeomorphism if Φ(S=) = Φ(S)=

for each S ⊂ S(X), and that X and Y are said to be isomorphic with respect to
geometric structure spaces, denoted by X ∼S Y , if there exists a homeomorphism
Φ : S(X) → S(Y ). With this notation, X ∼BJ Y implies that X ∼S Y [21, The-
orem 3.10]. Moreover, it is also known that the topologizability of a geometric
structure space is preserved under homeomorphisms [21, Theorem 3.11].

Now, we present an application of Theorem 3.5.

Corollary 3.6. Let A,B be C∗-algebras. Suppose that either A or B is abelian.
Then, the following are equivalent:

(i) A and B are ∗-isomorphic.
(ii) A ∼BJ B.
(iii) A ∼S B.
(iv) Asa and Bsa are isometrically isomorphic.
(v) Asa ∼BJ Bsa.
(vi) Asa ∼S Bsa.

Proof. Since every isometric isomorphism is a Birkhoff-James orthogonality pre-
server, the implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) ⇒ (iv) hold true. More-
over, it is clear that (i) ⇒ (iv). Hence, to complete the proof, it is sufficient to show
that (iii) ⇒ (i) and (vi) ⇒ (i). We may assume that A is abelian. By the Gelfand-
Naimark theorem, A is ∗-isomorphic to C0(K) for some locally compact Hausdorff
space K. In this case, by Theorem 2.2, both S(A) and S(Asa) are topologizable,
and homeomorphic to K. In particular, if either (iii) or (vi) holds, then S(B) or
S(Bsa) is topologizable. Combining this with Theorem 3.5, we can conclude that
B is also abelian. Now, let L be a locally compact Hausdorff space such that B is
∗-isomorphic to C0(L). Then, again by Theorem 2.2, both S(B) and S(Bsa) are
homeomorphic to L, which together with A ∼S B (or Asa ∼S Bsa) implies that K
and L are homeomorphic. Thus, the implications (iii) ⇒ (i) and (vi) ⇒ (i) hold
true. This completes the proof. �

Remark 3.7. Corollary 3.6 does not extend to general C∗-algebras. Indeed, we know
that every Jordan ∗-isomorphism between C∗-algebras is an isometric isomorphism
preserving the self-adjoint parts. Hence, if A and B are Jordan ∗-isomorphic but
not ∗-isomorphic C∗-algebras, then (ii) to (vi) are true but (i) is false.

4. The case of preduals

This section is devoted to showing that the predual version of Theorem 3.5 does
not hold. In fact, the criterion for topologizability of geometric structure spaces of
preduals of von Neumann algebras is much stricter than that of C∗-algebras.

As in the case of C∗-algebras, we begin with identifying the sets S(A∗) and
S((Asa)∗) for a von Neumann algebra A. The main tool used here is the following
result by Edwards and Rüttimann [7]; see also Akemann and Pedersen [2].
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Theorem 4.1 ([7, 1988]; [2, 1992]). Let A be a von Neumann algebra. Then, the
facear mapping G �→ Φ∗(G) is an order reversing isomorphism from F(A∗) onto
F∗(A) (or F((A∗)sa) onto F∗(Asa)) with its inverse F �→ Φ∗(F ).

By the exact same argument as that in the proof of Proposition 3.2, we obtain
the following result.

Lemma 4.2. Let A be a von Neumann algebra, and let X ∈ {A,Asa}. Then,
S(X∗) = {kerϕx ∩X∗ : x ∈ ext(BX)}, where ϕx is an element of (A∗)

∗ given by
ϕx(ρ) = ρ(x) for each ρ ∈ A∗.

We also make use of the following characterization of extreme points of the unit
ball of (the real part of) a C∗-algebra; see, for example, [13, Theorem 7.3.1 and
Proposition 7.4.6].

Theorem 4.3. Let A be a unital C∗-algebra, and let v ∈ BA. Then, the following
hold:

(i) v ∈ ext(BA) if and only if v is a partial isometry such that

(1− vv∗)A(1− v∗v) = {0}.

(ii) v ∈ ext(BAsa
) if and only if v = 2e− 1 for some projection e ∈ A.

Remark 4.4. If v = 2e− 1 for some projection e, then v is self-adjoint and unitary.
Hence, it follows from Theorem 4.3 (i) that v ∈ ext(BA). Namely, ext(BAsa

) ⊂
ext(BA).

Let A be a von Neumann algebra acting on a Hilbert space H, and let ξ ∈ H.
Then, the functional ωξ on A defined by ωξ(x) = 〈xξ, ξ〉 belongs to (Asa)∗. We
note that if x, y ∈ B(H) satisfies ωξ(x) = ωξ(y) for each ξ ∈ H, then x = y by the
polarization identity.

In contrast to the case of C∗-algebras, there are few examples of von Neumann
algebras A such that S(A) or S(Asa) is topologizable. First, we consider the
predual of a von Neumann algebra.

Theorem 4.5. Let A be a von Neumann algebra. Then, S(A∗) is topologizable if
and only if A = C.

Proof. Suppose that A acts on a Hilbert space H. If A = C, then A∗ = A∗ = C;
in this case, C(A∗) satisfies the axioms of closed sets by Theorem 3.5. Conversely,
if A 	= C, then there exists a projection e ∈ A such that 0 < e < 1. Let u =
2e − 1 and v = (1− i)e − 1. We note that 1, u, v ∈ ext(BA) by Theorem 4.3 since
they are unitary elements of A. Moreover, for each ρ ∈ kerϕ1 ∩ kerϕu, we have
ρ(1) = ρ(u) = 0, which implies that ρ(e) = 0. Hence, it follows that ρ(v) = 0;
that is, kerϕv ∈ {kerϕ1, kerϕu}=. Meanwhile, if ξ ∈ Se(H) and ζ ∈ S(1−e)(H),
then ωξ − ωζ ∈ kerϕ1 \ kerϕv, while ωξ + ωζ ∈ kerϕu \ kerϕv. This means that
kerϕv 	∈ {kerϕ1, kerϕu}. Therefore, {kerϕ1, kerϕu} 	∈ C(A∗). Combining this
with Theorem 2.1, we see that S(A∗) is not topologizable. �

Next, we consider the case of real parts. Then, an auxiliary result will be needed.

Lemma 4.6. Let A be a von Neumann algebra. If A contains three mutually
orthogonal nonzero projections e1, e2, e3, then S((Asa)∗) is not topologizable.
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Proof. Suppose that A acts on a Hilbert space H. Replacing e3 with 1− e1 − e2 if
necessary, we may assume that e1 + e2 + e3 = 1. Let vj = 2ej − 1 for j = 1, 2, 3.
Then, v1, v2, v3 ∈ ext(BAsa

) by Theorem 4.3 (ii). If ρ ∈ kerϕ1 ∩ kerϕv1 ∩ kerϕv2 ,
we have ρ(1) = ρ(v1) = ρ(v2) = 0. It follows that ρ(e1) = ρ(e2) = 0, and hence,

ρ(v3) = ρ(2(1− e1 − e2)− 1) = ρ(1)− 2ρ(e1)− 2ρ(e2) = 0.

This shows that kerϕv3 ∩ (Asa)∗ ∈ {kerϕ1 ∩ (Asa)∗, kerϕv1 ∩ (Asa)∗, kerϕv2 ∩
(Asa)∗}=. Meanwhile, if ξj ∈ Sej(H) for j = 1, 2, 3, then ωξ1 −ωξ3 ∈ kerϕ1 \kerϕv3 ,
while ωξ1 + ωξ2 ∈ (kerϕv1 ∩ kerϕv2) \ kerϕv3 . Therefore, kerϕv3 ∩ (Asa)∗ 	∈
{kerϕ1 ∩ (Asa)∗, kerϕv1 ∩ (Asa)∗, kerϕv2 ∩ (Asa)∗}, which proves that

{kerϕ1 ∩ (Asa)∗, kerϕv1 ∩ (Asa)∗, kerϕv2 ∩ (Asa)∗} 	∈ C((Asa)∗).

Combining this with Theorem 2.1, we see that C((Asa)∗) does not satisfy the axioms
of closed sets. �

We conclude this paper with Theorem 4.7.

Theorem 4.7. Let A be a von Neumann algebra. Then, S((Asa)∗) is topologizable
if and only if A = C or A = �2∞.

Proof. Suppose that S((Asa)∗) is topologizable. Then, by Lemma 4.6, A does
not contain three or more orthogonal nonzero projections. Hence, we have A ∈
{C, �2∞,M2(C)} by considering the type decomposition for A; see [13, Section 6.5].

Suppose that A = M2(C). For each x ∈ M2(C), let ‖x‖1 = σ1(x)+σ2(x), where
σ1(x), σ2(x) are the singular values of x. Set ψy(x) = tr(xy) for each x, y ∈ M2(C).
Then, it is known that the mapping y �→ ψy is an isometric isomorphism from
(M2(C), ‖ · ‖1) onto A∗ = A∗. Moreover, we have ψ∗

y = ψy∗ for each y ∈ M2(C),
which implies that (Asa)∗ = {ψy : y ∈ M2(C)sa}. Now, let

e1 =

[
1 0
0 1

]
, e2 =

[
1 0
0 −1

]
, e3 =

[
0 1
1 0

]
, e4 =

[
0 i
−i 0

]
.

Then, e1, e2, e3, e4 are all self-adjoint unitaries in A; hence, by Theorem 4.3, they
are extreme points of BAsa

. Moreover, if ψy ∈ (Asa)∗ satisfies y ∈
⋂4

j=1 kerϕej ,

then y = 0. This shows that {kerϕej ∩ (Asa)∗ : j = 1, 2, 3, 4}= = S((Asa)∗).
Meanwhile, setting

u =
1√
2

[
1 1
1 −1

]
,

we have u ∈ ext(BAsa
), ψe2 ∈ (kerϕe1 ∩ kerϕe3 ∩ kerϕe4) \ kerϕu, and ψe3 ∈

kerϕe2 \ kerϕu. Since ψe2 , ψe3 ∈ (Asa)∗, we derive that

kerϕu ∩ (Asa)∗ 	∈ {kerϕej ∩ (Asa)∗ : j = 1, 2, 3, 4}.

Thus, {kerϕej ∩ (Asa)∗ : j = 1, 2, 3, 4} 	∈ C((Asa)∗). From this and Theorem 2.1, it
turns out that S((Asa)∗) is not topologizable. This proves that A 	= M2(C).

For the converse, if A = C then A∗ = A∗ = C, in which case we have (Asa)∗ =
R = Asa. Hence, by Theorem 3.5, S((Asa)∗) is topologizable. Next, suppose that
A = �2∞. Then, A∗ = A∗ = �21 and (Asa)∗ = �21 ∩ R2. Since T (a, b) = (a+ b, a − b)
defines an isometric isomorphism T : �21 ∩ R

2 → �2∞ ∩ R
2, it follows that (Asa)∗ =

�2∞ ∩ R2 = (�2∞)sa. Thus, again by Theorem 3.5, S((Asa)∗) is topologizable. This
completes the proof. �
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