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Abstract. Let G be a finite simple graph and let IG denote its associated
toric ideal in the polynomial ring R. For each integer n ≥ 2, we completely
determine all the possible values for the tuple (reg(R/IG),deg(hR/IG

(t)),

pdim(R/IG), depth(R/IG), dim(R/IG)) when G is a connected bipartite graph
on n vertices.

1. Introduction

Let I be a homogeneous ideal of a polynomial ring S = K[x1, . . . , xm] over an
algebraically closed field K of characteristic zero. Associated with I are a number
of homological invariants that are encoded in the minimal graded free resolution of
S/I; some of these invariants are the (Castelnuovo–Mumford) regularity reg(S/I),
the projective dimension pdim(S/I), the (Krull) dimension dim(S/I), the depth
depth(S/I) and deg(hS/I(t)), the degree of the h-polynomial of S/I. Four of these
invariants are related by the inequality

reg(S/I)− deg(hS/I(t)) ≤ dim(S/I)− depth(S/I)

(see, for example [25, Corollary B.28]), while the depth and projective dimension
are related via the well-known Auslander–Buchsbaum formula.

A recent program in combinatorial commutative algebra is to understand what
possible pairs (or tuples) of these invariants can be realized for specific families of
ideals, most notably, ideals that are defined combinatorially (e.g., edge ideals, bino-
mial edge ideals, and toric ideals of graphs). This circle of problems was introduced
by Hibi, Higashitani, Kimura, and O’Keefe [12], who compared the depth and di-
mension of toric ideals of graphs, and Hibi and Matsuda [15, 16], who first showed
that for any pair r, d of positive integers, there exists a (lexsegment) monomial ideal
I with (r, d) = (reg(S/I), deg(hS/I(t))). Hibi, Matsuda, and Van Tuyl [18] later
showed a similar result for the edge ideals of graphs. An investigation of the pos-
sible pairs (reg(S/I), deg(hS/I(t))) for other families of ideals soon followed, most
notably, for binomial edge ideals [17, 21, 22] and toric ideals of graphs [6]. Other
recent work has focused on determining the possible pairs (reg(S/I), pdim(S/I))
[9], the pairs (depth(S/I), dim(S/I)) [13, 19], and comparisons of the multiplicity
of S/I to reg(S/I) and deg(hS/I(t)) [23] when I is an edge ideal.
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Hibi, Kimura, Matsuda, and Van Tuyl [14] introduced a variation of this problem
by asking if we can completely describe all pairs (reg(S/I), deg(hS/I(t))) if we
restrict to edge ideals of connected graphs on n vertices; in the case of Cameron–
Walker graphs, they were able to answer this question. In a related direction, Erey
and Hibi [5] completely described all the possible pairs (reg(S/I), pdim(S/I)) as I
varies over all the edge ideals of connected bipartite graphs on n vertices. Recently,
Ficarra and Sgroi [7] gave an almost complete description of (reg(S/I), pdim(S/I))
for the case of binomial edge ideals of graphs on n non-isolated vertices. Inspired
by [5,7], in this paper we characterize the values of the invariants that can occur if
I is the toric ideal of a connected bipartite graph on n vertices.

We introduce some notation to describe our results. Let G = (V,E) be a finite
simple graph with edge set E = {e1, . . . , eq} and vertex set V = {v1, . . . , vn}. Define
a K-algebra homomorphism ϕ : R = K[e1, . . . , eq] → K[v1, . . . , vn] by ϕ(ei) = vjvk
if ei = {vj , vk} ∈ E. The toric ideal of G, denoted IG, is the kernel of ϕ. The
graph G is a bipartite graph if there exists V1, V2 ⊆ V such that V = V1 ∪ V2 and
V1 ∩V2 = ∅ with the property that every e ∈ E has an endpoint in both V1 and V2.
We define CBPTreg,deg,pdim,depth,dim(n) to be the set
⎧⎨
⎩(reg(R/IG),deg(hR/IG(t)),pdim(R/IG),depth(R/IG),dim(R/IG))

∣∣∣∣∣∣
G is a connected
bipartite graph
on n vertices

⎫⎬
⎭ .

Our main result is a complete characterization of the elements in the above set:

Theorem 1.1. Let n ≥ 2. Then CBPTreg,deg,pdim,depth,dim(n) is given by{
(r, r, p, n− 1, n− 1)

∣∣∣ 0<r<
⌊n
2

⌋
, 1≤p≤r(n− 2− r)

}
∪{(0, 0, 0, n− 1, n− 1)}.

Notice that Theorem 1.1 describes all five invariants; the only other result similar
to Theorem 1.1 is a result of Hibi, Kanno, Kimura, Matsuda, and Van Tuyl [13]
which described four of these invariants for the edge ideals of Cameron–Walker
graphs.

The proof of Theorem 1.1 requires both new and old results. Recent work of Al-
mousa, Dochtermann, and Smith [1] allows us to bound the regularity of toric ideals
of bipartite graphs by looking at subgraphs. We also require an old graph theory
result of Jackson [20] on the existence of cycles in bipartite graphs, which enables
us to find an upper bound on the number of edges of G in terms of the regularity of
R/IG (see Lemma 3.4). Note that it is well-known that the toric ideals of bipartite
graphs are Cohen–Macaualy; consequently, dim(R/IG) = depth(R/IG) = n−1 (cf.
[27, Corollary 10.1.21]) and deg(hR/IG(t)) = reg(R/IG) (cf. [25, Corollary B.28]).
Consequently, proving Theorem 1.1 is equivalent to proving what values the reg-
ularity and projective dimension can obtain; these details are given in Theorem
3.5.

Our paper is structured as follows. In Section 2 we recall the relevant background
on graph theory, commutative algebra, and toric ideals of graphs. In Section 3, we
focus on the regularity and projective dimension of toric ideals of bipartite graphs.
In Section 4 we combine the previous results of the paper to prove Theorem 1.1.

2. Background

Throughout this paper K will denote an algebraically closed field of characteristic
zero. In this section we collect the facts needed to prove our main results.
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2.1. Graph theory. We recall the relevant graph theory terminology. A finite
simple graph (or a graph) G = (V (G), E(G)) consists of a non-empty finite set
V (G) = {v1, . . . , vn}, called the vertices, and a finite set E(G) = {e1, . . . , eq} ⊆
{{u, v} | u, v ∈ V (G), u 
= v} of distinct unordered pairs of distinct elements of
V (G), called the edges. We sometimes write V (resp. E) for V (G) (resp. E(G)) if
G is clear from the context. A graph H = (V (H), E(H)) is said to be a subgraph
of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). In this case, we say that G
contains H and write H ⊆ G.

A walk of G is a sequence of edges w = (e1, e2, . . . , em), where each ei =
{ui1 , ui2} ∈ E and ui2 = u(i+1)1

for each i = 1, . . . ,m− 1. Equivalently, a walk is a

sequence of vertices (u1, . . . , um, um+1) such that {ui, ui+1} ∈ E for all i = 1, . . . ,m.
Here, m is referred to as the length of the walk. A walk is even if m is even, and
it is closed if um+1 = u1. Two vertices u and v are said to be connected if there
is a walk between them. A graph G is said to be connected if every two distinct
vertices of G are connected. A connected component of G is a maximal connected
subgraph of G.

A cycle of a graph G is a closed walk (u1, . . . , um, um+1 = u1) of vertices of G
(with m ≥ 3) such that the only vertices in the walk that are not pairwise distinct
are u1 and um+1. A cycle of length m is called an m-cycle. The m-cycle graph,
denoted Cm, is the graph with the vertex set V (Cm) = {v1, . . . , vm} and edge set
E(Cm) = {{v1, v2}, {v2, v3}, . . . , {vm−1, vm}, {vm, v1}}. A tree is a connected graph
that contains no cycles; a forest is a graph where each connected component is a
tree.

We are primarily interested in bipartite graphs. A graph G = (V,E) is bipartite if
there exists a partition (or bipartition) V = V1∪V2 with V1, V2 ⊆ V and V1∩V2 = ∅
such that every edge of E joins a vertex in V1 and a vertex in V2. Given a, b ≥ 1,
the complete bipartite graph, Ka,b, is the graph with partition V = {x1, . . . , xa} ∪
{y1, . . . , yb} and edge set {{xi, yj} | 1 ≤ i ≤ a, 1 ≤ j ≤ b}. Note that Cm is a
bipartite graph if and only if m is even. All trees and forests are also bipartite
graphs.

A matching of a graph G is a collection of pairwise non-adjacent edges of G. The
matching number of G, denoted mat(G), is the largest size of any matching of G.
Note that if G is a bipartite graph, then it is straightforward to verify that

(2.1) mat(G) ≤
⌊
|V (G)|

2

⌋
.

The following result, which determines the existence of cycles in a bipartite
graph, will play a pivotal role in later results.

Theorem 2.1 ([20, Theorem 3]). Let m ≥ 2 be an integer, and let G be a bipartite
graph with bipartition V = A ∪B, where |A| = a, |B| = b, and 2 ≤ m ≤ a ≤ b. If

|E(G)| >
{
a+ (b− 1)(m− 1), a ≤ 2m− 2,

(a+ b− 2m+ 3)(m− 1), a ≥ 2m− 2,

then G contains a cycle of length at least 2m.

2.2. Commutative algebra. Our goal is to compare a number of homological
invariants. We recall their definitions and some properties. Let S = K[x1, . . . , xm]
and let I be a homogeneous ideal of S. The minimal graded free resolution of S/I
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has the form:

0 →
⊕
j

S(−j)βp,j(S/I) →
⊕
j

S(−j)βp−1,j(S/I) → · · ·

→
⊕
j

S(−j)β1,j(S/I) → S → S/I → 0

where βi,j(S/I) denotes the (i, j)-th graded Betti number of S/I.
Two of the invariants that we will consider are encoded into this resolution. The

(Castelnuovo–Mumford) regularity of S/I is defined to be

reg(S/I) = max{j − i | βi,j(S/I) 
= 0}.
The projective dimension of S/I is the length of the minimal graded free resolution,
i.e.,

pdim(S/I) = max{i | βi,j(S/I) 
= 0 for some j}.
The Hilbert series of S/I is the formal power series

HSS/I(t) =
∑
i≥0

[dimK(S/I)i]t
i

where dimK(S/I)i is the dimension of the ith graded piece of S/I.
The depth of S/I, denoted depth(S/I), is the length of any maximal regular

sequence of S/I that is contained in the maximal ideal m = 〈x1, . . . , xm〉 ⊂ S. The
(Krull) dimension of S/I, denoted dim(S/I), is the supremum of the lengths of all
chains of prime ideals in S/I. It is well-known that depth(S/I) ≤ dim(S/I) for
all homogeneous ideals I of S. We say S/I is Cohen–Macaulay if depth(S/I) =
dim(S/I).

By the Hilbert–Serre theorem [4, Corollary 4.1.8], there exists a unique poly-
nomial hS/I(t) ∈ Z[t], called the h-polynomial of S/I, such that HSS/I(t) can be
written as

HSS/I(t) =
hS/I(t)

(1− t)dim(S/I)

with hS/I(1) 
= 0. We denote the degree of the h-polynomial hS/I(t) by deg(hS/I(t)).
We want to compare the invariants reg(S/I), pdim(S/I), depth(S/I), dim(S/I),

and deg(hS/I(t)). The following result provides some useful relations among these
invariants.

Theorem 2.2. Let I be a proper homogeneous ideal of S = K[x1, . . . , xm]. Then

(i) pdim(S/I) + depth(S/I) = m;
(ii) if S/I is Cohen-Macaulay, then reg(S/I) = deg(hS/I(t)).

Proof. Statement (i) is a special case of the Auslander–Buchsbaum formula [4,
Theorem 1.3.3]. Statement (ii) is [25, Corollary B.28] (or Corollary B.4.1 in earlier
printings). �

2.3. Toric ideals of graphs. We define the family of ideals that are studied in
this paper and some of their properties. Let G be a graph with vertex set V =
{v1, . . . , vn} and edge set E = {e1, . . . , eq} with q ≥ 1. Let K[V ] = K[v1, . . . , vn]
and K[E] = K[e1, . . . , eq] be polynomial rings in the vertex and edge variables,
respectively. Define a K-algebra homomorphism ϕ : K[E] → K[V ] by ϕ(ei) = vi1vi2
for all ei = {vi1 , vi2} ∈ E, 1 ≤ i ≤ q. The toric ideal of G, denoted IG, is defined
to be the kernel of the homomorphism ϕ.
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Remark 2.3. The ideal IG is called a toric ideal since IG is a prime binomial ideal.
Indeed, the image of ϕ is an integral domain, and since ϕ(K[E]) is isomorphic
to K[E]/IG by the first isomorphism theorem, it follows that IG is a prime ideal.
Theorem 2.5, shows that IG is a binomial ideal. Note that in the definition of IG,
we avoid the case that G has no edges to ensure that K[E] has at least one variable.

Remark 2.4. We write K[G] to denote the quotient ring K[E]/IG. Note that in
the literature (see e.g., [1, 10, 12]), K[G] often denotes the edge ring of G (i.e., the
image im(ϕ) of ϕ). As mentioned in the previous remark, im(ϕ) and K[E]/IG are
isomorphic as rings; however, we must take care when stating results about gradings
on these rings, as they may differ. In all subsequent appearances of the notation
K[G], we have ensured that results from the literature concerning K[G] remain true
under our interpretation.

While the generators of IG are defined implicitly, there is a well-known connection
between the closed even walks of a graph G and a (possibly non-minimal) set of
generators for IG. For a closed even walk Γ = (ei1 , . . . , ei2m) of graph G, we define
a binomial

fΓ = ei1ei3 · · · ei2m−1
− ei2ei4 · · · ei2m .

We can now describe a set of generators of IG.

Theorem 2.5 ([26, Proposition 3.1]). If IG is the toric ideal of a graph G, then

IG = 〈fΓ | Γ is a closed even walk of G〉.
If G is bipartite, then IG = 〈fΓ | Γ is a even cycle of G〉.

We now collect together some facts about the toric ideals of bipartite graphs.
We need a result due to Almousa, Dochtermann, and Smith [1] that allows us to
find bounds on the regularity using subgraphs (while [1] includes the connected
hypothesis, it can be shown that this hypothesis is not required; for our purposes,
we only require the original statement).

Theorem 2.6 ([1, Theorem 6.11]). Suppose G ⊆ Ka,b is a connected bipartite
graph and let G′ ⊆ G be a connected subgraph with at least two vertices. Then
reg(K[G′]) ≤ reg(K[G]).

The next result summarizes some useful results in the literature.

Theorem 2.7. Let G be a connected bipartite graph on n ≥ 2 vertices.

(i) [10, Theorem 1] or [27, Theorem 14.4.19] reg(K[G]) ≤ mat(G)− 1.
(ii) [27, Corollary 10.1.21] dim(K[G]) = n− 1.
(iii) [11, Corollary 5.26] K[G] is Cohen–Macaulay.

We get the following useful facts as corollaries.

Corollary 2.8. Let G be a connected bipartite graph on n ≥ 2 vertices with q edges.

(i) depth(K[G]) = dim(K[G]) = n− 1.
(ii) 0 ≤ deg(hK[G](t)) = reg(K[G]) <

⌊
n
2

⌋
.

(iii) 0 ≤ pdim(K[G]) = q − n+ 1.

Proof. By Theorem 2.7 (iii), the ring K[G] is Cohen–Macaulay. Statement (i)
now follows from the definition of Cohen–Macaulayness and Theorem 2.7 (ii).
For statement (ii), because K[G] is Cohen–Macaulay, Theorem 2.2 (ii) implies
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that deg(hK[G](t)) = reg(K[G]). The inequality follows from Theorem 2.7 (i)
and inequality (2.1). For statement (iii), Theorem 2.2 (i) gives pdim(K[G]) =
q − depth(K[G]) = q − n+ 1 since K[E] has q variables. �

For some special families of graphs, we can give exact values for the regularity.

Lemma 2.9. The following formulas hold:

(i) if G = Ka,b, then reg(K[G]) = min{a, b} − 1;
(ii) if G = C2r with r ≥ 2, then reg(K[G]) = r − 1.

Proof. For (i), see [3, Corollary 4.11]. For (ii), Theorem 2.5 implies IC2r
is a

principal ideal with a minimal generator of degree r. The conclusion follows from
this fact. �

We also require a classification of the toric ideals of bipartite graphs with regu-
larity and projective dimension equal to zero.

Lemma 2.10. Let G be a bipartite graph on n ≥ 2 vertices. Then the following
are equivalent:

(i) G is a forest.
(ii) reg(K[G]) = 0.
(iii) pdim(K[G]) = 0.

Proof. If G is a forest, then G has no even cycles, so IG = 〈0〉 by Theorem 2.5.
Thus reg(K[G]) = pdim(K[G]) = 0. Conversely, if G is not a forest, then G has at
least one even cycle. So, by Theorem 2.5, IG 
= 〈0〉, from which it follows that both
the regularity and projective dimension of K[G] are non-zero. �
Remark 2.11. Lemma 2.10 is only classifying bipartite graphs with regularity and
projective dimension zero. There are non-bipartite graphs whose toric ideals have
regularity and projective dimension zero, e.g., the toric ideals of C2r+1 with r ≥ 1.

Remark 2.12. While we have only highlighted the results about the regularity of
toric ideals of bipartite graphs that we require, we point out that a number of
other results are known from the perspective of the a-invariant (we thank Rafael
Villarreal for pointing out this connection). Given a homogeneous ideal I ⊆ S =
K[x1, . . . , xm], the a-invariant of S/I, denoted a(S/I), is the degree of HSS/I(t)
as a rational function (in lowest terms). So, a(S/I) = deg hS/I(t) − dim(S/I).
When G is a connected bipartite graph, we can use Corollary 2.8 to show that
a(K[G]) = reg(K[G])− n+ 1. Consequently, studying the regularity of toric ideals
of connected bipartite graphs is equivalent to studying their a-invariant. In [24],
Valencia and Villarreal gave a combinatorial interpretation for the a-invariant, and
a linear program to compute this invariant. Also see [27, Section 11.5] for other
properties of a(K[G]); for example, Lemma 2.9 (i) is equivalent to [27, Corollary
11.5.2] which computes the a-invariant for the toric ideal of Ka,b. Remark 4.3 gives
another combinatorial interpretation of reg(K[G]) for bipartite graphs.

3. Comparing the regularity and projective dimension

Let CBPT(n) denote the set of connected bipartite graphs on n vertices. In this
section, we focus on comparing the regularity and projective dimension of the toric
ideals of graphs G with G ∈ CBPT(n). In particular, we describe the set

CBPTpdim
reg (n) = {(reg(K[G]), pdim(K[G])) : G ∈ CBPT(n)}.
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Understanding this set will be key to proving Theorem 1.1.
We begin with a simple inequality that we will use in subsequent lemmas.

Lemma 3.1. Let n and r be integers. If r ≤
⌊
n
2

⌋
− 1, then 0 ≤ n− 2− 2r.

Proof. Observe that r ≤
⌊
n
2

⌋
− 1 ≤ n

2 − 1 = n−2
2 . Hence 2r ≤ n − 2, so 0 ≤

n− 2− 2r. �

Lemmas 3.2 and Lemma 3.3 give ranges of positive integers r and p that can
be realized as r = reg(K[G]) and p = pdim(K[G]) for some connected bipartite
graph G. More precisely, Lemma 3.2 (resp. Lemma 3.3) shows that any n ≥ 4,
0 < r <

⌊
n
2

⌋
and 1 ≤ p ≤ r2 (resp. r2 ≤ p ≤ r(n − 2 − r)) can be realized as

r = reg(K[G]) and p = pdim(K[G]) for some connected bipartite graph G on n
vertices. (Note that the p = r2 case is covered twice.)

Lemma 3.2. Let n, r, p be integers with n ≥ 4, 0 < r <
⌊
n
2

⌋
, and 1 ≤ p ≤ r2.

Then there exists a connected bipartite graph G on n vertices with reg(K[G]) = r
and pdim(K[G]) = p.

Proof. We describe the construction of the desired graph. Letting n, r, p be as
given, we define the bipartite graph Gn,r,p as follows. Let our vertex set V be

V = {x1, . . . , xr+1, y1, . . . , yr+1, z1, . . . , zn−2r−2}
with bipartition V1 = {x1, . . . , xr+1} and V2 = {y1, . . . , yr+1, z1, . . . , zn−2r−2}. To
define our edge set, let E1 and E2 be

E1 = {{x1, y1}, {y1, x2}, {x2, y2}, {y2, x3}, . . . , {xr+1, yr+1}, {yr+1, x1}};
E2 = {{xr+1, zj} | 1 ≤ j ≤ n− 2r − 2}.

(Note that n− 2r− 2 ≥ 0 by Lemma 3.1. If n− 2r− 2 = 0, then E2 = ∅ and there
are no zi vertices.) Note E1 is a cycle of length 2r + 2. Let E3 be any p − 1 ≥ 0
edges with one vertex in {x1, . . . , xr+1} and the other in {y1, . . . , yr+1} that do not
already appear in E1. Because we can have at most (r + 1)2 = r2 + 2r + 1 edges
between the xi’s and yj ’s, and since E1 already used 2r + 2 of these edges, there
are only r2 − 1 = r2 +2r+1− (2r+2) possible choices for these p− 1 edges. Since
p ≤ r2, it is possible to find p− 1 such edges. Let E = E1 ∪E2∪E3 be the edge set
of Gn,r,p. See Figure 1 for an example of the graph Gn,r,p for n = 10, r = 3, and
p = 2. We claim that G = Gn,r,p is a connected bipartite graph on n vertices with
reg(K[G]) = r and pdim(K[G]) = p.

By construction G is a connected bipartite graph on n = (r + 1) + (r + 1) +
(n − 2r − 2) vertices with q = 2r + 2 + (n − 2r − 2) + (p − 1) = n + p − 1 edges.
Observe that G is a subgraph of the complete bipartite graph Kr+1,n−r−1. Since
r + 1 ≤ n− r − 1 by Lemma 3.1, by Theorem 2.6 and Lemma 2.9 (i), we have

reg(K[G]) ≤ reg(K[Kr+1,n−r−1]) = min{r + 1, n− r − 1} − 1 = r.

Since G contains the cycle C2r+2 as a subgraph (the edges of E1 form this cycle)
we have r = reg(K[C2r+2]) ≤ reg(K[G]) by Theorem 2.6 and Lemma 2.9 (ii). Thus
reg(K[G]) = r. Furthermore, it follows from Corollary 2.8 (iii) that

pdim(K[G]) = q − n+ 1 = (n+ p− 1)− n+ 1 = p,

as desired. �
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x1 x2 x3 x4

y1 y2 y3 y4 z1 z2

Figure 1. The graph G = G10,3,2 with reg(K[G]) = 3 and
pdim(K[G]) = 2

Lemma 3.3. Let n, r, p be integers with n ≥ 4, 0 < r <
⌊
n
2

⌋
, and r2 ≤ p ≤

r(n − 2 − r). Then there exists a connected bipartite graph G on n vertices with
reg(K[G]) = r and pdim(K[G]) = p.

Proof. We describe the construction of the desired graph. Letting n, r, p be as
given, we define the bipartite graph Hn,r,p as follows. Let our vertex set V be

V = {x1, . . . , xr+1, y1, . . . , yr+1, z1, . . . , zn−2r−2}
with bipartition V1 = {x1, . . . , xr+1} and V2 = {y1, . . . , yr+1, z1, . . . , zn−2r−2}. To
define our edge set, let E1 and E2 be

E1 = {{xi, yj} | 1 ≤ i, j ≤ r + 1};
E2 = {{xr+1, zj} | 1 ≤ j ≤ n− 2r − 2}.

(Note that n− 2r− 2 ≥ 0 by Lemma 3.1. If n− 2r− 2 = 0, then E2 = ∅ and there
are no zi vertices.) Note that there can be at most r(n−2r−2) = r(n−2− r)− r2

edges between {x1, . . . , xr} and {z1, . . . , zn−2r−2}. Let E3 be a set containing any
p− r2 ≥ 0 of these edges. Observe that our hypotheses imply that r(n− 2r− 2) ≥
p− r2 so it is possible to find p− r2 such edges. Let E = E1 ∪E2 ∪E3 be the edge
set of Hn,r,p. See Figure 2 for an example of the graph Hn,r,p for n = 10, r = 3,
and p = 12. We claim that G = Hn,r,p is a connected bipartite graph on n vertices
with reg(K[G]) = r and pdim(K[G]) = p.

By construction G is a connected bipartite graph on n = (r + 1) + (r + 1) +
(n− 2r − 2) vertices with q = (r + 1)2 + (n− 2r − 2) + (p− r2) = n+ p− 1 edges.
Observe that G is a subgraph of the complete bipartite graph Kr+1,n−r−1. Since
r + 1 ≤ n− r − 1 by Lemma 3.1, by Theorem 2.6 and Lemma 2.9 (i), we have

reg(K[G]) ≤ reg(K[Kr+1,n−r−1]) = min{r + 1, n− r − 1} − 1 = r.

On the other hand, note that G contains the complete bipartite graph Kr+1,r+1

on {x1, . . . , xr+1, y1, . . . , yr+1}. Theorem 2.6 and Lemma 2.9 (i) imply that r ≤
reg(K[G]). Thus reg(K[G]) = r, as desired. Furthermore, it follows from Corollary
2.8 (iii) that

pdim(K[G]) = q − n+ 1 = (n+ p− 1)− n+ 1 = p,

completing the proof. �
The next result, which is of independent interest, provides an upper bound on

the number of edges in a bipartite graph G in terms of the regularity.

Lemma 3.4. Let G be a connected bipartite graph on n ≥ 2 vertices. If reg(K[G]) =
r, then G has at most (r + 1)(n− r − 1) edges.
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x1 x2 x3 x4

y1 y2 y3 y4 z1 z2

Figure 2. The graph G = H10,3,12 with reg(K[G]) = 3 and
pdim(K[G]) = 12

Proof. Suppose towards a contradiction that |E(G)| > (r + 1)(n− r − 1). Since G
is bipartite we can consider G as a subgraph of Ka,b with 1 ≤ a ≤ b and a+ b = n.
Observe that if a = 1, then G is a tree since G is connected. Hence r = 0 by Lemma
2.10, so |E(G)| = n− 1 = (r + 1)(n− r − 1) and we obtain a contradiction.

So we may assume that 2 ≤ a ≤ b. Since G ⊆ Ka,b and reg(K[Ka,b]) = a − 1
by Lemma 2.9 (i), it follows by Theorem 2.6 that a ≥ r + 1. If a = r + 1, then
b = n− r − 1 and so G is a subgraph of Kr+1,n−r−1 which has (r + 1)(n− r − 1)
edges, contradicting the assumption that |E(G)| > (r + 1)(n − r − 1). So we can
assume a ≥ r+2. Hence 2 ≤ r+2 ≤ a ≤ b, and so we can apply Theorem 2.1. We
have two cases:

Case 1 (a ≤ 2(r+2)−2). Since 0 ≤ a− r−1, we have b ≤ a+ b− r−1 = n− r−1.
Hence br ≤ rn− r2 − r, so

br + (n− r − 1) ≤ rn− r2 − r + (n− r − 1) = (r + 1)(n− r − 1).

It follows that a+ (b− 1)(r + 1) = br + (n− r − 1) ≤ (r + 1)(n− r − 1) < |E(G)|,
so we conclude by Theorem 2.1 that G contains a cycle of length at least 2(r + 2).

Case 2 (a ≥ 2(r+2)−2). Then (a+ b−2(r+2)+3)(r+1) = (n−2r−1)(r+1) ≤
(n− r− 1)(r+ 1) < |E(G)|, so again we conclude by Theorem 2.1 that G contains
a cycle of length at least 2(r + 2).

In either case, G contains an even cycle C of length at least 2(r + 2). But then
reg(K[G]) ≥ reg(K[C]) ≥ r + 1 by Theorem 2.6 and Lemma 2.9 (ii), contradicting
the fact that reg(K[G]) = r. This final contradiction concludes the proof. �

We now arrive at the main result of this section.

Theorem 3.5. Let n ≥ 2 be an integer. Then

CBPTpdim
reg (n) =

{
(r, p) ∈ Z

2 | 0 < r <
⌊n
2

⌋
, 1 ≤ p ≤ r(n− 2− r)

}
∪ {(0, 0)}.

Proof. We show both inclusions, starting with ⊇. If n ∈ {2, 3}, then the RHS set
is {(0, 0)}, and by Lemma 2.10, we know that there is a tree G on n vertices with
reg(K[G]) = pdim(K[G]) = 0. So suppose n ≥ 4 and take an element (r, p) of
the RHS set. If (r, p) = (0, 0), then again by Lemma 2.10, there is a tree G on n
vertices with reg(K[G]) = pdim(K[G]) = 0. Otherwise, if (r, p) 
= (0, 0), we must
have 0 < r <

⌊
n
2

⌋
, and 1 ≤ p ≤ r(n − 2 − r). Lemma 3.2 and Lemma 3.3 imply

that there is a connected bipartite graph G on n vertices with reg(K[G]) = r and
pdim(K[G]) = p, which verifies the first inclusion.
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r = reg

p = pdim

1 2 3

2

1 2 31 2 3

4

1 2 31 2 3

6

1 2 31 2 3

8

1 2 31 2 3

10

1 2 31 2 3

12

1 2 31 2 3
r = reg

p = pdim

1 2 3

2

1 2 31 2 3

4

1 2 31 2 3

6

1 2 31 2 3

8

1 2 31 2 3

10

1 2 31 2 3

12

1 2 31 2 3

n = 8 n = 9

Figure 3. Possible (r, p) = (reg(K[G]), pdim(K[G])) for all con-
nected bipartite graphs on 8 and 9 vertices

Now, let n ≥ 2 and G ∈ CBPT(n). By Corollary 2.8 (ii), we have 0 ≤
reg(K[G]) <

⌊
n
2

⌋
. If reg(K[G]) = 0, then pdim(K[G]) = 0 by Lemma 2.10.

Hence letting r = reg(K[G]) and p = pdim(K[G]), we just need to show that if
0 < r <

⌊
n
2

⌋
, then 1 ≤ pdim(K[G]) ≤ r(n− 2− r). So suppose 0 < r <

⌊
n
2

⌋
. Since

r 
= 0, we must have 1 ≤ p by Lemma 2.10.
It remains to show that p ≤ r(n − 2 − r). By Lemma 3.4, we have that q ≤

(r + 1)(n− r − 1), where q is the number of edges of G. Hence Corollary 2.8 (iii)
gives

p = q − n+ 1 ≤ (r + 1)(n− r − 1)− n+ 1

= rn− r2 − 2r

= r(n− r − 2)

as desired, which concludes the proof. �

As an example of Theorem 3.5, Figure 3 shows the sets CBPTpdim
reg (n) for n = 8, 9.

Now that we have a description of CBPTpdim
reg (n) for each n, we can compute its

cardinality.

Corollary 3.6. For each n ≥ 2,

|CBPTpdim
reg (n)| = 1− 1

6

⌊n
2

⌋ (⌊n
2

⌋
− 1

)(
2

⌊n
2

⌋
− 3n+ 5

)
.
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Proof. This can be checked directly for n = 2, 3. Let n ≥ 4. By Theorem 3.5, we
have

|CBPTpdim
reg (n)| − 1 =

�n
2 �−1∑
r=1

r(n− 2− r) = (n− 2)

�n
2 �−1∑
r=1

r −
�n

2 �−1∑
r=1

r2

=
n− 2

2

⌊n
2

⌋ ( ⌊n
2

⌋
− 1

)
− 1

6

⌊n
2

⌋ ( ⌊n
2

⌋
− 1

)(
2

⌊n
2

⌋
− 1

)
= −1

6

⌊n
2

⌋ ( ⌊n
2

⌋
− 1

)(
2

⌊n
2

⌋
− 3n+ 5

)
. �

Our second corollary shows that all tuples (r, p) ∈ {(0, 0)} ∪ N
2 can be re-

alized as (reg(K[G]), pdim(K[G])) for some connected bipartite graph G. Here
N = {1, 2, 3, . . . , }.

Corollary 3.7. Let r and p be integers. Then there is a connected bipartite graph
G on at least two vertices with reg(K[G]) = r and pdim(K[G]) = p if and only if
r = p = 0 or r, p ≥ 1. Equivalently,

∞⋃
n≥2

CBPTpdim
reg (n) = {(0, 0)} ∪ N

2.

Proof. Let G be a connected bipartite graph on n ≥ 2 vertices with reg(K[G]) = r
and pdim(K[G]) = p. By Theorem 3.5, (r, p) = (0, 0), or r, p ≥ 1.

Conversely, suppose r = p = 0 or r, p ≥ 1. If r = p = 0, then the unique tree G
on two vertices is a connected bipartite graph with reg(K[G]) = pdim(K[G]) = 0,

so (0, 0) ∈ CBPTpdim
reg (2). So assume r, p ≥ 1. Let N = 2 + r + max{r, p}. Then

N ≥ 2 + r + r = 2 + 2r. Hence

0 < r < r + 1 =

⌊
2r + 2

2

⌋
≤

⌊
N

2

⌋

and thus 0 < r <
⌊
N
2

⌋
. Also, observe that since r ≥ 1,

r(N − 2− r) = rmax{r, p} ≥ rp ≥ p,

so 1 ≤ p ≤ r(N − 2− r). We then have (r, p) ∈ CBPTpdim
reg (N) by Theorem 3.5. �

4. Proof of main theorem

Using the previous sections, we can prove the main result of this paper, namely,
a description of all the elements of CBPTreg,deg,pdim,depth,dim(n). In particular, we
now prove:

Theorem 4.1. Let n ≥ 2. Then CBPTreg,deg,pdim,depth,dim(n) is given by{
(r, r, p, n− 1, n− 1)

∣∣∣ 0<r<
⌊n
2

⌋
, 1≤p≤r(n− 2− r)

}
∪{(0, 0, 0, n− 1, n− 1)}.

Proof. Fix an n ≥ 2 and let T denote the set in the statement. We will first show
that all the elements of CBPTreg,deg,pdim,depth,dim(n) belong to T .

Let G be any connected bipartite graph on n vertices, and set

(r, d1, p, d2, d3) = (reg(K[G], deg(hK[G](t)), pdim(K[G]), depth(K[G]), dim(K[G])).

By Corollary 2.8 (i) and (ii), we have 0 ≤ r = d1 <
⌊
n
2

⌋
and d2 = d3 = n − 1,

i.e., (r, d1, p, d2, d3) = (r, r, p, n − 1, n − 1). Since G ∈ CBPT(n), by Theorem 3.5
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we have r = p = 0, or 0 < r <
⌊
n
2

⌋
and 1 ≤ p ≤ r(n − 2 − r). Consequently,

(r, d1, p, d2, d3) ∈ T .
For the reverse containment, note that

(0, 0, 0, n− 1, n− 1) ∈ CBPTreg,deg,pdim,depth,dim(n)

since any connected tree G on n vertices satisfies

(reg(K[G], deg(hK[G](t)), pdim(K[G]), depth(K[G]), dim(K[G]))=(0, 0, 0, n−1, n−1)

by Corollary 2.8 and Lemma 2.10. So, consider any (r, r, p, n − 1, n − 1) ∈ T

with 0 < r. Because the tuple (r, p) belongs to CPBTpdim
reg (n) by Theorem 3.5,

there exists a connected bipartite graph G on n vertices with reg(K[G]) = r
and pdim(K[G]) = p. But by Corollary 2.8 (i) and (ii), this graph G also has
deg(hK[G](t)) = r and dim(K[G]) = depth(K[G]) = n−1. Thus (r, r, p, n−1, n−1) ∈
CBPTreg,deg,pdim,depth,dim(n), as desired. �

Remark 4.2. Theorem 4.1 focuses on the connected bipartite graphs. It is possible
to provide a generalization of Theorem 4.1 to describe all the possible values for
these invariants for all bipartite graphs, not just connected bipartite graphs. In
particular, one needs to make use of the fact that these invariants behave well over
tensor products. However, additional care needs to be taken for bipartite graphs
with isolated vertices. See [2] for the worked out details.

Remark 4.3. In Theorem 3.5, we completely determined the set CBPTpdim
reg (n).

Akihiro Higashitani pointed out to us that describing this set is equivalent to de-
scribing a combinatorially defined set; we quickly sketch out these details. Asso-
ciated with a toric ideal of a graph G is a polytope PG. The codegree of PG is
given by codeg(PG) = min{k ∈ Z | int(kPG) ∩ Z

n 
= ∅}. This invariant is mea-
suring the smallest integer k such that the interior of the polytope kPG has an
integer lattice point. In the case G is a bipartite graph, it can be shown that
deg(hK[G](t))+ codeg(PG) = n. Further, when G is a bipartite graph, by Corollary
2.8 (ii) and (iii) we have codeg(PG) = n− reg(K[G]) and |E| = pdim(K[G])+n−1.

Consequently, determining the elements of CBPTpdim
reg (n) is equivalent to determin-

ing the elements of

CBPT
|E|
codeg(n) = {(codeg(PG), |E|) | G ∈ CBPT(n)}.

This observation suggests it might be interesting to consider all pairs
(codeg(PG), |E|) for all graphs, not just bipartite graphs.
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